mirror of
https://github.com/python/cpython.git
synced 2025-01-19 15:05:15 +08:00
Random variable generators
This commit is contained in:
parent
b19d86232b
commit
ff03b1ae5b
212
Lib/random.py
Normal file
212
Lib/random.py
Normal file
@ -0,0 +1,212 @@
|
||||
# R A N D O M V A R I A B L E G E N E R A T O R S
|
||||
#
|
||||
# distributions on the real line:
|
||||
# ------------------------------
|
||||
# normal (Gaussian)
|
||||
# lognormal
|
||||
# negative exponential
|
||||
# gamma
|
||||
#
|
||||
# distributions on the circle (angles 0 to 2pi)
|
||||
# ---------------------------------------------
|
||||
# circular uniform
|
||||
# von Mises
|
||||
|
||||
# Translated from anonymously contributed C/C++ source.
|
||||
|
||||
from whrandom import random, uniform, randint, choice # Also for export!
|
||||
from math import log, exp, pi, e, sqrt, acos, cos
|
||||
|
||||
# Housekeeping function to verify that magic constants have been
|
||||
# computed correctly
|
||||
|
||||
def verify(name, expected):
|
||||
computed = eval(name)
|
||||
if abs(computed - expected) > 1e-7:
|
||||
raise ValueError, \
|
||||
'computed value for %s deviates too much (computed %g, expected %g)' % \
|
||||
(name, computed, expected)
|
||||
|
||||
# -------------------- normal distribution --------------------
|
||||
|
||||
NV_MAGICCONST = 4*exp(-0.5)/sqrt(2)
|
||||
verify('NV_MAGICCONST', 1.71552776992141)
|
||||
def normalvariate(mu, sigma):
|
||||
# mu = mean, sigma = standard deviation
|
||||
|
||||
# Uses Kinderman and Monahan method. Reference: Kinderman,
|
||||
# A.J. and Monahan, J.F., "Computer generation of random
|
||||
# variables using the ratio of uniform deviates", ACM Trans
|
||||
# Math Software, 3, (1977), pp257-260.
|
||||
|
||||
while 1:
|
||||
u1 = random()
|
||||
u2 = random()
|
||||
z = NV_MAGICCONST*(u1-0.5)/u2
|
||||
zz = z*z/4
|
||||
if zz <= -log(u2):
|
||||
break
|
||||
return mu+z*sigma
|
||||
|
||||
# -------------------- lognormal distribution --------------------
|
||||
|
||||
def lognormvariate(mu, sigma):
|
||||
return exp(normalvariate(mu, sigma))
|
||||
|
||||
# -------------------- circular uniform --------------------
|
||||
|
||||
def cunifvariate(mean, arc):
|
||||
# mean: mean angle (in radians between 0 and pi)
|
||||
# arc: range of distribution (in radians between 0 and pi)
|
||||
|
||||
return (mean + arc * (random() - 0.5)) % pi
|
||||
|
||||
# -------------------- exponential distribution --------------------
|
||||
|
||||
def expovariate(lambd):
|
||||
# lambd: rate lambd = 1/mean
|
||||
# ('lambda' is a Python reserved word)
|
||||
|
||||
u = random()
|
||||
while u <= 1e-7:
|
||||
u = random()
|
||||
return -log(u)/lambd
|
||||
|
||||
# -------------------- von Mises distribution --------------------
|
||||
|
||||
TWOPI = 2*pi
|
||||
verify('TWOPI', 6.28318530718)
|
||||
|
||||
def vonmisesvariate(mu, kappa):
|
||||
# mu: mean angle (in radians between 0 and 180 degrees)
|
||||
# kappa: concentration parameter kappa (>= 0)
|
||||
|
||||
# if kappa = 0 generate uniform random angle
|
||||
if kappa <= 1e-6:
|
||||
return TWOPI * random()
|
||||
|
||||
a = 1.0 + sqrt(1 + 4 * kappa * kappa)
|
||||
b = (a - sqrt(2 * a))/(2 * kappa)
|
||||
r = (1 + b * b)/(2 * b)
|
||||
|
||||
while 1:
|
||||
u1 = random()
|
||||
|
||||
z = cos(pi * u1)
|
||||
f = (1 + r * z)/(r + z)
|
||||
c = kappa * (r - f)
