mirror of
https://github.com/python/cpython.git
synced 2024-11-24 10:24:35 +08:00
bpo-17005: Add a class to perform topological sorting to the standard library (GH-11583)
Co-Authored-By: Tim Peters <tim.peters@gmail.com>
This commit is contained in:
parent
79f89e6e5a
commit
99e6c260d6
@ -8,10 +8,16 @@
|
||||
.. moduleauthor:: Raymond Hettinger <python@rcn.com>
|
||||
.. moduleauthor:: Nick Coghlan <ncoghlan@gmail.com>
|
||||
.. moduleauthor:: Łukasz Langa <lukasz@langa.pl>
|
||||
.. moduleauthor:: Pablo Galindo <pablogsal@gmail.com>
|
||||
.. sectionauthor:: Peter Harris <scav@blueyonder.co.uk>
|
||||
|
||||
**Source code:** :source:`Lib/functools.py`
|
||||
|
||||
.. testsetup:: default
|
||||
|
||||
import functools
|
||||
from functools import *
|
||||
|
||||
--------------
|
||||
|
||||
The :mod:`functools` module is for higher-order functions: functions that act on
|
||||
@ -512,6 +518,192 @@ The :mod:`functools` module defines the following functions:
|
||||
.. versionadded:: 3.8
|
||||
|
||||
|
||||
.. class:: TopologicalSorter(graph=None)
|
||||
|
||||
Provides functionality to topologically sort a graph of hashable nodes.
|
||||
|
||||
A topological order is a linear ordering of the vertices in a graph such that for
|
||||
every directed edge u -> v from vertex u to vertex v, vertex u comes before vertex
|
||||
v in the ordering. For instance, the vertices of the graph may represent tasks to
|
||||
be performed, and the edges may represent constraints that one task must be
|
||||
performed before another; in this example, a topological ordering is just a valid
|
||||
sequence for the tasks. A complete topological ordering is possible if and only if
|
||||
the graph has no directed cycles, that is, if it is a directed acyclic graph.
|
||||
|
||||
If the optional *graph* argument is provided it must be a dictionary representing
|
||||
a directed acyclic graph where the keys are nodes and the values are iterables of
|
||||
all predecessors of that node in the graph (the nodes that have edges that point
|
||||
to the value in the key). Additional nodes can be added to the graph using the
|
||||
:meth:`~TopologicalSorter.add` method.
|
||||
|
||||
In the general case, the steps required to perform the sorting of a given graph
|
||||
are as follows:
|
||||
|
||||
* Create an instance of the :class:`TopologicalSorter` with an optional initial graph.
|
||||
* Add additional nodes to the graph.
|
||||
* Call :meth:`~TopologicalSorter.prepare` on the graph.
|
||||
* While :meth:`~TopologicalSorter.is_active` is ``True``, iterate over the
|
||||
nodes returned by :meth:`~TopologicalSorter.get_ready` and process them.
|
||||
Call :meth:`~TopologicalSorter.done` on each node as it finishes processing.
|
||||
|
||||
In case just an immediate sorting of the nodes in the graph is required and
|
||||
no parallelism is involved, the convenience method :meth:`TopologicalSorter.static_order`
|
||||
can be used directly. For example, this method can be used to implement a simple
|
||||
version of the C3 linearization algorithm used by Python to calculate the Method
|
||||
Resolution Order (MRO) of a derived class:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> class A: pass
|
||||
>>> class B(A): pass
|
||||
>>> class C(A): pass
|
||||
>>> class D(B, C): pass
|
||||
|
||||
>>> D.__mro__
|
||||
(<class 'D'>, <class 'B'>, <class 'C'>, <class 'A'>, <class 'object'>)
|
||||
|
||||
>>> graph = {D: {B, C}, C: {A}, B: {A}, A:{object}}
|
||||
>>> ts = TopologicalSorter(graph)
|
||||
>>> topological_order = tuple(ts.static_order())
|
||||
>>> tuple(reversed(topological_order))
|
||||
(<class 'D'>, <class 'B'>, <class 'C'>, <class 'A'>, <class 'object'>)
|
||||
|
||||
The class is designed to easily support parallel processing of the nodes as they
|
||||
become ready. For instance::
|
||||
|
||||
topological_sorter = TopologicalSorter()
|
||||
|
||||
# Add nodes to 'topological_sorter'...
|
||||
|
||||
topological_sorter.prepare()
|
||||
while topological_sorter.is_active():
|
||||
for node in topological_sorter.get_ready():
