mirror of
https://github.com/python/cpython.git
synced 2024-11-25 10:54:51 +08:00
Added note about Python's support of complex numbers.
Added exp(z).
This commit is contained in:
parent
89cb67bb64
commit
72ba616066
@ -1,6 +1,9 @@
|
||||
# Complex numbers
|
||||
# ---------------
|
||||
|
||||
# [Now that Python has a complex data type built-in, this is not very
|
||||
# useful, but it's still a nice example class]
|
||||
|
||||
# This module represents complex numbers as instances of the class Complex.
|
||||
# A Complex instance z has two data attribues, z.re (the real part) and z.im
|
||||
# (the imaginary part). In fact, z.re and z.im can have any value -- all
|
||||
@ -15,6 +18,7 @@
|
||||
# PolarToComplex([r [,phi [,fullcircle]]]) ->
|
||||
# the complex number z for which r == z.radius() and phi == z.angle(fullcircle)
|
||||
# (r and phi default to 0)
|
||||
# exp(z) -> returns the complex exponential of z. Equivalent to pow(math.e,z).
|
||||
#
|
||||
# Complex numbers have the following methods:
|
||||
# z.abs() -> absolute value of z
|
||||
@ -202,7 +206,9 @@ class Complex:
|
||||
if z is not None:
|
||||
raise TypeError, 'Complex does not support ternary pow()'
|
||||
if IsComplex(n):
|
||||
if n.im: raise TypeError, 'Complex to the Complex power'
|
||||
if n.im:
|
||||
if self.im: raise TypeError, 'Complex to the Complex power'
|
||||
else: return exp(math.log(self.re)*n)
|
||||
n = n.re
|
||||
r = pow(self.abs(), n)
|
||||
phi = n*self.angle()
|
||||
@ -211,6 +217,10 @@ class Complex:
|
||||
def __rpow__(self, base):
|
||||
base = ToComplex(base)
|
||||
return pow(base, self)
|
||||
|
||||
def exp(z):
|
||||
r = math.exp(z.re)
|
||||
return Complex(math.cos(z.im)*r,math.sin(z.im)*r)
|
||||
|
||||
|
||||
def checkop(expr, a, b, value, fuzz = 1e-6):
|
||||
|
Loading…
Reference in New Issue
Block a user