|
||||
|
||||
u2 = random()
|
||||
|
||||
if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
|
||||
break
|
||||
|
||||
u3 = random()
|
||||
if u3 > 0.5:
|
||||
theta = mu + 0.5*acos(f)
|
||||
else:
|
||||
theta = mu - 0.5*acos(f)
|
||||
|
||||
return theta % pi
|
||||
|
||||
# -------------------- gamma distribution --------------------
|
||||
|
||||
LOG4 = log(4)
|
||||
verify('LOG4', 1.38629436111989)
|
||||
|
||||
def gammavariate(alpha, beta):
|
||||
# beta times standard gamma
|
||||
ainv = sqrt(2 * alpha - 1)
|
||||
return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
|
||||
|
||||
SG_MAGICCONST = 1+log(4.5)
|
||||
verify('SG_MAGICCONST', 2.50407739677627)
|
||||
|
||||
def stdgamma(alpha, ainv, bbb, ccc):
|
||||
# ainv = sqrt(2 * alpha - 1)
|
||||
# bbb = alpha - log(4)
|
||||
# ccc = alpha + ainv
|
||||
|
||||
if alpha <= 0.0:
|
||||
raise ValueError, 'stdgamma: alpha must be > 0.0'
|
||||
|
||||
if alpha > 1.0:
|
||||
|
||||
# Uses R.C.H. Cheng, "The generation of Gamma
|
||||
# variables with non-integral shape parameters",
|
||||
# Applied Statistics, (1977), 26, No. 1, p71-74
|
||||
|
||||
while 1:
|
||||
u1 = random()
|
||||
u2 = random()
|
||||
v = log(u1/(1-u1))/ainv
|
||||
x = alpha*exp(v)
|
||||
z = u1*u1*u2
|
||||
r = bbb+ccc*v-x
|
||||
if r + SG_MAGICCONST - 4.5*z >= 0 or r >= log(z):
|
||||
return x
|
||||
|
||||
elif alpha == 1.0:
|
||||
# expovariate(1)
|
||||
u = random()
|
||||
while u <= 1e-7:
|
||||
u = random()
|
||||
return -log(u)
|
||||
|
||||
else: # alpha is between 0 and 1 (exclusive)
|
||||
|
||||
# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
|
||||
|
||||
while 1:
|
||||
u = random()
|
||||
b = (e + alpha)/e
|
||||
p = b*u
|
||||
if p <= 1.0:
|
||||
x = pow(p, 1.0/alpha)
|
||||
else:
|
||||
# p > 1
|
||||
x = -log((b-p)/alpha)
|
||||
u1 = random()
|
||||
if not (((p <= 1.0) and (u1 > exp(-x))) or
|
||||
((p > 1) and (u1 > pow(x, alpha - 1.0)))):
|
||||
break
|
||||
return x
|
||||
|
||||
# -------------------- test program --------------------
|
||||
|
||||
def test():
|
||||
print 'TWOPI =', TWOPI
|
||||
print 'LOG4 =', LOG4
|
||||
print 'NV_MAGICCONST =', NV_MAGICCONST
|
||||
print 'SG_MAGICCONST =', SG_MAGICCONST
|
||||
N = 100
|
||||
test_generator(N, 'random()')
|
||||
test_generator(N, 'normalvariate(0.0, 1.0)')
|
||||
test_generator(N, 'lognormvariate(0.0, 1.0)')
|
||||
test_generator(N, 'cunifvariate(0.0, 1.0)')
|
||||
test_generator(N, 'expovariate(1.0)')
|
||||
test_generator(N, 'vonmisesvariate(0.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(0.5, 1.0)')
|
||||
test_generator(N, 'gammavariate(0.9, 1.0)')
|
||||
test_generator(N, 'gammavariate(1.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(2.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(20.0, 1.0)')
|
||||
test_generator(N, 'gammavariate(200.0, 1.0)')
|
||||
|
||||
def test_generator(n, funccall):
|
||||
import sys
|
||||
print '%d calls to %s:' % (n, funccall),
|
||||
sys.stdout.flush()
|
||||
code = compile(funccall, funccall, 'eval')
|
||||
sum = 0.0
|
||||
sqsum = 0.0
|
||||
for i in range(n):
|
||||
x = eval(code)
|
||||
sum = sum + x
|
||||
sqsum = sqsum + x*x
|
||||
avg = sum/n
|
||||
stddev = sqrt(sqsum/n - avg*avg)
|
||||
print 'avg %g, stddev %g' % (avg, stddev)
|
||||
|
||||
if __name__ == '__main__':
|
||||
test()
|
Loading…
Reference in New Issue
Block a user