|
||||
# Worker threads or processes take nodes to work on off the
|
||||
# 'task_queue' queue.
|
||||
task_queue.put(node)
|
||||
|
||||
# When the work for a node is done, workers put the node in
|
||||
# 'finalized_tasks_queue' so we can get more nodes to work on.
|
||||
# The definition of 'is_active()' guarantees that, at this point, at
|
||||
# least one node has been placed on 'task_queue' that hasn't yet
|
||||
# been passed to 'done()', so this blocking 'get()' must (eventually)
|
||||
# succeed. After calling 'done()', we loop back to call 'get_ready()'
|
||||
# again, so put newly freed nodes on 'task_queue' as soon as
|
||||
# logically possible.
|
||||
node = finalized_tasks_queue.get()
|
||||
topological_sorter.done(node)
|
||||
|
||||
.. method:: add(node, *predecessors)
|
||||
|
||||
Add a new node and its predecessors to the graph. Both the *node* and
|
||||
all elements in *predecessors* must be hashable.
|
||||
|
||||
If called multiple times with the same node argument, the set of dependencies
|
||||
will be the union of all dependencies passed in.
|
||||
|
||||
It is possible to add a node with no dependencies (*predecessors* is not
|
||||
provided) or to provide a dependency twice. If a node that has not been
|
||||
provided before is included among *predecessors* it will be automatically added
|
||||
to the graph with no predecessors of its own.
|
||||
|
||||
Raises :exc:`ValueError` if called after :meth:`~TopologicalSorter.prepare`.
|
||||
|
||||
.. method:: prepare()
|
||||
|
||||
Mark the graph as finished and check for cycles in the graph. If any cycle is
|
||||
detected, :exc:`CycleError` will be raised, but
|
||||
:meth:`~TopologicalSorter.get_ready` can still be used to obtain as many nodes
|
||||
as possible until cycles block more progress. After a call to this function,
|
||||
the graph cannot be modified, and therefore no more nodes can be added using
|
||||
:meth:`~TopologicalSorter.add`.
|
||||
|
||||
.. method:: is_active()
|
||||
|
||||
Returns ``True`` if more progress can be made and ``False`` otherwise. Progress
|
||||
can be made if cycles do not block the resolution and either there are still
|
||||
nodes ready that haven't yet been returned by
|
||||
:meth:`TopologicalSorter.get_ready` or the number of nodes marked
|
||||
:meth:`TopologicalSorter.done` is less than the number that have been returned
|
||||
by :meth:`TopologicalSorter.get_ready`.
|
||||
|
||||
The :meth:`~TopologicalSorter.__bool__` method of this class defers to this
|
||||
function, so instead of::
|
||||
|
||||
if ts.is_active():
|
||||
...
|
||||
|
||||
if possible to simply do::
|
||||
|
||||
if ts:
|
||||
...
|
||||
|
||||
Raises :exc:`ValueError` if called without calling :meth:`~TopologicalSorter.prepare`
|
||||
previously.
|
||||
|
||||
.. method:: done(*nodes)
|
||||
|
||||
Marks a set of nodes returned by :meth:`TopologicalSorter.get_ready` as
|
||||
processed, unblocking any successor of each node in *nodes* for being returned
|
||||
in the future by a call to :meth:`TopologicalSorter.get_ready`.
|
||||
|
||||
Raises :exc:`ValueError` if any node in *nodes* has already been marked as
|
||||
processed by a previous call to this method or if a node was not added to the
|
||||
graph by using :meth:`TopologicalSorter.add`, if called without calling
|
||||
:meth:`~TopologicalSorter.prepare` or if node has not yet been returned by
|
||||
:meth:`~TopologicalSorter.get_ready`.
|
||||
|
||||
.. method:: get_ready()
|
||||
|
||||
Returns a ``tuple`` with all the nodes that are ready. Initially it returns all
|
||||
nodes with no predecessors, and once those are marked as processed by calling
|
||||
:meth:`TopologicalSorter.done`, further calls will return all new nodes that
|
||||
have all their predecessors already processed. Once no more progress can be
|
||||
made, empty tuples are returned.
|
||||
made.
|
||||
|
||||
Raises :exc:`ValueError` if called without calling
|
||||
:meth:`~TopologicalSorter.prepare` previously.
