Changed instructions for new releases of cwgusi, waste and tcl/tk,

moved some urls around, reformatted.
This commit is contained in:
Jack Jansen 1996-08-06 16:16:20 +00:00
parent 3d159f09a6
commit 4c1e56c742

View File

@ -5,193 +5,221 @@
<BODY>
<H1>Building Mac Python from source</H1>
<HR>
This document explains how to build MacPython from source. This is necessary if
you want to write extension modules for 68K Python, and currently also
probably the easiest way to build PPC extension modules. Building Python
is not something to be undertaken lightly, the process is not very streamlined
so you need a reasonable working knowledge of the CodeWarrior development
environment, a good net connection and probably quite some time too. <p>
The information density in this file is high, so you should probably print it and
read it at your leasure. Most things are explained only once (and probably in the
wrong place:-). <p>
This document explains how to build MacPython from source. This is
necessary if you want to write extension modules for 68K Python, and
currently also probably the easiest way to build PPC extension
modules. Building Python is not something to be undertaken lightly,
the process is not very streamlined so you need a reasonable working
knowledge of the CodeWarrior development environment, a good net
connection and probably quite some time too. <p>
I am very interested in feedback on this document, contact me at
<A HREF="mailto:jack@cwi.nl">&lt;jack@cwi.nl&gt;</A> or send your comments to the
<A HREF="http://www.python.org/sigs/pythonmac-sig/">Mac Python Special Interest Group</A>.
The information density in this file is high, so you should probably
print it and read it at your leasure. Most things are explained only
once (and probably in the wrong place:-). <p>
I am very interested in feedback on this document, contact me at <A
HREF="mailto:jack@cwi.nl">&lt;jack@cwi.nl&gt;</A> or send your
comments to the <A
HREF="http://www.python.org/sigs/pythonmac-sig/">Mac Python Special
Interest Group</A>.
<H2>What you need.</H2>
The following things you definitely need:
<UL>
<LI>
You need a MacPython source distribution, of course. You can obtain one from
<A HREF="ftp://ftp.cwi.nl/pub/jack/python/mac">ftp://ftp.cwi.nl/pub/jack/python/mac</A>,
and possibly also from the standard
<A HREF="ftp://ftp.python.org/pub/python/mac">python.org ftp site</A>. Everything you
need is also included in the standard Python source distribution, but the organization
is different. Look in directory <code>Mac/mwerks/projects</code> for the project files and related
stuff.
<LI>
You need MetroWerks CodeWarrior. The current distribution has been built with version 9
of CodeWarrior. Ordering information is available on the
<A HREF="http://www.metrowerks.com/">MetroWerks homepage</A>. You might still be
able to build Python with MPW or Think/Symantec C but you are basically on your own.
<LI> You need a MacPython source distribution, of course. You can
obtain one from <A
HREF="ftp://ftp.cwi.nl/pub/jack/python/mac">ftp://ftp.cwi.nl/pub/jack/python/mac</A>,
and possibly also from the standard <A
HREF="ftp://ftp.python.org/pub/python/mac">python.org ftp
site</A>. Everything you need is also included in the standard Python
source distribution, but the organization is different. Look in
directory <code>Mac/mwerks/projects</code> for the project files and
related stuff.
<LI> You need MetroWerks CodeWarrior. The current distribution has
been built with version 9 of CodeWarrior. Ordering information is
available on the <A HREF="http://www.metrowerks.com/">MetroWerks
homepage</A>. You might still be able to build Python with MPW or
Think/Symantec C but you are basically on your own.
<LI> You need GUSI, the Grand Unified Socket Interface, by Matthias
Neeracher. The current distribution has been built with CWGUSI 1.7.2,
obtainable from <A
HREF="ftp://ftp.switch.ch/software/mac/src/mw_c">ftp://ftp.switch.ch/software/mac/src/mw_c</A>.
It is possible to build a non-GUSI Python, see below.
<LI>
You need GUSI, the Grand Unified Socket Interface, by Matthias Neeracher. The
current distribution has been built with CWGUSI 1.6.4, obtainable from
<A HREF="ftp://ftp.switch.ch/software/mac/src/mw_c">ftp://ftp.switch.ch/software/mac/src/mw_c</A>.
