mirror of
https://github.com/python/cpython.git
synced 2024-11-23 18:04:37 +08:00
Improve code organization for the random module (GH-21161)
This commit is contained in:
parent
4b85e60601
commit
ef19bad7d6
353
Lib/random.py
353
Lib/random.py
@ -1,5 +1,9 @@
|
||||
"""Random variable generators.
|
||||
|
||||
bytes
|
||||
-----
|
||||
uniform bytes (values between 0 and 255)
|
||||
|
||||
integers
|
||||
--------
|
||||
uniform within range
|
||||
@ -37,6 +41,10 @@ General notes on the underlying Mersenne Twister core generator:
|
||||
|
||||
"""
|
||||
|
||||
# Translated by Guido van Rossum from C source provided by
|
||||
# Adrian Baddeley. Adapted by Raymond Hettinger for use with
|
||||
# the Mersenne Twister and os.urandom() core generators.
|
||||
|
||||
from warnings import warn as _warn
|
||||
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
|
||||
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
|
||||
@ -46,6 +54,7 @@ from _collections_abc import Set as _Set, Sequence as _Sequence
|
||||
from itertools import accumulate as _accumulate, repeat as _repeat
|
||||
from bisect import bisect as _bisect
|
||||
import os as _os
|
||||
import _random
|
||||
|
||||
try:
|
||||
# hashlib is pretty heavy to load, try lean internal module first
|
||||
@ -54,7 +63,6 @@ except ImportError:
|
||||
# fallback to official implementation
|
||||
from hashlib import sha512 as _sha512
|
||||
|
||||
|
||||
__all__ = [
|
||||
"Random",
|
||||
"SystemRandom",
|
||||
@ -89,13 +97,6 @@ BPF = 53 # Number of bits in a float
|
||||
RECIP_BPF = 2 ** -BPF
|
||||
|
||||
|
||||
# Translated by Guido van Rossum from C source provided by
|
||||
# Adrian Baddeley. Adapted by Raymond Hettinger for use with
|
||||
# the Mersenne Twister and os.urandom() core generators.
|
||||
|
||||
import _random
|
||||
|
||||
|
||||
class Random(_random.Random):
|
||||
"""Random number generator base class used by bound module functions.
|
||||
|
||||
@ -121,26 +122,6 @@ class Random(_random.Random):
|
||||
self.seed(x)
|
||||
self.gauss_next = None
|
||||
|
||||
def __init_subclass__(cls, /, **kwargs):
|
||||
"""Control how subclasses generate random integers.
|
||||
|
||||
The algorithm a subclass can use depends on the random() and/or
|
||||
getrandbits() implementation available to it and determines
|
||||
whether it can generate random integers from arbitrarily large
|
||||
ranges.
|
||||
"""
|
||||
|
||||
for c in cls.__mro__:
|
||||
if '_randbelow' in c.__dict__:
|
||||
# just inherit it
|
||||
break
|
||||
if 'getrandbits' in c.__dict__:
|
||||
cls._randbelow = cls._randbelow_with_getrandbits
|
||||
break
|
||||
if 'random' in c.__dict__:
|
||||
cls._randbelow = cls._randbelow_without_getrandbits
|
||||
break
|
||||
|
||||
def seed(self, a=None, version=2):
|
||||
"""Initialize internal state from a seed.
|
||||
|
||||
@ -210,14 +191,11 @@ class Random(_random.Random):
|
||||
"Random.setstate() of version %s" %
|
||||
(version, self.VERSION))
|
||||
|
||||
## ---- Methods below this point do not need to be overridden when
|
||||
## ---- subclassing for the purpose of using a different core generator.
|
||||
|
||||
## -------------------- bytes methods ---------------------
|
||||
## -------------------------------------------------------
|
||||
## ---- Methods below this point do not need to be overridden or extended
|
||||
## ---- when subclassing for the purpose of using a different core generator.
|
||||
|
||||
def randbytes(self, n):
|
||||
"""Generate n random bytes."""
|
||||
return self.getrandbits(n * 8).to_bytes(n, 'little')
|
||||
|
||||
## -------------------- pickle support -------------------
|
||||
|
||||
@ -233,6 +211,80 @@ class Random(_random.Random):
|
||||
def __reduce__(self):
|
||||
return self.__class__, (), self.getstate()
|
||||
|
||||
|
||||
## ---- internal support method for evenly distributed integers ----
|
||||
|
||||
def __init_subclass__(cls, /, **kwargs):
|
||||
"""Control how subclasses generate random integers.
|
||||
|
||||
The algorithm a subclass can use depends on the random() and/or
|
||||
getrandbits() implementation available to it and determines
|
||||
whether it can generate random integers from arbitrarily large
|
||||
ranges.
