mirror of
https://github.com/python/cpython.git
synced 2024-11-26 03:14:27 +08:00
* ext.tex: documentation for extending, reference counts, and embedding
(formerly ../misc/{EXTENDING,REFCNT,EMBEDDING}). Also affects Makefile. * text2latex.py: script to do part of the conversion from an plain ASCI text file (in my particular style) to LaTeX. (Chapter/section/subsection headers, and verbatim sections.) * partparse.py, texipre.dat, fix.el, Makefile: Minor cleanup of latex -> info conversion process (at least it works again, and with less debugging output). Removed fix.sh. * lib1.tex (section{Built-in Functions}): adapt description of str() and repr() to new situation. * lib3.tex (Module os): added exec*() variants. * lib3.tex (Module posix): added execve(). * lib2.tex (Module array): documented reality; remove typecode and itemsize, add byteswap, rename read/write to fromfile/tofile, and re-alphabetized. * lib1.tex (Built-in Functions): renamed bagof() to filter().
This commit is contained in:
parent
c600411755
commit
7a2dba2a00
34
Doc/Makefile
34
Doc/Makefile
@ -26,6 +26,14 @@ lib:
|
||||
latex lib
|
||||
dvips lib >lib.ps
|
||||
|
||||
ext:
|
||||
touch ext.ind
|
||||
latex ext
|
||||
./fix_hack ext.idx
|
||||
makeindex ext
|
||||
latex ext
|
||||
dvips ext >ext.ps
|
||||
|
||||
qua:
|
||||
latex qua
|
||||
bibtex qua
|
||||
@ -33,19 +41,27 @@ qua:
|
||||
latex qua
|
||||
dvips qua >qua.ps
|
||||
|
||||
libinfo:
|
||||
@echo This may take a while...
|
||||
python -c 'import partparse; partparse.main()' lib[1-5].tex
|
||||
sh fix.sh
|
||||
lib.texi: lib1.tex lib2.tex lib3.tex lib4.tex lib5.tex texipre.dat texipost.dat
|
||||
python partparse.py -o @lib.texi lib[1-5].tex
|
||||
mv @lib.texi lib.texi
|
||||
|
||||
# This target is very local to CWI... (first make libinfo)
|
||||
libwww:
|
||||
texi2html -d @out.texi /usr/local/ftp.cwi.nl/pub/www/texinfo/python
|
||||
.PRECIOUS: lib.texi
|
||||
|
||||
python-lib.info: lib.texi
|
||||
emacs -batch -l fix.el -f save-buffer -kill
|
||||
makeinfo +footnote-style end +fill-column 72 +paragraph-indent 0 \
|
||||
lib.texi
|
||||
|
||||
lib.info: python-lib.info
|
||||
|
||||
# This target is very local to CWI...
|
||||
libwww: lib.texi
|
||||
texi2html -d lib.texi /usr/local/ftp.cwi.nl/pub/www/texinfo/python
|
||||
|
||||
clean:
|
||||
rm -f @* *~ *.aux *.idx *.ilg *.ind *.log *.toc *.blg *.bbl *.pyc
|
||||
# Sources: .tex, .bib, .sty
|
||||
# Useful results: .dvi, .ps
|
||||
# Useful results: .dvi, .ps, .texi, .info
|
||||
|
||||
clobber: clean
|
||||
rm -f *.dvi *.ps *.info *.info-[0-9]*
|
||||
rm -f *.dvi *.ps *.texi *.info *.info-[0-9]*
|
||||
|
709
Doc/ext.tex
Normal file
709
Doc/ext.tex
Normal file
@ -0,0 +1,709 @@
|
||||
\documentstyle[twoside,11pt,myformat]{report}
|
||||
|
||||
\title{\bf Extending and Embedding the Python Interpreter}
|
||||
|
||||
\author{
|
||||
Guido van Rossum \\
|
||||
Dept. CST, CWI, Kruislaan 413 \\
|
||||
1098 SJ Amsterdam, The Netherlands \\
|
||||
E-mail: {\tt guido@cwi.nl}
|
||||
}
|
||||
|
||||
% Tell \index to actually write the .idx file
|
||||
\makeindex
|
||||
|
||||
\begin{document}
|
||||
|
||||
\pagenumbering{roman}
|
||||
|
||||
\maketitle
|
||||
|
||||
\begin{abstract}
|
||||
|
||||
\noindent
|
||||
This document describes how you can extend the Python interpreter with
|
||||
new modules written in C or C++. It also describes how to use the
|
||||
interpreter as a library package from applications using Python as an
|
||||
``embedded'' language.
|
||||
|
||||
\end{abstract}
|
||||
|
||||
\pagebreak
|
||||
|
||||
{
|
||||
\parskip = 0mm
|
||||
\tableofcontents
|
||||
}
|
||||
|
||||
\pagebreak
|
||||
|
||||
\pagenumbering{arabic}
|
||||
|
||||
\chapter{Extending Python with C or C++ code}
|
||||
|
||||
It is quite easy to add non-standard built-in modules to Python, if
|
||||
you know how to program in C. A built-in module known to the Python
|
||||
programmer as foo is generally implemented in a file called
|
||||
foomodule.c. The standard built-in modules also adhere to this
|
||||
convention, and in fact some of them form excellent examples of how to
|
||||
create an extension.
|
||||
|
||||
Extension modules can do two things that can't be done directly in
|
||||
Python: implement new data types and provide access to system calls or
|
||||
C library functions. Since the latter is usually the most important
|
||||
reason for adding an extension, I'll concentrate on adding "wrappers"
|
||||
around C library functions; the concrete example uses the wrapper for
|
||||
system() in module posix, found in (of course) the file posixmodule.c.
|
||||
|
||||
It is important not to be impressed by the size and complexity of
|
||||
the average extension module; much of this is straightforward
|
||||
"boilerplate" code (starting right with the copyright notice!).
|
||||
|
||||
Let's skip the boilerplate and jump right to an interesting function:
|
||||
|
||||
\begin{verbatim}
|
||||
static object *
|
||||
posix_system(self, args)
|
||||
object *self;
|
||||
object *args;
|
||||
{
|
||||
char *command;
|
||||
int sts;
|
||||
if (!getargs(args, "s", &command))
|
||||
return NULL;
|
||||
sts = system(command);
|
||||
return newintobject((long)sts);
|
||||
}
|
||||
\end{verbatim}
|
||||
|
||||
This is the prototypical top-level function in an extension module.
|
||||
It will be called (we'll see later how this is made possible) when the
|
||||
Python program executes statements like
|
||||
|
||||
\begin{verbatim}
|
||||
>>> import posix
|
||||
>>> sts = posix.system('ls -l')
|
||||
\end{verbatim}
|
||||
|
||||
There is a straightforward translation from the arguments to the call
|
||||
in Python (here the single value 'ls -l') to the arguments that are
|
||||
passed to the C function. The C function always has two parameters,
|
||||
conventionally named 'self' and 'args'. In this example, 'self' will
|
||||
always be a NULL pointer, since this is a function, not a method (this
|
||||
is done so that the interpreter doesn't have to understand two
|
||||
different types of C functions).
|
||||
|
||||
The 'args' parameter will be a pointer to a Python object, or NULL if
|
||||
the Python function/method was called without arguments. It is
|
||||
necessary to do full argument type checking on each call, since
|
||||
otherwise the Python user could cause a core dump by passing the wrong
|
||||
arguments (or no arguments at all). Because argument checking and
|
||||
converting arguments to C is such a common task, there's a general
|
||||
function in the Python interpreter which combines these tasks:
|
||||
getargs(). It uses a template string to determine both the types of
|
||||
the Python argument and the types of the C variables into which it
|
||||
should store the converted values.
|
||||
|
||||
When getargs returns nonzero, the argument list has the right type and
|
||||
its components have been stored in the variables whose addresses are
|
||||
passed. When it returns zero, an error has occurred. In the latter
|
||||
case it has already raised an appropriate exception by calling
|
||||
err_setstr(), so the calling function can just return NULL.
|
||||
|
||||
The form of the format string is described at the end of this file.
|
||||
(There are convenience macros getstrarg(), getintarg(), etc., for many
|
||||
common forms of argument lists. These are relics from the past; it's
|
||||
better to call getargs() directly.)
|
||||
|
||||
|
||||
\section{Intermezzo: errors and exceptions}
|
||||
|
||||
An important convention throughout the Python interpreter is the
|
||||
following: when a function fails, it should set an exception condition
|
||||
and return an error value (often a NULL pointer). Exceptions are set
|
||||
in a global variable in the file errors.c; if this variable is NULL no
|
||||
exception has occurred. A second variable is the "associated value"
|
||||
of the exception.
|
||||
|
||||
The file errors.h declares a host of err_* functions to set various
|
||||
types of exceptions. The most common one is err_setstr() -- its
|
||||
arguments are an exception object (e.g. RuntimeError -- actually it
|
||||
can be any string object) and a C string indicating the cause of the
|
||||
error (this is converted to a string object and stored as the
|
||||
"associated value" of the exception). Another useful function is
|
||||
err_errno(), which only takes an exception argument and constructs the
|
||||
associated value by inspection of the (UNIX) global variable errno.
|
||||
|
||||
You can test non-destructively whether an exception has been set with
|
||||
err_occurred(). However, most code never calls err_occurred() to see
|
||||
whether an error occurred or not, but relies on error return values
|
||||
from the functions it calls instead:
|
||||
|
||||
When a function that calls another function detects that the called
|
||||
function fails, it should return an error value but not set an
|
||||
condition -- one is already set. The caller is then supposed to also
|
||||
return an error indication to *its* caller, again *without* calling
|
||||
err_setstr(), and so on -- the most detailed cause of the error was
|
||||
already reported by the function that detected it in the first place.
|
||||
Once the error has reached Python's interpreter main loop, this aborts
|
||||
the currently executing Python code and tries to find an exception
|
||||
handler specified by the Python programmer.
|
||||
|
||||
To ignore an exception set by a function call that failed, the
|
||||
exception condition must be cleared explicitly by calling err_clear().
|
||||
The only time C code should call err_clear() is if it doesn't want to
|
||||
pass the error on to the interpreter but wants to handle it completely
|
||||
by itself (e.g. by trying something else or pretending nothing
|
||||
happened).
|
||||
|
||||
Finally, the function err_get() gives you both error variables
|
||||
*and clears them*. Note that even if an error occurred the second one
|
||||
may be NULL. I doubt you will need to use this function.
|
||||
|
||||
Note that a failing malloc() call must also be turned into an
|
||||
exception -- the direct caller of malloc() (or realloc()) must call
|
||||
err_nomem() and return a failure indicator itself. All the
|
||||
object-creating functions (newintobject() etc.) already do this, so
|
||||
only if you call malloc() directly this note is of importance.
|
||||
|
||||
Also note that, with the important exception of getargs(), functions
|
||||
that return an integer status usually use 0 for success and -1 for
|
||||
failure.
|
||||
|
||||
Finally, be careful about cleaning up garbage (making appropriate
|
||||
[X]DECREF() calls) when you return an error!
|
||||
|
||||
|
||||
\section{Back to the example}
|
||||
|
||||
Going back to posix_system, you should now be able to understand this
|
||||
bit:
|
||||
|
||||
\begin{verbatim}
|
||||
if (!getargs(args, "s", &command))
|
||||
return NULL;
|
||||
\end{verbatim}
|
||||
|
||||
It returns NULL (the error indicator for functions of this kind) if an
|
||||
error is detected in the argument list, relying on the exception set
|
||||
by getargs(). The string value of the argument is now copied to the
|
||||
local variable 'command'.