It is possible to build a non-GUSI Python, see below. The correct version of CWGUSI is
also included in the Tcl/Tk distribution, by the way.
</UL>
<A NAME="optional">The MacPython project files are configured to include a plethora of optional modules</A>, and
these modules need a number extra packages. To use the project files as-is you have to
download these packages too. PPC Python has all such modules as dynamically loaded modules,
so if you don't need a certain package it suffices to just refrain from builing the
extension module. For 68K Python things are a bit more complicated: you have to edit the
interpreter project file to remove the reference to the module (and the libraries it uses).
Here are the locations for the various things you need:
<A NAME="optional">The MacPython project files are configured to
include a plethora of optional modules</A>, and these modules need a
number extra packages. To use the project files as-is you have to
download these packages too. PPC Python has all such modules as
dynamically loaded modules, so if you don't need a certain package it
suffices to just refrain from builing the extension module. For 68K
Python things are a bit more complicated: you have to edit the
interpreter project file to remove the reference to the module (and
the libraries it uses). Here are the locations for the various things
you need:
<UL>
<LI>
Tcl and Tk can be obtained from
<A HREF="ftp://ftp.smli.com/pub/tcl/mac/">ftp://ftp.smli.com/pub/tcl/mac/</A>.
The current distributions, Tcl 7.5 and Tk 4.1, were packaged in a hurry
and need a bit
of work, see the section on <A HREF="#tcltk">building Tcl/Tk Python</A> below. Get the "full source"
distribution, which includes CWGUSI (which Python also needs) and MoreFiles.
<LI>
Waste, a TextEdit replacement written by Marco Piovanelli,
<A HREF="mailto:piovanel@kagi.com">&lt;piovanel@kagi.com&gt;</A>.
Python was built using version 1.2a5, which you can obtain from
<A HREF="ftp://ftp.dsi.unimi.it/DSI/piovanel/waste">&lt;ftp://ftp.dsi.unimi.it/DSI/piovanel/waste&gt;</A>.
<LI> Tcl and Tk can be obtained from <A
HREF="ftp://ftp.smli.com/pub/tcl/mac/">ftp://ftp.smli.com/pub/tcl/mac/</A>.
The current distributions, Tcl 7.5p1 and Tk 4.1p1 need a bit of work,
see the section on <A HREF="#tcltk">building Tcl/Tk Python</A>
below. Get the "full source" distribution, which includes MoreFiles.
<LI>
JPEG library by the Independent JPEG Group. Python is still built using an archaic version
of the library, version 4. It can be obtained from the <A HREF="ftp://ftp.cwi.nl/pub/jack/python/mac">
ftp://ftp.cwi.nl/pub/jack/python/mac</A> directory, complete with CW8 projects. If someone manages
to build Python with the version 6 library I would be grateful if they sent me the changes needed.
The most recent JPEG library can always be obtained from
<A HREF="ftp://ftp.uu.net/graphics/jpeg/">ftp://ftp.uu.net/graphics/jpeg/</A>.
<LI> Waste, a TextEdit replacement written by Marco Piovanelli, <A
HREF="mailto:piovanel@kagi.com">&lt;piovanel@kagi.com&gt;</A>. Python
was built using version 1.2, which you can obtain from <A
HREF="ftp://rhino.harvard.edu/pub/dan/WASTE">&lt;ftp://rhino.harvard.edu/pub/dan/WASTE&gt;</A>
and various other places.
<LI> JPEG library by the Independent JPEG Group. Python is still built
using an archaic version of the library, version 4. It can be obtained
from the <A HREF="ftp://ftp.cwi.nl/pub/jack/python/mac">
ftp://ftp.cwi.nl/pub/jack/python/mac</A> directory, complete with CW8
projects. If someone manages to build Python with the version 6
library I would be grateful if they sent me the changes needed. The
most recent JPEG library can always be obtained from <A
HREF="ftp://ftp.uu.net/graphics/jpeg/">ftp://ftp.uu.net/graphics/jpeg/</A>.
<LI> The netpbm/pbmplus and libtiff libraries. The netpbm distribution
(which includes libtiff) is generally available on Internet ftp
servers. For Python pbmplus, an older incarnation of netpbm, is
functionally identical to netpbm, since Python only uses the library
and not the complete applications. A distribution with correct
projects and library source only is available from, you guessed it, <A
HREF="ftp://ftp.cwi.nl/pub/jack/python/mac">ftp://ftp.cwi.nl/pub/jack/python/mac</A>.
