mirror of
https://github.com/python/cpython.git
synced 2024-11-27 03:45:08 +08:00
bpo-44150: Support optional weights parameter for fmean() (GH-26175)
This commit is contained in:
parent
18f41c04ff
commit
be4dd7fcd9
@ -43,7 +43,7 @@ or sample.
|
||||
|
||||
======================= ===============================================================
|
||||
:func:`mean` Arithmetic mean ("average") of data.
|
||||
:func:`fmean` Fast, floating point arithmetic mean.
|
||||
:func:`fmean` Fast, floating point arithmetic mean, with optional weighting.
|
||||
:func:`geometric_mean` Geometric mean of data.
|
||||
:func:`harmonic_mean` Harmonic mean of data.
|
||||
:func:`median` Median (middle value) of data.
|
||||
@ -128,7 +128,7 @@ However, for reading convenience, most of the examples show sorted sequences.
|
||||
``mean(data)`` is equivalent to calculating the true population mean μ.
|
||||
|
||||
|
||||
.. function:: fmean(data)
|
||||
.. function:: fmean(data, weights=None)
|
||||
|
||||
Convert *data* to floats and compute the arithmetic mean.
|
||||
|
||||
@ -141,8 +141,25 @@ However, for reading convenience, most of the examples show sorted sequences.
|
||||
>>> fmean([3.5, 4.0, 5.25])
|
||||
4.25
|
||||
|
||||
Optional weighting is supported. For example, a professor assigns a
|
||||
grade for a course by weighting quizzes at 20%, homework at 20%, a
|
||||
midterm exam at 30%, and a final exam at 30%:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> grades = [85, 92, 83, 91]
|
||||
>>> weights = [0.20, 0.20, 0.30, 0.30]
|
||||
>>> fmean(grades, weights)
|
||||
87.6
|
||||
|
||||
If *weights* is supplied, it must be the same length as the *data* or
|
||||
a :exc:`ValueError` will be raised.
|
||||
|
||||
.. versionadded:: 3.8
|
||||
|
||||
.. versionchanged:: 3.11
|
||||
Added support for *weights*.
|
||||
|
||||
|
||||
.. function:: geometric_mean(data)
|
||||
|
||||
|
@ -136,7 +136,7 @@ from decimal import Decimal
|
||||
from itertools import groupby, repeat
|
||||
from bisect import bisect_left, bisect_right
|
||||
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
|
||||
from operator import itemgetter
|
||||
from operator import itemgetter, mul
|
||||
from collections import Counter, namedtuple
|
||||
|
||||
# === Exceptions ===
|
||||
@ -345,7 +345,7 @@ def mean(data):
|
||||
return _convert(total / n, T)
|
||||
|
||||
|
||||
def fmean(data):
|
||||
def fmean(data, weights=None):
|
||||
"""Convert data to floats and compute the arithmetic mean.
|
||||
|
||||
This runs faster than the mean() function and it always returns a float.
|
||||
@ -363,13 +363,24 @@ def fmean(data):
|
||||
nonlocal n
|
||||
for n, x in enumerate(iterable, start=1):
|
||||
yield x
|
||||
total = fsum(count(data))
|
||||
else:
|
||||
data = count(data)
|
||||
if weights is None:
|
||||
total = fsum(data)
|
||||
try:
|
||||
if not n:
|
||||
raise StatisticsError('fmean requires at least one data point')
|
||||
return total / n
|
||||
except ZeroDivisionError:
|
||||
raise StatisticsError('fmean requires at least one data point') from None
|
||||
try:
|
||||
num_weights = len(weights)
|
||||
except TypeError:
|
||||
weights = list(weights)
|
||||
num_weights = len(weights)
|
||||
num = fsum(map(mul, data, weights))
|
||||
if n != num_weights:
|
||||
raise StatisticsError('data and weights must be the same length')
|
||||
den = fsum(weights)
|
||||
if not den:
|
||||
raise StatisticsError('sum of weights must be non-zero')
|
||||
return num / den
|
||||
|
||||
|
||||
def geometric_mean(data):
|
||||
|
@ -1972,6 +1972,27 @@ class TestFMean(unittest.TestCase):
|
||||
with self.assertRaises(ValueError):
|
||||
fmean([Inf, -Inf])
|
||||
|
||||
def test_weights(self):
|
||||
fmean = statistics.fmean
|
||||
StatisticsError = statistics.StatisticsError
|
||||
self.assertEqual(
|
||||
fmean([10, 10, 10, 50], [0.25] * 4),
|
||||
fmean([10, 10, 10, 50]))
|
||||
self.assertEqual(
|
||||
fmean([10, 10, 20], [0.25, 0.25, 0.50]),
|
||||
fmean([10, 10, 20, 20]))
|
||||
self.assertEqual( # inputs are iterators
|
||||
fmean(iter([10, 10, 20]), iter([0.25, 0.25, 0.50])),
|
||||
fmean([10, 10, 20, 20]))
|
||||
with self.assertRaises(StatisticsError):
|
||||
fmean([10, 20, 30], [1, 2]) # unequal lengths
|
||||
with self.assertRaises(StatisticsError):
|
||||
fmean(iter([10, 20, 30]), iter([1, 2])) # unequal lengths
|
||||
with self.assertRaises(StatisticsError):
|
||||
fmean([10, 20], [-1, 1]) # sum of weights is zero
|
||||
with self.assertRaises(StatisticsError):
|
||||
fmean(iter([10, 20]), iter([-1, 1])) # sum of weights is zero
|
||||
|
||||
|
||||
# === Tests for variances and standard deviations ===
|
||||
|
||||
|
@ -0,0 +1 @@
|
||||
Add optional *weights* argument to statistics.fmean().
|
Loading…
Reference in New Issue
Block a user