|
||||
|
||||
If a Python function is called with multiple arguments, the argument
|
||||
list is turned into a tuple. Python programs can us this feature, for
|
||||
instance, to explicitly create the tuple containing the arguments
|
||||
first and make the call later.
|
||||
|
||||
The next statement in posix_system is a call tothe C library function
|
||||
system(), passing it the string we just got from getargs():
|
||||
|
||||
\begin{verbatim}
|
||||
sts = system(command);
|
||||
\end{verbatim}
|
||||
|
||||
Python strings may contain internal null bytes; but if these occur in
|
||||
this example the rest of the string will be ignored by system().
|
||||
|
||||
Finally, posix.system() must return a value: the integer status
|
||||
returned by the C library system() function. This is done by the
|
||||
function newintobject(), which takes a (long) integer as parameter.
|
||||
|
||||
\begin{verbatim}
|
||||
return newintobject((long)sts);
|
||||
\end{verbatim}
|
||||
|
||||
(Yes, even integers are represented as objects on the heap in Python!)
|
||||
If you had a function that returned no useful argument, you would need
|
||||
this idiom:
|
||||
|
||||
\begin{verbatim}
|
||||
INCREF(None);
|
||||
return None;
|
||||
\end{verbatim}
|
||||
|
||||
'None' is a unique Python object representing 'no value'. It differs
|
||||
from NULL, which means 'error' in most contexts (except when passed as
|
||||
a function argument -- there it means 'no arguments').
|
||||
|
||||
|
||||
\section{The module's function table}
|
||||
|
||||
I promised to show how I made the function posix_system() available to
|
||||
Python programs. This is shown later in posixmodule.c:
|
||||
|
||||
\begin{verbatim}
|
||||
static struct methodlist posix_methods[] = {
|
||||
...
|
||||
{"system", posix_system},
|
||||
...
|
||||
{NULL, NULL} /* Sentinel */
|
||||
};
|
||||
|
||||
void
|
||||
initposix()
|
||||
{
|
||||
(void) initmodule("posix", posix_methods);
|
||||
}
|
||||
\end{verbatim}
|
||||
|
||||
(The actual initposix() is somewhat more complicated, but most
|
||||
extension modules are indeed as simple as that.) When the Python
|
||||
program first imports module 'posix', initposix() is called, which
|
||||
calls initmodule() with specific parameters. This creates a module
|
||||
object (which is inserted in the table sys.modules under the key
|
||||
'posix'), and adds built-in-function objects to the newly created
|
||||
module based upon the table (of type struct methodlist) that was
|
||||
passed as its second parameter. The function initmodule() returns a
|
||||
pointer to the module object that it creates, but this is unused here.
|
||||
It aborts with a fatal error if the module could not be initialized
|
||||
satisfactorily.
|
||||
|
||||
|
||||
\section{Calling the module initialization function}
|
||||
|
||||
There is one more thing to do: telling the Python module to call the
|
||||
initfoo() function when it encounters an 'import foo' statement.
|
||||
This is done in the file config.c. This file contains a table mapping
|
||||
module names to parameterless void function pointers. You need to add
|
||||
a declaration of initfoo() somewhere early in the file, and a line
|
||||
saying
|
||||
|
||||
\begin{verbatim}
|
||||
{"foo", initfoo},
|
||||
\end{verbatim}
|
||||
|
||||
to the initializer for inittab[]. It is conventional to include both
|
||||
the declaration and the initializer line in preprocessor commands
|
||||
\verb\#ifdef USE_FOO\ / \verb\#endif\, to make it easy to turn the foo
|
||||
extension on or off. Note that the Macintosh version uses a different
|
||||
configuration file, distributed as configmac.c. This strategy may be
|
||||
extended to other operating system versions, although usually the
|
||||
standard config.c file gives a pretty useful starting point for a new
|
||||
config*.c file.
|
||||
|
||||
And, of course, I forgot the Makefile. This is actually not too hard,
|
||||
just follow the examples for, say, AMOEBA. Just find all occurrences
|
||||
of the string AMOEBA in the Makefile and do the same for FOO that's
|
||||
done for AMOEBA...
|
||||
|
||||
(Note: if you are using dynamic loading for your extension, you don't
|
||||
need to edit config.c and the Makefile. See "./DYNLOAD" for more info
|
||||
about this.)
|
||||
|
||||
|
||||
\section{Calling Python functions from C}
|
||||
|
||||
The above concentrates on making C functions accessible to the Python
|
||||
programmer. The reverse is also often useful: calling Python
|
||||
functions from C. This is especially the case for libraries that
|
||||
support so-called "callback" functions. If a C interface makes heavy
|
||||
use of callbacks, the equivalent Python often needs to provide a
|
||||
callback mechanism to the Python programmer; the implementation may
|
||||
require calling the Python callback functions from a C callback.
|
||||
Other uses are also possible.
|
||||
|
||||
Fortunately, the Python interpreter is easily called recursively, and
|
||||
there is a standard interface to call a Python function. I won't
|
||||
dwell on how to call the Python parser with a particular string as
|
||||
input -- if you're interested, have a look at the implementation of
|
||||
the "-c" command line option in pythonmain.c.
|
||||
|
||||
Calling a Python function is easy. First, the Python program must
|
||||
somehow pass you the Python function object. You should provide a
|
||||
function (or some other interface) to do this. When this function is
|
||||
called, save a pointer to the Python function object (be careful to
|
||||
INCREF it!) in a global variable -- or whereever you see fit.
|
||||
For example, the following function might be part of a module
|
||||
definition:
|
||||
|
||||
\begin{verbatim}
|
||||
static object *my_callback;
|
||||
|
||||
static object *
|
||||
my_set_callback(dummy, arg)
|
||||
object *dummy, *arg;
|
||||
{
|
||||
XDECREF(my_callback); /* Dispose of previous callback */
|
||||
my_callback = arg;
|
||||
XINCREF(my_callback); /* Remember new callback */
|
||||
/* Boilerplate for "void" return */
|
||||
INCREF(None);
|
||||
return None;
|
||||
}
|
||||
\end{verbatim}
|
||||
|
||||
Later, when it is time to call the function, you call the C function
|
||||
call_object(). This function has two arguments, both pointers to
|
||||
arbitrary Python objects: the Python function, and the argument. The
|
||||
argument can be NULL to call the function without arguments. For
|
||||
example:
|
||||
|
||||
\begin{verbatim}
|
||||
object *result;
|
||||
...
|
||||
/* Time to call the callback */
|
||||
result = call_object(my_callback, (object *)NULL);
|
||||
\end{verbatim}
|
||||
|
||||
call_object() returns a Python object pointer: this is
|
||||
the return value of the Python function. call_object() is
|
||||
"reference-count-neutral" with respect to its arguments, but the
|
||||
return value is "new": either it is a brand new object, or it is an
|
||||
existing object whose reference count has been incremented. So, you
|
||||
should somehow apply DECREF to the result, even (especially!) if you
|
||||
are not interested in its value.
|
||||
|
||||
Before you do this, however, it is important to check that the return
|
||||
value isn't NULL. If it is, the Python function terminated by raising
|
||||
an exception. If the C code that called call_object() is called from
|
||||
Python, it should now return an error indication to its Python caller,
|
||||
so the interpreter can print a stack trace, or the calling Python code
|
||||
can handle the exception. If this is not possible or desirable, the
|
||||
exception should be cleared by calling err_clear(). For example:
|
||||
|
||||
\begin{verbatim}
|
||||
if (result == NULL)
|
||||
return NULL; /* Pass error back */
|
||||
/* Here maybe use the result */
|
||||
DECREF(result);
|
||||
\end{verbatim}
|
||||
|
||||
Depending on the desired interface to the Python callback function,
|
||||
you may also have to provide an argument to call_object(). In some
|
||||
cases the argument is also provided by the Python program, through the
|
||||
same interface that specified the callback function. It can then be
|
||||
saved and used in the same manner as the function object. In other
|
||||
cases, you may have to construct a new object to pass as argument. In
|
||||
this case you must dispose of it as well. For example, if you want to
|
||||
pass an integral event code, you might use the following code:
|
||||
|
||||
\begin{verbatim}
|
||||
object *argument;
|
||||
...
|
||||
argument = newintobject((long)eventcode);
|
||||
result = call_object(my_callback, argument);
|
||||
DECREF(argument);
|
||||
if (result == NULL)
|
||||
return NULL; /* Pass error back */
|
||||
/* Here maybe use the result */
|
||||
DECREF(result);
|
||||
\end{verbatim}
|
||||
|
||||
Note the placement of DECREF(argument) immediately after the call,
|
||||
before the error check! Also note that strictly spoken this code is
|
||||
not complete: newintobject() may run out of memory, and this should be
|
||||
checked.
|
||||
|
||||
In even more complicated cases you may want to pass the callback
|
||||
function multiple arguments. To this end you have to construct (and
|
||||
dispose of!) a tuple object. Details (mostly concerned with the
|
||||
errror checks and reference count manipulation) are left as an
|
||||
exercise for the reader; most of this is also needed when returning
|
||||
multiple values from a function.
|
||||
|
||||
XXX TO DO: explain objects and reference counting.
|
||||
XXX TO DO: defining new object types.
|
||||
|
||||
|
||||
\section{Format strings for getargs()}
|
||||
|
||||
The getargs() function is declared in "modsupport.h" as follows:
|
||||
|
||||
\begin{verbatim}
|
||||
int getargs(object *arg, char *format, ...);
|
||||
\end{verbatim}
|
||||
|
||||
The remaining arguments must be addresses of variables whose type is
|
||||
determined by the format string. For the conversion to succeed, the
|
||||
`arg' object must match the format and the format must be exhausted.
|
||||
Note that while getargs() checks that the Python object really is of
|
||||
the specified type, it cannot check that the addresses provided in the
|
||||
call match: if you make mistakes there, your code will probably dump
|
||||
core.
|
||||
|
||||
A format string consists of a single `format unit'. A format unit
|
||||
describes one Python object; it is usually a single character or a
|
||||
parenthesized string. The type of a format units is determined from
|
||||
its first character, the `format letter':
|
||||
|
||||
's' (string)
|
||||
The Python object must be a string object. The C argument
|
||||
must be a char** (i.e., the address of a character pointer),
|
||||
and a pointer to the C string contained in the Python object
|
||||
is stored into it. If the next character in the format string
|
||||
is \verb\'#'\, another C argument of type int* must be present, and
|
||||
the length of the Python string (not counting the trailing
|
||||
zero byte) is stored into it.
|
||||
|
||||
'z' (string or zero, i.e., NULL)
|
||||
Like 's', but the object may also be None. In this case the
|
||||
string pointer is set to NULL and if a \verb\'#'\ is present the size
|
||||
it set to 0.
|
||||
|
||||
'b' (byte, i.e., char interpreted as tiny int)
|
||||
The object must be a Python integer. The C argument must be a
|
||||
char*.
|
||||
|
||||
'h' (half, i.e., short)
|
||||
The object must be a Python integer. The C argument must be a
|
||||
short*.
|
||||
|
||||
'i' (int)
|
||||
The object must be a Python integer. The C argument must be
|
||||
an int*.
|
||||
|
||||
'l' (long)
|
||||
The object must be a (plain!) Python integer. The C argument
|
||||
must be a long*.
|
||||
|
||||
'c' (char)
|
||||
The Python object must be a string of length 1. The C
|
||||
argument must be a char*. (Don't pass an int*!)
|
||||
|
||||
'f' (float)
|
||||
The object must be a Python int or float. The C argument must
|
||||
be a float*.
|
||||
|
||||
'd' (double)
|
||||
The object must be a Python int or float. The C argument must
|
||||
be a double*.