|
||||
|
||||
.. method:: static_order()
|
||||
|
||||
Returns an iterable of nodes in a topological order. Using this method
|
||||
does not require to call :meth:`TopologicalSorter.prepare` or
|
||||
:meth:`TopologicalSorter.done`. This method is equivalent to::
|
||||
|
||||
def static_order(self):
|
||||
self.prepare()
|
||||
while self.is_active():
|
||||
node_group = self.get_ready()
|
||||
yield from node_group
|
||||
self.done(*node_group)
|
||||
|
||||
The particular order that is returned may depend on the specific order in
|
||||
which the items were inserted in the graph. For example:
|
||||
|
||||
.. doctest::
|
||||
|
||||
>>> ts = TopologicalSorter()
|
||||
>>> ts.add(3, 2, 1)
|
||||
>>> ts.add(1, 0)
|
||||
>>> print([*ts.static_order()])
|
||||
[2, 0, 1, 3]
|
||||
|
||||
>>> ts2 = TopologicalSorter()
|
||||
>>> ts2.add(1, 0)
|
||||
>>> ts2.add(3, 2, 1)
|
||||
>>> print([*ts2.static_order()])
|
||||
[0, 2, 1, 3]
|
||||
|
||||
This is due to the fact that "0" and "2" are in the same level in the graph (they
|
||||
would have been returned in the same call to :meth:`~TopologicalSorter.get_ready`)
|
||||
and the order between them is determined by the order of insertion.
|
||||
|
||||
|
||||
If any cycle is detected, :exc:`CycleError` will be raised.
|
||||
|
||||
.. versionadded:: 3.9
|
||||
|
||||
|
||||
.. function:: update_wrapper(wrapper, wrapped, assigned=WRAPPER_ASSIGNMENTS, updated=WRAPPER_UPDATES)
|
||||
|
||||
Update a *wrapper* function to look like the *wrapped* function. The optional
|
||||
@ -621,3 +813,19 @@ differences. For instance, the :attr:`~definition.__name__` and :attr:`__doc__`
|
||||
are not created automatically. Also, :class:`partial` objects defined in
|
||||
classes behave like static methods and do not transform into bound methods
|
||||
during instance attribute look-up.
|
||||
|
||||
|
||||
Exceptions
|
||||
----------
|
||||
The :mod:`functools` module defines the following exception classes:
|
||||
|
||||
.. exception:: CycleError
|
||||
|
||||
Subclass of :exc:`ValueError` raised by :meth:`TopologicalSorter.prepare` if cycles exist
|
||||
in the working graph. If multiple cycles exist, only one undefined choice among them will
|
||||
be reported and included in the exception.
|
||||
|
||||
The detected cycle can be accessed via the second element in the :attr:`~CycleError.args`
|
||||
attribute of the exception instance and consists in a list of nodes, such that each node is,
|
||||
in the graph, an immediate predecessor of the next node in the list. In the reported list,
|
||||
the first and the last node will be the same, to make it clear that it is cyclic.
|
||||
|
BIN
Doc/myfile.bz2
Normal file
BIN
Doc/myfile.bz2
Normal file
Binary file not shown.
@ -166,6 +166,13 @@ ftplib
|
||||
if the given timeout for their constructor is zero to prevent the creation of
|
||||
a non-blocking socket. (Contributed by Dong-hee Na in :issue:`39259`.)
|
||||
|
||||
functools
|
||||
---------
|
||||
|
||||
Add the :class:`functools.TopologicalSorter` class to offer functionality to perform
|
||||
topological sorting of graphs. (Contributed by Pablo Galindo, Tim Peters and Larry
|
||||
Hastings in :issue:`17005`.)
|
||||
|
||||
gc
|
||||
--
|
||||
|
||||
|
249
Lib/functools.py
249
Lib/functools.py
@ -10,8 +10,9 @@
|
||||
# See C source code for _functools credits/copyright
|
||||
|
||||
__all__ = ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES',
|
||||
'total_ordering', 'cmp_to_key', 'lru_cache', 'reduce', 'partial',
|
||||
'partialmethod', 'singledispatch', 'singledispatchmethod']
|
||||
'total_ordering', 'cmp_to_key', 'lru_cache', 'reduce',
|
||||
'TopologicalSorter', 'CycleError',
|
||||
'partial', 'partialmethod', 'singledispatch', 'singledispatchmethod']
|
||||
|
||||
from abc import get_cache_token
|
||||
from collections import namedtuple
|
||||
@ -192,6 +193,250 @@ def total_ordering(cls):
|
||||
setattr(cls, opname, opfunc)
|
||||
return cls
|
||||
|
||||
################################################################################
|
||||
### topological sort
|
||||
################################################################################
|
||||
|
||||
_NODE_OUT = -1
|
||||
_NODE_DONE = -2
|
||||
|
||||
|
||||
class _NodeInfo:
|
||||
__slots__ = 'node', 'npredecessors', 'successors'
|
||||
|
||||
def __init__(self, node):
