Split the description of co_flags into two paragraphs. The first
describes the flags that are used for non-future purposes, where
CO_GENERATOR was added. The second describes __future__'s use of
co_flags and mentions the only one currently meaningful,
CO_FUTURE_DIVISION.
This displays stats about the # of arenas, pools, blocks and bytes, to
stderr, both used and reserved but unused.
CAUTION: Because PYMALLOC_DEBUG is on, the debug malloc routine adds
16 bytes to each request. This makes each block appear two size classes
higher than it would be if PYMALLOC_DEBUG weren't on.
So far, playing with this confirms the obvious: there's a lot of activity
in the "small dict" size class, but nothing in the core makes any use of
the 8-byte or 16-byte classes.
I really can't test this, but from reading the discussion in that bug
report, it's likely that this works. It may also close a whole bunch
of other bug reports related to urllib and proxies on Windows, but who
knows.
Convert METH_OLDARGS -> METH_VARARGS: also PyArg_Parse -> PyArg_ParseTuple
Convert METH_OLDARGS -> METH_NOARGS: remove args parameter
Please review. All tests pass, but some modules don't have tests.
I spot checked various functions to try to make sure nothing broke.
the code so that the most frequent cases come first. Added comments.
Found a hidden assumption that a pool contains room for at least two
blocks, and added an assert to catch a violation if it ever happens in
a place where that matters. Gave the normal "I allocated this block"
case a longer basic block to work with before it has to do its first
branch (via breaking apart an embedded assignment in an "if", and
hoisting common code out of both branches).
address obtained from system malloc/realloc without holding the GIL.
When the vector of arena base addresses has to grow, the old vector is
deliberately leaked. This makes "stale" x-thread references safe.
arenas and narenas are also declared volatile, and changed in an order
that prevents a thread from picking up a value of narenas too large
for the value of arenas it sees.
Added more asserts.
Fixed an old inaccurate comment.
Added a comment explaining why it's safe to call pymalloc free/realloc
with an address obtained from system malloc/realloc even when arenas is
still NULL (this is obscure, since the ADDRESS_IN_RANGE macro
appears <wink> to index into arenas).
this. But added an overflow check just in case there is.
Got rid of the ushort macro. It wasn't used anymore (it was only used
in the no-longer-exists off_t macro), and there's no plausible use for it.
waste the first pool if malloc happens to return a pool-aligned address.
This means the number of pools per arena can now vary by 1. Unfortunately,
the code counted up from 0 to a presumed constant number of pools. So
changed the increasing "watermark" counter to a decreasing "nfreepools"
counter instead, and fiddled various stuff accordingly. This also allowed
getting rid of two more macros.
Also changed the code to align the first address to a pool boundary
instead of a page boundary. These are two parallel sets of macro #defines
that happen to be identical now, but the page macros are in theory more
restrictive (bigger), and there's simply no reason I can see that it
wasn't aligning to the less restrictive pool size all along (the code
only relies on pool alignment).
Hmm. The "page size" macros aren't used for anything *except* defining
the pool size macros, and the comments claim the latter isn't necessary.
So this has the feel of a layer of indirection that doesn't serve a
purpose; should probably get rid of the page macros now.
are called without the GIL. It's incredibly unlikely to fail, but I can't
make this bulletproof without either adding a lock for exclusion, or
giving up on growing the arena base-address vector (it would be safe if
this were a static array).