Add numbers.py. I suspect this is an old version, but Jeffrey is out

of town, and it will have to do for now.
This commit is contained in:
Guido van Rossum 2007-08-30 17:45:54 +00:00
parent 3cd6537beb
commit 1daf954dcf
2 changed files with 378 additions and 0 deletions

325
Lib/numbers.py Normal file
View File

@ -0,0 +1,325 @@
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
"""Abstract Base Classes (ABCs) for numbers, according to PEP 3141."""
from abc import ABCMeta, abstractmethod, abstractproperty
__all__ = ["Number", "Exact", "Inexact",
"Complex", "Real", "Rational", "Integral",
]
class Number(metaclass=ABCMeta):
"""All numbers inherit from this class.
If you just want to check if an argument x is a number, without
caring what kind, use isinstance(x, Number).
"""
class Exact(Number):
"""Operations on instances of this type are exact.
As long as the result of a homogenous operation is of the same
type, you can assume that it was computed exactly, and there are
no round-off errors. Laws like commutativity and associativity
hold.
"""
Exact.register(int)
class Inexact(Number):
"""Operations on instances of this type are inexact.
Given X, an instance of Inexact, it is possible that (X + -X) + 3
== 3, but X + (-X + 3) == 0. The exact form this error takes will
vary by type, but it's generally unsafe to compare this type for
equality.
"""
Inexact.register(complex)
Inexact.register(float)
class Complex(Number):
"""Complex defines the operations that work on the builtin complex type.
In short, those are: a conversion to complex, .real, .imag, +, -,
*, /, abs(), .conjugate, ==, and !=.
If it is given heterogenous arguments, and doesn't have special
knowledge about them, it should fall back to the builtin complex
type as described below.
"""
@abstractmethod
def __complex__(self):
"""Return a builtin complex instance."""
def __bool__(self):
"""True if self != 0."""
return self != 0
@abstractproperty
def real(self):
"""Retrieve the real component of this number.
This should subclass Real.
"""
raise NotImplementedError
@abstractproperty
def imag(self):
"""Retrieve the real component of this number.
This should subclass Real.
"""
raise NotImplementedError
@abstractmethod
def __add__(self, other):
raise NotImplementedError
@abstractmethod
def __radd__(self, other):
raise NotImplementedError
@abstractmethod
def __neg__(self):
raise NotImplementedError
def __pos__(self):
return self
def __sub__(self, other):
return self + -other
def __rsub__(self, other):
return -self + other
@abstractmethod
def __mul__(self, other):
raise NotImplementedError
@abstractmethod
def __rmul__(self, other):
raise NotImplementedError
@abstractmethod
def __div__(self, other):
raise NotImplementedError
@abstractmethod
def __rdiv__(self, other):
raise NotImplementedError
@abstractmethod
def __pow__(self, exponent):
"""Like division, a**b should promote to complex when necessary."""
raise NotImplementedError
@abstractmethod
def __rpow__(self, base):
raise NotImplementedError
@abstractmethod
def __abs__(self):
"""Returns the Real distance from 0."""
raise NotImplementedError
@abstractmethod
def conjugate(self):
"""(x+y*i).conjugate() returns (x-y*i)."""
raise NotImplementedError
@abstractmethod
def __eq__(self, other):
raise NotImplementedError
def __ne__(self, other):
return not (self == other)
Complex.register(complex)
class Real(Complex):
"""To Complex, Real adds the operations that work on real numbers.
In short, those are: a conversion to float, trunc(), divmod,
%, <, <=, >, and >=.
Real also provides defaults for the derived operations.
"""
@abstractmethod
def __float__(self):
"""Any Real can be converted to a native float object."""
raise NotImplementedError
@abstractmethod
def __trunc__(self):
"""Truncates self to an Integral.
Returns an Integral i such that:
* i>0 iff self>0
* abs(i) <= abs(self).
"""
raise NotImplementedError
def __divmod__(self, other):
"""The pair (self // other, self % other).
Sometimes this can be computed faster than the pair of
operations.
"""
return (self // other, self % other)
def __rdivmod__(self, other):
"""The pair (self // other, self % other).
Sometimes this can be computed faster than the pair of
operations.
"""
return (other // self, other % self)
@abstractmethod
def __floordiv__(self, other):
"""The floor() of self/other."""
raise NotImplementedError
@abstractmethod
def __rfloordiv__(self, other):
"""The floor() of other/self."""
raise NotImplementedError
@abstractmethod
def __mod__(self, other):
raise NotImplementedError
@abstractmethod
def __rmod__(self, other):
raise NotImplementedError
@abstractmethod
def __lt__(self, other):
"""< on Reals defines a total ordering, except perhaps for NaN."""
raise NotImplementedError
def __le__(self, other):
raise NotImplementedError
# Concrete implementations of Complex abstract methods.
def __complex__(self):
return complex(float(self))
@property
def real(self):
return self
@property
def imag(self):
return 0
def conjugate(self):
"""Conjugate is a no-op for Reals."""
return self
Real.register(float)
class Rational(Real, Exact):
""".numerator and .denominator should be in lowest terms."""
@abstractproperty
def numerator(self):
raise NotImplementedError
@abstractproperty
def denominator(self):
raise NotImplementedError
# Concrete implementation of Real's conversion to float.
def __float__(self):
return self.numerator / self.denominator
class Integral(Rational):
"""Integral adds a conversion to int and the bit-string operations."""
@abstractmethod
def __int__(self):
raise NotImplementedError
def __index__(self):
return int(self)
@abstractmethod
def __pow__(self, exponent, modulus):
"""self ** exponent % modulus, but maybe faster.
Implement this if you want to support the 3-argument version
of pow(). Otherwise, just implement the 2-argument version
described in Complex. Raise a TypeError if exponent < 0 or any
argument isn't Integral.
"""
raise NotImplementedError
@abstractmethod
def __lshift__(self, other):
raise NotImplementedError
@abstractmethod
def __rlshift__(self, other):
raise NotImplementedError
@abstractmethod
def __rshift__(self, other):
raise NotImplementedError
@abstractmethod
def __rrshift__(self, other):
raise NotImplementedError
@abstractmethod
def __and__(self, other):
raise NotImplementedError
@abstractmethod
def __rand__(self, other):
raise NotImplementedError
@abstractmethod
def __xor__(self, other):
raise NotImplementedError
@abstractmethod
def __rxor__(self, other):
raise NotImplementedError
@abstractmethod
def __or__(self, other):
raise NotImplementedError
@abstractmethod
def __ror__(self, other):
raise NotImplementedError
@abstractmethod
def __invert__(self):
raise NotImplementedError
# Concrete implementations of Rational and Real abstract methods.
def __float__(self):
return float(int(self))
@property
def numerator(self):
return self
@property
def denominator(self):
return 1
Integral.register(int)