|
||||
# The node this class is augmenting.
|
||||
self.node = node
|
||||
|
||||
# Number of predecessors, generally >= 0. When this value falls to 0,
|
||||
# and is returned by get_ready(), this is set to _NODE_OUT and when the
|
||||
# node is marked done by a call to done(), set to _NODE_DONE.
|
||||
self.npredecessors = 0
|
||||
|
||||
# List of successor nodes. The list can contain duplicated elements as
|
||||
# long as they're all reflected in the successor's npredecessors attribute).
|
||||
self.successors = []
|
||||
|
||||
|
||||
class CycleError(ValueError):
|
||||
"""Subclass of ValueError raised by TopologicalSorterif cycles exist in the graph
|
||||
|
||||
If multiple cycles exist, only one undefined choice among them will be reported
|
||||
and included in the exception. The detected cycle can be accessed via the second
|
||||
element in the *args* attribute of the exception instance and consists in a list
|
||||
of nodes, such that each node is, in the graph, an immediate predecessor of the
|
||||
next node in the list. In the reported list, the first and the last node will be
|
||||
the same, to make it clear that it is cyclic.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class TopologicalSorter:
|
||||
"""Provides functionality to topologically sort a graph of hashable nodes"""
|
||||
|
||||
def __init__(self, graph=None):
|
||||
self._node2info = {}
|
||||
self._ready_nodes = None
|
||||
self._npassedout = 0
|
||||
self._nfinished = 0
|
||||
|
||||
if graph is not None:
|
||||
for node, predecessors in graph.items():
|
||||
self.add(node, *predecessors)
|
||||
|
||||
def _get_nodeinfo(self, node):
|
||||
if (result := self._node2info.get(node)) is None:
|
||||
self._node2info[node] = result = _NodeInfo(node)
|
||||
return result
|
||||
|
||||
def add(self, node, *predecessors):
|
||||
"""Add a new node and its predecessors to the graph.
|
||||
|
||||
Both the *node* and all elements in *predecessors* must be hashable.
|
||||
|
||||
If called multiple times with the same node argument, the set of dependencies
|
||||
will be the union of all dependencies passed in.
|
||||
|
||||
It is possible to add a node with no dependencies (*predecessors* is not provided)
|
||||
as well as provide a dependency twice. If a node that has not been provided before
|
||||
is included among *predecessors* it will be automatically added to the graph with
|
||||
no predecessors of its own.
|
||||
|
||||
Raises ValueError if called after "prepare".
|
||||
"""
|
||||
if self._ready_nodes is not None:
|
||||
raise ValueError("Nodes cannot be added after a call to prepare()")
|
||||
|
||||
# Create the node -> predecessor edges
|
||||
nodeinfo = self._get_nodeinfo(node)
|
||||
nodeinfo.npredecessors += len(predecessors)
|
||||
|
||||
# Create the predecessor -> node edges
|
||||
for pred in predecessors:
|
||||
pred_info = self._get_nodeinfo(pred)
|
||||
pred_info.successors.append(node)
|
||||
|
||||
def prepare(self):
|
||||
"""Mark the graph as finished and check for cycles in the graph.
|
||||
|
||||
If any cycle is detected, "CycleError" will be raised, but "get_ready" can
|
||||
still be used to obtain as many nodes as possible until cycles block more
|
||||
progress. After a call to this function, the graph cannot be modified and
|
||||
therefore no more nodes can be added using "add".
|
||||
"""
|
||||
if self._ready_nodes is not None:
|
||||
raise ValueError("cannot prepare() more than once")
|
||||
|
||||
self._ready_nodes = [i.node for i in self._node2info.values()
|
||||
if i.npredecessors == 0]
|
||||
# ready_nodes is set before we look for cycles on purpose:
|
||||
# if the user wants to catch the CycleError, that's fine,
|
||||
# they can continue using the instance to grab as many
|
||||
# nodes as possible before cycles block more progress
|
||||
cycle = self._find_cycle()
|
||||
if cycle:
|
||||
raise CycleError(f"nodes are in a cycle", cycle)
|
||||
|
||||
def get_ready(self):
|
||||
"""Return a tuple of all the nodes that are ready.
|
||||
|
||||
Initially it returns all nodes with no predecessors; once those are marked
|
||||
as processed by calling "done", further calls will return all new nodes that
|
||||
have all their predecessors already processed. Once no more progress can be made,
|
||||
empty tuples are returned.
|
||||
|
||||
Raises ValueError if called without calling "prepare" previously.
