mirror of
https://github.com/python/cpython.git
synced 2024-11-23 01:45:25 +08:00
8cc5aa47ee
Instead of surprise crashes and memory corruption, we now hang threads that attempt to re-enter the Python interpreter after Python runtime finalization has started. These are typically daemon threads (our long standing mis-feature) but could also be threads spawned by extension modules that then try to call into Python. This marks the `PyThread_exit_thread` public C API as deprecated as there is no plausible safe way to accomplish that on any supported platform in the face of things like C++ code with finalizers anywhere on a thread's stack. Doing this was the least bad option. Co-authored-by: Gregory P. Smith <greg@krypto.org>
532 lines
12 KiB
C
532 lines
12 KiB
C
#include "pycore_interp.h" // _PyInterpreterState.threads.stacksize
|
|
#include "pycore_time.h" // _PyTime_AsMicroseconds()
|
|
|
|
/* This code implemented by Dag.Gruneau@elsa.preseco.comm.se */
|
|
/* Fast NonRecursiveMutex support by Yakov Markovitch, markovitch@iso.ru */
|
|
/* Eliminated some memory leaks, gsw@agere.com */
|
|
|
|
#include <windows.h>
|
|
#include <limits.h>
|
|
#ifdef HAVE_PROCESS_H
|
|
#include <process.h>
|
|
#endif
|
|
|
|
/* options */
|
|
#ifndef _PY_USE_CV_LOCKS
|
|
#define _PY_USE_CV_LOCKS 1 /* use locks based on cond vars */
|
|
#endif
|
|
|
|
/* Now, define a non-recursive mutex using either condition variables
|
|
* and critical sections (fast) or using operating system mutexes
|
|
* (slow)
|
|
*/
|
|
|
|
#if _PY_USE_CV_LOCKS
|
|
|
|
#include "condvar.h"
|
|
|
|
typedef struct _NRMUTEX
|
|
{
|
|
PyMUTEX_T cs;
|
|
PyCOND_T cv;
|
|
int locked;
|
|
} NRMUTEX;
|
|
typedef NRMUTEX *PNRMUTEX;
|
|
|
|
static PNRMUTEX
|
|
AllocNonRecursiveMutex(void)
|
|
{
|
|
PNRMUTEX m = (PNRMUTEX)PyMem_RawMalloc(sizeof(NRMUTEX));
|
|
if (!m)
|
|
return NULL;
|
|
if (PyCOND_INIT(&m->cv))
|
|
goto fail;
|
|
if (PyMUTEX_INIT(&m->cs)) {
|
|
PyCOND_FINI(&m->cv);
|
|
goto fail;
|
|
}
|
|
m->locked = 0;
|
|
return m;
|
|
fail:
|
|
PyMem_RawFree(m);
|
|
return NULL;
|
|
}
|
|
|
|
static VOID
|
|
FreeNonRecursiveMutex(PNRMUTEX mutex)
|
|
{
|
|
if (mutex) {
|
|
PyCOND_FINI(&mutex->cv);
|
|
PyMUTEX_FINI(&mutex->cs);
|
|
PyMem_RawFree(mutex);
|
|
}
|
|
}
|
|
|
|
static DWORD
|
|
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
|
|
{
|
|
DWORD result = WAIT_OBJECT_0;
|
|
if (PyMUTEX_LOCK(&mutex->cs))
|
|
return WAIT_FAILED;
|
|
if (milliseconds == INFINITE) {
|
|
while (mutex->locked) {
|
|
if (PyCOND_WAIT(&mutex->cv, &mutex->cs)) {
|
|
result = WAIT_FAILED;
|
|
break;
|
|
}
|
|
}
|
|
} else if (milliseconds != 0) {
|
|
/* wait at least until the deadline */
|
|
PyTime_t timeout = (PyTime_t)milliseconds * (1000 * 1000);
|
|
PyTime_t deadline = _PyDeadline_Init(timeout);
|
|
while (mutex->locked) {
|
|
PyTime_t microseconds = _PyTime_AsMicroseconds(timeout,
|
|
_PyTime_ROUND_TIMEOUT);
|
|
if (PyCOND_TIMEDWAIT(&mutex->cv, &mutex->cs, microseconds) < 0) {
|
|
result = WAIT_FAILED;
|
|
break;
|
