k_mul: Rearranged computation for better cache use. Ignored overflow

(it's possible, but should be harmless -- this requires more thought,
and allocating enough space in advance to prevent it requires exactly
as much thought, to know exactly how much that is -- the end result
certainly fits in the allocated space -- hmm, but that's really all
the thought it needs!  borrows/carries out of the high digits really
are harmless).
This commit is contained in:
Tim Peters 2002-08-12 15:08:20 +00:00
parent 5d546674d1
commit 738eda742c

View File

@ -1598,20 +1598,17 @@ kmul_split(PyLongObject *n, int size, PyLongObject **high, PyLongObject **low)
static PyLongObject *
k_mul(PyLongObject *a, PyLongObject *b)
{
int asize = ABS(a->ob_size);
int bsize = ABS(b->ob_size);
PyLongObject *ah = NULL;
PyLongObject *al = NULL;
PyLongObject *bh = NULL;
PyLongObject *bl = NULL;
PyLongObject *albl = NULL;
PyLongObject *ahbh = NULL;
PyLongObject *k = NULL;
PyLongObject *ret = NULL;
PyLongObject *t1, *t2;
PyLongObject *t1, *t2, *t3;
int shift; /* the number of digits we split off */
int i;
#ifdef Py_DEBUG
digit d;
#endif
/* (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl
* Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl
* Then the original product is
@ -1623,59 +1620,75 @@ k_mul(PyLongObject *a, PyLongObject *b)
/* We want to split based on the larger number; fiddle so that b
* is largest.
*/
if (ABS(a->ob_size) > ABS(b->ob_size)) {
if (asize > bsize) {
t1 = a;
a = b;
b = t1;
i = asize;
asize = bsize;
bsize = i;
}
/* Use gradeschool math when either number is too small. */
if (ABS(a->ob_size) <= KARATSUBA_CUTOFF) {
if (asize <= KARATSUBA_CUTOFF) {
/* 0 is inevitable if one kmul arg has more than twice
* the digits of another, so it's worth special-casing.
*/
if (a->ob_size == 0)
if (asize == 0)
return _PyLong_New(0);
else
return x_mul(a, b);
}
shift = ABS(b->ob_size) >> 1;
shift = bsize >> 1;
if (kmul_split(a, shift, &ah, &al) < 0) goto fail;
if (kmul_split(b, shift, &bh, &bl) < 0) goto fail;
if ((ahbh = k_mul(ah, bh)) == NULL) goto fail;
assert(ahbh->ob_size >= 0);
/* Allocate result space, and copy ahbh into the high digits. */
ret = _PyLong_New(ABS(a->ob_size) + ABS(b->ob_size));
/* Allocate result space. */
ret = _PyLong_New(asize + bsize);
if (ret == NULL) goto fail;
#ifdef Py_DEBUG
/* Fill with trash, to catch reference to uninitialized digits. */
memset(ret->ob_digit, 0xDF, ret->ob_size * sizeof(digit));
#endif
assert(2*shift + ahbh->ob_size <= ret->ob_size);
memcpy(ret->ob_digit + 2*shift, ahbh->ob_digit,
ahbh->ob_size * sizeof(digit));
/* Zero-out the digits higher than the ahbh copy. */
i = ret->ob_size - 2*shift - ahbh->ob_size;
/* t1 <- ah*bh, and copy into high digits of result. */
if ((t1 = k_mul(ah, bh)) == NULL) goto fail;
assert(t1->ob_size >= 0);
assert(2*shift + t1->ob_size <= ret->ob_size);
memcpy(ret->ob_digit + 2*shift, t1->ob_digit,
t1->ob_size * sizeof(digit));
/* Zero-out the digits higher than the ah*bh copy. */
i = ret->ob_size - 2*shift - t1->ob_size;
if (i)
memset(ret->ob_digit + 2*shift + ahbh->ob_size, 0,
memset(ret->ob_digit + 2*shift + t1->ob_size, 0,
i * sizeof(digit));
/* Compute al*bl, and copy into the low digits. */
if ((albl = k_mul(al, bl)) == NULL) goto fail;
assert(albl->ob_size >= 0);
assert(albl->ob_size <= 2*shift); /* no overlap with high digits */
memcpy(ret->ob_digit, albl->ob_digit, albl->ob_size * sizeof(digit));
/* t2 <- al*bl, and copy into the low digits. */
if ((t2 = k_mul(al, bl)) == NULL) {
Py_DECREF(t1);
goto fail;
}
assert(t2->ob_size >= 0);
assert(t2->ob_size <= 2*shift); /* no overlap with high digits */
memcpy(ret->ob_digit, t2->ob_digit, t2->ob_size * sizeof(digit));
/* Zero out remaining digits. */
i = 2*shift - albl->ob_size; /* number of uninitialized digits */
i = 2*shift - t2->ob_size; /* number of uninitialized digits */
if (i)
memset(ret->ob_digit + albl->ob_size, 0, i * sizeof(digit));
memset(ret->ob_digit + t2->ob_size, 0, i * sizeof(digit));
/* k = (ah+al)(bh+bl) */
/* Subtract ah*bh (t1) and al*bl (t2) from "the middle" digits. */
i = ret->ob_size - shift; /* # digits after shift */
v_isub(ret->ob_digit + shift, i, t2->ob_digit, t2->ob_size);
Py_DECREF(t2);
v_isub(ret->ob_digit + shift, i, t1->ob_digit, t1->ob_size);
Py_DECREF(t1);
/* t3 <- (ah+al)(bh+bl) */
if ((t1 = x_add(ah, al)) == NULL) goto fail;
Py_DECREF(ah);
Py_DECREF(al);
@ -1689,36 +1702,16 @@ k_mul(PyLongObject *a, PyLongObject *b)
Py_DECREF(bl);
bh = bl = NULL;
k = k_mul(t1, t2);
t3 = k_mul(t1, t2);
assert(t3->ob_size >= 0);
Py_DECREF(t1);
Py_DECREF(t2);
if (k == NULL) goto fail;
if (t3 == NULL) goto fail;
/* Add k into the result, starting at the shift'th LSD. */
i = ret->ob_size - shift; /* # digits after shift */
#ifdef Py_DEBUG
d =
#endif
v_iadd(ret->ob_digit + shift, i, k->ob_digit, k->ob_size);
assert(d == 0);
Py_DECREF(k);
/* Subtract ahbh and albl from the result. Note that this can't
* become negative, since k = ahbh + albl + other stuff.
*/
#ifdef Py_DEBUG
d =
#endif
v_isub(ret->ob_digit + shift, i, ahbh->ob_digit, ahbh->ob_size);
assert(d == 0);
Py_DECREF(ahbh);
#ifdef Py_DEBUG
d =
#endif
v_isub(ret->ob_digit + shift, i, albl->ob_digit, albl->ob_size);
assert(d == 0);
Py_DECREF(albl);
/* Add t3. */
v_iadd(ret->ob_digit + shift, ret->ob_size - shift,
t3->ob_digit, t3->ob_size);
Py_DECREF(t3);
return long_normalize(ret);
@ -1728,9 +1721,6 @@ k_mul(PyLongObject *a, PyLongObject *b)
Py_XDECREF(al);
Py_XDECREF(bh);
Py_XDECREF(bl);
Py_XDECREF(ahbh);
Py_XDECREF(albl);
Py_XDECREF(k);
return NULL;
}