bpo-44150: Support optional weights parameter for fmean() (GH-26175)

This commit is contained in:
Raymond Hettinger 2021-05-20 20:22:26 -07:00 committed by GitHub
parent 18f41c04ff
commit be4dd7fcd9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 59 additions and 9 deletions

View File

@ -43,7 +43,7 @@ or sample.
======================= ===============================================================
:func:`mean` Arithmetic mean ("average") of data.
:func:`fmean` Fast, floating point arithmetic mean.
:func:`fmean` Fast, floating point arithmetic mean, with optional weighting.
:func:`geometric_mean` Geometric mean of data.
:func:`harmonic_mean` Harmonic mean of data.
:func:`median` Median (middle value) of data.
@ -128,7 +128,7 @@ However, for reading convenience, most of the examples show sorted sequences.
``mean(data)`` is equivalent to calculating the true population mean μ.
.. function:: fmean(data)
.. function:: fmean(data, weights=None)
Convert *data* to floats and compute the arithmetic mean.
@ -141,8 +141,25 @@ However, for reading convenience, most of the examples show sorted sequences.
>>> fmean([3.5, 4.0, 5.25])
4.25
Optional weighting is supported. For example, a professor assigns a
grade for a course by weighting quizzes at 20%, homework at 20%, a
midterm exam at 30%, and a final exam at 30%:
.. doctest::
>>> grades = [85, 92, 83, 91]
>>> weights = [0.20, 0.20, 0.30, 0.30]
>>> fmean(grades, weights)
87.6
If *weights* is supplied, it must be the same length as the *data* or
a :exc:`ValueError` will be raised.
.. versionadded:: 3.8
.. versionchanged:: 3.11
Added support for *weights*.
.. function:: geometric_mean(data)

View File

@ -136,7 +136,7 @@ from decimal import Decimal
from itertools import groupby, repeat
from bisect import bisect_left, bisect_right
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
from operator import itemgetter
from operator import itemgetter, mul
from collections import Counter, namedtuple
# === Exceptions ===
@ -345,7 +345,7 @@ def mean(data):
return _convert(total / n, T)
def fmean(data):
def fmean(data, weights=None):
"""Convert data to floats and compute the arithmetic mean.
This runs faster than the mean() function and it always returns a float.
@ -363,13 +363,24 @@ def fmean(data):
nonlocal n
for n, x in enumerate(iterable, start=1):
yield x
total = fsum(count(data))
else:
data = count(data)
if weights is None:
total = fsum(data)
try:
if not n:
raise StatisticsError('fmean requires at least one data point')
return total / n
except ZeroDivisionError:
raise StatisticsError('fmean requires at least one data point') from None
try:
num_weights = len(weights)
except TypeError:
weights = list(weights)
num_weights = len(weights)
num = fsum(map(mul, data, weights))
if n != num_weights:
raise StatisticsError('data and weights must be the same length')
den = fsum(weights)
if not den:
raise StatisticsError('sum of weights must be non-zero')
return num / den
def geometric_mean(data):

View File

@ -1972,6 +1972,27 @@ class TestFMean(unittest.TestCase):
with self.assertRaises(ValueError):
fmean([Inf, -Inf])
def test_weights(self):
fmean = statistics.fmean
StatisticsError = statistics.StatisticsError
self.assertEqual(
fmean([10, 10, 10, 50], [0.25] * 4),
fmean([10, 10, 10, 50]))
self.assertEqual(
fmean([10, 10, 20], [0.25, 0.25, 0.50]),
fmean([10, 10, 20, 20]))
self.assertEqual( # inputs are iterators
fmean(iter([10, 10, 20]), iter([0.25, 0.25, 0.50])),
fmean([10, 10, 20, 20]))
with self.assertRaises(StatisticsError):
fmean([10, 20, 30], [1, 2]) # unequal lengths
with self.assertRaises(StatisticsError):
fmean(iter([10, 20, 30]), iter([1, 2])) # unequal lengths
with self.assertRaises(StatisticsError):
fmean([10, 20], [-1, 1]) # sum of weights is zero
with self.assertRaises(StatisticsError):
fmean(iter([10, 20]), iter([-1, 1])) # sum of weights is zero
# === Tests for variances and standard deviations ===

View File

@ -0,0 +1 @@
Add optional *weights* argument to statistics.fmean().