|
||||
|
||||
'S' (string object)
|
||||
The object must be a Python string. The C argument must be an
|
||||
object** (i.e., the address of an object pointer). The C
|
||||
program thus gets back the actual string object that was
|
||||
passed, not just a pointer to its array of characters and its
|
||||
size as for format character 's'.
|
||||
|
||||
'O' (object)
|
||||
The object can be any Python object, including None, but not
|
||||
NULL. The C argument must be an object**. This can be used
|
||||
if an argument list must contain objects of a type for which
|
||||
no format letter exist: the caller must then check that it has
|
||||
the right type.
|
||||
|
||||
'(' (tuple)
|
||||
The object must be a Python tuple. Following the '('
|
||||
character in the format string must come a number of format
|
||||
units describing the elements of the tuple, followed by a ')'
|
||||
character. Tuple format units may be nested. (There are no
|
||||
exceptions for empty and singleton tuples; "()" specifies an
|
||||
empty tuple and "(i)" a singleton of one integer. Normally
|
||||
you don't want to use the latter, since it is hard for the
|
||||
user to specify.
|
||||
|
||||
|
||||
More format characters will probably be added as the need arises. It
|
||||
should be allowed to use Python long integers whereever integers are
|
||||
expected, and perform a range check. (A range check is in fact always
|
||||
necessary for the 'b', 'h' and 'i' format letters, but this is
|
||||
currently not implemented.)
|
||||
|
||||
|
||||
Some example calls:
|
||||
|
||||
\begin{verbatim}
|
||||
int ok;
|
||||
int i, j;
|
||||
long k, l;
|
||||
char *s;
|
||||
int size;
|
||||
|
||||
ok = getargs(args, "(lls)", &k, &l, &s); /* Two longs and a string */
|
||||
/* Possible Python call: f(1, 2, 'three') */
|
||||
|
||||
ok = getargs(args, "s", &s); /* A string */
|
||||
/* Possible Python call: f('whoops!') */
|
||||
|
||||
ok = getargs(args, ""); /* No arguments */
|
||||
/* Python call: f() */
|
||||
|
||||
ok = getargs(args, "((ii)s#)", &i, &j, &s, &size);
|
||||
/* A pair of ints and a string, whose size is also returned */
|
||||
/* Possible Python call: f(1, 2, 'three') */
|
||||
|
||||
{
|
||||
int left, top, right, bottom, h, v;
|
||||
ok = getargs(args, "(((ii)(ii))(ii))",
|
||||
&left, &top, &right, &bottom, &h, &v);
|
||||
/* A rectangle and a point */
|
||||
/* Possible Python call:
|
||||
f( ((0, 0), (400, 300)), (10, 10)) */
|
||||
}
|
||||
\end{verbatim}
|
||||
|
||||
Note that a format string must consist of a single unit; strings like
|
||||
\verb\'is'\ and \verb\'(ii)s#'\ are not valid format strings. (But
|
||||
\verb\'s#'\ is.)
|
||||
|
||||
|
||||
The getargs() function does not support variable-length argument
|
||||
lists. In simple cases you can fake these by trying several calls to
|
||||
getargs() until one succeeds, but you must take care to call
|
||||
err_clear() before each retry. For example:
|
||||
|
||||
\begin{verbatim}
|
||||
static object *my_method(self, args) object *self, *args; {
|
||||
int i, j, k;
|
||||
|
||||
if (getargs(args, "(ii)", &i, &j)) {
|
||||
k = 0; /* Use default third argument */
|
||||
}
|
||||
else {
|
||||
err_clear();
|
||||
if (!getargs(args, "(iii)", &i, &j, &k))
|
||||
return NULL;
|
||||
}
|
||||
/* ... use i, j and k here ... */
|
||||
INCREF(None);
|
||||
return None;
|
||||
}
|
||||
\end{verbatim}
|
||||
|
||||
(It is possible to think of an extension to the definition of format
|
||||
strings to accomodate this directly, e.g., placing a '|' in a tuple
|
||||
might specify that the remaining arguments are optional. getargs()
|
||||
should then return 1 + the number of variables stored into.)
|
||||
|
||||
|
||||
Advanced users note: If you set the `varargs' flag in the method list
|
||||
for a function, the argument will always be a tuple (the `raw argument
|
||||
list'). In this case you must enclose single and empty argument lists
|
||||
in parentheses, e.g., "(s)" and "()".
|
||||
|
||||
|
||||
\section{The mkvalue() function}
|
||||
|
||||
This function is the counterpart to getargs(). It is declared in
|
||||
"modsupport.h" as follows:
|
||||
|
||||
\begin{verbatim}
|
||||
object *mkvalue(char *format, ...);
|
||||
\end{verbatim}
|
||||
|
||||
It supports exactly the same format letters as getargs(), but the
|
||||
arguments (which are input to the function, not output) must not be
|
||||
pointers, just values. If a byte, short or float is passed to a
|
||||
varargs function, it is widened by the compiler to int or double, so
|
||||
'b' and 'h' are treated as 'i' and 'f' is treated as 'd'. 'S' is
|
||||
treated as 'O', 's' is treated as 'z'. \verb\'z#'\ and \verb\'s#'\
|
||||
are supported: a second argument specifies the length of the data
|
||||
(negative means use strlen()). 'S' and 'O' add a reference to their
|
||||
argument (so you should DECREF it if you've just created it and aren't
|
||||
going to use it again).
|
||||
|
||||
If the argument for 'O' or 'S' is a NULL pointer, it is assumed that
|
||||
this was caused because the call producing the argument found an error
|
||||
and set an exception. Therefore, mkvalue() will return NULL but won't
|
||||
set an exception if one is already set. If no exception is set,
|
||||
SystemError is set.
|
||||
|
||||
If there is an error in the format string, the SystemError exception
|
||||
is set, since it is the calling C code's fault, not that of the Python
|
||||
user who sees the exception.
|
||||
|
||||
Example:
|
||||
|
||||
\begin{verbatim}
|
||||
return mkvalue("(ii)", 0, 0);
|
||||
\end{verbatim}
|
||||
|
||||
returns a tuple containing two zeros. (Outer parentheses in the
|
||||
format string are actually superfluous, but you can use them for
|
||||
compatibility with getargs(), which requires them if more than one
|
||||
argument is expected.)
|
||||
|
||||
\section{Reference counts}
|
||||
|
||||
Here's a useful explanation of INCREF and DECREF by Sjoerd Mullender.
|
||||
|
||||
Use XINCREF or XDECREF instead of INCREF/DECREF when the argument may
|
||||
be NULL.
|
||||
|
||||
The basic idea is, if you create an extra reference to an object, you
|
||||
must INCREF it, if you throw away a reference to an object, you must
|
||||
DECREF it. Functions such as newstringobject, newsizedstringobject,
|
||||
newintobject, etc. create a reference to an object. If you want to
|
||||
throw away the object thus created, you must use DECREF.
|
||||
|
||||
If you put an object into a tuple, list, or dictionary, the idea is
|
||||
that you usually don't want to keep a reference of your own around, so
|
||||
Python does not INCREF the elements. It does DECREF the old value.
|
||||
This means that if you put something into such an object using the
|
||||
functions Python provides for this, you must INCREF the object if you
|
||||
want to keep a separate reference to the object around. Also, if you
|
||||
replace an element, you should INCREF the old element first if you
|
||||
want to keep it. If you didn't INCREF it before you replaced it, you
|
||||
are not allowed to look at it anymore, since it may have been freed.
|
||||
|
||||
Returning an object to Python (i.e., when your module function
|
||||
returns) creates a reference to an object, but it does not change the
|
||||
reference count. When your module does not keep another reference to
|
||||
the object, you should not INCREF or DECREF it. When you do keep a
|
||||
reference around, you should INCREF the object. Also, when you return
|
||||
a global object such as None, you should INCREF it.
|
||||
|
||||
If you want to return a tuple, you should consider using mkvalue.
|
||||
Mkvalue creates a new tuple with a reference count of 1 which you can
|
||||
return. If any of the elements you put into the tuple are objects,
|
||||
they are INCREFfed by mkvalue. If you don't want to keep references
|
||||
to those elements around, you should DECREF them after having called
|
||||
mkvalue.
|
||||
|
||||
Usually you don't have to worry about arguments. They are INCREFfed
|
||||
before your function is called and DECREFfed after your function
|
||||
returns. When you keep a reference to an argument, you should INCREF
|
||||
it and DECREF when you throw it away. Also, when you return an
|
||||
argument, you should INCREF it, because returning the argument creates
|
||||
an extra reference to it.
|
||||
|
||||
If you use getargs() to parse the arguments, you can get a reference
|
||||
to an object (by using "O" in the format string). This object was not
|
||||
INCREFfed, so you should not DECREF it. If you want to keep the
|
||||
object, you must INCREF it yourself.
|
||||
|
||||
If you create your own type of objects, you should use NEWOBJ to
|
||||
create the object. This sets the reference count to 1. If you want
|
||||
to throw away the object, you should use DECREF. When the reference
|
||||
count reaches 0, the dealloc function is called. In it, you should
|
||||
DECREF all object to which you keep references in your object, but you
|
||||
should not use DECREF on your object. You should use DEL instead.
|
||||
|
||||
\chapter{Embedding Python in another application}
|
||||
|
||||
Embedding Python is similar to extending it, but not quite. The
|
||||
difference is that when you extend Python, the main program of the
|
||||
application is still the Python interpreter, while of you embed
|
||||
Python, the main program may have nothing to do with Python --
|
||||
instead, some parts of the application occasionally call the Python
|
||||
interpreter to run some Python code.
|
||||
|
||||
So if you are embedding Python, you are providing your own main
|
||||
program. One of the things this main program has to do is initialize
|
||||
the Python interpreter. At the very least, you have to call the
|
||||
function initall(). There are optional calls to pass command line
|
||||
arguments to Python. Then later you can call the interpreter from any
|
||||
part of the application.
|
||||
|
||||
There are several different ways to call the interpreter: you can pass
|
||||
a string containing Python statements to run_command(), or you can
|
||||
pass a stdio file pointer and a file name (for identification in error
|
||||
messages only) to run_script(). You can also call the lower-level
|
||||
operations described (partly) in the file \verb\<pythonroot>/misc/EXTENDING\
|
||||
to construct and use Python objects.
|
||||
|
||||
A simple demo of embedding Python can be found in the directory
|
||||
\verb\<pythonroot>/embed/\.
|
||||
|
||||
\section{Using C++}
|
||||
|
||||
It is also possible to embed Python in a C++ program; how this is done
|
||||
exactly will depend on the details of the C++ system used; in general
|
||||
you will need to write the main program in C++, enclosing the include
|
||||
files in \verb\"extern "C" { ... }"\, and compile and link this with
|
||||
the C++ compiler. (There is no need to recompile Python itself with
|
||||
C++.)
|
||||
|
||||
\input{ext.ind}
|
||||
|
||||
\end{document}
|
709
Doc/ext/ext.tex
Normal file
709
Doc/ext/ext.tex
Normal file
@ -0,0 +1,709 @@
|
||||
\documentstyle[twoside,11pt,myformat]{report}
|
||||
|
||||
\title{\bf Extending and Embedding the Python Interpreter}
|
||||
|
||||
\author{
|
||||
Guido van Rossum \\
|
||||
Dept. CST, CWI, Kruislaan 413 \\
|
||||
1098 SJ Amsterdam, The Netherlands \\
|
||||
E-mail: {\tt guido@cwi.nl}
|
||||
}
|
||||
|
||||
% Tell \index to actually write the .idx file
|
||||
\makeindex
|
||||
|
||||
\begin{document}
|
||||
|
||||
\pagenumbering{roman}
|
||||
|
||||
\maketitle
|
||||
|
||||
\begin{abstract}
|
||||
|
||||
\noindent
|
||||
This document describes how you can extend the Python interpreter with
|
||||
new modules written in C or C++. It also describes how to use the
|
||||
interpreter as a library package from applications using Python as an
|
||||
``embedded'' language.