|
||||
"""
|
||||
|
||||
for c in cls.__mro__:
|
||||
if '_randbelow' in c.__dict__:
|
||||
# just inherit it
|
||||
break
|
||||
if 'getrandbits' in c.__dict__:
|
||||
cls._randbelow = cls._randbelow_with_getrandbits
|
||||
break
|
||||
if 'random' in c.__dict__:
|
||||
cls._randbelow = cls._randbelow_without_getrandbits
|
||||
break
|
||||
|
||||
def _randbelow_with_getrandbits(self, n):
|
||||
"Return a random int in the range [0,n). Returns 0 if n==0."
|
||||
|
||||
if not n:
|
||||
return 0
|
||||
getrandbits = self.getrandbits
|
||||
k = n.bit_length() # don't use (n-1) here because n can be 1
|
||||
r = getrandbits(k) # 0 <= r < 2**k
|
||||
while r >= n:
|
||||
r = getrandbits(k)
|
||||
return r
|
||||
|
||||
def _randbelow_without_getrandbits(self, n, maxsize=1<<BPF):
|
||||
"""Return a random int in the range [0,n). Returns 0 if n==0.
|
||||
|
||||
The implementation does not use getrandbits, but only random.
|
||||
"""
|
||||
|
||||
random = self.random
|
||||
if n >= maxsize:
|
||||
_warn("Underlying random() generator does not supply \n"
|
||||
"enough bits to choose from a population range this large.\n"
|
||||
"To remove the range limitation, add a getrandbits() method.")
|
||||
return _floor(random() * n)
|
||||
if n == 0:
|
||||
return 0
|
||||
rem = maxsize % n
|
||||
limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
|
||||
r = random()
|
||||
while r >= limit:
|
||||
r = random()
|
||||
return _floor(r * maxsize) % n
|
||||
|
||||
_randbelow = _randbelow_with_getrandbits
|
||||
|
||||
|
||||
## --------------------------------------------------------
|
||||
## ---- Methods below this point generate custom distributions
|
||||
## ---- based on the methods defined above. They do not
|
||||
## ---- directly touch the underlying generator and only
|
||||
## ---- access randomness through the methods: random(),
|
||||
## ---- getrandbits(), or _randbelow().
|
||||
|
||||
|
||||
## -------------------- bytes methods ---------------------
|
||||
|
||||
def randbytes(self, n):
|
||||
"""Generate n random bytes."""
|
||||
return self.getrandbits(n * 8).to_bytes(n, 'little')
|
||||
|
||||
|
||||
## -------------------- integer methods -------------------
|
||||
|
||||
def randrange(self, start, stop=None, step=1):
|
||||
@ -285,40 +337,6 @@ class Random(_random.Random):
|
||||
|
||||
return self.randrange(a, b+1)
|
||||
|
||||
def _randbelow_with_getrandbits(self, n):
|
||||
"Return a random int in the range [0,n). Returns 0 if n==0."
|
||||
|
||||
if not n:
|
||||
return 0
|
||||
getrandbits = self.getrandbits
|
||||
k = n.bit_length() # don't use (n-1) here because n can be 1
|
||||
r = getrandbits(k) # 0 <= r < 2**k
|
||||
while r >= n:
|
||||
r = getrandbits(k)
|
||||
return r
|
||||
|
||||
def _randbelow_without_getrandbits(self, n, maxsize=1<<BPF):
|
||||
"""Return a random int in the range [0,n). Returns 0 if n==0.
|
||||
|
||||
The implementation does not use getrandbits, but only random.
|
||||
"""
|
||||
|
||||
random = self.random
|
||||
if n >= maxsize:
|
||||
_warn("Underlying random() generator does not supply \n"
|
||||
"enough bits to choose from a population range this large.\n"
|
||||
"To remove the range limitation, add a getrandbits() method.")
|
||||
return _floor(random() * n)
|
||||
if n == 0:
|
||||
return 0
|
||||
rem = maxsize % n
|
||||
limit = (maxsize - rem) / maxsize # int(limit * maxsize) % n == 0
|
||||
r = random()
|
||||
while r >= limit:
|
||||
r = random()
|
||||
return _floor(r * maxsize) % n
|
||||
|
||||
_randbelow = _randbelow_with_getrandbits
|
||||
|
||||
## -------------------- sequence methods -------------------
|
||||
|
||||
@ -479,16 +497,13 @@ class Random(_random.Random):
|
||||
return [population[bisect(cum_weights, random() * total, 0, hi)]
|
||||
for i in _repeat(None, k)]
|
||||
|
||||
## -------------------- real-valued distributions -------------------
|
||||
|
||||
## -------------------- uniform distribution -------------------
|
||||
## -------------------- real-valued distributions -------------------
|
||||
|
||||
def uniform(self, a, b):
|
||||
"Get a random number in the range [a, b) or [a, b] depending on rounding."
