cpython/Lib/test/test_buffer.py

4430 lines
160 KiB
Python
Raw Normal View History

#
# The ndarray object from _testbuffer.c is a complete implementation of
# a PEP-3118 buffer provider. It is independent from NumPy's ndarray
# and the tests don't require NumPy.
#
# If NumPy is present, some tests check both ndarray implementations
# against each other.
#
# Most ndarray tests also check that memoryview(ndarray) behaves in
# the same way as the original. Thus, a substantial part of the
# memoryview tests is now in this module.
#
# Written and designed by Stefan Krah for Python 3.3.
#
import contextlib
import unittest
from test import support
from itertools import permutations, product
from random import randrange, sample, choice
import warnings
import sys, array, io, os
from decimal import Decimal
from fractions import Fraction
try:
from _testbuffer import *
except ImportError:
ndarray = None
try:
import struct
except ImportError:
struct = None
try:
import ctypes
except ImportError:
ctypes = None
try:
with support.EnvironmentVarGuard() as os.environ, \
warnings.catch_warnings():
from numpy import ndarray as numpy_array
except ImportError:
numpy_array = None
try:
import _testcapi
except ImportError:
_testcapi = None
SHORT_TEST = True
# ======================================================================
# Random lists by format specifier
# ======================================================================
# Native format chars and their ranges.
NATIVE = {
'?':0, 'c':0, 'b':0, 'B':0,
'h':0, 'H':0, 'i':0, 'I':0,
'l':0, 'L':0, 'n':0, 'N':0,
'f':0, 'd':0, 'P':0
}
# NumPy does not have 'n' or 'N':
if numpy_array:
del NATIVE['n']
del NATIVE['N']
if struct:
try:
# Add "qQ" if present in native mode.
struct.pack('Q', 2**64-1)
NATIVE['q'] = 0
NATIVE['Q'] = 0
except struct.error:
pass
# Standard format chars and their ranges.
STANDARD = {
'?':(0, 2), 'c':(0, 1<<8),
'b':(-(1<<7), 1<<7), 'B':(0, 1<<8),
'h':(-(1<<15), 1<<15), 'H':(0, 1<<16),
'i':(-(1<<31), 1<<31), 'I':(0, 1<<32),
'l':(-(1<<31), 1<<31), 'L':(0, 1<<32),
'q':(-(1<<63), 1<<63), 'Q':(0, 1<<64),
'f':(-(1<<63), 1<<63), 'd':(-(1<<1023), 1<<1023)
}
def native_type_range(fmt):
"""Return range of a native type."""
if fmt == 'c':
lh = (0, 256)
elif fmt == '?':
lh = (0, 2)
elif fmt == 'f':
lh = (-(1<<63), 1<<63)
elif fmt == 'd':
lh = (-(1<<1023), 1<<1023)
else:
for exp in (128, 127, 64, 63, 32, 31, 16, 15, 8, 7):
try:
struct.pack(fmt, (1<<exp)-1)
break
except struct.error:
pass
lh = (-(1<<exp), 1<<exp) if exp & 1 else (0, 1<<exp)
return lh
fmtdict = {
'':NATIVE,
'@':NATIVE,
'<':STANDARD,
'>':STANDARD,
'=':STANDARD,
'!':STANDARD
}
if struct:
for fmt in fmtdict['@']:
fmtdict['@'][fmt] = native_type_range(fmt)
MEMORYVIEW = NATIVE.copy()
ARRAY = NATIVE.copy()
for k in NATIVE:
if not k in "bBhHiIlLfd":
del ARRAY[k]
BYTEFMT = NATIVE.copy()
for k in NATIVE:
if not k in "Bbc":
del BYTEFMT[k]
fmtdict['m'] = MEMORYVIEW
fmtdict['@m'] = MEMORYVIEW
fmtdict['a'] = ARRAY
fmtdict['b'] = BYTEFMT
fmtdict['@b'] = BYTEFMT
# Capabilities of the test objects:
MODE = 0
MULT = 1
cap = { # format chars # multiplier
'ndarray': (['', '@', '<', '>', '=', '!'], ['', '1', '2', '3']),
'array': (['a'], ['']),
'numpy': ([''], ['']),
'memoryview': (['@m', 'm'], ['']),
'bytefmt': (['@b', 'b'], ['']),
}
def randrange_fmt(mode, char, obj):
"""Return random item for a type specified by a mode and a single
format character."""
x = randrange(*fmtdict[mode][char])
if char == 'c':
x = bytes([x])
if obj == 'numpy' and x == b'\x00':
# http://projects.scipy.org/numpy/ticket/1925
x = b'\x01'
if char == '?':
x = bool(x)
if char == 'f' or char == 'd':
x = struct.pack(char, x)
x = struct.unpack(char, x)[0]
return x
def gen_item(fmt, obj):
"""Return single random item."""
mode, chars = fmt.split('#')
x = []
for c in chars:
x.append(randrange_fmt(mode, c, obj))
return x[0] if len(x) == 1 else tuple(x)
def gen_items(n, fmt, obj):
"""Return a list of random items (or a scalar)."""
if n == 0:
return gen_item(fmt, obj)
lst = [0] * n
for i in range(n):
lst[i] = gen_item(fmt, obj)
return lst
def struct_items(n, obj):
mode = choice(cap[obj][MODE])
xfmt = mode + '#'
fmt = mode.strip('amb')
nmemb = randrange(2, 10) # number of struct members
for _ in range(nmemb):
char = choice(tuple(fmtdict[mode]))
multiplier = choice(cap[obj][MULT])
xfmt += (char * int(multiplier if multiplier else 1))
fmt += (multiplier + char)
items = gen_items(n, xfmt, obj)
item = gen_item(xfmt, obj)
return fmt, items, item
def randitems(n, obj='ndarray', mode=None, char=None):
"""Return random format, items, item."""
if mode is None:
mode = choice(cap[obj][MODE])
if char is None:
char = choice(tuple(fmtdict[mode]))
multiplier = choice(cap[obj][MULT])
fmt = mode + '#' + char * int(multiplier if multiplier else 1)
items = gen_items(n, fmt, obj)
item = gen_item(fmt, obj)
fmt = mode.strip('amb') + multiplier + char
return fmt, items, item
def iter_mode(n, obj='ndarray'):
"""Iterate through supported mode/char combinations."""
for mode in cap[obj][MODE]:
for char in fmtdict[mode]:
yield randitems(n, obj, mode, char)
def iter_format(nitems, testobj='ndarray'):
"""Yield (format, items, item) for all possible modes and format
characters plus one random compound format string."""
for t in iter_mode(nitems, testobj):
yield t
if testobj != 'ndarray':
return
yield struct_items(nitems, testobj)
def is_byte_format(fmt):
return 'c' in fmt or 'b' in fmt or 'B' in fmt
def is_memoryview_format(fmt):
"""format suitable for memoryview"""
x = len(fmt)
return ((x == 1 or (x == 2 and fmt[0] == '@')) and
fmt[x-1] in MEMORYVIEW)
NON_BYTE_FORMAT = [c for c in fmtdict['@'] if not is_byte_format(c)]
# ======================================================================
# Multi-dimensional tolist(), slicing and slice assignments
# ======================================================================
def atomp(lst):
"""Tuple items (representing structs) are regarded as atoms."""
return not isinstance(lst, list)
def listp(lst):
return isinstance(lst, list)
def prod(lst):
"""Product of list elements."""
if len(lst) == 0:
return 0
x = lst[0]
for v in lst[1:]:
x *= v
return x
def strides_from_shape(ndim, shape, itemsize, layout):
"""Calculate strides of a contiguous array. Layout is 'C' or
'F' (Fortran)."""
if ndim == 0:
return ()
if layout == 'C':
strides = list(shape[1:]) + [itemsize]
for i in range(ndim-2, -1, -1):
strides[i] *= strides[i+1]
else:
strides = [itemsize] + list(shape[:-1])
for i in range(1, ndim):
strides[i] *= strides[i-1]
return strides
def _ca(items, s):
"""Convert flat item list to the nested list representation of a
multidimensional C array with shape 's'."""
if atomp(items):
return items
if len(s) == 0:
return items[0]
lst = [0] * s[0]
stride = len(items) // s[0] if s[0] else 0
for i in range(s[0]):
start = i*stride
lst[i] = _ca(items[start:start+stride], s[1:])
return lst
def _fa(items, s):
"""Convert flat item list to the nested list representation of a
multidimensional Fortran array with shape 's'."""
if atomp(items):
return items
if len(s) == 0:
return items[0]
lst = [0] * s[0]
stride = s[0]
for i in range(s[0]):
lst[i] = _fa(items[i::stride], s[1:])
return lst
def carray(items, shape):
if listp(items) and not 0 in shape and prod(shape) != len(items):
raise ValueError("prod(shape) != len(items)")
return _ca(items, shape)
def farray(items, shape):
if listp(items) and not 0 in shape and prod(shape) != len(items):
raise ValueError("prod(shape) != len(items)")
return _fa(items, shape)
def indices(shape):
"""Generate all possible tuples of indices."""
iterables = [range(v) for v in shape]
return product(*iterables)
def getindex(ndim, ind, strides):
"""Convert multi-dimensional index to the position in the flat list."""
ret = 0
for i in range(ndim):
ret += strides[i] * ind[i]
return ret
def transpose(src, shape):
"""Transpose flat item list that is regarded as a multi-dimensional
matrix defined by shape: dest...[k][j][i] = src[i][j][k]... """
if not shape:
return src
ndim = len(shape)
sstrides = strides_from_shape(ndim, shape, 1, 'C')
dstrides = strides_from_shape(ndim, shape[::-1], 1, 'C')
dest = [0] * len(src)
for ind in indices(shape):
fr = getindex(ndim, ind, sstrides)
to = getindex(ndim, ind[::-1], dstrides)
dest[to] = src[fr]
return dest
def _flatten(lst):
"""flatten list"""
if lst == []:
return lst
if atomp(lst):
return [lst]
return _flatten(lst[0]) + _flatten(lst[1:])
def flatten(lst):
"""flatten list or return scalar"""
if atomp(lst): # scalar
return lst
return _flatten(lst)
def slice_shape(lst, slices):
"""Get the shape of lst after slicing: slices is a list of slice
objects."""
if atomp(lst):
return []
return [len(lst[slices[0]])] + slice_shape(lst[0], slices[1:])
def multislice(lst, slices):
"""Multi-dimensional slicing: slices is a list of slice objects."""
if atomp(lst):
return lst
return [multislice(sublst, slices[1:]) for sublst in lst[slices[0]]]
def m_assign(llst, rlst, lslices, rslices):
"""Multi-dimensional slice assignment: llst and rlst are the operands,
lslices and rslices are lists of slice objects. llst and rlst must
have the same structure.
For a two-dimensional example, this is not implemented in Python:
llst[0:3:2, 0:3:2] = rlst[1:3:1, 1:3:1]
Instead we write:
lslices = [slice(0,3,2), slice(0,3,2)]
rslices = [slice(1,3,1), slice(1,3,1)]
multislice_assign(llst, rlst, lslices, rslices)
"""
if atomp(rlst):
return rlst
rlst = [m_assign(l, r, lslices[1:], rslices[1:])
for l, r in zip(llst[lslices[0]], rlst[rslices[0]])]
llst[lslices[0]] = rlst
return llst
def cmp_structure(llst, rlst, lslices, rslices):
"""Compare the structure of llst[lslices] and rlst[rslices]."""
lshape = slice_shape(llst, lslices)
rshape = slice_shape(rlst, rslices)
if (len(lshape) != len(rshape)):
return -1
for i in range(len(lshape)):
if lshape[i] != rshape[i]:
return -1
if lshape[i] == 0:
return 0
return 0
def multislice_assign(llst, rlst, lslices, rslices):
"""Return llst after assigning: llst[lslices] = rlst[rslices]"""
if cmp_structure(llst, rlst, lslices, rslices) < 0:
raise ValueError("lvalue and rvalue have different structures")
return m_assign(llst, rlst, lslices, rslices)
# ======================================================================
# Random structures
# ======================================================================
#
# PEP-3118 is very permissive with respect to the contents of a
# Py_buffer. In particular:
#
# - shape can be zero
# - strides can be any integer, including zero
# - offset can point to any location in the underlying
# memory block, provided that it is a multiple of
# itemsize.
#
# The functions in this section test and verify random structures
# in full generality. A structure is valid iff it fits in the
# underlying memory block.
#
# The structure 't' (short for 'tuple') is fully defined by:
#
# t = (memlen, itemsize, ndim, shape, strides, offset)
#
def verify_structure(memlen, itemsize, ndim, shape, strides, offset):
"""Verify that the parameters represent a valid array within
the bounds of the allocated memory:
char *mem: start of the physical memory block
memlen: length of the physical memory block
offset: (char *)buf - mem
"""
if offset % itemsize:
return False
if offset < 0 or offset+itemsize > memlen:
return False
if any(v % itemsize for v in strides):
return False
if ndim <= 0:
return ndim == 0 and not shape and not strides
if 0 in shape:
return True
imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] <= 0)
imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] > 0)
return 0 <= offset+imin and offset+imax+itemsize <= memlen
def get_item(lst, indices):
for i in indices:
lst = lst[i]
return lst
def memory_index(indices, t):
"""Location of an item in the underlying memory."""
memlen, itemsize, ndim, shape, strides, offset = t
p = offset
for i in range(ndim):
p += strides[i]*indices[i]
return p
def is_overlapping(t):
"""The structure 't' is overlapping if at least one memory location
is visited twice while iterating through all possible tuples of
indices."""
memlen, itemsize, ndim, shape, strides, offset = t
visited = 1<<memlen
for ind in indices(shape):
i = memory_index(ind, t)
bit = 1<<i
if visited & bit:
return True
visited |= bit
return False
def rand_structure(itemsize, valid, maxdim=5, maxshape=16, shape=()):
"""Return random structure:
(memlen, itemsize, ndim, shape, strides, offset)
If 'valid' is true, the returned structure is valid, otherwise invalid.