|
||||
|
||||
\end{abstract}
|
||||
|
||||
\pagebreak
|
||||
|
||||
{
|
||||
\parskip = 0mm
|
||||
\tableofcontents
|
||||
}
|
||||
|
||||
\pagebreak
|
||||
|
||||
\pagenumbering{arabic}
|
||||
|
||||
\chapter{Extending Python with C or C++ code}
|
||||
|
||||
It is quite easy to add non-standard built-in modules to Python, if
|
||||
you know how to program in C. A built-in module known to the Python
|
||||
programmer as foo is generally implemented in a file called
|
||||
foomodule.c. The standard built-in modules also adhere to this
|
||||
convention, and in fact some of them form excellent examples of how to
|
||||
create an extension.
|
||||
|
||||
Extension modules can do two things that can't be done directly in
|
||||
Python: implement new data types and provide access to system calls or
|
||||
C library functions. Since the latter is usually the most important
|
||||
reason for adding an extension, I'll concentrate on adding "wrappers"
|
||||
around C library functions; the concrete example uses the wrapper for
|
||||
system() in module posix, found in (of course) the file posixmodule.c.
|
||||
|
||||
It is important not to be impressed by the size and complexity of
|
||||
the average extension module; much of this is straightforward
|
||||
"boilerplate" code (starting right with the copyright notice!).
|
||||
|
||||
Let's skip the boilerplate and jump right to an interesting function:
|
||||
|
||||
\begin{verbatim}
|
||||
static object *
|
||||
posix_system(self, args)
|
||||
object *self;
|
||||
object *args;
|
||||
{
|
||||
char *command;
|
||||
int sts;
|
||||
if (!getargs(args, "s", &command))
|
||||
return NULL;
|
||||
sts = system(command);
|
||||
return newintobject((long)sts);
|
||||
}
|
||||
\end{verbatim}
|
||||
|
||||
This is the prototypical top-level function in an extension module.
|
||||
It will be called (we'll see later how this is made possible) when the
|
||||
Python program executes statements like
|
||||
|
||||
\begin{verbatim}
|
||||
>>> import posix
|
||||
>>> sts = posix.system('ls -l')
|
||||
\end{verbatim}
|
||||
|
||||
There is a straightforward translation from the arguments to the call
|
||||
in Python (here the single value 'ls -l') to the arguments that are
|
||||
passed to the C function. The C function always has two parameters,
|
||||
conventionally named 'self' and 'args'. In this example, 'self' will
|
||||
always be a NULL pointer, since this is a function, not a method (this
|
||||
is done so that the interpreter doesn't have to understand two
|
||||
different types of C functions).
|
||||
|
||||
The 'args' parameter will be a pointer to a Python object, or NULL if
|
||||
the Python function/method was called without arguments. It is
|
||||
necessary to do full argument type checking on each call, since
|
||||
otherwise the Python user could cause a core dump by passing the wrong
|
||||
arguments (or no arguments at all). Because argument checking and
|
||||
converting arguments to C is such a common task, there's a general
|
||||
function in the Python interpreter which combines these tasks:
|
||||
getargs(). It uses a template string to determine both the types of
|
||||
the Python argument and the types of the C variables into which it
|
||||
should store the converted values.
|
||||
|
||||
When getargs returns nonzero, the argument list has the right type and
|
||||
its components have been stored in the variables whose addresses are
|
||||
passed. When it returns zero, an error has occurred. In the latter
|
||||
case it has already raised an appropriate exception by calling
|
||||
err_setstr(), so the calling function can just return NULL.
|
||||
|
||||
The form of the format string is described at the end of this file.
|
||||
(There are convenience macros getstrarg(), getintarg(), etc., for many
|
||||
common forms of argument lists. These are relics from the past; it's
|
||||
better to call getargs() directly.)
|
||||
|
||||
|
||||
\section{Intermezzo: errors and exceptions}
|
||||
|
||||
An important convention throughout the Python interpreter is the
|
||||
following: when a function fails, it should set an exception condition
|
||||
and return an error value (often a NULL pointer). Exceptions are set
|
||||
in a global variable in the file errors.c; if this variable is NULL no
|
||||
exception has occurred. A second variable is the "associated value"
|
||||
of the exception.
|
||||
|
||||
The file errors.h declares a host of err_* functions to set various
|
||||
types of exceptions. The most common one is err_setstr() -- its
|
||||
arguments are an exception object (e.g. RuntimeError -- actually it
|
||||
can be any string object) and a C string indicating the cause of the
|
||||
error (this is converted to a string object and stored as the
|
||||
"associated value" of the exception). Another useful function is
|
||||
err_errno(), which only takes an exception argument and constructs the
|
||||
associated value by inspection of the (UNIX) global variable errno.
|
||||
|
||||
You can test non-destructively whether an exception has been set with
|
||||
err_occurred(). However, most code never calls err_occurred() to see
|
||||
whether an error occurred or not, but relies on error return values
|
||||
from the functions it calls instead:
|
||||
|
||||
When a function that calls another function detects that the called
|
||||
function fails, it should return an error value but not set an
|
||||
condition -- one is already set. The caller is then supposed to also
|
||||
return an error indication to *its* caller, again *without* calling
|
||||
err_setstr(), and so on -- the most detailed cause of the error was
|
||||
already reported by the function that detected it in the first place.
|
||||
Once the error has reached Python's interpreter main loop, this aborts
|
||||
the currently executing Python code and tries to find an exception
|
||||
handler specified by the Python programmer.
|
||||
|
||||
To ignore an exception set by a function call that failed, the
|
||||
exception condition must be cleared explicitly by calling err_clear().
|
||||
The only time C code should call err_clear() is if it doesn't want to
|
||||
pass the error on to the interpreter but wants to handle it completely
|
||||
by itself (e.g. by trying something else or pretending nothing
|
||||
happened).
|
||||
|
||||
Finally, the function err_get() gives you both error variables
|
||||
*and clears them*. Note that even if an error occurred the second one
|
||||
may be NULL. I doubt you will need to use this function.
|
||||
|
||||
Note that a failing malloc() call must also be turned into an
|
||||
exception -- the direct caller of malloc() (or realloc()) must call
|
||||
err_nomem() and return a failure indicator itself. All the
|
||||
object-creating functions (newintobject() etc.) already do this, so
|
||||
only if you call malloc() directly this note is of importance.
|
||||
|
||||
Also note that, with the important exception of getargs(), functions
|
||||
that return an integer status usually use 0 for success and -1 for
|
||||
failure.
|
||||
|
||||
Finally, be careful about cleaning up garbage (making appropriate
|
||||
[X]DECREF() calls) when you return an error!
|
||||
|
||||
|
||||
\section{Back to the example}
|
||||
|
||||
Going back to posix_system, you should now be able to understand this
|
||||
bit:
|
||||
|
||||
\begin{verbatim}
|
||||
if (!getargs(args, "s", &command))
|
||||
return NULL;
|
||||
\end{verbatim}
|
||||
|
||||
It returns NULL (the error indicator for functions of this kind) if an
|
||||
error is detected in the argument list, relying on the exception set
|
||||
by getargs(). The string value of the argument is now copied to the
|
||||
local variable 'command'.
|
||||
|
||||
If a Python function is called with multiple arguments, the argument
|
||||
list is turned into a tuple. Python programs can us this feature, for
|
||||
instance, to explicitly create the tuple containing the arguments
|
||||
first and make the call later.
|
||||
|
||||
The next statement in posix_system is a call tothe C library function
|
||||
system(), passing it the string we just got from getargs():
|
||||
|
||||
\begin{verbatim}
|
||||
sts = system(command);
|
||||
\end{verbatim}
|
||||
|
||||
Python strings may contain internal null bytes; but if these occur in
|
||||
this example the rest of the string will be ignored by system().
|
||||
|
||||
Finally, posix.system() must return a value: the integer status
|
||||
returned by the C library system() function. This is done by the
|
||||
function newintobject(), which takes a (long) integer as parameter.
|
||||
|
||||
\begin{verbatim}
|
||||
return newintobject((long)sts);
|
||||
\end{verbatim}
|
||||
|
||||
(Yes, even integers are represented as objects on the heap in Python!)
|
||||
If you had a function that returned no useful argument, you would need
|
||||
this idiom:
|
||||
|
||||
\begin{verbatim}
|
||||
INCREF(None);
|
||||
return None;
|
||||
\end{verbatim}
|
||||
|
||||
'None' is a unique Python object representing 'no value'. It differs
|
||||
from NULL, which means 'error' in most contexts (except when passed as
|
||||
a function argument -- there it means 'no arguments').
|
||||
|
||||
|
||||
\section{The module's function table}
|
||||
|
||||
I promised to show how I made the function posix_system() available to
|
||||
Python programs. This is shown later in posixmodule.c:
|
||||
|
||||
\begin{verbatim}
|
||||
static struct methodlist posix_methods[] = {
|
||||
...
|
||||
{"system", posix_system},
|
||||
...
|
||||
{NULL, NULL} /* Sentinel */
|
||||
};
|
||||
|
||||
void
|
||||
initposix()
|
||||
{
|
||||
(void) initmodule("posix", posix_methods);
|
||||
}
|
||||
\end{verbatim}
|
||||
|
||||
(The actual initposix() is somewhat more complicated, but most
|
||||
extension modules are indeed as simple as that.) When the Python
|
||||
program first imports module 'posix', initposix() is called, which
|
||||
calls initmodule() with specific parameters. This creates a module
|
||||
object (which is inserted in the table sys.modules under the key
|
||||
'posix'), and adds built-in-function objects to the newly created
|
||||
module based upon the table (of type struct methodlist) that was
|
||||
passed as its second parameter. The function initmodule() returns a
|
||||
pointer to the module object that it creates, but this is unused here.
|
||||
It aborts with a fatal error if the module could not be initialized
|
||||
satisfactorily.
|
||||
|
||||
|
||||
\section{Calling the module initialization function}
|
||||
|
||||
There is one more thing to do: telling the Python module to call the
|
||||
initfoo() function when it encounters an 'import foo' statement.
|
||||
This is done in the file config.c. This file contains a table mapping
|
||||
module names to parameterless void function pointers. You need to add
|
||||
a declaration of initfoo() somewhere early in the file, and a line
|
||||
saying
|
||||
|
||||
\begin{verbatim}
|
||||
{"foo", initfoo},
|
||||
\end{verbatim}
|
||||
|
||||
to the initializer for inittab[]. It is conventional to include both
|
||||
the declaration and the initializer line in preprocessor commands
|
||||
\verb\#ifdef USE_FOO\ / \verb\#endif\, to make it easy to turn the foo
|
||||
extension on or off. Note that the Macintosh version uses a different
|
||||
configuration file, distributed as configmac.c. This strategy may be
|
||||
extended to other operating system versions, although usually the
|
||||
standard config.c file gives a pretty useful starting point for a new
|
||||
config*.c file.
|
||||
|
||||
And, of course, I forgot the Makefile. This is actually not too hard,
|
||||
just follow the examples for, say, AMOEBA. Just find all occurrences
|
||||
of the string AMOEBA in the Makefile and do the same for FOO that's
|
||||
done for AMOEBA...
|
||||
|
||||
(Note: if you are using dynamic loading for your extension, you don't
|
||||
need to edit config.c and the Makefile. See "./DYNLOAD" for more info
|
||||
about this.)