|
||||
return a + (b - a) * self.random()
|
||||
|
||||
## -------------------- triangular --------------------
|
||||
|
||||
def triangular(self, low=0.0, high=1.0, mode=None):
|
||||
"""Triangular distribution.
|
||||
|
||||
@ -509,16 +524,12 @@ class Random(_random.Random):
|
||||
low, high = high, low
|
||||
return low + (high - low) * _sqrt(u * c)
|
||||
|
||||
## -------------------- normal distribution --------------------
|
||||
|
||||
def normalvariate(self, mu, sigma):
|
||||
"""Normal distribution.
|
||||
|
||||
mu is the mean, and sigma is the standard deviation.
|
||||
|
||||
"""
|
||||
# mu = mean, sigma = standard deviation
|
||||
|
||||
# Uses Kinderman and Monahan method. Reference: Kinderman,
|
||||
# A.J. and Monahan, J.F., "Computer generation of random
|
||||
# variables using the ratio of uniform deviates", ACM Trans
|
||||
@ -534,7 +545,43 @@ class Random(_random.Random):
|
||||
break
|
||||
return mu + z * sigma
|
||||
|
||||
## -------------------- lognormal distribution --------------------
|
||||
def gauss(self, mu, sigma):
|
||||
"""Gaussian distribution.
|
||||
|
||||
mu is the mean, and sigma is the standard deviation. This is
|
||||
slightly faster than the normalvariate() function.
|
||||
|
||||
Not thread-safe without a lock around calls.
|
||||
|
||||
"""
|
||||
# When x and y are two variables from [0, 1), uniformly
|
||||
# distributed, then
|
||||
#
|
||||
# cos(2*pi*x)*sqrt(-2*log(1-y))
|
||||
# sin(2*pi*x)*sqrt(-2*log(1-y))
|
||||
#
|
||||
# are two *independent* variables with normal distribution
|
||||
# (mu = 0, sigma = 1).
|
||||
# (Lambert Meertens)
|
||||
# (corrected version; bug discovered by Mike Miller, fixed by LM)
|
||||
|
||||
# Multithreading note: When two threads call this function
|
||||
# simultaneously, it is possible that they will receive the
|
||||
# same return value. The window is very small though. To
|
||||
# avoid this, you have to use a lock around all calls. (I
|
||||
# didn't want to slow this down in the serial case by using a
|
||||
# lock here.)
|
||||
|
||||
random = self.random
|
||||
z = self.gauss_next
|
||||
self.gauss_next = None
|
||||
if z is None:
|
||||
x2pi = random() * TWOPI
|
||||
g2rad = _sqrt(-2.0 * _log(1.0 - random()))
|
||||
z = _cos(x2pi) * g2rad
|
||||
self.gauss_next = _sin(x2pi) * g2rad
|
||||
|
||||
return mu + z * sigma
|
||||
|
||||
def lognormvariate(self, mu, sigma):
|
||||
"""Log normal distribution.
|
||||
@ -546,8 +593,6 @@ class Random(_random.Random):
|
||||
"""
|
||||
return _exp(self.normalvariate(mu, sigma))
|
||||
|
||||
## -------------------- exponential distribution --------------------
|
||||
|
||||
def expovariate(self, lambd):
|
||||
"""Exponential distribution.
|
||||
|
||||
@ -565,8 +610,6 @@ class Random(_random.Random):
|
||||
# possibility of taking the log of zero.
|
||||
return -_log(1.0 - self.random()) / lambd
|
||||
|
||||
## -------------------- von Mises distribution --------------------
|
||||
|
||||
def vonmisesvariate(self, mu, kappa):
|
||||
"""Circular data distribution.
|
||||
|
||||
@ -576,10 +619,6 @@ class Random(_random.Random):
|
||||
to a uniform random angle over the range 0 to 2*pi.
|
||||
|
||||
"""
|
||||
# mu: mean angle (in radians between 0 and 2*pi)
|
||||
# kappa: concentration parameter kappa (>= 0)
|
||||
# if kappa = 0 generate uniform random angle
|
||||
|
||||
# Based upon an algorithm published in: Fisher, N.I.,
|
||||
# "Statistical Analysis of Circular Data", Cambridge
|
||||
# University Press, 1993.
|
||||
@ -613,8 +652,6 @@ class Random(_random.Random):
|
||||
|
||||
return theta
|
||||
|
||||
## -------------------- gamma distribution --------------------
|
||||
|
||||
def gammavariate(self, alpha, beta):
|
||||
"""Gamma distribution. Not the gamma function!