|
}
|
|
|
|
timeout = _PyDeadline_Get(deadline);
|
|
if (timeout <= 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!mutex->locked) {
|
|
mutex->locked = 1;
|
|
result = WAIT_OBJECT_0;
|
|
} else if (result == WAIT_OBJECT_0)
|
|
result = WAIT_TIMEOUT;
|
|
/* else, it is WAIT_FAILED */
|
|
PyMUTEX_UNLOCK(&mutex->cs); /* must ignore result here */
|
|
return result;
|
|
}
|
|
|
|
static BOOL
|
|
LeaveNonRecursiveMutex(PNRMUTEX mutex)
|
|
{
|
|
BOOL result;
|
|
if (PyMUTEX_LOCK(&mutex->cs))
|
|
return FALSE;
|
|
mutex->locked = 0;
|
|
/* condvar APIs return 0 on success. We need to return TRUE on success. */
|
|
result = !PyCOND_SIGNAL(&mutex->cv);
|
|
PyMUTEX_UNLOCK(&mutex->cs);
|
|
return result;
|
|
}
|
|
|
|
#else /* if ! _PY_USE_CV_LOCKS */
|
|
|
|
/* NR-locks based on a kernel mutex */
|
|
#define PNRMUTEX HANDLE
|
|
|
|
static PNRMUTEX
|
|
AllocNonRecursiveMutex(void)
|
|
{
|
|
return CreateSemaphore(NULL, 1, 1, NULL);
|
|
}
|
|
|
|
static VOID
|
|
FreeNonRecursiveMutex(PNRMUTEX mutex)
|
|
{
|
|
/* No in-use check */
|
|
CloseHandle(mutex);
|
|
}
|
|
|
|
static DWORD
|
|
EnterNonRecursiveMutex(PNRMUTEX mutex, DWORD milliseconds)
|
|
{
|
|
return WaitForSingleObjectEx(mutex, milliseconds, FALSE);
|
|
}
|
|
|
|
static BOOL
|
|
LeaveNonRecursiveMutex(PNRMUTEX mutex)
|
|
{
|
|
return ReleaseSemaphore(mutex, 1, NULL);
|
|
}
|
|
#endif /* _PY_USE_CV_LOCKS */
|
|
|
|
unsigned long PyThread_get_thread_ident(void);
|
|
|
|
#ifdef PY_HAVE_THREAD_NATIVE_ID
|
|
unsigned long PyThread_get_thread_native_id(void);
|
|
#endif
|
|
|
|
/*
|
|
* Initialization for the current runtime.
|
|
*/
|
|
static void
|
|
PyThread__init_thread(void)
|
|
{
|
|
// Initialization of the C package should not be needed.
|
|
}
|
|
|
|
/*
|
|
* Thread support.
|
|
*/
|
|
|
|
typedef struct {
|
|
void (*func)(void*);
|
|
void *arg;
|
|
} callobj;
|
|
|
|
/* thunker to call adapt between the function type used by the system's
|
|
thread start function and the internally used one. */
|
|
static unsigned __stdcall
|
|
bootstrap(void *call)
|
|
{
|
|
callobj *obj = (callobj*)call;
|
|
void (*func)(void*) = obj->func;
|
|
void *arg = obj->arg;
|
|
HeapFree(GetProcessHeap(), 0, obj);
|
|
func(arg);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
PyThread_start_joinable_thread(void (*func)(void *), void *arg,
|
|
PyThread_ident_t* ident, PyThread_handle_t* handle) {
|
|
HANDLE hThread;
|
|
unsigned threadID;
|
|
callobj *obj;
|
|
|
|
if (!initialized)
|
|
PyThread_init_thread();
|
|
|
|
obj = (callobj*)HeapAlloc(GetProcessHeap(), 0, sizeof(*obj));
|
|
if (!obj)
|
|
return -1;
|
|
obj->func = func;
|
|
obj->arg = arg;
|
|
PyThreadState *tstate = _PyThreadState_GET();
|
|
size_t stacksize = tstate ? tstate->interp->threads.stacksize : 0;
|
|
hThread = (HANDLE)_beginthreadex(0,
|
|
Py_SAFE_DOWNCAST(stacksize, Py_ssize_t, unsigned int),
|
|
bootstrap, obj,
|
|
0, &threadID);
|
|
if (hThread == 0) {
|
|
/* I've seen errno == EAGAIN here, which means "there are
|
|
* too many threads".