|
||||
|
||||
|
||||
\section{Calling Python functions from C}
|
||||
|
||||
The above concentrates on making C functions accessible to the Python
|
||||
programmer. The reverse is also often useful: calling Python
|
||||
functions from C. This is especially the case for libraries that
|
||||
support so-called "callback" functions. If a C interface makes heavy
|
||||
use of callbacks, the equivalent Python often needs to provide a
|
||||
callback mechanism to the Python programmer; the implementation may
|
||||
require calling the Python callback functions from a C callback.
|
||||
Other uses are also possible.
|
||||
|
||||
Fortunately, the Python interpreter is easily called recursively, and
|
||||
there is a standard interface to call a Python function. I won't
|
||||
dwell on how to call the Python parser with a particular string as
|
||||
input -- if you're interested, have a look at the implementation of
|
||||
the "-c" command line option in pythonmain.c.
|
||||
|
||||
Calling a Python function is easy. First, the Python program must
|
||||
somehow pass you the Python function object. You should provide a
|
||||
function (or some other interface) to do this. When this function is
|
||||
called, save a pointer to the Python function object (be careful to
|
||||
INCREF it!) in a global variable -- or whereever you see fit.
|
||||
For example, the following function might be part of a module
|
||||
definition:
|
||||
|
||||
\begin{verbatim}
|
||||
static object *my_callback;
|
||||
|
||||
static object *
|
||||
my_set_callback(dummy, arg)
|
||||
object *dummy, *arg;
|
||||
{
|
||||
XDECREF(my_callback); /* Dispose of previous callback */
|
||||
my_callback = arg;
|
||||
XINCREF(my_callback); /* Remember new callback */
|
||||
/* Boilerplate for "void" return */
|
||||
INCREF(None);
|
||||
return None;
|
||||
}
|
||||
\end{verbatim}
|
||||
|
||||
Later, when it is time to call the function, you call the C function
|
||||
call_object(). This function has two arguments, both pointers to
|
||||
arbitrary Python objects: the Python function, and the argument. The
|
||||
argument can be NULL to call the function without arguments. For
|
||||
example:
|
||||
|
||||
\begin{verbatim}
|
||||
object *result;
|
||||
...
|
||||
/* Time to call the callback */
|
||||
result = call_object(my_callback, (object *)NULL);
|
||||
\end{verbatim}
|
||||
|
||||
call_object() returns a Python object pointer: this is
|
||||
the return value of the Python function. call_object() is
|
||||
"reference-count-neutral" with respect to its arguments, but the
|
||||
return value is "new": either it is a brand new object, or it is an
|
||||
existing object whose reference count has been incremented. So, you
|
||||
should somehow apply DECREF to the result, even (especially!) if you
|
||||
are not interested in its value.
|
||||
|
||||
Before you do this, however, it is important to check that the return
|
||||
value isn't NULL. If it is, the Python function terminated by raising
|
||||
an exception. If the C code that called call_object() is called from
|
||||
Python, it should now return an error indication to its Python caller,
|
||||
so the interpreter can print a stack trace, or the calling Python code
|
||||
can handle the exception. If this is not possible or desirable, the
|
||||
exception should be cleared by calling err_clear(). For example:
|
||||
|
||||
\begin{verbatim}
|
||||
if (result == NULL)
|
||||
return NULL; /* Pass error back */
|
||||
/* Here maybe use the result */
|
||||
DECREF(result);
|
||||
\end{verbatim}
|
||||
|
||||
Depending on the desired interface to the Python callback function,
|
||||
you may also have to provide an argument to call_object(). In some
|
||||
cases the argument is also provided by the Python program, through the
|
||||
same interface that specified the callback function. It can then be
|
||||
saved and used in the same manner as the function object. In other
|
||||
cases, you may have to construct a new object to pass as argument. In
|
||||
this case you must dispose of it as well. For example, if you want to
|
||||
pass an integral event code, you might use the following code:
|
||||
|
||||
\begin{verbatim}
|
||||
object *argument;
|
||||
...
|
||||
argument = newintobject((long)eventcode);
|
||||
result = call_object(my_callback, argument);
|
||||
DECREF(argument);
|
||||
if (result == NULL)
|
||||
return NULL; /* Pass error back */
|
||||
/* Here maybe use the result */
|
||||
DECREF(result);
|
||||
\end{verbatim}
|
||||
|
||||
Note the placement of DECREF(argument) immediately after the call,
|
||||
before the error check! Also note that strictly spoken this code is
|
||||
not complete: newintobject() may run out of memory, and this should be
|
||||
checked.
|
||||
|
||||
In even more complicated cases you may want to pass the callback
|
||||
function multiple arguments. To this end you have to construct (and
|
||||
dispose of!) a tuple object. Details (mostly concerned with the
|
||||
errror checks and reference count manipulation) are left as an
|
||||
exercise for the reader; most of this is also needed when returning
|
||||
multiple values from a function.
|
||||
|
||||
XXX TO DO: explain objects and reference counting.
|
||||
XXX TO DO: defining new object types.
|
||||
|
||||
|
||||
\section{Format strings for getargs()}
|
||||
|
||||
The getargs() function is declared in "modsupport.h" as follows:
|
||||
|
||||
\begin{verbatim}
|
||||
int getargs(object *arg, char *format, ...);
|
||||
\end{verbatim}
|
||||
|
||||
The remaining arguments must be addresses of variables whose type is
|
||||
determined by the format string. For the conversion to succeed, the
|
||||
`arg' object must match the format and the format must be exhausted.
|
||||
Note that while getargs() checks that the Python object really is of
|
||||
the specified type, it cannot check that the addresses provided in the
|
||||
call match: if you make mistakes there, your code will probably dump
|
||||
core.
|
||||
|
||||
A format string consists of a single `format unit'. A format unit
|
||||
describes one Python object; it is usually a single character or a
|
||||
parenthesized string. The type of a format units is determined from
|
||||
its first character, the `format letter':
|
||||
|
||||
's' (string)
|
||||
The Python object must be a string object. The C argument
|
||||
must be a char** (i.e., the address of a character pointer),
|
||||
and a pointer to the C string contained in the Python object
|
||||
is stored into it. If the next character in the format string
|
||||
is \verb\'#'\, another C argument of type int* must be present, and
|
||||
the length of the Python string (not counting the trailing
|
||||
zero byte) is stored into it.
|
||||
|
||||
'z' (string or zero, i.e., NULL)
|
||||
Like 's', but the object may also be None. In this case the
|
||||
string pointer is set to NULL and if a \verb\'#'\ is present the size
|
||||
it set to 0.
|
||||
|
||||
'b' (byte, i.e., char interpreted as tiny int)
|
||||
The object must be a Python integer. The C argument must be a
|
||||
char*.
|
||||
|
||||
'h' (half, i.e., short)
|
||||
The object must be a Python integer. The C argument must be a
|
||||
short*.
|
||||
|
||||
'i' (int)
|
||||
The object must be a Python integer. The C argument must be
|
||||
an int*.
|
||||
|
||||
'l' (long)
|
||||
The object must be a (plain!) Python integer. The C argument
|
||||
must be a long*.
|
||||
|
||||
'c' (char)
|
||||
The Python object must be a string of length 1. The C
|
||||
argument must be a char*. (Don't pass an int*!)
|
||||
|
||||
'f' (float)
|
||||
The object must be a Python int or float. The C argument must
|
||||
be a float*.
|
||||
|
||||
'd' (double)
|
||||
The object must be a Python int or float. The C argument must
|
||||
be a double*.
|
||||
|
||||
'S' (string object)
|
||||
The object must be a Python string. The C argument must be an
|
||||
object** (i.e., the address of an object pointer). The C
|
||||
program thus gets back the actual string object that was
|
||||
passed, not just a pointer to its array of characters and its
|
||||
size as for format character 's'.
|
||||
|
||||
'O' (object)
|
||||
The object can be any Python object, including None, but not
|
||||
NULL. The C argument must be an object**. This can be used
|
||||
if an argument list must contain objects of a type for which
|
||||
no format letter exist: the caller must then check that it has
|
||||
the right type.
|
||||
|
||||
'(' (tuple)
|
||||
The object must be a Python tuple. Following the '('
|
||||
character in the format string must come a number of format
|
||||
units describing the elements of the tuple, followed by a ')'
|
||||
character. Tuple format units may be nested. (There are no
|
||||
exceptions for empty and singleton tuples; "()" specifies an
|
||||
empty tuple and "(i)" a singleton of one integer. Normally
|
||||
you don't want to use the latter, since it is hard for the
|
||||
user to specify.
|
||||
|
||||
|
||||
More format characters will probably be added as the need arises. It
|
||||
should be allowed to use Python long integers whereever integers are
|
||||
expected, and perform a range check. (A range check is in fact always
|
||||
necessary for the 'b', 'h' and 'i' format letters, but this is
|
||||
currently not implemented.)
|
||||
|
||||
|
||||
Some example calls:
|
||||
|
||||
\begin{verbatim}
|
||||
int ok;
|
||||
int i, j;
|
||||
long k, l;
|
||||
char *s;
|
||||
int size;
|
||||
|
||||
ok = getargs(args, "(lls)", &k, &l, &s); /* Two longs and a string */
|
||||
/* Possible Python call: f(1, 2, 'three') */
|
||||
|
||||
ok = getargs(args, "s", &s); /* A string */
|
||||
/* Possible Python call: f('whoops!') */
|
||||
|
||||
ok = getargs(args, ""); /* No arguments */
|
||||
/* Python call: f() */
|
||||
|
||||
ok = getargs(args, "((ii)s#)", &i, &j, &s, &size);
|
||||
/* A pair of ints and a string, whose size is also returned */
|
||||
/* Possible Python call: f(1, 2, 'three') */
|
||||
|
||||
{
|
||||
int left, top, right, bottom, h, v;
|
||||
ok = getargs(args, "(((ii)(ii))(ii))",
|
||||
&left, &top, &right, &bottom, &h, &v);
|
||||
/* A rectangle and a point */
|
||||
/* Possible Python call:
|
||||
f( ((0, 0), (400, 300)), (10, 10)) */
|
||||
}
|
||||
\end{verbatim}
|
||||
|
||||
Note that a format string must consist of a single unit; strings like
|
||||
\verb\'is'\ and \verb\'(ii)s#'\ are not valid format strings. (But
|
||||
\verb\'s#'\ is.)
|
||||
|
||||
|
||||
The getargs() function does not support variable-length argument
|
||||
lists. In simple cases you can fake these by trying several calls to
|
||||
getargs() until one succeeds, but you must take care to call
|
||||
err_clear() before each retry. For example:
|
||||
|
||||
\begin{verbatim}
|
||||
static object *my_method(self, args) object *self, *args; {
|
||||
int i, j, k;
|
||||
|
||||
if (getargs(args, "(ii)", &i, &j)) {
|
||||
k = 0; /* Use default third argument */
|
||||
}
|
||||
else {
|
||||
err_clear();
|
||||
if (!getargs(args, "(iii)", &i, &j, &k))
|
||||
return NULL;
|
||||
}
|
||||
/* ... use i, j and k here ... */
|
||||
INCREF(None);
|
||||
return None;
|
||||
}
|
||||
\end{verbatim}
|
||||
|
||||
(It is possible to think of an extension to the definition of format
|
||||
strings to accomodate this directly, e.g., placing a '|' in a tuple
|
||||
might specify that the remaining arguments are optional. getargs()
|
||||
should then return 1 + the number of variables stored into.)