If 'shape' is given, use that instead of creating a random shape.
"""
if not shape:
ndim = randrange(maxdim+1)
if (ndim == 0):
if valid:
return itemsize, itemsize, ndim, (), (), 0
else:
nitems = randrange(1, 16+1)
memlen = nitems * itemsize
offset = -itemsize if randrange(2) == 0 else memlen
return memlen, itemsize, ndim, (), (), offset
minshape = 2
n = randrange(100)
if n >= 95 and valid:
minshape = 0
elif n >= 90:
minshape = 1
shape = [0] * ndim
for i in range(ndim):
shape[i] = randrange(minshape, maxshape+1)
else:
ndim = len(shape)
maxstride = 5
n = randrange(100)
zero_stride = True if n >= 95 and n & 1 else False
strides = [0] * ndim
strides[ndim-1] = itemsize * randrange(-maxstride, maxstride+1)
if not zero_stride and strides[ndim-1] == 0:
strides[ndim-1] = itemsize
for i in range(ndim-2, -1, -1):
maxstride *= shape[i+1] if shape[i+1] else 1
if zero_stride:
strides[i] = itemsize * randrange(-maxstride, maxstride+1)
else:
strides[i] = ((1,-1)[randrange(2)] *
itemsize * randrange(1, maxstride+1))
imin = imax = 0
if not 0 in shape:
imin = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] <= 0)
imax = sum(strides[j]*(shape[j]-1) for j in range(ndim)
if strides[j] > 0)
nitems = imax - imin
if valid:
offset = -imin * itemsize
memlen = offset + (imax+1) * itemsize
else:
memlen = (-imin + imax) * itemsize
offset = -imin-itemsize if randrange(2) == 0 else memlen
return memlen, itemsize, ndim, shape, strides, offset
def randslice_from_slicelen(slicelen, listlen):
"""Create a random slice of len slicelen that fits into listlen."""
maxstart = listlen - slicelen
start = randrange(maxstart+1)
maxstep = (listlen - start) // slicelen if slicelen else 1
step = randrange(1, maxstep+1)
stop = start + slicelen * step
s = slice(start, stop, step)
_, _, _, control = slice_indices(s, listlen)
if control != slicelen:
raise RuntimeError
return s
def randslice_from_shape(ndim, shape):
"""Create two sets of slices for an array x with shape 'shape'
such that shapeof(x[lslices]) == shapeof(x[rslices])."""
lslices = [0] * ndim
rslices = [0] * ndim
for n in range(ndim):
l = shape[n]
slicelen = randrange(1, l+1) if l > 0 else 0
lslices[n] = randslice_from_slicelen(slicelen, l)
rslices[n] = randslice_from_slicelen(slicelen, l)
return tuple(lslices), tuple(rslices)
def rand_aligned_slices(maxdim=5, maxshape=16):
"""Create (lshape, rshape, tuple(lslices), tuple(rslices)) such that
shapeof(x[lslices]) == shapeof(y[rslices]), where x is an array
with shape 'lshape' and y is an array with shape 'rshape'."""
ndim = randrange(1, maxdim+1)
minshape = 2
n = randrange(100)
if n >= 95:
minshape = 0
elif n >= 90:
minshape = 1
all_random = True if randrange(100) >= 80 else False
lshape = [0]*ndim; rshape = [0]*ndim
lslices = [0]*ndim; rslices = [0]*ndim
for n in range(ndim):
small = randrange(minshape, maxshape+1)
big = randrange(minshape, maxshape+1)
if big < small:
big, small = small, big
# Create a slice that fits the smaller value.
if all_random:
start = randrange(-small, small+1)
stop = randrange(-small, small+1)
step = (1,-1)[randrange(2)] * randrange(1, small+2)
s_small = slice(start, stop, step)
_, _, _, slicelen = slice_indices(s_small, small)
else:
slicelen = randrange(1, small+1) if small > 0 else 0
s_small = randslice_from_slicelen(slicelen, small)
# Create a slice of the same length for the bigger value.
s_big = randslice_from_slicelen(slicelen, big)
if randrange(2) == 0:
rshape[n], lshape[n] = big, small
rslices[n], lslices[n] = s_big, s_small
else:
rshape[n], lshape[n] = small, big
rslices[n], lslices[n] = s_small, s_big
return lshape, rshape, tuple(lslices), tuple(rslices)
def randitems_from_structure(fmt, t):
"""Return a list of random items for structure 't' with format
'fmtchar'."""
memlen, itemsize, _, _, _, _ = t
return gen_items(memlen//itemsize, '#'+fmt, 'numpy')
def ndarray_from_structure(items, fmt, t, flags=0):
"""Return ndarray from the tuple returned by rand_structure()"""
memlen, itemsize, ndim, shape, strides, offset = t
return ndarray(items, shape=shape, strides=strides, format=fmt,
offset=offset, flags=ND_WRITABLE|flags)
def numpy_array_from_structure(items, fmt, t):
"""Return numpy_array from the tuple returned by rand_structure()"""
memlen, itemsize, ndim, shape, strides, offset = t
buf = bytearray(memlen)
for j, v in enumerate(items):
struct.pack_into(fmt, buf, j*itemsize, v)
return numpy_array(buffer=buf, shape=shape, strides=strides,
dtype=fmt, offset=offset)
# ======================================================================
# memoryview casts
# ======================================================================
def cast_items(exporter, fmt, itemsize, shape=None):
"""Interpret the raw memory of 'exporter' as a list of items with
size 'itemsize'. If shape=None, the new structure is assumed to
be 1-D with n * itemsize = bytelen. If shape is given, the usual
constraint for contiguous arrays prod(shape) * itemsize = bytelen
applies. On success, return (items, shape). If the constraints
cannot be met, return (None, None). If a chunk of bytes is interpreted
as NaN as a result of float conversion, return ('nan', None)."""
bytelen = exporter.nbytes
if shape:
if prod(shape) * itemsize != bytelen:
return None, shape
elif shape == []:
if exporter.ndim == 0 or itemsize != bytelen:
return None, shape
else:
n, r = divmod(bytelen, itemsize)
shape = [n]
if r != 0:
return None, shape
mem = exporter.tobytes()
byteitems = [mem[i:i+itemsize] for i in range(0, len(mem), itemsize)]
items = []
for v in byteitems:
item = struct.unpack(fmt, v)[0]
if item != item:
return 'nan', shape
items.append(item)
return (items, shape) if shape != [] else (items[0], shape)
def gencastshapes():
"""Generate shapes to test casting."""
for n in range(32):
yield [n]
ndim = randrange(4, 6)
minshape = 1 if randrange(100) > 80 else 2
yield [randrange(minshape, 5) for _ in range(ndim)]
ndim = randrange(2, 4)
minshape = 1 if randrange(100) > 80 else 2
yield [randrange(minshape, 5) for _ in range(ndim)]
# ======================================================================
# Actual tests
# ======================================================================
def genslices(n):
"""Generate all possible slices for a single dimension."""
return product(range(-n, n+1), range(-n, n+1), range(-n, n+1))
def genslices_ndim(ndim, shape):
"""Generate all possible slice tuples for 'shape'."""
iterables = [genslices(shape[n]) for n in range(ndim)]
return product(*iterables)
def rslice(n, allow_empty=False):
"""Generate random slice for a single dimension of length n.
If zero=True, the slices may be empty, otherwise they will
be non-empty."""
minlen = 0 if allow_empty or n == 0 else 1
slicelen = randrange(minlen, n+1)
return randslice_from_slicelen(slicelen, n)
def rslices(n, allow_empty=False):
"""Generate random slices for a single dimension."""
for _ in range(5):
yield rslice(n, allow_empty)
def rslices_ndim(ndim, shape, iterations=5):
"""Generate random slice tuples for 'shape'."""
# non-empty slices
for _ in range(iterations):
yield tuple(rslice(shape[n]) for n in range(ndim))
# possibly empty slices
for _ in range(iterations):
yield tuple(rslice(shape[n], allow_empty=True) for n in range(ndim))
# invalid slices
yield tuple(slice(0,1,0) for _ in range(ndim))
def rpermutation(iterable, r=None):
pool = tuple(iterable)
r = len(pool) if r is None else r
yield tuple(sample(pool, r))
def ndarray_print(nd):
"""Print ndarray for debugging."""
try:
x = nd.tolist()
except (TypeError, NotImplementedError):
x = nd.tobytes()
if isinstance(nd, ndarray):
offset = nd.offset
flags = nd.flags
else:
offset = 'unknown'
flags = 'unknown'
print("ndarray(%s, shape=%s, strides=%s, suboffsets=%s, offset=%s, "
"format='%s', itemsize=%s, flags=%s)" %
(x, nd.shape, nd.strides, nd.suboffsets, offset,
nd.format, nd.itemsize, flags))
sys.stdout.flush()
ITERATIONS = 100
MAXDIM = 5
MAXSHAPE = 10
if SHORT_TEST:
ITERATIONS = 10
MAXDIM = 3
MAXSHAPE = 4
genslices = rslices
genslices_ndim = rslices_ndim
permutations = rpermutation
@unittest.skipUnless(struct, 'struct module required for this test.')
@unittest.skipUnless(ndarray, 'ndarray object required for this test')
class TestBufferProtocol(unittest.TestCase):
def setUp(self):
# The suboffsets tests need sizeof(void *).
self.sizeof_void_p = get_sizeof_void_p()
def verify(self, result, *, obj,
itemsize, fmt, readonly,
ndim, shape, strides,
lst, sliced=False, cast=False):
# Verify buffer contents against expected values.
if shape:
expected_len = prod(shape)*itemsize
else:
if not fmt: # array has been implicitly cast to unsigned bytes
expected_len = len(lst)
else: # ndim = 0
expected_len = itemsize
# Reconstruct suboffsets from strides. Support for slicing
# could be added, but is currently only needed for test_getbuf().
suboffsets = ()
if result.suboffsets:
self.assertGreater(ndim, 0)
suboffset0 = 0
for n in range(1, ndim):
if shape[n] == 0:
break
if strides[n] <= 0:
suboffset0 += -strides[n] * (shape[n]-1)
suboffsets = [suboffset0] + [-1 for v in range(ndim-1)]
# Not correct if slicing has occurred in the first dimension.
stride0 = self.sizeof_void_p
if strides[0] < 0:
stride0 = -stride0
strides = [stride0] + list(strides[1:])
self.assertIs(result.obj, obj)
self.assertEqual(result.nbytes, expected_len)
self.assertEqual(result.itemsize, itemsize)
self.assertEqual(result.format, fmt)
self.assertIs(result.readonly, readonly)
self.assertEqual(result.ndim, ndim)
self.assertEqual(result.shape, tuple(shape))
if not (sliced and suboffsets):
self.assertEqual(result.strides, tuple(strides))
self.assertEqual(result.suboffsets, tuple(suboffsets))
if isinstance(result, ndarray) or is_memoryview_format(fmt):
rep = result.tolist() if fmt else result.tobytes()
self.assertEqual(rep, lst)
if not fmt: # array has been cast to unsigned bytes,
return # the remaining tests won't work.