|
|
*/
|
|
HeapFree(GetProcessHeap(), 0, obj);
|
|
return -1;
|
|
}
|
|
*ident = threadID;
|
|
// The cast is safe since HANDLE is pointer-sized
|
|
*handle = (PyThread_handle_t) hThread;
|
|
return 0;
|
|
}
|
|
|
|
unsigned long
|
|
PyThread_start_new_thread(void (*func)(void *), void *arg) {
|
|
PyThread_handle_t handle;
|
|
PyThread_ident_t ident;
|
|
if (PyThread_start_joinable_thread(func, arg, &ident, &handle)) {
|
|
return PYTHREAD_INVALID_THREAD_ID;
|
|
}
|
|
CloseHandle((HANDLE) handle);
|
|
// The cast is safe since the ident is really an unsigned int
|
|
return (unsigned long) ident;
|
|
}
|
|
|
|
int
|
|
PyThread_join_thread(PyThread_handle_t handle) {
|
|
HANDLE hThread = (HANDLE) handle;
|
|
int errored = (WaitForSingleObject(hThread, INFINITE) != WAIT_OBJECT_0);
|
|
CloseHandle(hThread);
|
|
return errored;
|
|
}
|
|
|
|
int
|
|
PyThread_detach_thread(PyThread_handle_t handle) {
|
|
HANDLE hThread = (HANDLE) handle;
|
|
return (CloseHandle(hThread) == 0);
|
|
}
|
|
|
|
/*
|
|
* Return the thread Id instead of a handle. The Id is said to uniquely identify the
|
|
* thread in the system
|
|
*/
|
|
PyThread_ident_t
|
|
PyThread_get_thread_ident_ex(void)
|
|
{
|
|
if (!initialized)
|
|
PyThread_init_thread();
|
|
|
|
return GetCurrentThreadId();
|
|
}
|
|
|
|
unsigned long
|
|
PyThread_get_thread_ident(void)
|
|
{
|
|
return (unsigned long) PyThread_get_thread_ident_ex();
|
|
}
|
|
|
|
|
|
#ifdef PY_HAVE_THREAD_NATIVE_ID
|
|
/*
|
|
* Return the native Thread ID (TID) of the calling thread.
|
|
* The native ID of a thread is valid and guaranteed to be unique system-wide
|
|
* from the time the thread is created until the thread has been terminated.
|
|
*/
|
|
unsigned long
|
|
PyThread_get_thread_native_id(void)
|
|
{
|
|
if (!initialized) {
|
|
PyThread_init_thread();
|
|
}
|
|
|
|
DWORD native_id;
|
|
native_id = GetCurrentThreadId();
|
|
return (unsigned long) native_id;
|
|
}
|
|
#endif
|
|
|
|
void _Py_NO_RETURN
|
|
PyThread_exit_thread(void)
|
|
{
|
|
if (!initialized)
|
|
exit(0);
|
|
_endthreadex(0);
|
|
}
|
|
|
|
void _Py_NO_RETURN
|
|
PyThread_hang_thread(void)
|
|
{
|
|
while (1) {
|
|
SleepEx(INFINITE, TRUE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Lock support. It has to be implemented as semaphores.
|
|
* I [Dag] tried to implement it with mutex but I could find a way to
|
|
* tell whether a thread already own the lock or not.