|
||||
|
||||
|
||||
Advanced users note: If you set the `varargs' flag in the method list
|
||||
for a function, the argument will always be a tuple (the `raw argument
|
||||
list'). In this case you must enclose single and empty argument lists
|
||||
in parentheses, e.g., "(s)" and "()".
|
||||
|
||||
|
||||
\section{The mkvalue() function}
|
||||
|
||||
This function is the counterpart to getargs(). It is declared in
|
||||
"modsupport.h" as follows:
|
||||
|
||||
\begin{verbatim}
|
||||
object *mkvalue(char *format, ...);
|
||||
\end{verbatim}
|
||||
|
||||
It supports exactly the same format letters as getargs(), but the
|
||||
arguments (which are input to the function, not output) must not be
|
||||
pointers, just values. If a byte, short or float is passed to a
|
||||
varargs function, it is widened by the compiler to int or double, so
|
||||
'b' and 'h' are treated as 'i' and 'f' is treated as 'd'. 'S' is
|
||||
treated as 'O', 's' is treated as 'z'. \verb\'z#'\ and \verb\'s#'\
|
||||
are supported: a second argument specifies the length of the data
|
||||
(negative means use strlen()). 'S' and 'O' add a reference to their
|
||||
argument (so you should DECREF it if you've just created it and aren't
|
||||
going to use it again).
|
||||
|
||||
If the argument for 'O' or 'S' is a NULL pointer, it is assumed that
|
||||
this was caused because the call producing the argument found an error
|
||||
and set an exception. Therefore, mkvalue() will return NULL but won't
|
||||
set an exception if one is already set. If no exception is set,
|
||||
SystemError is set.
|
||||
|
||||
If there is an error in the format string, the SystemError exception
|
||||
is set, since it is the calling C code's fault, not that of the Python
|
||||
user who sees the exception.
|
||||
|
||||
Example:
|
||||
|
||||
\begin{verbatim}
|
||||
return mkvalue("(ii)", 0, 0);
|
||||
\end{verbatim}
|
||||
|
||||
returns a tuple containing two zeros. (Outer parentheses in the
|
||||
format string are actually superfluous, but you can use them for
|
||||
compatibility with getargs(), which requires them if more than one
|
||||
argument is expected.)
|
||||
|
||||
\section{Reference counts}
|
||||
|
||||
Here's a useful explanation of INCREF and DECREF by Sjoerd Mullender.
|
||||
|
||||
Use XINCREF or XDECREF instead of INCREF/DECREF when the argument may
|
||||
be NULL.
|
||||
|
||||
The basic idea is, if you create an extra reference to an object, you
|
||||
must INCREF it, if you throw away a reference to an object, you must
|
||||
DECREF it. Functions such as newstringobject, newsizedstringobject,
|
||||
newintobject, etc. create a reference to an object. If you want to
|
||||
throw away the object thus created, you must use DECREF.
|
||||
|
||||
If you put an object into a tuple, list, or dictionary, the idea is
|
||||
that you usually don't want to keep a reference of your own around, so
|
||||
Python does not INCREF the elements. It does DECREF the old value.
|
||||
This means that if you put something into such an object using the
|
||||
functions Python provides for this, you must INCREF the object if you
|
||||
want to keep a separate reference to the object around. Also, if you
|
||||
replace an element, you should INCREF the old element first if you
|
||||
want to keep it. If you didn't INCREF it before you replaced it, you
|
||||
are not allowed to look at it anymore, since it may have been freed.
|
||||
|
||||
Returning an object to Python (i.e., when your module function
|
||||
returns) creates a reference to an object, but it does not change the
|
||||
reference count. When your module does not keep another reference to
|
||||
the object, you should not INCREF or DECREF it. When you do keep a
|
||||
reference around, you should INCREF the object. Also, when you return
|
||||
a global object such as None, you should INCREF it.
|
||||
|
||||
If you want to return a tuple, you should consider using mkvalue.
|
||||
Mkvalue creates a new tuple with a reference count of 1 which you can
|
||||
return. If any of the elements you put into the tuple are objects,
|
||||
they are INCREFfed by mkvalue. If you don't want to keep references
|
||||
to those elements around, you should DECREF them after having called
|
||||
mkvalue.
|
||||
|
||||
Usually you don't have to worry about arguments. They are INCREFfed
|
||||
before your function is called and DECREFfed after your function
|
||||
returns. When you keep a reference to an argument, you should INCREF
|
||||
it and DECREF when you throw it away. Also, when you return an
|
||||
argument, you should INCREF it, because returning the argument creates
|
||||
an extra reference to it.
|
||||
|
||||
If you use getargs() to parse the arguments, you can get a reference
|
||||
to an object (by using "O" in the format string). This object was not
|
||||
INCREFfed, so you should not DECREF it. If you want to keep the
|
||||
object, you must INCREF it yourself.
|
||||
|
||||
If you create your own type of objects, you should use NEWOBJ to
|
||||
create the object. This sets the reference count to 1. If you want
|
||||
to throw away the object, you should use DECREF. When the reference
|
||||
count reaches 0, the dealloc function is called. In it, you should
|
||||
DECREF all object to which you keep references in your object, but you
|
||||
should not use DECREF on your object. You should use DEL instead.
|
||||
|
||||
\chapter{Embedding Python in another application}
|
||||
|
||||
Embedding Python is similar to extending it, but not quite. The
|
||||
difference is that when you extend Python, the main program of the
|
||||
application is still the Python interpreter, while of you embed
|
||||
Python, the main program may have nothing to do with Python --
|
||||
instead, some parts of the application occasionally call the Python
|
||||
interpreter to run some Python code.
|
||||
|
||||
So if you are embedding Python, you are providing your own main
|
||||
program. One of the things this main program has to do is initialize
|
||||
the Python interpreter. At the very least, you have to call the
|
||||
function initall(). There are optional calls to pass command line
|
||||
arguments to Python. Then later you can call the interpreter from any
|
||||
part of the application.
|
||||
|
||||
There are several different ways to call the interpreter: you can pass
|
||||
a string containing Python statements to run_command(), or you can
|
||||
pass a stdio file pointer and a file name (for identification in error
|
||||
messages only) to run_script(). You can also call the lower-level
|
||||
operations described (partly) in the file \verb\<pythonroot>/misc/EXTENDING\
|
||||
to construct and use Python objects.
|
||||
|
||||
A simple demo of embedding Python can be found in the directory
|
||||
\verb\<pythonroot>/embed/\.
|
||||
|
||||
\section{Using C++}
|
||||
|
||||
It is also possible to embed Python in a C++ program; how this is done
|
||||
exactly will depend on the details of the C++ system used; in general
|
||||
you will need to write the main program in C++, enclosing the include
|
||||
files in \verb\"extern "C" { ... }"\, and compile and link this with
|
||||
the C++ compiler. (There is no need to recompile Python itself with
|
||||
C++.)
|
||||
|
||||
\input{ext.ind}
|
||||
|
||||
\end{document}
|
@ -1,6 +1,6 @@
|
||||
; load the new texinfo package (2.xx) if not installed by default
|
||||
(setq load-path
|
||||
(cons "/ufs/jh/lib/emacs/texinfo-2.14" load-path))
|
||||
(find-file "@out.texi")
|
||||
; (setq load-path
|
||||
; (cons "/ufs/jh/lib/emacs/texinfo-2.14" load-path))
|
||||
(find-file "lib.texi")
|
||||
(texinfo-all-menus-update t)
|
||||
(texinfo-all-menus-update t)
|
||||
|
@ -77,8 +77,7 @@ the language, see the @cite{Python Tutorial}. The @cite{Python
|
||||
Reference Manual} gives a more formal definition of the language.
|
||||
(These manuals are not yet available in INFO or Texinfo format.)
|
||||
|
||||
This version corresponds roughly to Python version 0.9.9 (yet to be
|
||||
released).
|
||||
This version corresponds roughly to Python version 1.0 (yet to be released).
|
||||
|
||||
@end ifinfo
|
||||
|
||||
|
124
Doc/partparse.py
124
Doc/partparse.py
@ -14,7 +14,7 @@
|
||||
# -jh
|
||||
|
||||
|
||||
import sys, string, regex
|
||||
import sys, string, regex, getopt, os
|
||||
|
||||
# Different parse modes for phase 1
|
||||
MODE_REGULAR = 0
|
||||
@ -270,21 +270,21 @@ comment_stopcodes = [CC_ENDLINE]
|
||||
|
||||
# gather all characters together, specified by a list of catcodes
|
||||
def code2string(cc, codelist):
|
||||
print 'code2string: codelist = ' + pcl(codelist),
|
||||
##print 'code2string: codelist = ' + pcl(codelist),
|
||||
result = ''
|
||||
for catagory in codelist:
|
||||
if cc[catagory]:
|
||||
result = result + cc[catagory]
|
||||
print 'result = ' + `result`
|
||||
for category in codelist:
|
||||
if cc[category]:
|
||||
result = result + cc[category]
|
||||
##print 'result = ' + `result`
|
||||
return result
|
||||
|
||||
# automatically generate all characters of catcode other, being the
|
||||
# complement set in the ASCII range (128 characters)
|
||||
def make_other_codes(cc):
|
||||
otherchars = range(128) # could be made 256, no problem
|
||||
for catagory in all_but_other_codes:
|
||||
if cc[catagory]:
|
||||
for c in cc[catagory]:
|
||||
otherchars = range(256) # could be made 256, no problem
|
||||
for category in all_but_other_codes:
|
||||
if cc[category]:
|
||||
for c in cc[category]:
|
||||
otherchars[ord(c)] = None
|
||||
result = ''
|
||||
for i in otherchars:
|
||||
@ -294,12 +294,12 @@ def make_other_codes(cc):
|
||||
|
||||
# catcode dump (which characters have which catcodes).
|
||||
def dump_cc(name, cc):
|
||||
print '\t' + name
|
||||
print '=' * (8+len(name))
|
||||
##print '\t' + name
|
||||
##print '=' * (8+len(name))
|
||||
if len(cc) != 16:
|
||||
raise TypeError, 'cc not good cat class'
|
||||
for i in range(16):
|
||||
print pc(i) + '\t' + `cc[i]`
|
||||
## for i in range(16):
|
||||
## print pc(i) + '\t' + `cc[i]`
|
||||
|
||||
|
||||
# In the beginning,....
|
||||
@ -707,7 +707,7 @@ def handlecs(buf, where, curpmode, lvl, result, end):
|
||||
if x2 == end:
|
||||
raise error, 'premature end of command.' + lle(lvl, buf, where)
|
||||
delimchar = buf[x2]
|
||||
print 'VERB: delimchar ' + `delimchar`
|
||||
##print 'VERB: delimchar ' + `delimchar`
|
||||
pos = regex.compile(un_re(delimchar)).search(buf, x2 + 1)
|
||||
if pos < 0:
|
||||
raise error, 'end of \'verb\' argument (' + \
|
||||
@ -877,7 +877,7 @@ for_texi = ('emph', 'var', 'strong', 'code', 'kbd', 'key', 'dfn', 'samp', \
|
||||
# try to remove macros and return flat text
|
||||
def flattext(buf, pp):
|
||||
pp = crcopy(pp)
|
||||
print '---> FLATTEXT ' + `pp`
|
||||
##print '---> FLATTEXT ' + `pp`
|
||||
wobj = Wobj().init()
|
||||
|
||||
i, length = 0, len(pp)
|
||||
@ -942,7 +942,7 @@ def flattext(buf, pp):
|
||||
pass
|
||||
|
||||
dumpit(buf, wobj.write, pp)
|
||||
print 'FLATTEXT: RETURNING ' + `wobj.data`
|
||||
##print 'FLATTEXT: RETURNING ' + `wobj.data`
|
||||
return wobj.data
|
||||
|
||||
# try to generate node names (a bit shorter than the chapter title)
|
||||
@ -950,7 +950,7 @@ def flattext(buf, pp):
|
||||
def invent_node_names(text):
|
||||
words = string.split(text)
|
||||
|
||||
print 'WORDS ' + `words`
|
||||
##print 'WORDS ' + `words`
|
||||
|
||||
if len(words) == 2 \
|
||||
and string.lower(words[0]) == 'built-in' \
|
||||
@ -1268,7 +1268,7 @@ def changeit(buf, pp):
|
||||
elif ch.chtype == chunk_type(IF):
