Always try nb_* slots before trying sq_concat, sq_inplace_concat, sq_repeat,

andsq_inplace_repeat.  This fixes a number of corner case bugs (see #624807).

Consolidate the int and long sequence repeat code.  Before the change, integers
checked for integer overflow but longs did not.
This commit is contained in:
Neil Schemenauer 2002-12-30 20:18:15 +00:00
parent 6005a344ce
commit d4b0fea43a

View File

@ -404,19 +404,24 @@ binary_op1(PyObject *v, PyObject *w, const int op_slot)
return Py_NotImplemented;
}
static PyObject *
binop_type_error(PyObject *v, PyObject *w, const char *op_name)
{
PyErr_Format(PyExc_TypeError,
"unsupported operand type(s) for %s: '%s' and '%s'",
op_name,
v->ob_type->tp_name,
w->ob_type->tp_name);
return NULL;
}
static PyObject *
binary_op(PyObject *v, PyObject *w, const int op_slot, const char *op_name)
{
PyObject *result = binary_op1(v, w, op_slot);
if (result == Py_NotImplemented) {
Py_DECREF(Py_NotImplemented);
PyErr_Format(
PyExc_TypeError,
"unsupported operand type(s) for %s: '%s' and '%s'",
op_name,
v->ob_type->tp_name,
w->ob_type->tp_name);
return NULL;
Py_DECREF(result);
return binop_type_error(v, w, op_name);
}
return result;
}
@ -595,7 +600,6 @@ BINARY_FUNC(PyNumber_And, nb_and, "&")
BINARY_FUNC(PyNumber_Lshift, nb_lshift, "<<")
BINARY_FUNC(PyNumber_Rshift, nb_rshift, ">>")
BINARY_FUNC(PyNumber_Subtract, nb_subtract, "-")
BINARY_FUNC(PyNumber_Multiply, nb_multiply, "*")
BINARY_FUNC(PyNumber_Divide, nb_divide, "/")
BINARY_FUNC(PyNumber_Divmod, nb_divmod, "divmod()")
@ -611,17 +615,74 @@ PyNumber_Add(PyObject *v, PyObject *w)
}
if (result == Py_NotImplemented) {
Py_DECREF(result);
PyErr_Format(
PyExc_TypeError,
"unsupported operand types for +: '%s' and '%s'",
v->ob_type->tp_name,
w->ob_type->tp_name);
result = NULL;
return binop_type_error(v, w, "+");
}
}
return result;
}
static PyObject *
sequence_repeat(intargfunc repeatfunc, PyObject *seq, PyObject *n)
{
long count;
if (PyInt_Check(n)) {
count = PyInt_AsLong(n);
}
else if (PyLong_Check(n)) {
count = PyLong_AsLong(n);
if (count == -1 && PyErr_Occurred())
return NULL;
}
else {
return type_error(
"can't multiply sequence to non-int");
}
#if LONG_MAX != INT_MAX
if (count > INT_MAX) {
PyErr_SetString(PyExc_ValueError,
"sequence repeat count too large");
return NULL;
}
else if (count < INT_MIN)
count = INT_MIN;
/* XXX Why don't I either
- set count to -1 whenever it's negative (after all,
sequence repeat usually treats negative numbers
as zero(); or
- raise an exception when it's less than INT_MIN?
I'm thinking about a hypothetical use case where some
sequence type might use a negative value as a flag of
some kind. In those cases I don't want to break the
code by mapping all negative values to -1. But I also
don't want to break e.g. []*(-sys.maxint), which is
perfectly safe, returning []. As a compromise, I do
map out-of-range negative values.
*/
#endif
return (*repeatfunc)(seq, (int)count);
}
PyObject *
PyNumber_Multiply(PyObject *v, PyObject *w)
{
PyObject *result = binary_op1(v, w, NB_SLOT(nb_multiply));
if (result == Py_NotImplemented) {
PySequenceMethods *mv = v->ob_type->tp_as_sequence;
PySequenceMethods *mw = w->ob_type->tp_as_sequence;
if (mv && mv->sq_repeat) {
return sequence_repeat(mv->sq_repeat, v, w);
}