|
|
*/
|
|
PyThread_type_lock
|
|
PyThread_allocate_lock(void)
|
|
{
|
|
PNRMUTEX mutex;
|
|
|
|
if (!initialized)
|
|
PyThread_init_thread();
|
|
|
|
mutex = AllocNonRecursiveMutex() ;
|
|
|
|
PyThread_type_lock aLock = (PyThread_type_lock) mutex;
|
|
assert(aLock);
|
|
|
|
return aLock;
|
|
}
|
|
|
|
void
|
|
PyThread_free_lock(PyThread_type_lock aLock)
|
|
{
|
|
FreeNonRecursiveMutex(aLock) ;
|
|
}
|
|
|
|
// WaitForSingleObject() accepts timeout in milliseconds in the range
|
|
// [0; 0xFFFFFFFE] (DWORD type). INFINITE value (0xFFFFFFFF) means no
|
|
// timeout. 0xFFFFFFFE milliseconds is around 49.7 days.
|
|
const DWORD TIMEOUT_MS_MAX = 0xFFFFFFFE;
|
|
|
|
/*
|
|
* Return 1 on success if the lock was acquired
|
|
*
|
|
* and 0 if the lock was not acquired. This means a 0 is returned
|
|
* if the lock has already been acquired by this thread!
|
|
*/
|
|
PyLockStatus
|
|
PyThread_acquire_lock_timed(PyThread_type_lock aLock,
|
|
PY_TIMEOUT_T microseconds, int intr_flag)
|
|
{
|
|
assert(aLock);
|
|
|
|
/* Fow now, intr_flag does nothing on Windows, and lock acquires are
|
|
* uninterruptible. */
|
|
PyLockStatus success;
|
|
PY_TIMEOUT_T milliseconds;
|
|
|
|
if (microseconds >= 0) {
|
|
milliseconds = microseconds / 1000;
|
|
// Round milliseconds away from zero
|
|
if (microseconds % 1000 > 0) {
|
|
milliseconds++;
|
|
}
|
|
if (milliseconds > (PY_TIMEOUT_T)TIMEOUT_MS_MAX) {
|
|
// bpo-41710: PyThread_acquire_lock_timed() cannot report timeout
|
|
// overflow to the caller, so clamp the timeout to
|
|
// [0, TIMEOUT_MS_MAX] milliseconds.
|
|
//
|
|
// _thread.Lock.acquire() and _thread.RLock.acquire() raise an
|
|
// OverflowError if microseconds is greater than PY_TIMEOUT_MAX.
|
|
milliseconds = TIMEOUT_MS_MAX;
|
|
}
|
|
assert(milliseconds != INFINITE);
|
|
}
|
|
else {
|
|
milliseconds = INFINITE;
|
|
}
|
|
|
|
if (EnterNonRecursiveMutex((PNRMUTEX)aLock,
|
|
(DWORD)milliseconds) == WAIT_OBJECT_0) {
|
|
success = PY_LOCK_ACQUIRED;
|
|
}
|
|
else {
|
|
success = PY_LOCK_FAILURE;
|
|
}
|
|
|
|
return success;
|
|
}
|
|
int
|
|
PyThread_acquire_lock(PyThread_type_lock aLock, int waitflag)
|
|
{
|
|
return PyThread_acquire_lock_timed(aLock, waitflag ? -1 : 0, 0);
|
|
}
|
|
|
|
void
|
|
PyThread_release_lock(PyThread_type_lock aLock)
|
|
{
|
|
assert(aLock);
|
|
(void)LeaveNonRecursiveMutex((PNRMUTEX) aLock);
|
|
}
|
|
|
|
/* minimum/maximum thread stack sizes supported */
|
|
#define THREAD_MIN_STACKSIZE 0x8000 /* 32 KiB */
|
|
#define THREAD_MAX_STACKSIZE 0x10000000 /* 256 MiB */
|
|
|
|
/* set the thread stack size.
