- Loading non-binary string pickles checks for insecure
strings. This is needed because cPickle (still)
uses a restricted eval to parse non-binary string pickles.
This change is needed to prevent untrusted
pickles like::
"S'hello world'*2000000\012p0\012."
from hosing an application.
- User-defined types can now support unpickling without
executing a constructor.
The second value returned from __reduce__ can now be None,
rather than an argument tuple. On unpickling, if the second
value returned from __reduce__ during pickling was None, then
rather than calling the first value returned from __reduce__,
directly, the __basicnew__ method of the first value returned
from __reduce__ is called without arguments.
- New option -x, to skip first line of script
- Use the correct platform-specific delimiter and library location in
the usage message
(Also removed two blank lines and moved one line around so that each
part of the usage message is again under 512 bytes and the whole usage
message still fits in 23 lines.)
the default build on Linux (because it requires -lcrypt which isn't
availabel everywhere).
Some improvements to the _tkinter build line suggested by Case Roole.
maxsplit which is implemented in string.py but wasn't here. The
reference manual doesn't define what happens when maxsplit is negative
or larger than the number of occurrences, but in either case, I
implemented this as all get replaced. Default value is zero which
replaces all occurrences.
signal handlers in a fork()ed child process when Python is compiled with
thread support. The bug was reported by Scott <scott@chronis.icgroup.com>.
What happens is that after a fork(), the variables used by the signal
module to determine whether this is the main thread or not are bogus,
and it decides that no thread is the main thread, so no signals will
be delivered.
The solution is the addition of PyOS_AfterFork(), which fixes the signal
module's variables. A dummy version of the function is present in the
intrcheck.c source file which is linked when the signal module is not
used.
to inside floatsleep(). This is necessary because floatsleep() does
the error handling and it must have grabbed the interpreter lock and
thread state before it can do so.
save and restore the tstate, but explicitly calling
PyEval_SaveThread() does reset it! While I think about how to fix
this for real, here's a fix that avoids getting a fatal error.