# PyBuffer_GetPointer() is the definition how to access an item.
# If PyBuffer_GetPointer(indices) is correct for all possible
# combinations of indices, the buffer is correct.
#
# Also test tobytes() against the flattened 'lst', with all items
# packed to bytes.
if not cast: # casts chop up 'lst' in different ways
b = bytearray()
buf_err = None
for ind in indices(shape):
try:
item1 = get_pointer(result, ind)
item2 = get_item(lst, ind)
if isinstance(item2, tuple):
x = struct.pack(fmt, *item2)
else:
x = struct.pack(fmt, item2)
b.extend(x)
except BufferError:
buf_err = True # re-exporter does not provide full buffer
break
self.assertEqual(item1, item2)
if not buf_err:
# test tobytes()
self.assertEqual(result.tobytes(), b)
# test hex()
m = memoryview(result)
h = "".join("%02x" % c for c in b)
self.assertEqual(m.hex(), h)
# lst := expected multi-dimensional logical representation
# flatten(lst) := elements in C-order
ff = fmt if fmt else 'B'
flattened = flatten(lst)
# Rules for 'A': if the array is already contiguous, return
# the array unaltered. Otherwise, return a contiguous 'C'
# representation.
for order in ['C', 'F', 'A']:
expected = result
if order == 'F':
if not is_contiguous(result, 'A') or \
is_contiguous(result, 'C'):
# For constructing the ndarray, convert the
# flattened logical representation to Fortran order.
trans = transpose(flattened, shape)
expected = ndarray(trans, shape=shape, format=ff,
flags=ND_FORTRAN)
else: # 'C', 'A'
if not is_contiguous(result, 'A') or \
is_contiguous(result, 'F') and order == 'C':
# The flattened list is already in C-order.
expected = ndarray(flattened, shape=shape, format=ff)
contig = get_contiguous(result, PyBUF_READ, order)
self.assertEqual(contig.tobytes(), b)
self.assertTrue(cmp_contig(contig, expected))
if ndim == 0:
continue
nmemb = len(flattened)
ro = 0 if readonly else ND_WRITABLE
### See comment in test_py_buffer_to_contiguous for an
### explanation why these tests are valid.
# To 'C'
contig = py_buffer_to_contiguous(result, 'C', PyBUF_FULL_RO)
self.assertEqual(len(contig), nmemb * itemsize)
initlst = [struct.unpack_from(fmt, contig, n*itemsize)
for n in range(nmemb)]
if len(initlst[0]) == 1:
initlst = [v[0] for v in initlst]
y = ndarray(initlst, shape=shape, flags=ro, format=fmt)
self.assertEqual(memoryview(y), memoryview(result))
contig_bytes = memoryview(result).tobytes()
self.assertEqual(contig_bytes, contig)
contig_bytes = memoryview(result).tobytes(order=None)
self.assertEqual(contig_bytes, contig)
contig_bytes = memoryview(result).tobytes(order='C')
self.assertEqual(contig_bytes, contig)
# To 'F'
contig = py_buffer_to_contiguous(result, 'F', PyBUF_FULL_RO)
self.assertEqual(len(contig), nmemb * itemsize)
initlst = [struct.unpack_from(fmt, contig, n*itemsize)
for n in range(nmemb)]
if len(initlst[0]) == 1:
initlst = [v[0] for v in initlst]
y = ndarray(initlst, shape=shape, flags=ro|ND_FORTRAN,
format=fmt)
self.assertEqual(memoryview(y), memoryview(result))
contig_bytes = memoryview(result).tobytes(order='F')
self.assertEqual(contig_bytes, contig)
# To 'A'
contig = py_buffer_to_contiguous(result, 'A', PyBUF_FULL_RO)
self.assertEqual(len(contig), nmemb * itemsize)
initlst = [struct.unpack_from(fmt, contig, n*itemsize)
for n in range(nmemb)]
if len(initlst[0]) == 1:
initlst = [v[0] for v in initlst]
f = ND_FORTRAN if is_contiguous(result, 'F') else 0
y = ndarray(initlst, shape=shape, flags=f|ro, format=fmt)
self.assertEqual(memoryview(y), memoryview(result))
contig_bytes = memoryview(result).tobytes(order='A')
self.assertEqual(contig_bytes, contig)
if is_memoryview_format(fmt):
try:
m = memoryview(result)
except BufferError: # re-exporter does not provide full information
return
ex = result.obj if isinstance(result, memoryview) else result
def check_memoryview(m, expected_readonly=readonly):
self.assertIs(m.obj, ex)
self.assertEqual(m.nbytes, expected_len)
self.assertEqual(m.itemsize, itemsize)
self.assertEqual(m.format, fmt)
self.assertEqual(m.readonly, expected_readonly)
self.assertEqual(m.ndim, ndim)
self.assertEqual(m.shape, tuple(shape))
if not (sliced and suboffsets):
self.assertEqual(m.strides, tuple(strides))
self.assertEqual(m.suboffsets, tuple(suboffsets))
n = 1 if ndim == 0 else len(lst)
self.assertEqual(len(m), n)
rep = result.tolist() if fmt else result.tobytes()
self.assertEqual(rep, lst)
self.assertEqual(m, result)
check_memoryview(m)
with m.toreadonly() as mm:
check_memoryview(mm, expected_readonly=True)
m.tobytes() # Releasing mm didn't release m
def verify_getbuf(self, orig_ex, ex, req, sliced=False):
def match(req, flag):
return ((req&flag) == flag)
if (# writable request to read-only exporter
(ex.readonly and match(req, PyBUF_WRITABLE)) or
# cannot match explicit contiguity request
(match(req, PyBUF_C_CONTIGUOUS) and not ex.c_contiguous) or
(match(req, PyBUF_F_CONTIGUOUS) and not ex.f_contiguous) or
(match(req, PyBUF_ANY_CONTIGUOUS) and not ex.contiguous) or
# buffer needs suboffsets
(not match(req, PyBUF_INDIRECT) and ex.suboffsets) or
# buffer without strides must be C-contiguous
(not match(req, PyBUF_STRIDES) and not ex.c_contiguous) or
# PyBUF_SIMPLE|PyBUF_FORMAT and PyBUF_WRITABLE|PyBUF_FORMAT
(not match(req, PyBUF_ND) and match(req, PyBUF_FORMAT))):
self.assertRaises(BufferError, ndarray, ex, getbuf=req)
return
if isinstance(ex, ndarray) or is_memoryview_format(ex.format):
lst = ex.tolist()
else:
nd = ndarray(ex, getbuf=PyBUF_FULL_RO)
lst = nd.tolist()
# The consumer may have requested default values or a NULL format.
ro = False if match(req, PyBUF_WRITABLE) else ex.readonly
fmt = ex.format
itemsize = ex.itemsize
ndim = ex.ndim
if not match(req, PyBUF_FORMAT):
# itemsize refers to the original itemsize before the cast.
# The equality product(shape) * itemsize = len still holds.
# The equality calcsize(format) = itemsize does _not_ hold.
fmt = ''
lst = orig_ex.tobytes() # Issue 12834
if not match(req, PyBUF_ND):
ndim = 1
shape = orig_ex.shape if match(req, PyBUF_ND) else ()
strides = orig_ex.strides if match(req, PyBUF_STRIDES) else ()
nd = ndarray(ex, getbuf=req)
self.verify(nd, obj=ex,
itemsize=itemsize, fmt=fmt, readonly=ro,
ndim=ndim, shape=shape, strides=strides,
lst=lst, sliced=sliced)
def test_ndarray_getbuf(self):
requests = (
# distinct flags
PyBUF_INDIRECT, PyBUF_STRIDES, PyBUF_ND, PyBUF_SIMPLE,
PyBUF_C_CONTIGUOUS, PyBUF_F_CONTIGUOUS, PyBUF_ANY_CONTIGUOUS,
# compound requests
PyBUF_FULL, PyBUF_FULL_RO,
PyBUF_RECORDS, PyBUF_RECORDS_RO,
PyBUF_STRIDED, PyBUF_STRIDED_RO,
PyBUF_CONTIG, PyBUF_CONTIG_RO,
)
# items and format
items_fmt = (
([True if x % 2 else False for x in range(12)], '?'),
([1,2,3,4,5,6,7,8,9,10,11,12], 'b'),
([1,2,3,4,5,6,7,8,9,10,11,12], 'B'),
([(2**31-x) if x % 2 else (-2**31+x) for x in range(12)], 'l')
)
# shape, strides, offset
structure = (
([], [], 0),
([1,3,1], [], 0),
([12], [], 0),
([12], [-1], 11),
([6], [2], 0),
([6], [-2], 11),
([3, 4], [], 0),
([3, 4], [-4, -1], 11),
([2, 2], [4, 1], 4),
([2, 2], [-4, -1], 8)
)
# ndarray creation flags
ndflags = (
0, ND_WRITABLE, ND_FORTRAN, ND_FORTRAN|ND_WRITABLE,
ND_PIL, ND_PIL|ND_WRITABLE
)
# flags that can actually be used as flags
real_flags = (0, PyBUF_WRITABLE, PyBUF_FORMAT,
PyBUF_WRITABLE|PyBUF_FORMAT)
for items, fmt in items_fmt:
itemsize = struct.calcsize(fmt)
for shape, strides, offset in structure:
strides = [v * itemsize for v in strides]
offset *= itemsize
for flags in ndflags:
if strides and (flags&ND_FORTRAN):
continue
if not shape and (flags&ND_PIL):
continue
_items = items if shape else items[0]
ex1 = ndarray(_items, format=fmt, flags=flags,
shape=shape, strides=strides, offset=offset)
ex2 = ex1[::-2] if shape else None
m1 = memoryview(ex1)
if ex2:
m2 = memoryview(ex2)
if ex1.ndim == 0 or (ex1.ndim == 1 and shape and strides):
self.assertEqual(m1, ex1)
if ex2 and ex2.ndim == 1 and shape and strides:
self.assertEqual(m2, ex2)
for req in requests:
for bits in real_flags:
self.verify_getbuf(ex1, ex1, req|bits)
self.verify_getbuf(ex1, m1, req|bits)
if ex2:
self.verify_getbuf(ex2, ex2, req|bits,
sliced=True)
self.verify_getbuf(ex2, m2, req|bits,
sliced=True)
items = [1,2,3,4,5,6,7,8,9,10,11,12]
# ND_GETBUF_FAIL
ex = ndarray(items, shape=[12], flags=ND_GETBUF_FAIL)
self.assertRaises(BufferError, ndarray, ex)
# Request complex structure from a simple exporter. In this
# particular case the test object is not PEP-3118 compliant.
base = ndarray([9], [1])
ex = ndarray(base, getbuf=PyBUF_SIMPLE)
self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_WRITABLE)
self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_ND)
self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_STRIDES)
self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_C_CONTIGUOUS)
self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_F_CONTIGUOUS)
self.assertRaises(BufferError, ndarray, ex, getbuf=PyBUF_ANY_CONTIGUOUS)
nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
# Issue #22445: New precise contiguity definition.
for shape in [1,12,1], [7,0,7]:
for order in 0, ND_FORTRAN:
ex = ndarray(items, shape=shape, flags=order|ND_WRITABLE)
self.assertTrue(is_contiguous(ex, 'F'))
self.assertTrue(is_contiguous(ex, 'C'))
for flags in requests:
nd = ndarray(ex, getbuf=flags)
self.assertTrue(is_contiguous(nd, 'F'))
self.assertTrue(is_contiguous(nd, 'C'))
def test_ndarray_exceptions(self):
nd = ndarray([9], [1])
ndm = ndarray([9], [1], flags=ND_VAREXPORT)
# Initialization of a new ndarray or mutation of an existing array.
for c in (ndarray, nd.push, ndm.push):
# Invalid types.
self.assertRaises(TypeError, c, {1,2,3})
self.assertRaises(TypeError, c, [1,2,'3'])
self.assertRaises(TypeError, c, [1,2,(3,4)])
self.assertRaises(TypeError, c, [1,2,3], shape={3})
self.assertRaises(TypeError, c, [1,2,3], shape=[3], strides={1})
self.assertRaises(TypeError, c, [1,2,3], shape=[3], offset=[])
self.assertRaises(TypeError, c, [1], shape=[1], format={})
self.assertRaises(TypeError, c, [1], shape=[1], flags={})
self.assertRaises(TypeError, c, [1], shape=[1], getbuf={})