<LI>
The netpbm/pbmplus and libtiff libraries. The netpbm distribution (which includes libtiff) is generally
available on Internet ftp servers. For Python pbmplus, an older incarnation of netpbm, is functionally
identical to netpbm, since Python only uses the library and not the complete applications. A
distribution with correct projects and library source only is available from, you guessed it,
<A HREF="ftp://ftp.cwi.nl/pub/jack/python/mac">ftp://ftp.cwi.nl/pub/jack/python/mac</A>.
</UL>
<H2>Setting Up</H2>
Now that you have collected everything you should start with building the various parts. Everything
is independent, with the single exception that Tcl and Tk depend on CWGUSI. If you don't want to
fix access paths try to set things up as follows:
Now that you have collected everything you should start with building
the various parts. Everything is independent, with the single
exception that Tcl and Tk depend on CWGUSI. If you don't want to fix
access paths try to set things up as follows:
<PRE>
Top-level-folder:
CWGUSI 1.6.4
CWGUSI
imglibs
libjpeg
pbmplus
libtiff
MoreFiles 1.4.1 (not needed by Python, only by tcl/tk)
MoreFiles 1.4.2 (not needed by Python, only by tcl/tk)
Python
Tcl 7.5
Tk 4.1
Waste 1.2 distribution (if you want waste)
</PRE>
Now build all the libraries. In <code>CWGUSI</code> you build the projects
<code>GUSI.68K.µ</code> and <code>GUSI.PPC.µ</code>, in <code>MoreFiles</code>,
<code>libjpeg</code>, <code>pbmplus</code> and<code>libtiff</code> you build all
projects. Tcl/tk is a special case, see below. Of course, if you are only
interested in 68K you can skip building the PPC libraries and vice versa.
Now build all the libraries. In <code>CWGUSI</code> you build the
projects <code>GUSI.68K.µ</code> and <code>GUSI.PPC.µ</code>, in
<code>MoreFiles</code>, <code>libjpeg</code>, <code>pbmplus</code>
and<code>libtiff</code> you build all projects. Tcl/tk is a special
case, see below. Of course, if you are only interested in 68K you can
skip building the PPC libraries and vice versa.
<H2><A NAME="tcltk">Building Tcl/Tk</H2>
You need to make a minor organizational change to the Tcl/Tk distribution. The current instructions
are for the <code>tcl7.5</code> and <code>tk4.1</code> distribution:
You need to make a minor organizational change to the Tcl/Tk
distribution. The current instructions are for the
<code>tcl7.5.1</code> and <code>tk4.1.1</code> distribution:
<UL>
<LI> Rename the <code>compat</code> folders to <code>(compat)</code> in both the Tcl and Tk folders.
<LI> In the Tcl folder, move <code>strncasecmp.c</code> from <code>(compat)</code> to the
main Tcl folder.
<LI> Rename the <code>compat</code> folders to <code>(compat)</code>
in both the Tcl and Tk folders.
<LI> Fix the Tk and Tcl library project access paths: they refer to
<code>MoreFiles 1.4.2</code>, change this to <code>MoreFiles 1.4.1</code>.
Alternatively you could get the real MoreFiles 1.4.2, but there seem to be problems with
this too (undefined references).
<LI> In the Tcl folder, move <code>strncasecmp.c</code> and
<code>tclErrno.h</code> from <code>(compat)</code> to the main Tcl
folder.
<LI> Fix the Tk and Tcl library project header file: it is set to
<code>MacHeaders.h</code> but should be set to <code>MW_TkHeader.h</code>
and <code>MW_TclHeader.h</code> respectively.
<LI> Fix <code>dnr.c</code> as provided by MetroWerks by inserting
<pre><code> #pragma ANSI_strict off </code></pre> at the
beginning. The tcl library is built with strict ANSI on, and this file
uses C++ style comments.
<LI> You are <em>strongly</em> advised to make a fix to <code>tcl.h</code>. As distributed,
tcl and tk assume that malloc calls always succeed and use the resulting pointer without
checking for <code>NULL</code> values. Needless to say, this wreaks havoc on a Macintosh.