|
||||
"""
|
||||
if self._ready_nodes is None:
|
||||
raise ValueError("prepare() must be called first")
|
||||
|
||||
# Get the nodes that are ready and mark them
|
||||
result = tuple(self._ready_nodes)
|
||||
n2i = self._node2info
|
||||
for node in result:
|
||||
n2i[node].npredecessors = _NODE_OUT
|
||||
|
||||
# Clean the list of nodes that are ready and update
|
||||
# the counter of nodes that we have returned.
|
||||
self._ready_nodes.clear()
|
||||
self._npassedout += len(result)
|
||||
|
||||
return result
|
||||
|
||||
def is_active(self):
|
||||
"""Return True if more progress can be made and ``False`` otherwise.
|
||||
|
||||
Progress can be made if cycles do not block the resolution and either there
|
||||
are still nodes ready that haven't yet been returned by "get_ready" or the
|
||||
number of nodes marked "done" is less than the number that have been returned
|
||||
by "get_ready".
|
||||
|
||||
Raises ValueError if called without calling "prepare" previously.
|
||||
"""
|
||||
if self._ready_nodes is None:
|
||||
raise ValueError("prepare() must be called first")
|
||||
return self._nfinished < self._npassedout or bool(self._ready_nodes)
|
||||
|
||||
def __bool__(self):
|
||||
return self.is_active()
|
||||
|
||||
def done(self, *nodes):
|
||||
"""Marks a set of nodes returned by "get_ready" as processed.
|
||||
|
||||
This method unblocks any successor of each node in *nodes* for being returned
|
||||
in the future by a a call to "get_ready"
|
||||
|
||||
Raises :exec:`ValueError` if any node in *nodes* has already been marked as
|
||||
processed by a previous call to this method, if a node was not added to the
|
||||
graph by using "add" or if called without calling "prepare" previously or if
|
||||
node has not yet been returned by "get_ready".
|
||||
"""
|
||||
|
||||
if self._ready_nodes is None:
|
||||
raise ValueError("prepare() must be called first")
|
||||
|
||||
n2i = self._node2info
|
||||
|
||||
for node in nodes:
|
||||
|
||||
# Check if we know about this node (it was added previously using add()
|
||||
if (nodeinfo := n2i.get(node)) is None:
|
||||
raise ValueError(f"node {node!r} was not added using add()")
|
||||
|
||||
# If the node has not being returned (marked as ready) previously, inform the user.
|
||||
stat = nodeinfo.npredecessors
|
||||
if stat != _NODE_OUT:
|
||||
if stat >= 0:
|
||||
raise ValueError(f"node {node!r} was not passed out (still not ready)")
|
||||
elif stat == _NODE_DONE:
|
||||
raise ValueError(f"node {node!r} was already marked done")
|
||||
else:
|
||||
assert False, f"node {node!r}: unknown status {stat}"
|
||||
|
||||
# Mark the node as processed
|
||||
nodeinfo.npredecessors = _NODE_DONE
|
||||
|
||||
# Go to all the successors and reduce the number of predecessors, collecting all the ones
|
||||
# that are ready to be returned in the next get_ready() call.
|
||||
for successor in nodeinfo.successors:
|
||||
successor_info = n2i[successor]
|
||||
successor_info.npredecessors -= 1
|
||||
if successor_info.npredecessors == 0:
|
||||
self._ready_nodes.append(successor)
|
||||
self._nfinished += 1
|
||||
|
||||
def _find_cycle(self):
|
||||
n2i = self._node2info
|
||||
stack = []
|
||||
itstack = []
|
||||
seen = set()
|
||||
node2stacki = {}
|
||||
|
||||
for node in n2i:
|
||||
if node in seen:
|
||||
continue
|
||||
|
||||
while True:
|
||||
if node in seen:
|
||||
# If we have seen already the node and is in the
|
||||
# current stack we have found a cycle.
|
||||
if node in node2stacki:
|
||||
return stack[node2stacki[node]:] + [node]
|
||||
# else go on to get next successor
|
||||
else:
|
||||
seen.add(node)
|
||||
itstack.append(iter(n2i[node].successors).__next__)
|
||||
node2stacki[node] = len(stack)
|
||||
stack.append(node)
|
||||
|
||||
# Backtrack to the topmost stack entry with
|
||||
# at least another successor.
|
||||
while stack:
|
||||
try:
|
||||
node = itstack[-1]()
|
||||
break
|
||||
except StopIteration:
|
||||
del node2stacki[stack.pop()]
|
||||
itstack.pop()
|
||||
else:
|
||||
break
|
||||
return None
|
||||
|
||||
def static_order(self):
|
||||
"""Returns an iterable of nodes in a topological order.
