mirror of
https://github.com/python/cpython.git
synced 2025-01-10 10:34:11 +08:00
7aaeb2a3d6
Flag members are now divided by one-bit verses multi-bit, with multi-bit being treated as aliases. Iterating over a flag only returns the contained single-bit flags. Iterating, repr(), and str() show members in definition order. When constructing combined-member flags, any extra integer values are either discarded (CONFORM), turned into ints (EJECT) or treated as errors (STRICT). Flag classes can specify which of those three behaviors is desired: >>> class Test(Flag, boundary=CONFORM): ... ONE = 1 ... TWO = 2 ... >>> Test(5) <Test.ONE: 1> Besides the three above behaviors, there is also KEEP, which should not be used unless necessary -- for example, _convert_ specifies KEEP as there are flag sets in the stdlib that are incomplete and/or inconsistent (e.g. ssl.Options). KEEP will, as the name suggests, keep all bits; however, iterating over a flag with extra bits will only return the canonical flags contained, not the extra bits. Iteration is now in member definition order. If member definition order matches increasing value order, then a more efficient method of flag decomposition is used; otherwise, sort() is called on the results of that method to get definition order. ``re`` module: repr() has been modified to support as closely as possible its previous output; the big difference is that inverted flags cannot be output as before because the inversion operation now always returns the comparable positive result; i.e. re.A|re.I|re.M|re.S is ~(re.L|re.U|re.S|re.T|re.DEBUG) in both of the above terms, the ``value`` is 282. re's tests have been updated to reflect the modifications to repr().
309 lines
9.8 KiB
Python
309 lines
9.8 KiB
Python
"""
|
|
Define names for built-in types that aren't directly accessible as a builtin.
|
|
"""
|
|
import sys
|
|
|
|
# Iterators in Python aren't a matter of type but of protocol. A large
|
|
# and changing number of builtin types implement *some* flavor of
|
|
# iterator. Don't check the type! Use hasattr to check for both
|
|
# "__iter__" and "__next__" attributes instead.
|
|
|
|
def _f(): pass
|
|
FunctionType = type(_f)
|
|
LambdaType = type(lambda: None) # Same as FunctionType
|
|
CodeType = type(_f.__code__)
|
|
MappingProxyType = type(type.__dict__)
|
|
SimpleNamespace = type(sys.implementation)
|
|
|
|
def _cell_factory():
|
|
a = 1
|
|
def f():
|
|
nonlocal a
|
|
return f.__closure__[0]
|
|
CellType = type(_cell_factory())
|
|
|
|
def _g():
|
|
yield 1
|
|
GeneratorType = type(_g())
|
|
|
|
async def _c(): pass
|
|
_c = _c()
|
|
CoroutineType = type(_c)
|
|
_c.close() # Prevent ResourceWarning
|
|
|
|
async def _ag():
|
|
yield
|
|
_ag = _ag()
|
|
AsyncGeneratorType = type(_ag)
|
|
|
|
class _C:
|
|
def _m(self): pass
|
|
MethodType = type(_C()._m)
|
|
|
|
BuiltinFunctionType = type(len)
|
|
BuiltinMethodType = type([].append) # Same as BuiltinFunctionType
|
|
|
|
WrapperDescriptorType = type(object.__init__)
|
|
MethodWrapperType = type(object().__str__)
|
|
MethodDescriptorType = type(str.join)
|
|
ClassMethodDescriptorType = type(dict.__dict__['fromkeys'])
|
|
|
|
ModuleType = type(sys)
|
|
|
|
try:
|
|
raise TypeError
|
|
except TypeError:
|
|
tb = sys.exc_info()[2]
|
|
TracebackType = type(tb)
|
|
FrameType = type(tb.tb_frame)
|
|
tb = None; del tb
|
|
|
|
# For Jython, the following two types are identical
|
|
GetSetDescriptorType = type(FunctionType.__code__)
|
|
MemberDescriptorType = type(FunctionType.__globals__)
|
|
|
|
del sys, _f, _g, _C, _c, _ag # Not for export
|
|
|
|
|
|
# Provide a PEP 3115 compliant mechanism for class creation
|
|
def new_class(name, bases=(), kwds=None, exec_body=None):
|
|
"""Create a class object dynamically using the appropriate metaclass."""
|
|
resolved_bases = resolve_bases(bases)
|
|
meta, ns, kwds = prepare_class(name, resolved_bases, kwds)
|
|
if exec_body is not None:
|
|
exec_body(ns)
|
|
if resolved_bases is not bases:
|
|
ns['__orig_bases__'] = bases
|
|
return meta(name, resolved_bases, ns, **kwds)
|
|
|
|
def resolve_bases(bases):
|
|
"""Resolve MRO entries dynamically as specified by PEP 560."""