# ND_FORTRAN flag is only valid without strides.
self.assertRaises(TypeError, c, [1], shape=[1], strides=[1],
flags=ND_FORTRAN)
# ND_PIL flag is only valid with ndim > 0.
self.assertRaises(TypeError, c, [1], shape=[], flags=ND_PIL)
# Invalid items.
self.assertRaises(ValueError, c, [], shape=[1])
self.assertRaises(ValueError, c, ['XXX'], shape=[1], format="L")
# Invalid combination of items and format.
self.assertRaises(struct.error, c, [1000], shape=[1], format="B")
self.assertRaises(ValueError, c, [1,(2,3)], shape=[2], format="B")
self.assertRaises(ValueError, c, [1,2,3], shape=[3], format="QL")
# Invalid ndim.
n = ND_MAX_NDIM+1
self.assertRaises(ValueError, c, [1]*n, shape=[1]*n)
# Invalid shape.
self.assertRaises(ValueError, c, [1], shape=[-1])
self.assertRaises(ValueError, c, [1,2,3], shape=['3'])
self.assertRaises(OverflowError, c, [1], shape=[2**128])
# prod(shape) * itemsize != len(items)
self.assertRaises(ValueError, c, [1,2,3,4,5], shape=[2,2], offset=3)
# Invalid strides.
self.assertRaises(ValueError, c, [1,2,3], shape=[3], strides=['1'])
self.assertRaises(OverflowError, c, [1], shape=[1],
strides=[2**128])
# Invalid combination of strides and shape.
self.assertRaises(ValueError, c, [1,2], shape=[2,1], strides=[1])
# Invalid combination of strides and format.
self.assertRaises(ValueError, c, [1,2,3,4], shape=[2], strides=[3],
format="L")
# Invalid offset.
self.assertRaises(ValueError, c, [1,2,3], shape=[3], offset=4)
self.assertRaises(ValueError, c, [1,2,3], shape=[1], offset=3,
format="L")
# Invalid format.
self.assertRaises(ValueError, c, [1,2,3], shape=[3], format="")
self.assertRaises(struct.error, c, [(1,2,3)], shape=[1],
format="@#$")
# Striding out of the memory bounds.
items = [1,2,3,4,5,6,7,8,9,10]
self.assertRaises(ValueError, c, items, shape=[2,3],
strides=[-3, -2], offset=5)
# Constructing consumer: format argument invalid.
self.assertRaises(TypeError, c, bytearray(), format="Q")
# Constructing original base object: getbuf argument invalid.
self.assertRaises(TypeError, c, [1], shape=[1], getbuf=PyBUF_FULL)
# Shape argument is mandatory for original base objects.
self.assertRaises(TypeError, c, [1])
# PyBUF_WRITABLE request to read-only provider.
self.assertRaises(BufferError, ndarray, b'123', getbuf=PyBUF_WRITABLE)
# ND_VAREXPORT can only be specified during construction.
nd = ndarray([9], [1], flags=ND_VAREXPORT)
self.assertRaises(ValueError, nd.push, [1], [1], flags=ND_VAREXPORT)
# Invalid operation for consumers: push/pop
nd = ndarray(b'123')
self.assertRaises(BufferError, nd.push, [1], [1])
self.assertRaises(BufferError, nd.pop)
# ND_VAREXPORT not set: push/pop fail with exported buffers
nd = ndarray([9], [1])
nd.push([1], [1])
m = memoryview(nd)
self.assertRaises(BufferError, nd.push, [1], [1])
self.assertRaises(BufferError, nd.pop)
m.release()
nd.pop()
# Single remaining buffer: pop fails
self.assertRaises(BufferError, nd.pop)
del nd
# get_pointer()
self.assertRaises(TypeError, get_pointer, {}, [1,2,3])
self.assertRaises(TypeError, get_pointer, b'123', {})
nd = ndarray(list(range(100)), shape=[1]*100)
self.assertRaises(ValueError, get_pointer, nd, [5])
nd = ndarray(list(range(12)), shape=[3,4])
self.assertRaises(ValueError, get_pointer, nd, [2,3,4])
self.assertRaises(ValueError, get_pointer, nd, [3,3])
self.assertRaises(ValueError, get_pointer, nd, [-3,3])
self.assertRaises(OverflowError, get_pointer, nd, [1<<64,3])
# tolist() needs format
ex = ndarray([1,2,3], shape=[3], format='L')
nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
self.assertRaises(ValueError, nd.tolist)
# memoryview_from_buffer()
ex1 = ndarray([1,2,3], shape=[3], format='L')
ex2 = ndarray(ex1)
nd = ndarray(ex2)
self.assertRaises(TypeError, nd.memoryview_from_buffer)
nd = ndarray([(1,)*200], shape=[1], format='L'*200)
self.assertRaises(TypeError, nd.memoryview_from_buffer)
n = ND_MAX_NDIM
nd = ndarray(list(range(n)), shape=[1]*n)
self.assertRaises(ValueError, nd.memoryview_from_buffer)
# get_contiguous()
nd = ndarray([1], shape=[1])
self.assertRaises(TypeError, get_contiguous, 1, 2, 3, 4, 5)
self.assertRaises(TypeError, get_contiguous, nd, "xyz", 'C')
self.assertRaises(OverflowError, get_contiguous, nd, 2**64, 'C')
self.assertRaises(TypeError, get_contiguous, nd, PyBUF_READ, 961)
self.assertRaises(UnicodeEncodeError, get_contiguous, nd, PyBUF_READ,
'\u2007')
self.assertRaises(ValueError, get_contiguous, nd, PyBUF_READ, 'Z')
self.assertRaises(ValueError, get_contiguous, nd, 255, 'A')
# cmp_contig()
nd = ndarray([1], shape=[1])
self.assertRaises(TypeError, cmp_contig, 1, 2, 3, 4, 5)
self.assertRaises(TypeError, cmp_contig, {}, nd)
self.assertRaises(TypeError, cmp_contig, nd, {})
# is_contiguous()
nd = ndarray([1], shape=[1])
self.assertRaises(TypeError, is_contiguous, 1, 2, 3, 4, 5)
self.assertRaises(TypeError, is_contiguous, {}, 'A')
self.assertRaises(TypeError, is_contiguous, nd, 201)
def test_ndarray_linked_list(self):
for perm in permutations(range(5)):
m = [0]*5
nd = ndarray([1,2,3], shape=[3], flags=ND_VAREXPORT)
m[0] = memoryview(nd)
for i in range(1, 5):
nd.push([1,2,3], shape=[3])
m[i] = memoryview(nd)
for i in range(5):
m[perm[i]].release()
self.assertRaises(BufferError, nd.pop)
del nd
def test_ndarray_format_scalar(self):
# ndim = 0: scalar
for fmt, scalar, _ in iter_format(0):
itemsize = struct.calcsize(fmt)
nd = ndarray(scalar, shape=(), format=fmt)
self.verify(nd, obj=None,
itemsize=itemsize, fmt=fmt, readonly=True,
ndim=0, shape=(), strides=(),
lst=scalar)
def test_ndarray_format_shape(self):
# ndim = 1, shape = [n]
nitems = randrange(1, 10)
for fmt, items, _ in iter_format(nitems):
itemsize = struct.calcsize(fmt)
for flags in (0, ND_PIL):
nd = ndarray(items, shape=[nitems], format=fmt, flags=flags)
self.verify(nd, obj=None,
itemsize=itemsize, fmt=fmt, readonly=True,
ndim=1, shape=(nitems,), strides=(itemsize,),
lst=items)
def test_ndarray_format_strides(self):
# ndim = 1, strides
nitems = randrange(1, 30)
for fmt, items, _ in iter_format(nitems):
itemsize = struct.calcsize(fmt)
for step in range(-5, 5):
if step == 0:
continue
shape = [len(items[::step])]
strides = [step*itemsize]
offset = itemsize*(nitems-1) if step < 0 else 0
for flags in (0, ND_PIL):
nd = ndarray(items, shape=shape, strides=strides,
format=fmt, offset=offset, flags=flags)
self.verify(nd, obj=None,
itemsize=itemsize, fmt=fmt, readonly=True,
ndim=1, shape=shape, strides=strides,
lst=items[::step])
def test_ndarray_fortran(self):
items = [1,2,3,4,5,6,7,8,9,10,11,12]
ex = ndarray(items, shape=(3, 4), strides=(1, 3))
nd = ndarray(ex, getbuf=PyBUF_F_CONTIGUOUS|PyBUF_FORMAT)
self.assertEqual(nd.tolist(), farray(items, (3, 4)))
def test_ndarray_multidim(self):
for ndim in range(5):
shape_t = [randrange(2, 10) for _ in range(ndim)]
nitems = prod(shape_t)
for shape in permutations(shape_t):
fmt, items, _ = randitems(nitems)
itemsize = struct.calcsize(fmt)
for flags in (0, ND_PIL):
if ndim == 0 and flags == ND_PIL:
continue
# C array
nd = ndarray(items, shape=shape, format=fmt, flags=flags)
strides = strides_from_shape(ndim, shape, itemsize, 'C')
lst = carray(items, shape)
self.verify(nd, obj=None,
itemsize=itemsize, fmt=fmt, readonly=True,
ndim=ndim, shape=shape, strides=strides,
lst=lst)
if is_memoryview_format(fmt):
# memoryview: reconstruct strides
ex = ndarray(items, shape=shape, format=fmt)
nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT)
self.assertTrue(nd.strides == ())
mv = nd.memoryview_from_buffer()
self.verify(mv, obj=None,
itemsize=itemsize, fmt=fmt, readonly=True,
ndim=ndim, shape=shape, strides=strides,
lst=lst)
# Fortran array
nd = ndarray(items, shape=shape, format=fmt,
flags=flags|ND_FORTRAN)
strides = strides_from_shape(ndim, shape, itemsize, 'F')
lst = farray(items, shape)
self.verify(nd, obj=None,
itemsize=itemsize, fmt=fmt, readonly=True,
ndim=ndim, shape=shape, strides=strides,
lst=lst)
def test_ndarray_index_invalid(self):
# not writable
nd = ndarray([1], shape=[1])
self.assertRaises(TypeError, nd.__setitem__, 1, 8)
mv = memoryview(nd)
self.assertEqual(mv, nd)
self.assertRaises(TypeError, mv.__setitem__, 1, 8)
# cannot be deleted
nd = ndarray([1], shape=[1], flags=ND_WRITABLE)
self.assertRaises(TypeError, nd.__delitem__, 1)
mv = memoryview(nd)
self.assertEqual(mv, nd)
self.assertRaises(TypeError, mv.__delitem__, 1)
# overflow
nd = ndarray([1], shape=[1], flags=ND_WRITABLE)
self.assertRaises(OverflowError, nd.__getitem__, 1<<64)
self.assertRaises(OverflowError, nd.__setitem__, 1<<64, 8)
mv = memoryview(nd)
self.assertEqual(mv, nd)
self.assertRaises(IndexError, mv.__getitem__, 1<<64)
self.assertRaises(IndexError, mv.__setitem__, 1<<64, 8)
# format
items = [1,2,3,4,5,6,7,8]
nd = ndarray(items, shape=[len(items)], format="B", flags=ND_WRITABLE)
self.assertRaises(struct.error, nd.__setitem__, 2, 300)
self.assertRaises(ValueError, nd.__setitem__, 1, (100, 200))
mv = memoryview(nd)
self.assertEqual(mv, nd)
self.assertRaises(ValueError, mv.__setitem__, 2, 300)
self.assertRaises(TypeError, mv.__setitem__, 1, (100, 200))
items = [(1,2), (3,4), (5,6)]
nd = ndarray(items, shape=[len(items)], format="LQ", flags=ND_WRITABLE)
self.assertRaises(ValueError, nd.__setitem__, 2, 300)
self.assertRaises(struct.error, nd.__setitem__, 1, (b'\x001', 200))
def test_ndarray_index_scalar(self):
# scalar
nd = ndarray(1, shape=(), flags=ND_WRITABLE)
mv = memoryview(nd)
self.assertEqual(mv, nd)
x = nd[()]; self.assertEqual(x, 1)
x = nd[...]; self.assertEqual(x.tolist(), nd.tolist())
x = mv[()]; self.assertEqual(x, 1)
x = mv[...]; self.assertEqual(x.tolist(), nd.tolist())
self.assertRaises(TypeError, nd.__getitem__, 0)
self.assertRaises(TypeError, mv.__getitem__, 0)
self.assertRaises(TypeError, nd.__setitem__, 0, 8)
self.assertRaises(TypeError, mv.__setitem__, 0, 8)
self.assertEqual(nd.tolist(), 1)
self.assertEqual(mv.tolist(), 1)
nd[()] = 9; self.assertEqual(nd.tolist(), 9)
mv[()] = 9; self.assertEqual(mv.tolist(), 9)
nd[...] = 5; self.assertEqual(nd.tolist(), 5)
mv[...] = 5; self.assertEqual(mv.tolist(), 5)
def test_ndarray_index_null_strides(self):
ex = ndarray(list(range(2*4)), shape=[2, 4], flags=ND_WRITABLE)
nd = ndarray(ex, getbuf=PyBUF_CONTIG)