|
||||
|
||||
The particular order that is returned may depend on the specific
|
||||
order in which the items were inserted in the graph.
|
||||
|
||||
Using this method does not require to call "prepare" or "done". If any
|
||||
cycle is detected, :exc:`CycleError` will be raised.
|
||||
"""
|
||||
self.prepare()
|
||||
while self.is_active():
|
||||
node_group = self.get_ready()
|
||||
yield from node_group
|
||||
self.done(*node_group)
|
||||
|
||||
|
||||
################################################################################
|
||||
### cmp_to_key() function converter
|
||||
|
@ -3,7 +3,7 @@ import builtins
|
||||
import collections
|
||||
import collections.abc
|
||||
import copy
|
||||
from itertools import permutations
|
||||
from itertools import permutations, chain
|
||||
import pickle
|
||||
from random import choice
|
||||
import sys
|
||||
@ -13,9 +13,12 @@ import time
|
||||
import typing
|
||||
import unittest
|
||||
import unittest.mock
|
||||
import os
|
||||
from weakref import proxy
|
||||
import contextlib
|
||||
|
||||
from test.support.script_helper import assert_python_ok
|
||||
|
||||
import functools
|
||||
|
||||
py_functools = support.import_fresh_module('functools', blocked=['_functools'])
|
||||
@ -1158,6 +1161,275 @@ class Orderable_LT:
|
||||
return self.value == other.value
|
||||
|
||||
|
||||
class TestTopologicalSort(unittest.TestCase):
|
||||
|
||||
def _test_graph(self, graph, expected):
|
||||
|
||||
def static_order_with_groups(ts):
|
||||
ts.prepare()
|
||||
while ts.is_active():
|
||||
nodes = ts.get_ready()
|
||||
for node in nodes:
|
||||
ts.done(node)
|
||||
yield nodes
|
||||
|
||||
ts = functools.TopologicalSorter(graph)
|
||||
self.assertEqual(list(static_order_with_groups(ts)), list(expected))
|
||||
|
||||
ts = functools.TopologicalSorter(graph)
|
||||
self.assertEqual(list(ts.static_order()), list(chain(*expected)))
|
||||
|
||||
def _assert_cycle(self, graph, cycle):
|
||||
ts = functools.TopologicalSorter()
|
||||
for node, dependson in graph.items():
|
||||
ts.add(node, *dependson)
|
||||
try:
|
||||
ts.prepare()
|
||||
except functools.CycleError as e:
|
||||
msg, seq = e.args
|
||||
self.assertIn(' '.join(map(str, cycle)),
|
||||
' '.join(map(str, seq * 2)))
|
||||
else:
|
||||
raise
|
||||
|
||||
def test_simple_cases(self):
|
||||
self._test_graph(
|
||||
{2: {11},
|
||||
9: {11, 8},
|
||||
10: {11, 3},
|
||||
11: {7, 5},
|
||||
8: {7, 3}},
|
||||
[(3, 5, 7), (11, 8), (2, 10, 9)]
|
||||
)
|
||||
|
||||
self._test_graph({1: {}}, [(1,)])
|
||||
|
||||
self._test_graph({x: {x+1} for x in range(10)},
|
||||
[(x,) for x in range(10, -1, -1)])
|
||||
|
||||
self._test_graph({2: {3}, 3: {4}, 4: {5}, 5: {1},
|
||||
11: {12}, 12: {13}, 13: {14}, 14: {15}},
|
||||
[(1, 15), (5, 14), (4, 13), (3, 12), (2, 11)])
|
||||
|
||||
self._test_graph({
|
||||
0: [1, 2],
|
||||
1: [3],
|
||||
2: [5, 6],
|
||||
3: [4],
|
||||
4: [9],
|
||||
5: [3],
|
||||
6: [7],
|
||||
7: [8],
|
||||
8: [4],
|
||||
9: []
|
||||
},
|
||||
[(9,), (4,), (3, 8), (1, 5, 7), (6,), (2,), (0,)]
|
||||
)
|
||||
|
||||
self._test_graph({
|
||||
0: [1, 2],
|
||||
1: [],
|
||||
2: [3],
|
||||
3: []
|
||||
},
|
||||
[(1, 3), (2,), (0,)]
|
||||
)
|
||||
|
||||
self._test_graph({