|
||||
# \if...
|
||||
flag, negate, data = ch.data
|
||||
print 'IF: flag, negate = ' + `flag, negate`
|
||||
##print 'IF: flag, negate = ' + `flag, negate`
|
||||
if flag not in flags.keys():
|
||||
raise error, 'unknown flag ' + `flag`
|
||||
|
||||
@ -1533,7 +1533,7 @@ def changeit(buf, pp):
|
||||
('exception', 'object'):
|
||||
command = 'vindex'
|
||||
else:
|
||||
print 'WARNING: can\'t catagorize ' + `idxsi` + ' for \'ttindex\' command'
|
||||
print 'WARNING: can\'t categorize ' + `idxsi` + ' for \'ttindex\' command'
|
||||
command = 'cindex'
|
||||
|
||||
if not cat_class:
|
||||
@ -1670,7 +1670,7 @@ def changeit(buf, pp):
|
||||
text = flattext(buf, cp1)
|
||||
if text[-1] == '.':
|
||||
text = text[:-1]
|
||||
print 'FLATTEXT:', `text`
|
||||
## print 'FLATTEXT:', `text`
|
||||
if text in hist.nodenames:
|
||||
print 'WARNING: node name ' + `text` + ' already used'
|
||||
out.doublenodes.append(text)
|
||||
@ -2058,7 +2058,7 @@ def dumpit(buf, wm, pp):
|
||||
wm('\n')
|
||||
|
||||
elif ch.chtype == chunk_type(COMMENT):
|
||||
print 'COMMENT: previous chunk =', pp[i-2]
|
||||
## print 'COMMENT: previous chunk =', pp[i-2]
|
||||
if pp[i-2].chtype == chunk_type(PLAIN):
|
||||
print 'PLAINTEXT =', `s(buf, pp[i-2].data)`
|
||||
if s(buf, ch.data) and \
|
||||
@ -2083,55 +2083,47 @@ def dumpit(buf, wm, pp):
|
||||
|
||||
|
||||
|
||||
from posix import popen
|
||||
|
||||
def main():
|
||||
outfile = None
|
||||
headerfile = 'texipre.dat'
|
||||
trailerfile = 'texipost.dat'
|
||||
|
||||
|
||||
buf = open(sys.argv[1], 'r').read()
|
||||
restargs = sys.argv[2:]
|
||||
try:
|
||||
opts, args = getopt.getopt(sys.argv[1:], 'o:h:t:')
|
||||
except getopt.error:
|
||||
args = []
|
||||
|
||||
w, pp = parseit(buf)
|
||||
startchange()
|
||||
## try:
|
||||
while 1:
|
||||
if not args:
|
||||
print 'usage: partparse [-o outfile] [-h headerfile]',
|
||||
print '[-t trailerfile] file ...'
|
||||
sys.exit(2)
|
||||
|
||||
for opt, arg in opts:
|
||||
if opt == '-o': outfile = arg
|
||||
if opt == '-h': headerfile = arg
|
||||
if opt == '-t': trailerfile = arg
|
||||
|
||||
if not outfile:
|
||||
root, ext = os.path.splitext(args[0])
|
||||
outfile = root + '.texi'
|
||||
|
||||
if outfile in args:
|
||||
print 'will not overwrite input file', outfile
|
||||
sys.exit(2)
|
||||
|
||||
outf = open(outfile, 'w')
|
||||
outf.write(open(headerfile, 'r').read())
|
||||
|
||||
for file in args:
|
||||
if len(args) > 1: print '='*20, file, '='*20
|
||||
buf = open(file, 'r').read()
|
||||
w, pp = parseit(buf)
|
||||
startchange()
|
||||
changeit(buf, pp)
|
||||
## pass
|
||||
break
|
||||
|
||||
## finally:
|
||||
while 1:
|
||||
outf = open('@out.texi', 'w')
|
||||
preamble = open('texipre.dat', 'r')
|
||||
while 1:
|
||||
l = preamble.readline()
|
||||
if not l:
|
||||
preamble.close()
|
||||
break
|
||||
outf.write(l)
|
||||
|
||||
dumpit(buf, outf.write, pp)
|
||||
|
||||
while restargs:
|
||||
del buf, pp
|
||||
buf = open(restargs[0], 'r').read()
|
||||
del restargs[0]
|
||||
w, pp = parseit(buf)
|
||||
startchange()
|
||||
changeit(buf, pp)
|
||||
dumpit(buf, outf.write, pp)
|
||||
outf.write(open(trailerfile, 'r').read())
|
||||
|
||||
postamble = open('texipost.dat', 'r')
|
||||
while 1:
|
||||
l = postamble.readline()
|
||||
if not l:
|
||||
postamble.close()
|
||||
break
|
||||
outf.write(l)
|
||||
|
||||
outf.close()
|
||||
outf.close()
|
||||
|
||||
## pass
|
||||
break
|
||||
|
||||
|
||||
main()
|
||||
|
@ -583,10 +583,12 @@ class, then \verb\x[i]\ is equivalent to \verb\x.__getitem__(i)\.
|
||||
(The reverse is not true --- if \verb\x\ is a list object,
|
||||
\verb\x.__getitem__(i)\ is not equivalent to \verb\x[i]\.)
|
||||
|
||||
Except for \verb\__repr__\ and \verb\__cmp__\, attempts to execute an
|
||||
Except for \verb\__repr__\, \verb\__str__\ and \verb\__cmp__\,
|
||||
attempts to execute an
|
||||
operation raise an exception when no appropriate method is defined.
|
||||
For \verb\__repr__\ and \verb\__cmp__\, the traditional
|
||||
interpretations are used in this case.
|
||||
For \verb\__str__\, the \verb\__repr__\ method is used.
|
||||
|
||||
|
||||
\subsection{Special methods for any type}
|
||||
@ -612,8 +614,12 @@ reference is deleted. Also note that it is not guaranteed that
|
||||
the interpreter exits.
|
||||
|
||||
\item[\tt __repr__(self)]
|
||||
Called by the \verb\print\ statement and conversions (reverse quotes) to
|
||||
compute the string representation of an object.
|
||||
Called by the \verb\repr()\ built-in function and by conversions
|
||||
(reverse quotes) to compute the string representation of an object.
|
||||
|
||||
\item[\tt __str__(self)]
|
||||
Called by the \verb\str()\ built-in function and by the \verb\print\
|
||||
statement compute the string representation of an object.
|
||||
|
||||
\item[\tt __cmp__(self, other)]
|
||||
Called by all comparison operations. Should return -1 if
|
||||
|
12
Doc/ref3.tex
12
Doc/ref3.tex
@ -583,10 +583,12 @@ class, then \verb\x[i]\ is equivalent to \verb\x.__getitem__(i)\.
|
||||
(The reverse is not true --- if \verb\x\ is a list object,
|
||||
\verb\x.__getitem__(i)\ is not equivalent to \verb\x[i]\.)
|
||||
|
||||
Except for \verb\__repr__\ and \verb\__cmp__\, attempts to execute an
|
||||
Except for \verb\__repr__\, \verb\__str__\ and \verb\__cmp__\,
|
||||
attempts to execute an
|
||||
operation raise an exception when no appropriate method is defined.
|
||||
For \verb\__repr__\ and \verb\__cmp__\, the traditional
|
||||
interpretations are used in this case.
|
||||
For \verb\__str__\, the \verb\__repr__\ method is used.
|
||||
|
||||
|
||||
\subsection{Special methods for any type}
|
||||
@ -612,8 +614,12 @@ reference is deleted. Also note that it is not guaranteed that
|
||||
the interpreter exits.
|
||||
|
||||
\item[\tt __repr__(self)]
|
||||
Called by the \verb\print\ statement and conversions (reverse quotes) to
|
||||
compute the string representation of an object.
|
||||
Called by the \verb\repr()\ built-in function and by conversions
|
||||
(reverse quotes) to compute the string representation of an object.
|
||||
|
||||
\item[\tt __str__(self)]
|
||||
Called by the \verb\str()\ built-in function and by the \verb\print\
|
||||
statement compute the string representation of an object.
|
||||
|
||||
\item[\tt __cmp__(self, other)]
|
||||
Called by all comparison operations. Should return -1 if
|
||||
|
@ -77,8 +77,7 @@ the language, see the @cite{Python Tutorial}. The @cite{Python
|
||||
Reference Manual} gives a more formal definition of the language.
|
||||
(These manuals are not yet available in INFO or Texinfo format.)
|
||||
|
||||
This version corresponds roughly to Python version 0.9.9 (yet to be
|
||||
released).
|
||||
This version corresponds roughly to Python version 1.0 (yet to be released).
|
||||
|
||||
@end ifinfo
|
||||
|
||||
|
49
Doc/text2latex.py
Normal file
49
Doc/text2latex.py
Normal file
@ -0,0 +1,49 @@
|
||||
import os
|
||||
import sys
|
||||
import regex
|
||||
import string
|
||||
import getopt
|
||||
|
||||
def main():
|
||||
process(sys.stdin, sys.stdout)
|
||||
|
||||
dashes = regex.compile('^-+[ \t]*$')
|
||||
equals = regex.compile('^=+[ \t]*$')
|
||||
stars = regex.compile('^\*+[ \t]*$')
|
||||
blank = regex.compile('^[ \t]*$')
|
||||
indented = regex.compile('^\( *\t\| \)[ \t]*[^ \t]')
|
||||
|
||||
def process(fi, fo):
|
||||
inverbatim = 0
|
||||
line = '\n'
|
||||
nextline = fi.readline()
|
||||
while nextline:
|
||||
prevline = line
|
||||
line = nextline
|
||||
nextline = fi.readline()
|
||||
fmt = None
|
||||
if dashes.match(nextline) >= 0:
|
||||
fmt = '\\subsection{%s}\n'
|
||||
elif equals.match(nextline) >= 0:
|
||||
fmt = '\\section{%s}\n'
|
||||
elif stars.match(nextline) >= 0:
|
||||
fmt = '\\chapter{%s}\n'
|
||||
if fmt:
|
||||
nextline = '\n'
|
||||
line = fmt % string.strip(line)
|
||||
elif inverbatim:
|
||||
if blank.match(line) >= 0 and \
|
||||
indented.match(nextline) < 0:
|
||||
inverbatim = 0
|
||||
fo.write('\\end{verbatim}\n')
|
||||
else:
|
||||
if indented.match(line) >= 0 and \
|
||||
blank.match(prevline) >= 0:
|
||||
inverbatim = 1
|
||||
fo.write('\\begin{verbatim}\n')
|
||||
if inverbatim:
|
||||
line = string.expandtabs(line, 4)
|
||||
fo.write(line)
|
||||
|
||||
#main()
|
||||
process(open('ext.tex', 'r'), sys.stdout)
|
@ -1,6 +1,6 @@
|
||||
; load the new texinfo package (2.xx) if not installed by default
|
||||
(setq load-path
|
||||
(cons "/ufs/jh/lib/emacs/texinfo-2.14" load-path))
|
||||
(find-file "@out.texi")
|
||||
; (setq load-path
|
||||
; (cons "/ufs/jh/lib/emacs/texinfo-2.14" load-path))
|
||||
(find-file "lib.texi")
|
||||
(texinfo-all-menus-update t)
|
||||
(texinfo-all-menus-update t)
|
||||
|
@ -14,7 +14,7 @@
|
||||
# -jh
|
||||
|
||||
|
||||
import sys, string, regex
|
||||
import sys, string, regex, getopt, os
|
||||
|
||||
# Different parse modes for phase 1
|
||||
MODE_REGULAR = 0
|
||||
@ -270,21 +270,21 @@ comment_stopcodes = [CC_ENDLINE]
|
||||
|
||||
# gather all characters together, specified by a list of catcodes
|
||||
def code2string(cc, codelist):
|
||||
print 'code2string: codelist = ' + pcl(codelist),
|
||||
##print 'code2string: codelist = ' + pcl(codelist),
|
||||
result = ''
|
||||
for catagory in codelist:
|
||||
if cc[catagory]:
|
||||
result = result + cc[catagory]
|
||||
print 'result = ' + `result`
|
||||
for category in codelist:
|
||||
if cc[category]:
|
||||
result = result + cc[category]
|
||||
##print 'result = ' + `result`
|
||||
return result
|
||||
|
||||
# automatically generate all characters of catcode other, being the
|
||||
# complement set in the ASCII range (128 characters)
|
||||
def make_other_codes(cc):
|
||||
otherchars = range(128) # could be made 256, no problem
|
||||
for catagory in all_but_other_codes:
|
||||
if cc[catagory]:
|
||||
for c in cc[catagory]:
|
||||
otherchars = range(256) # could be made 256, no problem
|
||||
for category in all_but_other_codes:
|
||||
if cc[category]:
|
||||
for c in cc[category]:
|
||||
otherchars[ord(c)] = None
|
||||
result = ''
|
||||
for i in otherchars:
|
||||
@ -294,12 +294,12 @@ def make_other_codes(cc):