else if (mw && mw->sq_repeat) {
return sequence_repeat(mw->sq_repeat, w, v);
}
result = binop_type_error(v, w, "*");
}
return result;
}
PyObject *
PyNumber_FloorDivide(PyObject *v, PyObject *w)
{
@ -668,8 +729,7 @@ PyNumber_Power(PyObject *v, PyObject *w, PyObject *z)
PyType_HasFeature((t)->ob_type, Py_TPFLAGS_HAVE_INPLACEOPS)
static PyObject *
binary_iop(PyObject *v, PyObject *w, const int iop_slot, const int op_slot,
const char *op_name)
binary_iop1(PyObject *v, PyObject *w, const int iop_slot, const int op_slot)
{
PyNumberMethods *mv = v->ob_type->tp_as_number;
if (mv != NULL && HASINPLACE(v)) {
@ -682,7 +742,19 @@ binary_iop(PyObject *v, PyObject *w, const int iop_slot, const int op_slot,
Py_DECREF(x);
}
}
return binary_op(v, w, op_slot, op_name);
return binary_op1(v, w, op_slot);
}
static PyObject *
binary_iop(PyObject *v, PyObject *w, const int iop_slot, const int op_slot,
const char *op_name)
{
PyObject *result = binary_iop1(v, w, iop_slot, op_slot);
if (result == Py_NotImplemented) {
Py_DECREF(result);
return binop_type_error(v, w, op_name);
}
return result;
}
#define INPLACE_BINOP(func, iop, op, op_name) \
@ -718,47 +790,53 @@ PyNumber_InPlaceTrueDivide(PyObject *v, PyObject *w)
PyObject *
PyNumber_InPlaceAdd(PyObject *v, PyObject *w)
{
binaryfunc f = NULL;
if (v->ob_type->tp_as_sequence != NULL) {
if (HASINPLACE(v))
f = v->ob_type->tp_as_sequence->sq_inplace_concat;
if (f == NULL)
f = v->ob_type->tp_as_sequence->sq_concat;
if (f != NULL)
return (*f)(v, w);
PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_add),
NB_SLOT(nb_add));
if (result == Py_NotImplemented) {
PySequenceMethods *m = v->ob_type->tp_as_sequence;
Py_DECREF(result);
if (m != NULL) {
binaryfunc f = NULL;
if (HASINPLACE(v))
f = m->sq_inplace_concat;
if (f == NULL)
f = m->sq_concat;
if (f != NULL)
return (*f)(v, w);
}
result = binop_type_error(v, w, "+=");
}
return binary_iop(v, w, NB_SLOT(nb_inplace_add),
NB_SLOT(nb_add), "+=");
return result;
}
PyObject *
PyNumber_InPlaceMultiply(PyObject *v, PyObject *w)
{
PyObject * (*g)(PyObject *, int) = NULL;
if (HASINPLACE(v) &&
v->ob_type->tp_as_sequence &&
(g = v->ob_type->tp_as_sequence->sq_inplace_repeat) &&
!(v->ob_type->tp_as_number &&
v->ob_type->tp_as_number->nb_inplace_multiply))
{
long n;
if (PyInt_Check(w)) {
n = PyInt_AsLong(w);
PyObject *result = binary_iop1(v, w, NB_SLOT(nb_inplace_multiply),
NB_SLOT(nb_multiply));
if (result == Py_NotImplemented) {
intargfunc f = NULL;
PySequenceMethods *mv = v->ob_type->tp_as_sequence;
PySequenceMethods *mw = w->ob_type->tp_as_sequence;
Py_DECREF(result);
if (mv != NULL) {
if (HASINPLACE(v))
f = mv->sq_inplace_repeat;
if (f == NULL)
f = mv->sq_repeat;
if (f != NULL)
return sequence_repeat(f, v, w);
}
else if (PyLong_Check(w)) {
n = PyLong_AsLong(w);
if (n == -1 && PyErr_Occurred())
return NULL;
else if (mw != NULL) {
/* Note that the right hand operand should not be
* mutated in this case so sq_inplace_repeat is not
* used. */
if (mw->sq_repeat)
return sequence_repeat(mw->sq_repeat, w, v);
}
else {
return type_error(
"can't multiply sequence to non-int");
}
return (*g)(v, (int)n);
result = binop_type_error(v, w, "*=");
}
return binary_iop(v, w, NB_SLOT(nb_inplace_multiply),
NB_SLOT(nb_multiply), "*=");
return result;
}
PyObject *