|
||||
0: [1, 2],
|
||||
1: [],
|
||||
2: [3],
|
||||
3: [],
|
||||
4: [5],
|
||||
5: [6],
|
||||
6: []
|
||||
},
|
||||
[(1, 3, 6), (2, 5), (0, 4)]
|
||||
)
|
||||
|
||||
def test_no_dependencies(self):
|
||||
self._test_graph(
|
||||
{1: {2},
|
||||
3: {4},
|
||||
5: {6}},
|
||||
[(2, 4, 6), (1, 3, 5)]
|
||||
)
|
||||
|
||||
self._test_graph(
|
||||
{1: set(),
|
||||
3: set(),
|
||||
5: set()},
|
||||
[(1, 3, 5)]
|
||||
)
|
||||
|
||||
def test_the_node_multiple_times(self):
|
||||
# Test same node multiple times in dependencies
|
||||
self._test_graph({1: {2}, 3: {4}, 0: [2, 4, 4, 4, 4, 4]},
|
||||
[(2, 4), (1, 3, 0)])
|
||||
|
||||
# Test adding the same dependency multiple times
|
||||
ts = functools.TopologicalSorter()
|
||||
ts.add(1, 2)
|
||||
ts.add(1, 2)
|
||||
ts.add(1, 2)
|
||||
self.assertEqual([*ts.static_order()], [2, 1])
|
||||
|
||||
def test_graph_with_iterables(self):
|
||||
dependson = (2*x + 1 for x in range(5))
|
||||
ts = functools.TopologicalSorter({0: dependson})
|
||||
self.assertEqual(list(ts.static_order()), [1, 3, 5, 7, 9, 0])
|
||||
|
||||
def test_add_dependencies_for_same_node_incrementally(self):
|
||||
# Test same node multiple times
|
||||
ts = functools.TopologicalSorter()
|
||||
ts.add(1, 2)
|
||||
ts.add(1, 3)
|
||||
ts.add(1, 4)
|
||||
ts.add(1, 5)
|
||||
|
||||
ts2 = functools.TopologicalSorter({1: {2, 3, 4, 5}})
|
||||
self.assertEqual([*ts.static_order()], [*ts2.static_order()])
|
||||
|
||||
def test_empty(self):
|
||||
self._test_graph({}, [])
|
||||
|
||||
def test_cycle(self):
|
||||
# Self cycle
|
||||
self._assert_cycle({1: {1}}, [1, 1])
|
||||
# Simple cycle
|
||||
self._assert_cycle({1: {2}, 2: {1}}, [1, 2, 1])
|
||||
# Indirect cycle
|
||||
self._assert_cycle({1: {2}, 2: {3}, 3: {1}}, [1, 3, 2, 1])
|
||||
# not all elements involved in a cycle
|
||||
self._assert_cycle({1: {2}, 2: {3}, 3: {1}, 5: {4}, 4: {6}}, [1, 3, 2, 1])
|
||||
# Multiple cycles
|
||||
self._assert_cycle({1: {2}, 2: {1}, 3: {4}, 4: {5}, 6: {7}, 7: {6}},
|
||||
[1, 2, 1])
|
||||
# Cycle in the middle of the graph
|
||||
self._assert_cycle({1: {2}, 2: {3}, 3: {2, 4}, 4: {5}}, [3, 2])
|
||||
|
||||
def test_calls_before_prepare(self):
|
||||
ts = functools.TopologicalSorter()
|
||||
|
||||
with self.assertRaisesRegex(ValueError, r"prepare\(\) must be called first"):
|
||||
ts.get_ready()
|
||||
with self.assertRaisesRegex(ValueError, r"prepare\(\) must be called first"):
|
||||
ts.done(3)
|
||||
with self.assertRaisesRegex(ValueError, r"prepare\(\) must be called first"):
|
||||
ts.is_active()
|
||||
|
||||
def test_prepare_multiple_times(self):
|
||||
ts = functools.TopologicalSorter()
|
||||
ts.prepare()
|
||||
with self.assertRaisesRegex(ValueError, r"cannot prepare\(\) more than once"):
|
||||
ts.prepare()
|
||||
|
||||
def test_invalid_nodes_in_done(self):
|
||||
ts = functools.TopologicalSorter()
|
||||
ts.add(1, 2, 3, 4)
|
||||
ts.add(2, 3, 4)
|
||||
ts.prepare()
|
||||
ts.get_ready()
|
||||
|
||||
with self.assertRaisesRegex(ValueError, "node 2 was not passed out"):
|
||||
ts.done(2)
|
||||
with self.assertRaisesRegex(ValueError, r"node 24 was not added using add\(\)"):
|
||||
ts.done(24)
|
||||
|
||||
def test_done(self):
|
||||
ts = functools.TopologicalSorter()
|
||||