# Sub-views are only possible for full exporters.
self.assertRaises(BufferError, nd.__getitem__, 1)
# Same for slices.
self.assertRaises(BufferError, nd.__getitem__, slice(3,5,1))
def test_ndarray_index_getitem_single(self):
# getitem
for fmt, items, _ in iter_format(5):
nd = ndarray(items, shape=[5], format=fmt)
for i in range(-5, 5):
self.assertEqual(nd[i], items[i])
self.assertRaises(IndexError, nd.__getitem__, -6)
self.assertRaises(IndexError, nd.__getitem__, 5)
if is_memoryview_format(fmt):
mv = memoryview(nd)
self.assertEqual(mv, nd)
for i in range(-5, 5):
self.assertEqual(mv[i], items[i])
self.assertRaises(IndexError, mv.__getitem__, -6)
self.assertRaises(IndexError, mv.__getitem__, 5)
# getitem with null strides
for fmt, items, _ in iter_format(5):
ex = ndarray(items, shape=[5], flags=ND_WRITABLE, format=fmt)
nd = ndarray(ex, getbuf=PyBUF_CONTIG|PyBUF_FORMAT)
for i in range(-5, 5):
self.assertEqual(nd[i], items[i])
if is_memoryview_format(fmt):
mv = nd.memoryview_from_buffer()
self.assertIs(mv.__eq__(nd), NotImplemented)
for i in range(-5, 5):
self.assertEqual(mv[i], items[i])
# getitem with null format
items = [1,2,3,4,5]
ex = ndarray(items, shape=[5])
nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO)
for i in range(-5, 5):
self.assertEqual(nd[i], items[i])
# getitem with null shape/strides/format
items = [1,2,3,4,5]
ex = ndarray(items, shape=[5])
nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
for i in range(-5, 5):
self.assertEqual(nd[i], items[i])
def test_ndarray_index_setitem_single(self):
# assign single value
for fmt, items, single_item in iter_format(5):
nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE)
for i in range(5):
items[i] = single_item
nd[i] = single_item
self.assertEqual(nd.tolist(), items)
self.assertRaises(IndexError, nd.__setitem__, -6, single_item)
self.assertRaises(IndexError, nd.__setitem__, 5, single_item)
if not is_memoryview_format(fmt):
continue
nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE)
mv = memoryview(nd)
self.assertEqual(mv, nd)
for i in range(5):
items[i] = single_item
mv[i] = single_item
self.assertEqual(mv.tolist(), items)
self.assertRaises(IndexError, mv.__setitem__, -6, single_item)
self.assertRaises(IndexError, mv.__setitem__, 5, single_item)
# assign single value: lobject = robject
for fmt, items, single_item in iter_format(5):
nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE)
for i in range(-5, 4):
items[i] = items[i+1]
nd[i] = nd[i+1]
self.assertEqual(nd.tolist(), items)
if not is_memoryview_format(fmt):
continue
nd = ndarray(items, shape=[5], format=fmt, flags=ND_WRITABLE)
mv = memoryview(nd)
self.assertEqual(mv, nd)
for i in range(-5, 4):
items[i] = items[i+1]
mv[i] = mv[i+1]
self.assertEqual(mv.tolist(), items)
def test_ndarray_index_getitem_multidim(self):
shape_t = (2, 3, 5)
nitems = prod(shape_t)
for shape in permutations(shape_t):
fmt, items, _ = randitems(nitems)
for flags in (0, ND_PIL):
# C array
nd = ndarray(items, shape=shape, format=fmt, flags=flags)
lst = carray(items, shape)
for i in range(-shape[0], shape[0]):
self.assertEqual(lst[i], nd[i].tolist())
for j in range(-shape[1], shape[1]):
self.assertEqual(lst[i][j], nd[i][j].tolist())
for k in range(-shape[2], shape[2]):
self.assertEqual(lst[i][j][k], nd[i][j][k])
# Fortran array
nd = ndarray(items, shape=shape, format=fmt,
flags=flags|ND_FORTRAN)
lst = farray(items, shape)
for i in range(-shape[0], shape[0]):
self.assertEqual(lst[i], nd[i].tolist())
for j in range(-shape[1], shape[1]):
self.assertEqual(lst[i][j], nd[i][j].tolist())
for k in range(shape[2], shape[2]):
self.assertEqual(lst[i][j][k], nd[i][j][k])
def test_ndarray_sequence(self):
nd = ndarray(1, shape=())
self.assertRaises(TypeError, eval, "1 in nd", locals())
mv = memoryview(nd)
self.assertEqual(mv, nd)
self.assertRaises(TypeError, eval, "1 in mv", locals())
for fmt, items, _ in iter_format(5):
nd = ndarray(items, shape=[5], format=fmt)
for i, v in enumerate(nd):
self.assertEqual(v, items[i])
self.assertTrue(v in nd)
if is_memoryview_format(fmt):
mv = memoryview(nd)
for i, v in enumerate(mv):
self.assertEqual(v, items[i])
self.assertTrue(v in mv)
def test_ndarray_slice_invalid(self):
items = [1,2,3,4,5,6,7,8]
# rvalue is not an exporter
xl = ndarray(items, shape=[8], flags=ND_WRITABLE)
ml = memoryview(xl)
self.assertRaises(TypeError, xl.__setitem__, slice(0,8,1), items)
self.assertRaises(TypeError, ml.__setitem__, slice(0,8,1), items)
# rvalue is not a full exporter
xl = ndarray(items, shape=[8], flags=ND_WRITABLE)
ex = ndarray(items, shape=[8], flags=ND_WRITABLE)
xr = ndarray(ex, getbuf=PyBUF_ND)
self.assertRaises(BufferError, xl.__setitem__, slice(0,8,1), xr)
# zero step
nd = ndarray(items, shape=[8], format="L", flags=ND_WRITABLE)
mv = memoryview(nd)
self.assertRaises(ValueError, nd.__getitem__, slice(0,1,0))
self.assertRaises(ValueError, mv.__getitem__, slice(0,1,0))
nd = ndarray(items, shape=[2,4], format="L", flags=ND_WRITABLE)
mv = memoryview(nd)
self.assertRaises(ValueError, nd.__getitem__,
(slice(0,1,1), slice(0,1,0)))
self.assertRaises(ValueError, nd.__getitem__,
(slice(0,1,0), slice(0,1,1)))
self.assertRaises(TypeError, nd.__getitem__, "@%$")
self.assertRaises(TypeError, nd.__getitem__, ("@%$", slice(0,1,1)))
self.assertRaises(TypeError, nd.__getitem__, (slice(0,1,1), {}))
# memoryview: not implemented
self.assertRaises(NotImplementedError, mv.__getitem__,
(slice(0,1,1), slice(0,1,0)))
self.assertRaises(TypeError, mv.__getitem__, "@%$")
# differing format
xl = ndarray(items, shape=[8], format="B", flags=ND_WRITABLE)
xr = ndarray(items, shape=[8], format="b")
ml = memoryview(xl)
mr = memoryview(xr)
self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8])
self.assertEqual(xl.tolist(), items)
self.assertRaises(ValueError, ml.__setitem__, slice(0,1,1), mr[7:8])
self.assertEqual(ml.tolist(), items)
# differing itemsize
xl = ndarray(items, shape=[8], format="B", flags=ND_WRITABLE)
yr = ndarray(items, shape=[8], format="L")
ml = memoryview(xl)
mr = memoryview(xr)
self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8])
self.assertEqual(xl.tolist(), items)
self.assertRaises(ValueError, ml.__setitem__, slice(0,1,1), mr[7:8])
self.assertEqual(ml.tolist(), items)
# differing ndim
xl = ndarray(items, shape=[2, 4], format="b", flags=ND_WRITABLE)
xr = ndarray(items, shape=[8], format="b")
ml = memoryview(xl)
mr = memoryview(xr)
self.assertRaises(ValueError, xl.__setitem__, slice(0,1,1), xr[7:8])
self.assertEqual(xl.tolist(), [[1,2,3,4], [5,6,7,8]])
self.assertRaises(NotImplementedError, ml.__setitem__, slice(0,1,1),
mr[7:8])
# differing shape
xl = ndarray(items, shape=[8], format="b", flags=ND_WRITABLE)
xr = ndarray(items, shape=[8], format="b")
ml = memoryview(xl)
mr = memoryview(xr)
self.assertRaises(ValueError, xl.__setitem__, slice(0,2,1), xr[7:8])
self.assertEqual(xl.tolist(), items)
self.assertRaises(ValueError, ml.__setitem__, slice(0,2,1), mr[7:8])
self.assertEqual(ml.tolist(), items)
# _testbuffer.c module functions
self.assertRaises(TypeError, slice_indices, slice(0,1,2), {})
self.assertRaises(TypeError, slice_indices, "###########", 1)
self.assertRaises(ValueError, slice_indices, slice(0,1,0), 4)
x = ndarray(items, shape=[8], format="b", flags=ND_PIL)
self.assertRaises(TypeError, x.add_suboffsets)
ex = ndarray(items, shape=[8], format="B")
x = ndarray(ex, getbuf=PyBUF_SIMPLE)
self.assertRaises(TypeError, x.add_suboffsets)
def test_ndarray_slice_zero_shape(self):
items = [1,2,3,4,5,6,7,8,9,10,11,12]
x = ndarray(items, shape=[12], format="L", flags=ND_WRITABLE)
y = ndarray(items, shape=[12], format="L")
x[4:4] = y[9:9]
self.assertEqual(x.tolist(), items)
ml = memoryview(x)
mr = memoryview(y)
self.assertEqual(ml, x)
self.assertEqual(ml, y)
ml[4:4] = mr[9:9]
self.assertEqual(ml.tolist(), items)
x = ndarray(items, shape=[3, 4], format="L", flags=ND_WRITABLE)
y = ndarray(items, shape=[4, 3], format="L")
x[1:2, 2:2] = y[1:2, 3:3]
self.assertEqual(x.tolist(), carray(items, [3, 4]))
def test_ndarray_slice_multidim(self):
shape_t = (2, 3, 5)
ndim = len(shape_t)
nitems = prod(shape_t)
for shape in permutations(shape_t):
fmt, items, _ = randitems(nitems)
itemsize = struct.calcsize(fmt)
for flags in (0, ND_PIL):
nd = ndarray(items, shape=shape, format=fmt, flags=flags)
lst = carray(items, shape)
for slices in rslices_ndim(ndim, shape):
listerr = None
try:
sliced = multislice(lst, slices)
except Exception as e:
listerr = e.__class__
nderr = None
try:
ndsliced = nd[slices]
except Exception as e:
nderr = e.__class__
if nderr or listerr:
self.assertIs(nderr, listerr)
else:
self.assertEqual(ndsliced.tolist(), sliced)
def test_ndarray_slice_redundant_suboffsets(self):
shape_t = (2, 3, 5, 2)
ndim = len(shape_t)
nitems = prod(shape_t)
for shape in permutations(shape_t):
fmt, items, _ = randitems(nitems)
itemsize = struct.calcsize(fmt)
nd = ndarray(items, shape=shape, format=fmt)
nd.add_suboffsets()
ex = ndarray(items, shape=shape, format=fmt)
ex.add_suboffsets()
mv = memoryview(ex)
lst = carray(items, shape)
for slices in rslices_ndim(ndim, shape):
listerr = None
try:
sliced = multislice(lst, slices)
except Exception as e:
listerr = e.__class__
nderr = None
try:
ndsliced = nd[slices]
except Exception as e:
nderr = e.__class__
if nderr or listerr:
self.assertIs(nderr, listerr)
else:
self.assertEqual(ndsliced.tolist(), sliced)
def test_ndarray_slice_assign_single(self):
for fmt, items, _ in iter_format(5):
for lslice in genslices(5):
for rslice in genslices(5):
for flags in (0, ND_PIL):
f = flags|ND_WRITABLE
nd = ndarray(items, shape=[5], format=fmt, flags=f)
ex = ndarray(items, shape=[5], format=fmt, flags=f)
mv = memoryview(ex)
lsterr = None
diff_structure = None
lst = items[:]
try:
lval = lst[lslice]
rval = lst[rslice]
lst[lslice] = lst[rslice]
diff_structure = len(lval) != len(rval)
except Exception as e:
lsterr = e.__class__
nderr = None
try:
nd[lslice] = nd[rslice]
except Exception as e:
nderr = e.__class__
if diff_structure: # ndarray cannot change shape
self.assertIs(nderr, ValueError)
else:
self.assertEqual(nd.tolist(), lst)
self.assertIs(nderr, lsterr)
if not is_memoryview_format(fmt):
continue
mverr = None
try:
mv[lslice] = mv[rslice]
except Exception as e:
mverr = e.__class__
if diff_structure: # memoryview cannot change shape
self.assertIs(mverr, ValueError)
else:
self.assertEqual(mv.tolist(), lst)
self.assertEqual(mv, nd)
self.assertIs(mverr, lsterr)
self.verify(mv, obj=ex,
itemsize=nd.itemsize, fmt=fmt, readonly=False,
ndim=nd.ndim, shape=nd.shape, strides=nd.strides,
lst=nd.tolist())
def test_ndarray_slice_assign_multidim(self):
shape_t = (2, 3, 5)
ndim = len(shape_t)
nitems = prod(shape_t)
for shape in permutations(shape_t):
fmt, items, _ = randitems(nitems)
for flags in (0, ND_PIL):
for _ in range(ITERATIONS):
lslices, rslices = randslice_from_shape(ndim, shape)
nd = ndarray(items, shape=shape, format=fmt,
flags=flags|ND_WRITABLE)
lst = carray(items, shape)
listerr = None
try:
result = multislice_assign(lst, lst, lslices, rslices)
except Exception as e:
listerr = e.__class__
nderr = None
try:
nd[lslices] = nd[rslices]
except Exception as e:
nderr = e.__class__
if nderr or listerr:
self.assertIs(nderr, listerr)
else:
self.assertEqual(nd.tolist(), result)
def test_ndarray_random(self):
# construction of valid arrays
for _ in range(ITERATIONS):
for fmt in fmtdict['@']:
itemsize = struct.calcsize(fmt)
t = rand_structure(itemsize, True, maxdim=MAXDIM,
maxshape=MAXSHAPE)
self.assertTrue(verify_structure(*t))
items = randitems_from_structure(fmt, t)
x = ndarray_from_structure(items, fmt, t)
xlist = x.tolist()
mv = memoryview(x)
if is_memoryview_format(fmt):
mvlist = mv.tolist()
self.assertEqual(mvlist, xlist)
if t[2] > 0:
# ndim > 0: test against suboffsets representation.
y = ndarray_from_structure(items, fmt, t, flags=ND_PIL)
ylist = y.tolist()
self.assertEqual(xlist, ylist)
mv = memoryview(y)
if is_memoryview_format(fmt):
self.assertEqual(mv, y)
mvlist = mv.tolist()
self.assertEqual(mvlist, ylist)
if numpy_array:
shape = t[3]
if 0 in shape:
continue # http://projects.scipy.org/numpy/ticket/1910
z = numpy_array_from_structure(items, fmt, t)
self.verify(x, obj=None,
itemsize=z.itemsize, fmt=fmt, readonly=False,
ndim=z.ndim, shape=z.shape, strides=z.strides,
lst=z.tolist())
def test_ndarray_random_invalid(self):
# exceptions during construction of invalid arrays
for _ in range(ITERATIONS):
for fmt in fmtdict['@']:
itemsize = struct.calcsize(fmt)
t = rand_structure(itemsize, False, maxdim=MAXDIM,
maxshape=MAXSHAPE)
self.assertFalse(verify_structure(*t))
items = randitems_from_structure(fmt, t)
nderr = False
try:
x = ndarray_from_structure(items, fmt, t)
except Exception as e:
nderr = e.__class__
self.assertTrue(nderr)
if numpy_array:
numpy_err = False
try:
y = numpy_array_from_structure(items, fmt, t)
except Exception as e:
numpy_err = e.__class__
if 0: # http://projects.scipy.org/numpy/ticket/1910
self.assertTrue(numpy_err)
def test_ndarray_random_slice_assign(self):
# valid slice assignments
for _ in range(ITERATIONS):
for fmt in fmtdict['@']:
itemsize = struct.calcsize(fmt)
lshape, rshape, lslices, rslices = \
rand_aligned_slices(maxdim=MAXDIM, maxshape=MAXSHAPE)
tl = rand_structure(itemsize, True, shape=lshape)
tr = rand_structure(itemsize, True, shape=rshape)
self.assertTrue(verify_structure(*tl))
self.assertTrue(verify_structure(*tr))
litems = randitems_from_structure(fmt, tl)
ritems = randitems_from_structure(fmt, tr)
xl = ndarray_from_structure(litems, fmt, tl)
xr = ndarray_from_structure(ritems, fmt, tr)
xl[lslices] = xr[rslices]
xllist = xl.tolist()
xrlist = xr.tolist()
ml = memoryview(xl)
mr = memoryview(xr)
self.assertEqual(ml.tolist(), xllist)
self.assertEqual(mr.tolist(), xrlist)
if tl[2] > 0 and tr[2] > 0:
# ndim > 0: test against suboffsets representation.
yl = ndarray_from_structure(litems, fmt, tl, flags=ND_PIL)
yr = ndarray_from_structure(ritems, fmt, tr, flags=ND_PIL)
yl[lslices] = yr[rslices]
yllist = yl.tolist()
yrlist = yr.tolist()
self.assertEqual(xllist, yllist)
self.assertEqual(xrlist, yrlist)
ml = memoryview(yl)
mr = memoryview(yr)
self.assertEqual(ml.tolist(), yllist)
self.assertEqual(mr.tolist(), yrlist)
if numpy_array:
if 0 in lshape or 0 in rshape:
continue # http://projects.scipy.org/numpy/ticket/1910
zl = numpy_array_from_structure(litems, fmt, tl)
zr = numpy_array_from_structure(ritems, fmt, tr)
zl[lslices] = zr[rslices]
if not is_overlapping(tl) and not is_overlapping(tr):
# Slice assignment of overlapping structures
# is undefined in NumPy.
self.verify(xl, obj=None,
itemsize=zl.itemsize, fmt=fmt, readonly=False,
ndim=zl.ndim, shape=zl.shape,
strides=zl.strides, lst=zl.tolist())
self.verify(xr, obj=None,
itemsize=zr.itemsize, fmt=fmt, readonly=False,
ndim=zr.ndim, shape=zr.shape,
strides=zr.strides, lst=zr.tolist())
def test_ndarray_re_export(self):
items = [1,2,3,4,5,6,7,8,9,10,11,12]
nd = ndarray(items, shape=[3,4], flags=ND_PIL)
ex = ndarray(nd)
self.assertTrue(ex.flags & ND_PIL)
self.assertIs(ex.obj, nd)
self.assertEqual(ex.suboffsets, (0, -1))
self.assertFalse(ex.c_contiguous)
self.assertFalse(ex.f_contiguous)
self.assertFalse(ex.contiguous)
def test_ndarray_zero_shape(self):
# zeros in shape
for flags in (0, ND_PIL):
nd = ndarray([1,2,3], shape=[0], flags=flags)
mv = memoryview(nd)
self.assertEqual(mv, nd)
self.assertEqual(nd.tolist(), [])
self.assertEqual(mv.tolist(), [])
nd = ndarray([1,2,3], shape=[0,3,3], flags=flags)
self.assertEqual(nd.tolist(), [])
nd = ndarray([1,2,3], shape=[3,0,3], flags=flags)
self.assertEqual(nd.tolist(), [[], [], []])
nd = ndarray([1,2,3], shape=[3,3,0], flags=flags)
self.assertEqual(nd.tolist(),
[[[], [], []], [[], [], []], [[], [], []]])
def test_ndarray_zero_strides(self):
# zero strides
for flags in (0, ND_PIL):
nd = ndarray([1], shape=[5], strides=[0], flags=flags)
mv = memoryview(nd)
self.assertEqual(mv, nd)
self.assertEqual(nd.tolist(), [1, 1, 1, 1, 1])
self.assertEqual(mv.tolist(), [1, 1, 1, 1, 1])
def test_ndarray_offset(self):
nd = ndarray(list(range(20)), shape=[3], offset=7)
self.assertEqual(nd.offset, 7)
self.assertEqual(nd.tolist(), [7,8,9])
def test_ndarray_memoryview_from_buffer(self):
for flags in (0, ND_PIL):
nd = ndarray(list(range(3)), shape=[3], flags=flags)
m = nd.memoryview_from_buffer()
self.assertEqual(m, nd)
def test_ndarray_get_pointer(self):
for flags in (0, ND_PIL):
nd = ndarray(list(range(3)), shape=[3], flags=flags)
for i in range(3):
self.assertEqual(nd[i], get_pointer(nd, [i]))
def test_ndarray_tolist_null_strides(self):
ex = ndarray(list(range(20)), shape=[2,2,5])
nd = ndarray(ex, getbuf=PyBUF_ND|PyBUF_FORMAT)
self.assertEqual(nd.tolist(), ex.tolist())
m = memoryview(ex)
self.assertEqual(m.tolist(), ex.tolist())
def test_ndarray_cmp_contig(self):
self.assertFalse(cmp_contig(b"123", b"456"))
x = ndarray(list(range(12)), shape=[3,4])
y = ndarray(list(range(12)), shape=[4,3])
self.assertFalse(cmp_contig(x, y))
x = ndarray([1], shape=[1], format="B")
self.assertTrue(cmp_contig(x, b'\x01'))
self.assertTrue(cmp_contig(b'\x01', x))
def test_ndarray_hash(self):
a = array.array('L', [1,2,3])
nd = ndarray(a)
self.assertRaises(ValueError, hash, nd)
# one-dimensional
b = bytes(list(range(12)))
nd = ndarray(list(range(12)), shape=[12])
self.assertEqual(hash(nd), hash(b))
# C-contiguous
nd = ndarray(list(range(12)), shape=[3,4])
self.assertEqual(hash(nd), hash(b))
nd = ndarray(list(range(12)), shape=[3,2,2])
self.assertEqual(hash(nd), hash(b))
# Fortran contiguous
b = bytes(transpose(list(range(12)), shape=[4,3]))
nd = ndarray(list(range(12)), shape=[3,4], flags=ND_FORTRAN)
self.assertEqual(hash(nd), hash(b))
b = bytes(transpose(list(range(12)), shape=[2,3,2]))
nd = ndarray(list(range(12)), shape=[2,3,2], flags=ND_FORTRAN)
self.assertEqual(hash(nd), hash(b))
# suboffsets
b = bytes(list(range(12)))
nd = ndarray(list(range(12)), shape=[2,2,3], flags=ND_PIL)
self.assertEqual(hash(nd), hash(b))
# non-byte formats
nd = ndarray(list(range(12)), shape=[2,2,3], format='L')
self.assertEqual(hash(nd), hash(nd.tobytes()))
def test_py_buffer_to_contiguous(self):
# The requests are used in _testbuffer.c:py_buffer_to_contiguous
# to generate buffers without full information for testing.
requests = (
# distinct flags
PyBUF_INDIRECT, PyBUF_STRIDES, PyBUF_ND, PyBUF_SIMPLE,
# compound requests
PyBUF_FULL, PyBUF_FULL_RO,
PyBUF_RECORDS, PyBUF_RECORDS_RO,
PyBUF_STRIDED, PyBUF_STRIDED_RO,
PyBUF_CONTIG, PyBUF_CONTIG_RO,
)
# no buffer interface
self.assertRaises(TypeError, py_buffer_to_contiguous, {}, 'F',
PyBUF_FULL_RO)
# scalar, read-only request
nd = ndarray(9, shape=(), format="L", flags=ND_WRITABLE)
for order in ['C', 'F', 'A']:
for request in requests:
b = py_buffer_to_contiguous(nd, order, request)
self.assertEqual(b, nd.tobytes())
# zeros in shape
nd = ndarray([1], shape=[0], format="L", flags=ND_WRITABLE)
for order in ['C', 'F', 'A']:
for request in requests:
b = py_buffer_to_contiguous(nd, order, request)
self.assertEqual(b, b'')
nd = ndarray(list(range(8)), shape=[2, 0, 7], format="L",
flags=ND_WRITABLE)
for order in ['C', 'F', 'A']:
for request in requests:
b = py_buffer_to_contiguous(nd, order, request)
self.assertEqual(b, b'')