|
||||
|
||||
@ -627,7 +664,6 @@ class Random(_random.Random):
|
||||
math.gamma(alpha) * beta ** alpha
|
||||
|
||||
"""
|
||||
|
||||
# alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
|
||||
|
||||
# Warning: a few older sources define the gamma distribution in terms
|
||||
@ -681,61 +717,6 @@ class Random(_random.Random):
|
||||
break
|
||||
return x * beta
|
||||
|
||||
## -------------------- Gauss (faster alternative) --------------------
|
||||
|
||||
def gauss(self, mu, sigma):
|
||||
"""Gaussian distribution.
|
||||
|
||||
mu is the mean, and sigma is the standard deviation. This is
|
||||
slightly faster than the normalvariate() function.
|
||||
|
||||
Not thread-safe without a lock around calls.
|
||||
|
||||
"""
|
||||
|
||||
# When x and y are two variables from [0, 1), uniformly
|
||||
# distributed, then
|
||||
#
|
||||
# cos(2*pi*x)*sqrt(-2*log(1-y))
|
||||
# sin(2*pi*x)*sqrt(-2*log(1-y))
|
||||
#
|
||||
# are two *independent* variables with normal distribution
|
||||
# (mu = 0, sigma = 1).
|
||||
# (Lambert Meertens)
|
||||
# (corrected version; bug discovered by Mike Miller, fixed by LM)
|
||||
|
||||
# Multithreading note: When two threads call this function
|
||||
# simultaneously, it is possible that they will receive the
|
||||
# same return value. The window is very small though. To
|
||||
# avoid this, you have to use a lock around all calls. (I
|
||||
# didn't want to slow this down in the serial case by using a
|
||||
# lock here.)
|
||||
|
||||
random = self.random
|
||||
z = self.gauss_next
|
||||
self.gauss_next = None
|
||||
if z is None:
|
||||
x2pi = random() * TWOPI
|
||||
g2rad = _sqrt(-2.0 * _log(1.0 - random()))
|
||||
z = _cos(x2pi) * g2rad
|
||||
self.gauss_next = _sin(x2pi) * g2rad
|
||||
|
||||
return mu + z * sigma
|
||||
|
||||
## -------------------- beta --------------------
|
||||
## See
|
||||
## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
|
||||
## for Ivan Frohne's insightful analysis of why the original implementation:
|
||||
##
|
||||
## def betavariate(self, alpha, beta):
|
||||
## # Discrete Event Simulation in C, pp 87-88.
|
||||
##
|
||||
## y = self.expovariate(alpha)
|
||||
## z = self.expovariate(1.0/beta)
|
||||
## return z/(y+z)
|
||||
##
|
||||
## was dead wrong, and how it probably got that way.
|
||||
|
||||
def betavariate(self, alpha, beta):
|
||||
"""Beta distribution.
|
||||
|
||||
@ -743,6 +724,18 @@ class Random(_random.Random):
|
||||
Returned values range between 0 and 1.
|
||||
|
||||
"""
|
||||
## See
|
||||
## http://mail.python.org/pipermail/python-bugs-list/2001-January/003752.html
|
||||
## for Ivan Frohne's insightful analysis of why the original implementation:
|
||||
##
|
||||
## def betavariate(self, alpha, beta):
|
||||
## # Discrete Event Simulation in C, pp 87-88.
|
||||
##
|
||||
## y = self.expovariate(alpha)
|
||||
## z = self.expovariate(1.0/beta)
|
||||
## return z/(y+z)
|
||||
##
|
||||
## was dead wrong, and how it probably got that way.
|
||||
|
||||
# This version due to Janne Sinkkonen, and matches all the std
|
||||
# texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
|
||||
@ -751,8 +744,6 @@ class Random(_random.Random):
|
||||
return y / (y + self.gammavariate(beta, 1.0))
|
||||
return 0.0
|
||||
|
||||
## -------------------- Pareto --------------------
|
||||
|
||||
def paretovariate(self, alpha):
|
||||
"""Pareto distribution. alpha is the shape parameter."""
|
||||
# Jain, pg. 495
|
||||
@ -760,8 +751,6 @@ class Random(_random.Random):
|
||||
u = 1.0 - self.random()
|
||||
return 1.0 / u ** (1.0 / alpha)
|
||||
|
||||
## -------------------- Weibull --------------------
|
||||
|
||||
def weibullvariate(self, alpha, beta):
|
||||
"""Weibull distribution.