ts.add(1, 2, 3, 4)
|
||||
ts.add(2, 3)
|
||||
ts.prepare()
|
||||
|
||||
self.assertEqual(ts.get_ready(), (3, 4))
|
||||
# If we don't mark anything as done, get_ready() returns nothing
|
||||
self.assertEqual(ts.get_ready(), ())
|
||||
ts.done(3)
|
||||
# Now 2 becomes available as 3 is done
|
||||
self.assertEqual(ts.get_ready(), (2,))
|
||||
self.assertEqual(ts.get_ready(), ())
|
||||
ts.done(4)
|
||||
ts.done(2)
|
||||
# Only 1 is missing
|
||||
self.assertEqual(ts.get_ready(), (1,))
|
||||
self.assertEqual(ts.get_ready(), ())
|
||||
ts.done(1)
|
||||
self.assertEqual(ts.get_ready(), ())
|
||||
self.assertFalse(ts.is_active())
|
||||
|
||||
def test_is_active(self):
|
||||
ts = functools.TopologicalSorter()
|
||||
ts.add(1, 2)
|
||||
ts.prepare()
|
||||
|
||||
self.assertTrue(ts.is_active())
|
||||
self.assertEqual(ts.get_ready(), (2,))
|
||||
self.assertTrue(ts.is_active())
|
||||
ts.done(2)
|
||||
self.assertTrue(ts.is_active())
|
||||
self.assertEqual(ts.get_ready(), (1,))
|
||||
self.assertTrue(ts.is_active())
|
||||
ts.done(1)
|
||||
self.assertFalse(ts.is_active())
|
||||
|
||||
def test_not_hashable_nodes(self):
|
||||
ts = functools.TopologicalSorter()
|
||||
self.assertRaises(TypeError, ts.add, dict(), 1)
|
||||
self.assertRaises(TypeError, ts.add, 1, dict())
|
||||
self.assertRaises(TypeError, ts.add, dict(), dict())
|
||||
|
||||
def test_order_of_insertion_does_not_matter_between_groups(self):
|
||||
def get_groups(ts):
|
||||
ts.prepare()
|
||||
while ts.is_active():
|
||||
nodes = ts.get_ready()
|
||||
ts.done(*nodes)
|
||||
yield set(nodes)
|
||||
|
||||
ts = functools.TopologicalSorter()
|
||||
ts.add(3, 2, 1)
|
||||
ts.add(1, 0)
|
||||
ts.add(4, 5)
|
||||
ts.add(6, 7)
|
||||
ts.add(4, 7)
|
||||
|
||||
ts2 = functools.TopologicalSorter()
|
||||
ts2.add(1, 0)
|
||||
ts2.add(3, 2, 1)
|
||||
ts2.add(4, 7)
|
||||
ts2.add(6, 7)
|
||||
ts2.add(4, 5)
|
||||
|
||||
self.assertEqual(list(get_groups(ts)), list(get_groups(ts2)))
|
||||
|
||||
def test_static_order_does_not_change_with_the_hash_seed(self):
|
||||
def check_order_with_hash_seed(seed):
|
||||
code = """if 1:
|
||||
import functools
|
||||
ts = functools.TopologicalSorter()
|
||||
ts.add('blech', 'bluch', 'hola')
|
||||
ts.add('abcd', 'blech', 'bluch', 'a', 'b')
|
||||
ts.add('a', 'a string', 'something', 'b')
|
||||
ts.add('bluch', 'hola', 'abcde', 'a', 'b')
|
||||
print(list(ts.static_order()))
|
||||
"""
|
||||
env = os.environ.copy()
|
||||
# signal to assert_python not to do a copy
|
||||
# of os.environ on its own
|
||||
env['__cleanenv'] = True
|
||||
env['PYTHONHASHSEED'] = str(seed)
|
||||
out = assert_python_ok('-c', code, **env)
|
||||
return out
|
||||
|
||||
run1 = check_order_with_hash_seed(1234)
|
||||
run2 = check_order_with_hash_seed(31415)
|
||||
|
||||
self.assertNotEqual(run1, "")
|
||||
self.assertNotEqual(run2, "")
|
||||
self.assertEqual(run1, run2)
|
||||
|
||||
|
||||
class TestLRU:
|
||||
|
||||
def test_lru(self):
|
||||
|
@ -0,0 +1,3 @@
|
||||
Add :class:`functools.TopologicalSorter` to the :mod:`functools` module to
|
||||
offers functionality to perform topological sorting of graphs. Patch by
|
||||
Pablo Galindo, Tim Peters and Larry Hastings.
|
Loading…
Reference in New Issue
Block a user