### One-dimensional arrays are trivial, since Fortran and C order
### are the same.
# one-dimensional
for f in [0, ND_FORTRAN]:
nd = ndarray([1], shape=[1], format="h", flags=f|ND_WRITABLE)
ndbytes = nd.tobytes()
for order in ['C', 'F', 'A']:
for request in requests:
b = py_buffer_to_contiguous(nd, order, request)
self.assertEqual(b, ndbytes)
nd = ndarray([1, 2, 3], shape=[3], format="b", flags=f|ND_WRITABLE)
ndbytes = nd.tobytes()
for order in ['C', 'F', 'A']:
for request in requests:
b = py_buffer_to_contiguous(nd, order, request)
self.assertEqual(b, ndbytes)
# one-dimensional, non-contiguous input
nd = ndarray([1, 2, 3], shape=[2], strides=[2], flags=ND_WRITABLE)
ndbytes = nd.tobytes()
for order in ['C', 'F', 'A']:
for request in [PyBUF_STRIDES, PyBUF_FULL]:
b = py_buffer_to_contiguous(nd, order, request)
self.assertEqual(b, ndbytes)
nd = nd[::-1]
ndbytes = nd.tobytes()
for order in ['C', 'F', 'A']:
for request in requests:
try:
b = py_buffer_to_contiguous(nd, order, request)
except BufferError:
continue
self.assertEqual(b, ndbytes)
###
### Multi-dimensional arrays:
###
### The goal here is to preserve the logical representation of the
### input array but change the physical representation if necessary.
###
### _testbuffer example:
### ====================
###
### C input array:
### --------------
### >>> nd = ndarray(list(range(12)), shape=[3, 4])
### >>> nd.tolist()
### [[0, 1, 2, 3],
### [4, 5, 6, 7],
### [8, 9, 10, 11]]
###
### Fortran output:
### ---------------
### >>> py_buffer_to_contiguous(nd, 'F', PyBUF_FULL_RO)
### >>> b'\x00\x04\x08\x01\x05\t\x02\x06\n\x03\x07\x0b'
###
### The return value corresponds to this input list for
### _testbuffer's ndarray:
### >>> nd = ndarray([0,4,8,1,5,9,2,6,10,3,7,11], shape=[3,4],
### flags=ND_FORTRAN)
### >>> nd.tolist()
### [[0, 1, 2, 3],
### [4, 5, 6, 7],
### [8, 9, 10, 11]]
###
### The logical array is the same, but the values in memory are now
### in Fortran order.
###
### NumPy example:
### ==============
### _testbuffer's ndarray takes lists to initialize the memory.
### Here's the same sequence in NumPy:
###
### C input:
### --------
### >>> nd = ndarray(buffer=bytearray(list(range(12))),
### shape=[3, 4], dtype='B')
### >>> nd
### array([[ 0, 1, 2, 3],
### [ 4, 5, 6, 7],
### [ 8, 9, 10, 11]], dtype=uint8)
###
### Fortran output:
### ---------------
### >>> fortran_buf = nd.tostring(order='F')
### >>> fortran_buf
### b'\x00\x04\x08\x01\x05\t\x02\x06\n\x03\x07\x0b'
###
### >>> nd = ndarray(buffer=fortran_buf, shape=[3, 4],
### dtype='B', order='F')
###
### >>> nd
### array([[ 0, 1, 2, 3],
### [ 4, 5, 6, 7],
### [ 8, 9, 10, 11]], dtype=uint8)
###
# multi-dimensional, contiguous input
lst = list(range(12))
for f in [0, ND_FORTRAN]:
nd = ndarray(lst, shape=[3, 4], flags=f|ND_WRITABLE)
if numpy_array:
na = numpy_array(buffer=bytearray(lst),
shape=[3, 4], dtype='B',
order='C' if f == 0 else 'F')
# 'C' request
if f == ND_FORTRAN: # 'F' to 'C'
x = ndarray(transpose(lst, [4, 3]), shape=[3, 4],
flags=ND_WRITABLE)
expected = x.tobytes()
else:
expected = nd.tobytes()
for request in requests:
try:
b = py_buffer_to_contiguous(nd, 'C', request)
except BufferError:
continue
self.assertEqual(b, expected)
# Check that output can be used as the basis for constructing
# a C array that is logically identical to the input array.
y = ndarray([v for v in b], shape=[3, 4], flags=ND_WRITABLE)
self.assertEqual(memoryview(y), memoryview(nd))
if numpy_array:
self.assertEqual(b, na.tostring(order='C'))
# 'F' request
if f == 0: # 'C' to 'F'
x = ndarray(transpose(lst, [3, 4]), shape=[4, 3],
flags=ND_WRITABLE)
else:
x = ndarray(lst, shape=[3, 4], flags=ND_WRITABLE)
expected = x.tobytes()
for request in [PyBUF_FULL, PyBUF_FULL_RO, PyBUF_INDIRECT,
PyBUF_STRIDES, PyBUF_ND]:
try:
b = py_buffer_to_contiguous(nd, 'F', request)
except BufferError:
continue
self.assertEqual(b, expected)
# Check that output can be used as the basis for constructing
# a Fortran array that is logically identical to the input array.
y = ndarray([v for v in b], shape=[3, 4], flags=ND_FORTRAN|ND_WRITABLE)
self.assertEqual(memoryview(y), memoryview(nd))
if numpy_array:
self.assertEqual(b, na.tostring(order='F'))
# 'A' request
if f == ND_FORTRAN:
x = ndarray(lst, shape=[3, 4], flags=ND_WRITABLE)
expected = x.tobytes()
else:
expected = nd.tobytes()
for request in [PyBUF_FULL, PyBUF_FULL_RO, PyBUF_INDIRECT,
PyBUF_STRIDES, PyBUF_ND]:
try:
b = py_buffer_to_contiguous(nd, 'A', request)
except BufferError:
continue
self.assertEqual(b, expected)
# Check that output can be used as the basis for constructing
# an array with order=f that is logically identical to the input
# array.
y = ndarray([v for v in b], shape=[3, 4], flags=f|ND_WRITABLE)
self.assertEqual(memoryview(y), memoryview(nd))
if numpy_array:
self.assertEqual(b, na.tostring(order='A'))
# multi-dimensional, non-contiguous input
nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE|ND_PIL)
# 'C'
b = py_buffer_to_contiguous(nd, 'C', PyBUF_FULL_RO)
self.assertEqual(b, nd.tobytes())
y = ndarray([v for v in b], shape=[3, 4], flags=ND_WRITABLE)
self.assertEqual(memoryview(y), memoryview(nd))
# 'F'
b = py_buffer_to_contiguous(nd, 'F', PyBUF_FULL_RO)
x = ndarray(transpose(lst, [3, 4]), shape=[4, 3], flags=ND_WRITABLE)
self.assertEqual(b, x.tobytes())
y = ndarray([v for v in b], shape=[3, 4], flags=ND_FORTRAN|ND_WRITABLE)
self.assertEqual(memoryview(y), memoryview(nd))
# 'A'
b = py_buffer_to_contiguous(nd, 'A', PyBUF_FULL_RO)
self.assertEqual(b, nd.tobytes())
y = ndarray([v for v in b], shape=[3, 4], flags=ND_WRITABLE)
self.assertEqual(memoryview(y), memoryview(nd))
def test_memoryview_construction(self):
items_shape = [(9, []), ([1,2,3], [3]), (list(range(2*3*5)), [2,3,5])]
# NumPy style, C-contiguous:
for items, shape in items_shape:
# From PEP-3118 compliant exporter:
ex = ndarray(items, shape=shape)
m = memoryview(ex)
self.assertTrue(m.c_contiguous)
self.assertTrue(m.contiguous)
ndim = len(shape)
strides = strides_from_shape(ndim, shape, 1, 'C')
lst = carray(items, shape)
self.verify(m, obj=ex,
itemsize=1, fmt='B', readonly=True,
ndim=ndim, shape=shape, strides=strides,
lst=lst)
# From memoryview:
m2 = memoryview(m)
self.verify(m2, obj=ex,
itemsize=1, fmt='B', readonly=True,
ndim=ndim, shape=shape, strides=strides,
lst=lst)
# PyMemoryView_FromBuffer(): no strides
nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT)
self.assertEqual(nd.strides, ())
m = nd.memoryview_from_buffer()
self.verify(m, obj=None,
itemsize=1, fmt='B', readonly=True,
ndim=ndim, shape=shape, strides=strides,
lst=lst)
# PyMemoryView_FromBuffer(): no format, shape, strides
nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
self.assertEqual(nd.format, '')
self.assertEqual(nd.shape, ())
self.assertEqual(nd.strides, ())
m = nd.memoryview_from_buffer()
lst = [items] if ndim == 0 else items
self.verify(m, obj=None,
itemsize=1, fmt='B', readonly=True,
ndim=1, shape=[ex.nbytes], strides=(1,),
lst=lst)
# NumPy style, Fortran contiguous:
for items, shape in items_shape:
# From PEP-3118 compliant exporter:
ex = ndarray(items, shape=shape, flags=ND_FORTRAN)
m = memoryview(ex)
self.assertTrue(m.f_contiguous)
self.assertTrue(m.contiguous)
ndim = len(shape)
strides = strides_from_shape(ndim, shape, 1, 'F')
lst = farray(items, shape)
self.verify(m, obj=ex,
itemsize=1, fmt='B', readonly=True,
ndim=ndim, shape=shape, strides=strides,
lst=lst)
# From memoryview:
m2 = memoryview(m)
self.verify(m2, obj=ex,
itemsize=1, fmt='B', readonly=True,
ndim=ndim, shape=shape, strides=strides,
lst=lst)
# PIL style:
for items, shape in items_shape[1:]:
# From PEP-3118 compliant exporter:
ex = ndarray(items, shape=shape, flags=ND_PIL)
m = memoryview(ex)
ndim = len(shape)
lst = carray(items, shape)
self.verify(m, obj=ex,
itemsize=1, fmt='B', readonly=True,
ndim=ndim, shape=shape, strides=ex.strides,
lst=lst)
# From memoryview:
m2 = memoryview(m)
self.verify(m2, obj=ex,
itemsize=1, fmt='B', readonly=True,
ndim=ndim, shape=shape, strides=ex.strides,
lst=lst)
# Invalid number of arguments:
self.assertRaises(TypeError, memoryview, b'9', 'x')
# Not a buffer provider:
self.assertRaises(TypeError, memoryview, {})
# Non-compliant buffer provider:
ex = ndarray([1,2,3], shape=[3])
nd = ndarray(ex, getbuf=PyBUF_SIMPLE)
self.assertRaises(BufferError, memoryview, nd)
nd = ndarray(ex, getbuf=PyBUF_CONTIG_RO|PyBUF_FORMAT)
self.assertRaises(BufferError, memoryview, nd)
# ndim > 64
nd = ndarray([1]*128, shape=[1]*128, format='L')
self.assertRaises(ValueError, memoryview, nd)
self.assertRaises(ValueError, nd.memoryview_from_buffer)
self.assertRaises(ValueError, get_contiguous, nd, PyBUF_READ, 'C')
self.assertRaises(ValueError, get_contiguous, nd, PyBUF_READ, 'F')
self.assertRaises(ValueError, get_contiguous, nd[::-1], PyBUF_READ, 'C')
def test_memoryview_cast_zero_shape(self):
# Casts are undefined if buffer is multidimensional and shape
# contains zeros. These arrays are regarded as C-contiguous by
# Numpy and PyBuffer_GetContiguous(), so they are not caught by
# the test for C-contiguity in memory_cast().
items = [1,2,3]
for shape in ([0,3,3], [3,0,3], [0,3,3]):
ex = ndarray(items, shape=shape)
self.assertTrue(ex.c_contiguous)
msrc = memoryview(ex)
self.assertRaises(TypeError, msrc.cast, 'c')