View File

@ -0,0 +1,53 @@
"""Unit tests for numbers.py."""
import unittest
from test import test_support
from numbers import Number
from numbers import Exact, Inexact
from numbers import Complex, Real, Rational, Integral
import operator
class TestNumbers(unittest.TestCase):
def test_int(self):
self.failUnless(issubclass(int, Integral))
self.failUnless(issubclass(int, Complex))
self.failUnless(issubclass(int, Exact))
self.failIf(issubclass(int, Inexact))
self.assertEqual(7, int(7).real)
self.assertEqual(0, int(7).imag)
self.assertEqual(7, int(7).conjugate())
self.assertEqual(7, int(7).numerator)
self.assertEqual(1, int(7).denominator)
def test_float(self):
self.failIf(issubclass(float, Rational))
self.failUnless(issubclass(float, Real))
self.failIf(issubclass(float, Exact))
self.failUnless(issubclass(float, Inexact))
self.assertEqual(7.3, float(7.3).real)
self.assertEqual(0, float(7.3).imag)
self.assertEqual(7.3, float(7.3).conjugate())
def test_complex(self):
self.failIf(issubclass(complex, Real))
self.failUnless(issubclass(complex, Complex))
self.failIf(issubclass(complex, Exact))
self.failUnless(issubclass(complex, Inexact))
c1, c2 = complex(3, 2), complex(4,1)
# TODO: Uncomment this test when trunc() exists.
#self.assertRaises(None, trunc, c1)
self.assertRaises(TypeError, operator.mod, c1, c2)
self.assertRaises(TypeError, divmod, c1, c2)
self.assertRaises(TypeError, operator.floordiv, c1, c2)
self.assertRaises(TypeError, float, c1)
self.assertRaises(TypeError, int, c1)
def test_main():
test_support.run_unittest(TestNumbers)
if __name__ == "__main__":
unittest.main()