|
|
* Return 0 if size is valid, -1 otherwise.
|
|
*/
|
|
static int
|
|
_pythread_nt_set_stacksize(size_t size)
|
|
{
|
|
/* set to default */
|
|
if (size == 0) {
|
|
_PyInterpreterState_GET()->threads.stacksize = 0;
|
|
return 0;
|
|
}
|
|
|
|
/* valid range? */
|
|
if (size >= THREAD_MIN_STACKSIZE && size < THREAD_MAX_STACKSIZE) {
|
|
_PyInterpreterState_GET()->threads.stacksize = size;
|
|
return 0;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
#define THREAD_SET_STACKSIZE(x) _pythread_nt_set_stacksize(x)
|
|
|
|
|
|
/* Thread Local Storage (TLS) API
|
|
|
|
This API is DEPRECATED since Python 3.7. See PEP 539 for details.
|
|
*/
|
|
|
|
int
|
|
PyThread_create_key(void)
|
|
{
|
|
DWORD result = TlsAlloc();
|
|
if (result == TLS_OUT_OF_INDEXES)
|
|
return -1;
|
|
return (int)result;
|
|
}
|
|
|
|
void
|
|
PyThread_delete_key(int key)
|
|
{
|
|
TlsFree(key);
|
|
}
|
|
|
|
int
|
|
PyThread_set_key_value(int key, void *value)
|
|
{
|
|
BOOL ok = TlsSetValue(key, value);
|
|
return ok ? 0 : -1;
|
|
}
|
|
|
|
void *
|
|
PyThread_get_key_value(int key)
|
|
{
|
|
return TlsGetValue(key);
|
|
}
|
|
|
|
void
|
|
PyThread_delete_key_value(int key)
|
|
{
|
|
/* NULL is used as "key missing", and it is also the default
|
|
* given by TlsGetValue() if nothing has been set yet.
|
|
*/
|
|
TlsSetValue(key, NULL);
|
|
}
|
|
|
|
|
|
/* reinitialization of TLS is not necessary after fork when using
|
|
* the native TLS functions. And forking isn't supported on Windows either.
|
|
*/
|
|
void
|
|
PyThread_ReInitTLS(void)
|
|
{
|
|
}
|
|
|
|
|
|
/* Thread Specific Storage (TSS) API
|
|
|
|
Platform-specific components of TSS API implementation.
|
|
*/
|
|
|
|
int
|
|
PyThread_tss_create(Py_tss_t *key)
|
|
{
|
|
assert(key != NULL);
|
|
/* If the key has been created, function is silently skipped. */
|
|
if (key->_is_initialized) {
|
|
return 0;
|
|
}
|
|
|
|
DWORD result = TlsAlloc();
|
|
if (result == TLS_OUT_OF_INDEXES) {
|
|
return -1;
|
|
}
|
|
/* In Windows, platform-specific key type is DWORD. */
|
|
key->_key = result;
|
|
key->_is_initialized = 1;
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
PyThread_tss_delete(Py_tss_t *key)
|
|
{
|
|
assert(key != NULL);
|
|
/* If the key has not been created, function is silently skipped. */
|
|
if (!key->_is_initialized) {
|
|
return;
|
|
}
|
|
|
|
TlsFree(key->_key);
|
|
key->_key = TLS_OUT_OF_INDEXES;
|
|
key->_is_initialized = 0;
|
|
}
|
|
|
|
int
|
|
PyThread_tss_set(Py_tss_t *key, void *value)
|
|
{
|
|
assert(key != NULL);
|
|
BOOL ok = TlsSetValue(key->_key, value);
|
|
return ok ? 0 : -1;
|
|
}
|
|
|
|
void *
|
|
PyThread_tss_get(Py_tss_t *key)
|
|
{
|
|
assert(key != NULL);
|
|
int err = GetLastError();
|
|
void *r = TlsGetValue(key->_key);
|
|
if (r || !GetLastError()) {
|
|
SetLastError(err);
|
|
}
|
|
return r;
|
|
}
|