Add doctests (GH-25474)

This commit is contained in:
Raymond Hettinger 2021-04-19 14:12:36 -07:00 committed by GitHub
parent 68ba0c67ca
commit 4f9ffa8f9c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -18,7 +18,9 @@ Sorting Basics
==============
A simple ascending sort is very easy: just call the :func:`sorted` function. It
returns a new sorted list::
returns a new sorted list:
.. doctest::
>>> sorted([5, 2, 3, 1, 4])
[1, 2, 3, 4, 5]
@ -28,6 +30,8 @@ in-place (and returns ``None`` to avoid confusion). Usually it's less convenient
than :func:`sorted` - but if you don't need the original list, it's slightly
more efficient.
.. doctest::
>>> a = [5, 2, 3, 1, 4]
>>> a.sort()
>>> a
@ -36,6 +40,8 @@ more efficient.
Another difference is that the :meth:`list.sort` method is only defined for
lists. In contrast, the :func:`sorted` function accepts any iterable.
.. doctest::
>>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'})
[1, 2, 3, 4, 5]
@ -48,6 +54,8 @@ comparisons.
For example, here's a case-insensitive string comparison:
.. doctest::
>>> sorted("This is a test string from Andrew".split(), key=str.lower)
['a', 'Andrew', 'from', 'is', 'string', 'test', 'This']
@ -59,6 +67,8 @@ input record.
A common pattern is to sort complex objects using some of the object's indices
as keys. For example:
.. doctest::
>>> student_tuples = [
... ('john', 'A', 15),
... ('jane', 'B', 12),
@ -69,6 +79,8 @@ as keys. For example:
The same technique works for objects with named attributes. For example:
.. doctest::
>>> class Student:
... def __init__(self, name, grade, age):
... self.name = name
@ -95,6 +107,8 @@ convenience functions to make accessor functions easier and faster. The
Using those functions, the above examples become simpler and faster:
.. doctest::
>>> from operator import itemgetter, attrgetter
>>> sorted(student_tuples, key=itemgetter(2))
@ -106,6 +120,8 @@ Using those functions, the above examples become simpler and faster:
The operator module functions allow multiple levels of sorting. For example, to
sort by *grade* then by *age*:
.. doctest::
>>> sorted(student_tuples, key=itemgetter(1,2))
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]
@ -119,6 +135,8 @@ Both :meth:`list.sort` and :func:`sorted` accept a *reverse* parameter with a
boolean value. This is used to flag descending sorts. For example, to get the
student data in reverse *age* order:
.. doctest::
>>> sorted(student_tuples, key=itemgetter(2), reverse=True)
[('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)]
@ -132,6 +150,8 @@ Sorts are guaranteed to be `stable
<https://en.wikipedia.org/wiki/Sorting_algorithm#Stability>`_\. That means that
when multiple records have the same key, their original order is preserved.
.. doctest::
>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
>>> sorted(data, key=itemgetter(0))
[('blue', 1), ('blue', 2), ('red', 1), ('red', 2)]
@ -143,6 +163,8 @@ This wonderful property lets you build complex sorts in a series of sorting
steps. For example, to sort the student data by descending *grade* and then
ascending *age*, do the *age* sort first and then sort again using *grade*:
.. doctest::
>>> s = sorted(student_objects, key=attrgetter('age')) # sort on secondary key
>>> sorted(s, key=attrgetter('grade'), reverse=True) # now sort on primary key, descending
[('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)]
@ -150,6 +172,8 @@ ascending *age*, do the *age* sort first and then sort again using *grade*:
This can be abstracted out into a wrapper function that can take a list and
tuples of field and order to sort them on multiple passes.
.. doctest::
>>> def multisort(xs, specs):
... for key, reverse in reversed(specs):
... xs.sort(key=attrgetter(key), reverse=reverse)
@ -220,6 +244,8 @@ comparisons. That function should take two arguments to be compared and then
return a negative value for less-than, return zero if they are equal, or return
a positive value for greater-than. For example, we can do:
.. doctest::
>>> def numeric_compare(x, y):
... return x - y
>>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare) # doctest: +SKIP
@ -227,6 +253,8 @@ a positive value for greater-than. For example, we can do:
Or you can reverse the order of comparison with:
.. doctest::
>>> def reverse_numeric(x, y):
... return y - x
>>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric) # doctest: +SKIP
@ -234,7 +262,9 @@ Or you can reverse the order of comparison with:
When porting code from Python 2.x to 3.x, the situation can arise when you have
the user supplying a comparison function and you need to convert that to a key
function. The following wrapper makes that easy to do::
function. The following wrapper makes that easy to do:
.. testcode::
def cmp_to_key(mycmp):
'Convert a cmp= function into a key= function'
@ -255,6 +285,12 @@ function. The following wrapper makes that easy to do::
return mycmp(self.obj, other.obj) != 0
return K
.. doctest::
:hide:
>>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric))
[5, 4, 3, 2, 1]
To convert to a key function, just wrap the old comparison function:
.. testsetup::
@ -280,6 +316,8 @@ Odd and Ends
simulated without the parameter by using the builtin :func:`reversed` function
twice:
.. doctest::
>>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)]
>>> standard_way = sorted(data, key=itemgetter(0), reverse=True)
>>> double_reversed = list(reversed(sorted(reversed(data), key=itemgetter(0))))
@ -289,7 +327,9 @@ Odd and Ends
* The sort routines are guaranteed to use :meth:`__lt__` when making comparisons
between two objects. So, it is easy to add a standard sort order to a class by
defining an :meth:`__lt__` method::
defining an :meth:`__lt__` method:
.. doctest::
>>> Student.__lt__ = lambda self, other: self.age < other.age
>>> sorted(student_objects)
@ -300,6 +340,8 @@ Odd and Ends
are stored in a dictionary, they can be used to sort a separate list of student
names:
.. doctest::
>>> students = ['dave', 'john', 'jane']
>>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'}
>>> sorted(students, key=newgrades.__getitem__)