|
|
new_bases = list(bases)
|
|
updated = False
|
|
shift = 0
|
|
for i, base in enumerate(bases):
|
|
if isinstance(base, type):
|
|
continue
|
|
if not hasattr(base, "__mro_entries__"):
|
|
continue
|
|
new_base = base.__mro_entries__(bases)
|
|
updated = True
|
|
if not isinstance(new_base, tuple):
|
|
raise TypeError("__mro_entries__ must return a tuple")
|
|
else:
|
|
new_bases[i+shift:i+shift+1] = new_base
|
|
shift += len(new_base) - 1
|
|
if not updated:
|
|
return bases
|
|
return tuple(new_bases)
|
|
|
|
def prepare_class(name, bases=(), kwds=None):
|
|
"""Call the __prepare__ method of the appropriate metaclass.
|
|
|
|
Returns (metaclass, namespace, kwds) as a 3-tuple
|
|
|
|
*metaclass* is the appropriate metaclass
|
|
*namespace* is the prepared class namespace
|
|
*kwds* is an updated copy of the passed in kwds argument with any
|
|
'metaclass' entry removed. If no kwds argument is passed in, this will
|
|
be an empty dict.
|
|
"""
|
|
if kwds is None:
|
|
kwds = {}
|
|
else:
|
|
kwds = dict(kwds) # Don't alter the provided mapping
|
|
if 'metaclass' in kwds:
|
|
meta = kwds.pop('metaclass')
|
|
else:
|
|
if bases:
|
|
meta = type(bases[0])
|
|
else:
|
|
meta = type
|
|
if isinstance(meta, type):
|
|
# when meta is a type, we first determine the most-derived metaclass
|
|
# instead of invoking the initial candidate directly
|
|
meta = _calculate_meta(meta, bases)
|
|
if hasattr(meta, '__prepare__'):
|
|
ns = meta.__prepare__(name, bases, **kwds)
|
|
else:
|
|
ns = {}
|
|
return meta, ns, kwds
|
|
|
|
def _calculate_meta(meta, bases):
|
|
"""Calculate the most derived metaclass."""
|
|
winner = meta
|
|
for base in bases:
|
|
base_meta = type(base)
|
|
if issubclass(winner, base_meta):
|
|
continue
|
|
if issubclass(base_meta, winner):
|
|
winner = base_meta
|
|
continue
|
|
# else:
|
|
raise TypeError("metaclass conflict: "
|
|
"the metaclass of a derived class "
|
|
"must be a (non-strict) subclass "
|
|
"of the metaclasses of all its bases")
|
|
return winner
|
|
|
|
class DynamicClassAttribute:
|
|
"""Route attribute access on a class to __getattr__.
|
|
|
|
This is a descriptor, used to define attributes that act differently when
|
|
accessed through an instance and through a class. Instance access remains
|
|
normal, but access to an attribute through a class will be routed to the
|
|
class's __getattr__ method; this is done by raising AttributeError.
|
|
|
|
This allows one to have properties active on an instance, and have virtual
|
|
attributes on the class with the same name. (Enum used this between Python
|
|
versions 3.4 - 3.9 .)
|
|
|
|
Subclass from this to use a different method of accessing virtual atributes
|
|
and still be treated properly by the inspect module. (Enum uses this since
|
|
Python 3.10 .)
|
|
|
|
"""
|
|
def __init__(self, fget=None, fset=None, fdel=None, doc=None):
|
|
self.fget = fget
|
|
self.fset = fset
|
|
self.fdel = fdel
|
|
# next two lines make DynamicClassAttribute act the same as property
|
|
self.__doc__ = doc or fget.__doc__
|
|
self.overwrite_doc = doc is None
|
|
# support for abstract methods
|
|
self.__isabstractmethod__ = bool(getattr(fget, '__isabstractmethod__', False))
|
|
|
|
def __get__(self, instance, ownerclass=None):
|
|
if instance is None:
|
|
if self.__isabstractmethod__:
|
|
return self
|
|
raise AttributeError()
|
|
elif self.fget is None:
|
|
raise AttributeError("unreadable attribute")
|
|
return self.fget(instance)
|
|
|
|
def __set__(self, instance, value):
|
|
if self.fset is None:
|
|
raise AttributeError("can't set attribute")
|
|
self.fset(instance, value)
|
|
|
|
def __delete__(self, instance):
|
|
if self.fdel is None:
|
|
raise AttributeError("can't delete attribute")
|
|
self.fdel(instance)
|
|
|
|
def getter(self, fget):
|
|
fdoc = fget.__doc__ if self.overwrite_doc else None
|
|
result = type(self)(fget, self.fset, self.fdel, fdoc or self.__doc__)
|
|
result.overwrite_doc = self.overwrite_doc
|
|
return result
|
|
|
|
def setter(self, fset):
|
|
result = type(self)(self.fget, fset, self.fdel, self.__doc__)
|
|
result.overwrite_doc = self.overwrite_doc
|
|
return result
|
|
|
|
def deleter(self, fdel):
|
|
result = type(self)(self.fget, self.fset, fdel, self.__doc__)
|
|
result.overwrite_doc = self.overwrite_doc
|
|
return result
|
|
|
|
|
|
class _GeneratorWrapper:
|
|
# TODO: Implement this in C.
|
|
def __init__(self, gen):
|
|
self.__wrapped = gen
|
|
self.__isgen = gen.__class__ is GeneratorType
|
|
self.__name__ = getattr(gen, '__name__', None)
|
|
self.__qualname__ = getattr(gen, '__qualname__', None)
|
|
def send(self, val):
|
|
return self.__wrapped.send(val)
|
|
def throw(self, tp, *rest):
|
|
return self.__wrapped.throw(tp, *rest)
|
|
def close(self):
|
|
return self.__wrapped.close()
|
|
@property
|
|
def gi_code(self):
|
|
return self.__wrapped.gi_code
|
|
@property
|
|
def gi_frame(self):
|
|
return self.__wrapped.gi_frame
|
|
@property
|
|
def gi_running(self):
|
|
return self.__wrapped.gi_running
|
|
@property
|
|
def gi_yieldfrom(self):
|
|
return self.__wrapped.gi_yieldfrom
|
|
cr_code = gi_code
|
|
cr_frame = gi_frame
|
|
cr_running = gi_running
|
|
cr_await = gi_yieldfrom
|
|
def __next__(self):
|
|
return next(self.__wrapped)
|
|
def __iter__(self):
|
|
if self.__isgen:
|
|
return self.__wrapped
|
|
return self
|
|
__await__ = __iter__
|
|
|
|
def coroutine(func):
|
|
"""Convert regular generator function to a coroutine."""
|
|
|
|
if not callable(func):
|
|
raise TypeError('types.coroutine() expects a callable')
|
|
|
|
if (func.__class__ is FunctionType and
|
|
getattr(func, '__code__', None).__class__ is CodeType):
|
|
|
|
co_flags = func.__code__.co_flags
|
|
|
|
# Check if 'func' is a coroutine function.
|
|
# (0x180 == CO_COROUTINE | CO_ITERABLE_COROUTINE)
|
|
if co_flags & 0x180:
|
|
return func
|
|
|
|
# Check if 'func' is a generator function.
|
|
# (0x20 == CO_GENERATOR)
|
|
if co_flags & 0x20:
|
|
# TODO: Implement this in C.
|
|
co = func.__code__
|
|
# 0x100 == CO_ITERABLE_COROUTINE
|
|
func.__code__ = co.replace(co_flags=co.co_flags | 0x100)
|
|
return func
|
|
|
|
# The following code is primarily to support functions that
|
|
# return generator-like objects (for instance generators
|
|
# compiled with Cython).
|
|
|
|
# Delay functools and _collections_abc import for speeding up types import.
|
|
import functools
|
|
import _collections_abc
|
|
@functools.wraps(func)
|
|
def wrapped(*args, **kwargs):
|
|
coro = func(*args, **kwargs)
|
|
if (coro.__class__ is CoroutineType or
|
|
coro.__class__ is GeneratorType and coro.gi_code.co_flags & 0x100):
|
|
# 'coro' is a native coroutine object or an iterable coroutine
|
|
return coro
|
|
if (isinstance(coro, _collections_abc.Generator) and
|
|
not isinstance(coro, _collections_abc.Coroutine)):
|
|
# 'coro' is either a pure Python generator iterator, or it
|
|
# implements collections.abc.Generator (and does not implement
|
|
# collections.abc.Coroutine).
|
|
return _GeneratorWrapper(coro)
|
|
# 'coro' is either an instance of collections.abc.Coroutine or
|
|
# some other object -- pass it through.
|
|
return coro
|
|
|
|
return wrapped
|
|
|
|
|
|
GenericAlias = type(list[int])
|
|
Union = type(int | str)
|
|
|
|
EllipsisType = type(Ellipsis)
|
|
NoneType = type(None)
|
|
NotImplementedType = type(NotImplemented)
|
|
|
|
__all__ = [n for n in globals() if n[:1] != '_']
|