Fortunately a checking malloc is included and easy to enable: look for the
<code>#define</code>'s for ckalloc, ckfree and ckrealloc and replace them by the
following code:
<LI> If you want to build <code>SimpleTcl</code> and
<code>SimpleTk</code> you will probably have to remove the references
to <code>libmoto</code> from the project.
<LI> You are <EM>strongly</EM> advised to add a line
<pre><code>
# define ckalloc(x) Tcl_Ckalloc(x)
# define ckfree(x) Tcl_Ckfree(x)
# define ckrealloc(x,y) Tcl_Ckrealloc(x,y)
#define USE_TCLALLOC 1
</code></pre>
With this fix, out-of-memory situations will still cause a hard abort of the python
interpreter, but at least they will not crash your system.
somewhere at the beginning of <code>MW_TclHeader.pch</code>.
As distributed, tcl and tk assume that malloc calls always succeed and
use the resulting pointer without checking for <code>NULL</code>
values. Needless to say, this wreaks havoc on a Macintosh.
<LI> If you want to build <code>SimpleTcl</code> and <code>SimpleTk</code>
to make sure that the distributions are working you should make the previous
changes in those projects too. Moreover, you have to replace the MoreFiles
library reference by the correct one <code>MoreFiles 1.4.1:Libraries:MoreFiles.PPC</code>
(or 68K).
</UL>
Build first the GUSI and MoreFiles libraries, then the Tcl library, then SimpleTcl
(test it by typing <code>ls -l</code> in the window you get) then the Tk library, then SimpleTk
(which can again be tested with <code>ls -l</code>). If this all worked you are all set to try
Build first the MoreFiles library, then the Tcl library, then
SimpleTcl (test it by typing <code>ls -l</code> in the window you get)
then the Tk library, then SimpleTk (which can again be tested with
<code>ls -l</code>). If this all worked you are all set to try
building Python.
<H2>Building Waste</H2>
You do not need to build the Waste libraries, as Python includes the
source modules themselves. You have to make one modification,
though. In file <code>ICCFMGlue.c</code> in folder <code>Minimal IC
APIs</code>, add the following lines:
<blockquote><pre><code>
#include <Gestalt.h>
#include <Errors.h>
</code></pre></blockquote>
<H2>The organization of the Python source tree</H2>
Time for a short break, while we have a look at the organization of the Python source tree.
At the top level, we find the following folders:
Time for a short break, while we have a look at the organization of
the Python source tree. At the top level, we find the following
folders:
<DL>
<DT> build.mac68k.stand
<DD> This is where you will build 68K interpreters.
<DT> build.macppc.shared
<DD> This is where you build the PPC shared library, interpreter and applet framework.
<DD> This is where you build the PPC shared library, interpreter and
applet framework.
<DT> build.macppc.stand
<DD> This is where you build a nonshared PPC interpreter (optional).
<DT> Demo
<DD> Demo programs that are not Mac-specific. Some of these may not work, the file
<code>README-Mac</code> has some details.
<DD> Demo programs that are not Mac-specific. Some of these may not
work, the file <code>README-Mac</code> has some details.
<DT> Extensions
<DD> Extensions to the interpreter that are not Mac-specific. Contains only the <code>img</code>
extension in this distribution. Extensions are <em>not</em> built here, as they are on Unix,
but incorporated in the core interpreter or built as plugin modules.
<DD> Extensions to the interpreter that are not Mac-specific. Contains
only the <code>img</code> extension in this distribution. Extensions
are <em>not</em> built here, as they are on Unix, but incorporated in
the core interpreter or built as plugin modules.
<DT> Grammar
<DD> The Python grammar. Included for reference only, you cannot build the parser on a Mac.
<DD> The Python grammar. Included for reference only, you cannot build
the parser on a Mac.
<DT> Include
<DD> Machine-independent header files.
<DT> Modules
<DD> Machine-independent optional modules. Not all of these will work on the Mac.
<DD> Machine-independent optional modules. Not all of these will work
on the Mac.
<DT> Objects
<DD> Machine-independent code for various objects. Most of these are not really optional: the
interpreter will not function without them.
<DD> Machine-independent code for various objects. Most of these are
not really optional: the interpreter will not function without them.