|
||||
|
||||
# catcode dump (which characters have which catcodes).
|
||||
def dump_cc(name, cc):
|
||||
print '\t' + name
|
||||
print '=' * (8+len(name))
|
||||
##print '\t' + name
|
||||
##print '=' * (8+len(name))
|
||||
if len(cc) != 16:
|
||||
raise TypeError, 'cc not good cat class'
|
||||
for i in range(16):
|
||||
print pc(i) + '\t' + `cc[i]`
|
||||
## for i in range(16):
|
||||
## print pc(i) + '\t' + `cc[i]`
|
||||
|
||||
|
||||
# In the beginning,....
|
||||
@ -707,7 +707,7 @@ def handlecs(buf, where, curpmode, lvl, result, end):
|
||||
if x2 == end:
|
||||
raise error, 'premature end of command.' + lle(lvl, buf, where)
|
||||
delimchar = buf[x2]
|
||||
print 'VERB: delimchar ' + `delimchar`
|
||||
##print 'VERB: delimchar ' + `delimchar`
|
||||
pos = regex.compile(un_re(delimchar)).search(buf, x2 + 1)
|
||||
if pos < 0:
|
||||
raise error, 'end of \'verb\' argument (' + \
|
||||
@ -877,7 +877,7 @@ for_texi = ('emph', 'var', 'strong', 'code', 'kbd', 'key', 'dfn', 'samp', \
|
||||
# try to remove macros and return flat text
|
||||
def flattext(buf, pp):
|
||||
pp = crcopy(pp)
|
||||
print '---> FLATTEXT ' + `pp`
|
||||
##print '---> FLATTEXT ' + `pp`
|
||||
wobj = Wobj().init()
|
||||
|
||||
i, length = 0, len(pp)
|
||||
@ -942,7 +942,7 @@ def flattext(buf, pp):
|
||||
pass
|
||||
|
||||
dumpit(buf, wobj.write, pp)
|
||||
print 'FLATTEXT: RETURNING ' + `wobj.data`
|
||||
##print 'FLATTEXT: RETURNING ' + `wobj.data`
|
||||
return wobj.data
|
||||
|
||||
# try to generate node names (a bit shorter than the chapter title)
|
||||
@ -950,7 +950,7 @@ def flattext(buf, pp):
|
||||
def invent_node_names(text):
|
||||
words = string.split(text)
|
||||
|
||||
print 'WORDS ' + `words`
|
||||
##print 'WORDS ' + `words`
|
||||
|
||||
if len(words) == 2 \
|
||||
and string.lower(words[0]) == 'built-in' \
|
||||
@ -1268,7 +1268,7 @@ def changeit(buf, pp):
|
||||
elif ch.chtype == chunk_type(IF):
|
||||
# \if...
|
||||
flag, negate, data = ch.data
|
||||
print 'IF: flag, negate = ' + `flag, negate`
|
||||
##print 'IF: flag, negate = ' + `flag, negate`
|
||||
if flag not in flags.keys():
|
||||
raise error, 'unknown flag ' + `flag`
|
||||
|
||||
@ -1533,7 +1533,7 @@ def changeit(buf, pp):
|
||||
('exception', 'object'):
|
||||
command = 'vindex'
|
||||
else:
|
||||
print 'WARNING: can\'t catagorize ' + `idxsi` + ' for \'ttindex\' command'
|
||||
print 'WARNING: can\'t categorize ' + `idxsi` + ' for \'ttindex\' command'
|
||||
command = 'cindex'
|
||||
|
||||
if not cat_class:
|
||||
@ -1670,7 +1670,7 @@ def changeit(buf, pp):
|
||||
text = flattext(buf, cp1)
|
||||
if text[-1] == '.':
|
||||
text = text[:-1]
|
||||
print 'FLATTEXT:', `text`
|
||||
## print 'FLATTEXT:', `text`
|
||||
if text in hist.nodenames:
|
||||
print 'WARNING: node name ' + `text` + ' already used'
|
||||
out.doublenodes.append(text)
|
||||
@ -2058,7 +2058,7 @@ def dumpit(buf, wm, pp):
|
||||
wm('\n')
|
||||
|
||||
elif ch.chtype == chunk_type(COMMENT):
|
||||
print 'COMMENT: previous chunk =', pp[i-2]
|
||||
## print 'COMMENT: previous chunk =', pp[i-2]
|
||||
if pp[i-2].chtype == chunk_type(PLAIN):
|
||||
print 'PLAINTEXT =', `s(buf, pp[i-2].data)`
|
||||
if s(buf, ch.data) and \
|
||||
@ -2083,55 +2083,47 @@ def dumpit(buf, wm, pp):
|
||||
|
||||
|
||||
|
||||
from posix import popen
|
||||
|
||||
def main():
|
||||
outfile = None
|
||||
headerfile = 'texipre.dat'
|
||||
trailerfile = 'texipost.dat'
|
||||
|
||||
|
||||
buf = open(sys.argv[1], 'r').read()
|
||||
restargs = sys.argv[2:]
|
||||
try:
|
||||
opts, args = getopt.getopt(sys.argv[1:], 'o:h:t:')
|
||||
except getopt.error:
|
||||
args = []
|
||||
|
||||
w, pp = parseit(buf)
|
||||
startchange()
|
||||
## try:
|
||||
while 1:
|
||||
if not args:
|
||||
print 'usage: partparse [-o outfile] [-h headerfile]',
|
||||
print '[-t trailerfile] file ...'
|
||||
sys.exit(2)
|
||||
|
||||
for opt, arg in opts:
|
||||
if opt == '-o': outfile = arg
|
||||
if opt == '-h': headerfile = arg
|
||||
if opt == '-t': trailerfile = arg
|
||||
|
||||
if not outfile:
|
||||
root, ext = os.path.splitext(args[0])
|
||||
outfile = root + '.texi'
|
||||
|
||||
if outfile in args:
|
||||
print 'will not overwrite input file', outfile
|
||||
sys.exit(2)
|
||||
|
||||
outf = open(outfile, 'w')
|
||||
outf.write(open(headerfile, 'r').read())
|
||||
|
||||
for file in args:
|
||||
if len(args) > 1: print '='*20, file, '='*20
|
||||
buf = open(file, 'r').read()
|
||||
w, pp = parseit(buf)
|
||||
startchange()
|
||||
changeit(buf, pp)
|
||||
## pass
|
||||
break
|
||||
|
||||
## finally:
|
||||
while 1:
|
||||
outf = open('@out.texi', 'w')
|
||||
preamble = open('texipre.dat', 'r')
|
||||
while 1:
|
||||
l = preamble.readline()
|
||||
if not l:
|
||||
preamble.close()
|
||||
break
|
||||
outf.write(l)
|
||||
|
||||
dumpit(buf, outf.write, pp)
|
||||
|
||||
while restargs:
|
||||
del buf, pp
|
||||
buf = open(restargs[0], 'r').read()
|
||||
del restargs[0]
|
||||
w, pp = parseit(buf)
|
||||
startchange()
|
||||
changeit(buf, pp)
|
||||
dumpit(buf, outf.write, pp)
|
||||
outf.write(open(trailerfile, 'r').read())
|
||||
|
||||
postamble = open('texipost.dat', 'r')
|
||||
while 1:
|
||||
l = postamble.readline()
|
||||
if not l:
|
||||
postamble.close()
|
||||
break
|
||||
outf.write(l)
|
||||
|
||||
outf.close()
|
||||
outf.close()
|
||||
|
||||
## pass
|
||||
break
|
||||
|
||||
|
||||
main()
|
||||
|
49
Doc/tools/text2latex.py
Normal file
49
Doc/tools/text2latex.py
Normal file
@ -0,0 +1,49 @@
|
||||
import os
|
||||
import sys
|
||||
import regex
|
||||
import string
|
||||
import getopt
|
||||
|
||||
def main():
|
||||
process(sys.stdin, sys.stdout)
|
||||
|
||||
dashes = regex.compile('^-+[ \t]*$')
|
||||
equals = regex.compile('^=+[ \t]*$')
|
||||
stars = regex.compile('^\*+[ \t]*$')
|
||||
blank = regex.compile('^[ \t]*$')
|
||||
indented = regex.compile('^\( *\t\| \)[ \t]*[^ \t]')
|
||||
|
||||
def process(fi, fo):
|
||||
inverbatim = 0
|
||||
line = '\n'
|
||||
nextline = fi.readline()
|
||||
while nextline:
|
||||
prevline = line
|
||||
line = nextline
|
||||
nextline = fi.readline()
|
||||
fmt = None
|
||||
if dashes.match(nextline) >= 0:
|
||||
fmt = '\\subsection{%s}\n'
|
||||
elif equals.match(nextline) >= 0:
|
||||
fmt = '\\section{%s}\n'
|
||||
elif stars.match(nextline) >= 0:
|
||||
fmt = '\\chapter{%s}\n'
|
||||
if fmt:
|
||||
nextline = '\n'
|
||||
line = fmt % string.strip(line)
|
||||
elif inverbatim:
|
||||
if blank.match(line) >= 0 and \
|
||||
indented.match(nextline) < 0:
|
||||
inverbatim = 0
|
||||
fo.write('\\end{verbatim}\n')
|
||||
else:
|
||||
if indented.match(line) >= 0 and \
|
||||
blank.match(prevline) >= 0:
|
||||
inverbatim = 1
|
||||
fo.write('\\begin{verbatim}\n')
|
||||
if inverbatim:
|
||||
line = string.expandtabs(line, 4)
|
||||
fo.write(line)
|
||||
|
||||
#main()
|
||||
process(open('ext.tex', 'r'), sys.stdout)
|
Loading…
Reference in New Issue
Block a user