|
||||
|
||||
@ -774,14 +763,17 @@ class Random(_random.Random):
|
||||
return alpha * (-_log(u)) ** (1.0 / beta)
|
||||
|
||||
|
||||
## ------------------------------------------------------------------
|
||||
## --------------- Operating System Random Source ------------------
|
||||
|
||||
|
||||
class SystemRandom(Random):
|
||||
"""Alternate random number generator using sources provided
|
||||
by the operating system (such as /dev/urandom on Unix or
|
||||
CryptGenRandom on Windows).
|
||||
|
||||
Not available on all systems (see os.urandom() for details).
|
||||
|
||||
"""
|
||||
|
||||
def random(self):
|
||||
@ -812,7 +804,41 @@ class SystemRandom(Random):
|
||||
getstate = setstate = _notimplemented
|
||||
|
||||
|
||||
## -------------------- test program --------------------
|
||||
# ----------------------------------------------------------------------
|
||||
# Create one instance, seeded from current time, and export its methods
|
||||
# as module-level functions. The functions share state across all uses
|
||||
# (both in the user's code and in the Python libraries), but that's fine
|
||||
# for most programs and is easier for the casual user than making them
|
||||
# instantiate their own Random() instance.
|
||||
|
||||
_inst = Random()
|
||||
seed = _inst.seed
|
||||
random = _inst.random
|
||||
uniform = _inst.uniform
|
||||
triangular = _inst.triangular
|
||||
randint = _inst.randint
|
||||
choice = _inst.choice
|
||||
randrange = _inst.randrange
|
||||
sample = _inst.sample
|
||||
shuffle = _inst.shuffle
|
||||
choices = _inst.choices
|
||||
normalvariate = _inst.normalvariate
|
||||
lognormvariate = _inst.lognormvariate
|
||||
expovariate = _inst.expovariate
|
||||
vonmisesvariate = _inst.vonmisesvariate
|
||||
gammavariate = _inst.gammavariate
|
||||
gauss = _inst.gauss
|
||||
betavariate = _inst.betavariate
|
||||
paretovariate = _inst.paretovariate
|
||||
weibullvariate = _inst.weibullvariate
|
||||
getstate = _inst.getstate
|
||||
setstate = _inst.setstate
|
||||
getrandbits = _inst.getrandbits
|
||||
randbytes = _inst.randbytes
|
||||
|
||||
|
||||
## ------------------------------------------------------
|
||||
## ----------------- test program -----------------------
|
||||
|
||||
def _test_generator(n, func, args):
|
||||
from statistics import stdev, fmean as mean
|
||||
@ -849,36 +875,9 @@ def _test(N=2000):
|
||||
_test_generator(N, betavariate, (3.0, 3.0))
|
||||
_test_generator(N, triangular, (0.0, 1.0, 1.0 / 3.0))
|
||||
|
||||
# Create one instance, seeded from current time, and export its methods
|
||||
# as module-level functions. The functions share state across all uses
|
||||
# (both in the user's code and in the Python libraries), but that's fine
|
||||
# for most programs and is easier for the casual user than making them
|
||||
# instantiate their own Random() instance.
|
||||
|
||||
_inst = Random()
|
||||
seed = _inst.seed
|
||||
random = _inst.random
|
||||
uniform = _inst.uniform
|
||||
triangular = _inst.triangular
|
||||
randint = _inst.randint
|
||||
choice = _inst.choice
|
||||
randrange = _inst.randrange
|
||||
sample = _inst.sample
|
||||
shuffle = _inst.shuffle
|
||||
choices = _inst.choices
|
||||
normalvariate = _inst.normalvariate
|
||||
lognormvariate = _inst.lognormvariate
|
||||
expovariate = _inst.expovariate
|
||||
vonmisesvariate = _inst.vonmisesvariate
|
||||
gammavariate = _inst.gammavariate
|
||||
gauss = _inst.gauss
|
||||
betavariate = _inst.betavariate
|
||||
paretovariate = _inst.paretovariate
|
||||
weibullvariate = _inst.weibullvariate
|
||||
getstate = _inst.getstate
|
||||
setstate = _inst.setstate
|
||||
getrandbits = _inst.getrandbits
|
||||
randbytes = _inst.randbytes
|
||||
## ------------------------------------------------------
|
||||
## ------------------ fork support ---------------------
|
||||
|
||||
if hasattr(_os, "fork"):
|
||||
_os.register_at_fork(after_in_child=_inst.seed)
|
||||
|
Loading…
Reference in New Issue
Block a user