<DT> Parser
<DD> The Python parser (machine-independent).
@ -200,23 +228,25 @@ interpreter will not function without them.
<DD> This is where you build the PPC dynamically-loaded plugin modules.
<DT> Python
<DD> The core interpreter. Most files are machine-independent, some are unix-specific
and not used on the Mac.
<DD> The core interpreter. Most files are machine-independent, some
are unix-specific and not used on the Mac.
<DT> Tools
<DD> Tools for python developers. Contains <code>modulator</code> which builds skeleton
C extension modules and <code>bgen</code> which generates complete interface modules from
information in C header files. There are some readme files, but more documentation is
sorely needed.
<DD> Tools for python developers. Contains <code>modulator</code>
which builds skeleton C extension modules and <code>bgen</code> which
generates complete interface modules from information in C header
files. There are some readme files, but more documentation is sorely
needed.
</DL>
All the mac-specific stuff lives in the <code>Mac</code> folder:
<DL>
<DT> Compat
<DD> Unix-compatability routines. Some of these are not used anymore, since CWGUSI provides
a rather complete emulation, but you may need these if you are trying to build a non-GUSI
python.
<DD> Unix-compatability routines. Some of these are not used anymore,
since CWGUSI provides a rather complete emulation, but you may need
these if you are trying to build a non-GUSI python.
<DT> Demo
<DD> Mac-specific demo programs, some of them annotated.
@ -225,28 +255,34 @@ python.
<DD> Mac-specific but compiler-independent include files.
<DT> Lib
<DD> Mac-specific standard modules. The <code>toolbox</code> folder contains modules
specifically needed with various MacOS toolbox interface modules.
<DD> Mac-specific standard modules. The <code>toolbox</code> folder
contains modules specifically needed with various MacOS toolbox
interface modules.
<DT> Modules
<DD> Mac-specific builtin modules. Theoretically these are all optional, but some are
rather essential (like <code>macmodule</code>). A lot of these modules are generated
with <code>bgen</code>, in which case the bgen input files are included so you can attempt to
regenerate them or extend them.
<DD> Mac-specific builtin modules. Theoretically these are all
optional, but some are rather essential (like
<code>macmodule</code>). A lot of these modules are generated with
<code>bgen</code>, in which case the bgen input files are included so
you can attempt to regenerate them or extend them.
<DT> MPW
<DD> MPW-specific files. These have not been used or kept up-to-date for a long time, so
use at your own risk.
<DD> MPW-specific files. These have not been used or kept up-to-date
for a long time, so use at your own risk.
<DT> mwerks
<DD> Mwerks-specific sources and headers. Contains glue code for Pythons shared-library
architecture, a replacement for <code>malloc</code> and a directory with various projects
for building variations on the Python interpreter. The <code>mwerks_*.h</code> files here
are the option-setting files for the various interpreters and such, comparable to the unix
command-line <code>-D</code> options to the compiler. Each project uses the correct option file
as its "prefix file" in the "C/C++ language" settings. Disabling optional modules (for the 68K
interpreter), building non-GUSI interpreters and various other things are accomplished by
modifying these files (and possibly changing the list of files included in the project window, of course).
<DD> Mwerks-specific sources and headers. Contains glue code for
Pythons shared-library architecture, a replacement for
<code>malloc</code> and a directory with various projects for building
variations on the Python interpreter. The <code>mwerks_*.h</code>
files here are the option-setting files for the various interpreters
and such, comparable to the unix command-line <code>-D</code> options
to the compiler. Each project uses the correct option file as its
"prefix file" in the "C/C++ language" settings. Disabling optional
modules (for the 68K interpreter), building non-GUSI interpreters and
various other things are accomplished by modifying these files (and
possibly changing the list of files included in the project window, of
course).
<DT> Python
<DD> Mac-specific parts of the core interpreter.
@ -255,8 +291,9 @@ modifying these files (and possibly changing the list of files included in the p
<DD> Resource files needed to build the interpreter.
<DT> Scripts
<DD> A collection of various mac-specific Python scripts. Some are essential, some are useful but few
are documented, so you will have to use your imagination to work them out.
<DD> A collection of various mac-specific Python scripts. Some are
essential, some are useful but few are documented, so you will have to
use your imagination to work them out.
<DT> Unsupported
<DD> Modules that are not supported any longer but may still work with a little effort.
@ -264,86 +301,114 @@ are documented, so you will have to use your imagination to work them out.
<H2>Building the 68K interpreter</H2>
If you have all the optional libraries mentioned <A HREF="#optional">above</A> loaded buildin Python
for 68K macs is a breeze: open the project in the folder <code>build.mac68k.stand</code> and build it.
Do <em>not</em> run it yet, this will possibly result in a garbled preferences file. <p>
If you have all the optional libraries mentioned <A
HREF="#optional">above</A> loaded buildin Python for 68K macs is a
breeze: open the project in the folder <code>build.mac68k.stand</code>
and build it. Do <em>not</em> run it yet, this will possibly result
in a garbled preferences file. <p>
First remove the <code>Python preferences</code> file
from your preference folder, only if you had an older version of Python installed.
(this is also what you do if you did not heed the last sentence of the
preceeding paragraph). Next, move the interpreter to the main Python folder (up one level) and run it
there. This will create a correct initial preferences file. You are now all set, and your tree
should be completely compatible with a binary-only distribution. Read the release notes
(<code>Relnotes-somethingorother</code>) and <code>ReadMeOrSuffer</code> in the <code>Mac</code> folder.
First remove the <code>Python preferences</code> file from your
preference folder, only if you had an older version of Python
installed. (this is also what you do if you did not heed the last
sentence of the preceeding paragraph). Next, move the interpreter to
the main Python folder (up one level) and run it there. This will
create a correct initial preferences file. You are now all set, and
your tree should be completely compatible with a binary-only
distribution. Read the release notes
(<code>Relnotes-somethingorother</code>) and
<code>ReadMeOrSuffer</code> in the <code>Mac</code> folder.
<H2>Building the PPC interpreter</H2>
First you build the interpreter, core library and applet skeleton in folder <code>build.macppc.stand</code>.
The order to build things is the following:
First you build the interpreter, core library and applet skeleton in
folder <code>build.macppc.stand</code>. The order to build things is
the following:
<DL>
<DT> PythonCoreRuntime
<DD> A modified version of the MetroWerks runtime library that is suitable for Pythons' shared library
architecture. The sources all come from the MW distribution.
<DD> A modified version of the MetroWerks runtime library that is
suitable for Pythons' shared library architecture. The sources all
come from the MW distribution.
<DT> PythonCore
<DD> The shared library that contains the bulk of the interpreter and its resources. It is a good idea to
immedeately put an alias to this shared library in the <code>Extensions</code> folder of your system folder.
Do exactly that: put an <em>alias</em> there, copying or moving the file will cause you grief later.
<DD> The shared library that contains the bulk of the interpreter and
its resources. It is a good idea to immedeately put an alias to this
shared library in the <code>Extensions</code> folder of your system
folder. Do exactly that: put an <em>alias</em> there, copying or
moving the file will cause you grief later.
<DT> PythonPPC
<DD> The interpreter. This is basically a routine to call out to the shared library. Because of the
organization of GUSI it also contains the Gusi settings resource (together with a ResEdit template,
so you can change the gusi settings should you feel like doing so).
Do <em>not</em> run it yet, this will possibly result in a garbled preferences file. <p>
<DD> The interpreter. This is basically a routine to call out to the
shared library. Because of the organization of GUSI it also contains
the Gusi settings resource (together with a ResEdit template, so you
can change the gusi settings should you feel like doing so). Do
<em>not</em> run it yet, this will possibly result in a garbled
preferences file. <p>
<DT> PythonApplet
<DD> The applet skeleton application. Very similar to <code>PythonPPC</code>, but it calls to a different
entrypoint in the core library. The <code>mkapplet</code> script will copy this complete file, and add
a <code>'PYC '</code> with the module to generate an applet. <p>
<DD> The applet skeleton application. Very similar to
<code>PythonPPC</code>, but it calls to a different entrypoint in the
core library. The <code>mkapplet</code> script will copy this complete
file, and add a <code>'PYC '</code> with the module to generate an
applet. <p>
</DL>
After creating the alias to <code>PythonCore</code> you should move <code>PythonPPC</code> to the main
Python folder. Next you remove any old <code>Python Preferences</code> file from the <code>Preferences</code>
folder (if you had python installed on your system before) and run the interpreter once to create the
correct preferences file. You should also make an alias to <code>PythonApplet</code> in the main Python
folder. (again: making an alias is preferrable to copying or moving the file, since this will cause the
correct file to be used if you ever rebuild PythonApplet). <p>
After creating the alias to <code>PythonCore</code> you should move
<code>PythonPPC</code> to the main Python folder. Next you remove any
old <code>Python Preferences</code> file from the
<code>Preferences</code> folder (if you had python installed on your
system before) and run the interpreter once to create the correct
preferences file. You should also make an alias to
<code>PythonApplet</code> in the main Python folder. (again: making an
alias is preferrable to copying or moving the file, since this will
cause the correct file to be used if you ever rebuild
PythonApplet). <p>
Next, you have to build the extension modules in the <code>PlugIns</code> folder. Open each project and
build it. After all the dynamically loaded modules are built you have to create a number of aliases: some
modules live together in a single dynamic library. Copy or move the <code>MkPluginAliases.py</code> script
from <code>Mac:scripts</code> to the main python folder and run it. <p>
Next, you have to build the extension modules in the
<code>PlugIns</code> folder. Open each project and build it. After all
the dynamically loaded modules are built you have to create a number
of aliases: some modules live together in a single dynamic
library. Copy or move the <code>MkPluginAliases.py</code> script from
<code>Mac:scripts</code> to the main python folder and run it. <p>
Finally, you must build the standard applets: <code>EditPythonPrefs</code>, <code>mkapplet</code>, etc. This
is easiest done with the <code>fullbuild</code> script from <code>Mac:scripts</code>. Answer <em>no</em> to
all questions except when it asks whether to build the applets. <p>
Finally, you must build the standard applets:
<code>EditPythonPrefs</code>, <code>mkapplet</code>, etc. This is
easiest done with the <code>fullbuild</code> script from
<code>Mac:scripts</code>. Answer <em>no</em> to all questions except
when it asks whether to build the applets. <p>
<BLOCKQUOTE>
Actually, the <code>fullbuild</code> script can be used to build everything, but you need a fully-functional
interpreter before you can use it (and one that isn't rebuilt in the process: you cannot rebuild a running
program). You could copy the 68K interpreter to a different place and use that to run fullbuild, or use the
standalone PPC python for this. I tend to keep a standalone interpreter in a safe place for this use only.
Actually, the <code>fullbuild</code> script can be used to build
everything, but you need a fully-functional interpreter before you can
use it (and one that isn't rebuilt in the process: you cannot rebuild
a running program). You could copy the 68K interpreter to a different
place and use that to run fullbuild, or use the standalone PPC python
for this. I tend to keep a standalone interpreter in a safe place for
this use only.
</BLOCKQUOTE>
You are all set now, and should read the release notes and <code>ReadMeOrSuffer</code> file from
the <code>Mac</code> folder.
You are all set now, and should read the release notes and
<code>ReadMeOrSuffer</code> file from the <code>Mac</code> folder.
<H2>Odds and ends</H2>
Some remarks that I could not fit in elsewhere:
<UL>
<LI>
It may be possible to use the <code>PythonCore</code> shared library to embed Python in
another program, if your program can live with using GUSI for I/O. Use PythonCore in stead of
your C library (or, at the very least, link it before the normal C library). Let me know whether this
works.
<LI>
It is possible to build PPC extension modules without building a complete Python. Take the binary distribution,
add folders <code>Include</code>, <code>Mac:Include</code> and <code>Mac:mwerks</code> from the source
distribution and you should be all set. A template for a dynamic module can be found in <code>xxmodule.µ</code>.
<LI> It may be possible to use the <code>PythonCore</code> shared
library to embed Python in another program, if your program can live
with using GUSI for I/O. Use PythonCore in stead of your C library
(or, at the very least, link it before the normal C library). Let me
know whether this works.
<LI> It is possible to build PPC extension modules without building a
complete Python. Take the binary distribution, add folders
<code>Include</code>, <code>Mac:Include</code> and
<code>Mac:mwerks</code> from the source distribution and you should be
all set. A template for a dynamic module can be found in
<code>xxmodule.µ</code>.
<UL>