# Monodimensional empty view can be cast (issue #19014).
for fmt, _, _ in iter_format(1, 'memoryview'):
msrc = memoryview(b'')
m = msrc.cast(fmt)
self.assertEqual(m.tobytes(), b'')
self.assertEqual(m.tolist(), [])
check_sizeof = support.check_sizeof
def test_memoryview_sizeof(self):
check = self.check_sizeof
vsize = support.calcvobjsize
base_struct = 'Pnin 2P2n2i5P P'
per_dim = '3n'
items = list(range(8))
check(memoryview(b''), vsize(base_struct + 1 * per_dim))
a = ndarray(items, shape=[2, 4], format="b")
check(memoryview(a), vsize(base_struct + 2 * per_dim))
a = ndarray(items, shape=[2, 2, 2], format="b")
check(memoryview(a), vsize(base_struct + 3 * per_dim))
def test_memoryview_struct_module(self):
class INT(object):
def __init__(self, val):
self.val = val
def __int__(self):
return self.val
class IDX(object):
def __init__(self, val):
self.val = val
def __index__(self):
return self.val
def f(): return 7
values = [INT(9), IDX(9),
2.2+3j, Decimal("-21.1"), 12.2, Fraction(5, 2),
[1,2,3], {4,5,6}, {7:8}, (), (9,),
True, False, None, Ellipsis,
b'a', b'abc', bytearray(b'a'), bytearray(b'abc'),
'a', 'abc', r'a', r'abc',
f, lambda x: x]
for fmt, items, item in iter_format(10, 'memoryview'):
ex = ndarray(items, shape=[10], format=fmt, flags=ND_WRITABLE)
nd = ndarray(items, shape=[10], format=fmt, flags=ND_WRITABLE)
m = memoryview(ex)
struct.pack_into(fmt, nd, 0, item)
m[0] = item
self.assertEqual(m[0], nd[0])
itemsize = struct.calcsize(fmt)
if 'P' in fmt:
continue
for v in values:
struct_err = None
try:
struct.pack_into(fmt, nd, itemsize, v)
except struct.error:
struct_err = struct.error
mv_err = None
try:
m[1] = v
except (TypeError, ValueError) as e:
mv_err = e.__class__
if struct_err or mv_err:
self.assertIsNot(struct_err, None)
self.assertIsNot(mv_err, None)
else:
self.assertEqual(m[1], nd[1])
def test_memoryview_cast_zero_strides(self):
# Casts are undefined if strides contains zeros. These arrays are
# (sometimes!) regarded as C-contiguous by Numpy, but not by
# PyBuffer_GetContiguous().
ex = ndarray([1,2,3], shape=[3], strides=[0])
self.assertFalse(ex.c_contiguous)
msrc = memoryview(ex)
self.assertRaises(TypeError, msrc.cast, 'c')
def test_memoryview_cast_invalid(self):
# invalid format
for sfmt in NON_BYTE_FORMAT:
sformat = '@' + sfmt if randrange(2) else sfmt
ssize = struct.calcsize(sformat)
for dfmt in NON_BYTE_FORMAT:
dformat = '@' + dfmt if randrange(2) else dfmt
dsize = struct.calcsize(dformat)
ex = ndarray(list(range(32)), shape=[32//ssize], format=sformat)
msrc = memoryview(ex)
self.assertRaises(TypeError, msrc.cast, dfmt, [32//dsize])
for sfmt, sitems, _ in iter_format(1):
ex = ndarray(sitems, shape=[1], format=sfmt)
msrc = memoryview(ex)
for dfmt, _, _ in iter_format(1):
if not is_memoryview_format(dfmt):
self.assertRaises(ValueError, msrc.cast, dfmt,
[32//dsize])
else:
if not is_byte_format(sfmt) and not is_byte_format(dfmt):
self.assertRaises(TypeError, msrc.cast, dfmt,
[32//dsize])
# invalid shape
size_h = struct.calcsize('h')
size_d = struct.calcsize('d')
ex = ndarray(list(range(2*2*size_d)), shape=[2,2,size_d], format='h')
msrc = memoryview(ex)
self.assertRaises(TypeError, msrc.cast, shape=[2,2,size_h], format='d')
ex = ndarray(list(range(120)), shape=[1,2,3,4,5])
m = memoryview(ex)
# incorrect number of args
self.assertRaises(TypeError, m.cast)
self.assertRaises(TypeError, m.cast, 1, 2, 3)
# incorrect dest format type
self.assertRaises(TypeError, m.cast, {})
# incorrect dest format
self.assertRaises(ValueError, m.cast, "X")
self.assertRaises(ValueError, m.cast, "@X")
self.assertRaises(ValueError, m.cast, "@XY")
# dest format not implemented
self.assertRaises(ValueError, m.cast, "=B")
self.assertRaises(ValueError, m.cast, "!L")
self.assertRaises(ValueError, m.cast, "<P")
self.assertRaises(ValueError, m.cast, ">l")
self.assertRaises(ValueError, m.cast, "BI")
self.assertRaises(ValueError, m.cast, "xBI")
# src format not implemented
ex = ndarray([(1,2), (3,4)], shape=[2], format="II")
m = memoryview(ex)
self.assertRaises(NotImplementedError, m.__getitem__, 0)
self.assertRaises(NotImplementedError, m.__setitem__, 0, 8)
self.assertRaises(NotImplementedError, m.tolist)
# incorrect shape type
ex = ndarray(list(range(120)), shape=[1,2,3,4,5])
m = memoryview(ex)
self.assertRaises(TypeError, m.cast, "B", shape={})
# incorrect shape elements
ex = ndarray(list(range(120)), shape=[2*3*4*5])
m = memoryview(ex)
self.assertRaises(OverflowError, m.cast, "B", shape=[2**64])
self.assertRaises(ValueError, m.cast, "B", shape=[-1])
self.assertRaises(ValueError, m.cast, "B", shape=[2,3,4,5,6,7,-1])
self.assertRaises(ValueError, m.cast, "B", shape=[2,3,4,5,6,7,0])
self.assertRaises(TypeError, m.cast, "B", shape=[2,3,4,5,6,7,'x'])
# N-D -> N-D cast
ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3,5,7,11])
m = memoryview(ex)
self.assertRaises(TypeError, m.cast, "I", shape=[2,3,4,5])
# cast with ndim > 64
nd = ndarray(list(range(128)), shape=[128], format='I')
m = memoryview(nd)
self.assertRaises(ValueError, m.cast, 'I', [1]*128)
# view->len not a multiple of itemsize
ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3*5*7*11])
m = memoryview(ex)
self.assertRaises(TypeError, m.cast, "I", shape=[2,3,4,5])
# product(shape) * itemsize != buffer size
ex = ndarray(list([9 for _ in range(3*5*7*11)]), shape=[3*5*7*11])
m = memoryview(ex)
self.assertRaises(TypeError, m.cast, "B", shape=[2,3,4,5])
# product(shape) * itemsize overflow
nd = ndarray(list(range(128)), shape=[128], format='I')
m1 = memoryview(nd)
nd = ndarray(list(range(128)), shape=[128], format='B')
m2 = memoryview(nd)
if sys.maxsize == 2**63-1:
self.assertRaises(TypeError, m1.cast, 'B',
[7, 7, 73, 127, 337, 92737, 649657])
self.assertRaises(ValueError, m1.cast, 'B',
[2**20, 2**20, 2**10, 2**10, 2**3])
self.assertRaises(ValueError, m2.cast, 'I',
[2**20, 2**20, 2**10, 2**10, 2**1])
else:
self.assertRaises(TypeError, m1.cast, 'B',
[1, 2147483647])
self.assertRaises(ValueError, m1.cast, 'B',
[2**10, 2**10, 2**5, 2**5, 2**1])
self.assertRaises(ValueError, m2.cast, 'I',
[2**10, 2**10, 2**5, 2**3, 2**1])
def test_memoryview_cast(self):
bytespec = (
('B', lambda ex: list(ex.tobytes())),
('b', lambda ex: [x-256 if x > 127 else x for x in list(ex.tobytes())]),
('c', lambda ex: [bytes(chr(x), 'latin-1') for x in list(ex.tobytes())]),
)
def iter_roundtrip(ex, m, items, fmt):
srcsize = struct.calcsize(fmt)
for bytefmt, to_bytelist in bytespec:
m2 = m.cast(bytefmt)
lst = to_bytelist(ex)
self.verify(m2, obj=ex,
itemsize=1, fmt=bytefmt, readonly=False,
ndim=1, shape=[31*srcsize], strides=(1,),
lst=lst, cast=True)
m3 = m2.cast(fmt)
self.assertEqual(m3, ex)
lst = ex.tolist()
self.verify(m3, obj=ex,
itemsize=srcsize, fmt=fmt, readonly=False,
ndim=1, shape=[31], strides=(srcsize,),
lst=lst, cast=True)
# cast from ndim = 0 to ndim = 1
srcsize = struct.calcsize('I')
ex = ndarray(9, shape=[], format='I')
destitems, destshape = cast_items(ex, 'B', 1)
m = memoryview(ex)
m2 = m.cast('B')
self.verify(m2, obj=ex,
itemsize=1, fmt='B', readonly=True,
ndim=1, shape=destshape, strides=(1,),
lst=destitems, cast=True)
# cast from ndim = 1 to ndim = 0
destsize = struct.calcsize('I')
ex = ndarray([9]*destsize, shape=[destsize], format='B')
destitems, destshape = cast_items(ex, 'I', destsize, shape=[])
m = memoryview(ex)
m2 = m.cast('I', shape=[])
self.verify(m2, obj=ex,
itemsize=destsize, fmt='I', readonly=True,
ndim=0, shape=(), strides=(),
lst=destitems, cast=True)
# array.array: roundtrip to/from bytes
for fmt, items, _ in iter_format(31, 'array'):
ex = array.array(fmt, items)
m = memoryview(ex)
iter_roundtrip(ex, m, items, fmt)
# ndarray: roundtrip to/from bytes
for fmt, items, _ in iter_format(31, 'memoryview'):
ex = ndarray(items, shape=[31], format=fmt, flags=ND_WRITABLE)
m = memoryview(ex)
iter_roundtrip(ex, m, items, fmt)
def test_memoryview_cast_1D_ND(self):
# Cast between C-contiguous buffers. At least one buffer must
# be 1D, at least one format must be 'c', 'b' or 'B'.
for _tshape in gencastshapes():
for char in fmtdict['@']:
tfmt = ('', '@')[randrange(2)] + char
tsize = struct.calcsize(tfmt)
n = prod(_tshape) * tsize
obj = 'memoryview' if is_byte_format(tfmt) else 'bytefmt'
for fmt, items, _ in iter_format(n, obj):
size = struct.calcsize(fmt)
shape = [n] if n > 0 else []
tshape = _tshape + [size]
ex = ndarray(items, shape=shape, format=fmt)
m = memoryview(ex)
titems, tshape = cast_items(ex, tfmt, tsize, shape=tshape)
if titems is None:
self.assertRaises(TypeError, m.cast, tfmt, tshape)
continue
if titems == 'nan':
continue # NaNs in lists are a recipe for trouble.
# 1D -> ND
nd = ndarray(titems, shape=tshape, format=tfmt)
m2 = m.cast(tfmt, shape=tshape)
ndim = len(tshape)
strides = nd.strides
lst = nd.tolist()
self.verify(m2, obj=ex,
itemsize=tsize, fmt=tfmt, readonly=True,
ndim=ndim, shape=tshape, strides=strides,
lst=lst, cast=True)
# ND -> 1D
m3 = m2.cast(fmt)
m4 = m2.cast(fmt, shape=shape)
ndim = len(shape)
strides = ex.strides
lst = ex.tolist()
self.verify(m3, obj=ex,
itemsize=size, fmt=fmt, readonly=True,
ndim=ndim, shape=shape, strides=strides,
lst=lst, cast=True)
self.verify(m4, obj=ex,
itemsize=size, fmt=fmt, readonly=True,
ndim=ndim, shape=shape, strides=strides,
lst=lst, cast=True)
if ctypes:
# format: "T{>l:x:>d:y:}"
class BEPoint(ctypes.BigEndianStructure):
_fields_ = [("x", ctypes.c_long), ("y", ctypes.c_double)]
point = BEPoint(100, 200.1)
m1 = memoryview(point)
m2 = m1.cast('B')
self.assertEqual(m2.obj, point)
self.assertEqual(m2.itemsize, 1)
self.assertIs(m2.readonly, False)
self.assertEqual(m2.ndim, 1)
self.assertEqual(m2.shape, (m2.nbytes,))
self.assertEqual(m2.strides, (1,))
self.assertEqual(m2.suboffsets, ())
x = ctypes.c_double(1.2)
m1 = memoryview(x)
m2 = m1.cast('c')
self.assertEqual(m2.obj, x)
self.assertEqual(m2.itemsize, 1)
self.assertIs(m2.readonly, False)
self.assertEqual(m2.ndim, 1)
self.assertEqual(m2.shape, (m2.nbytes,))
self.assertEqual(m2.strides, (1,))
self.assertEqual(m2.suboffsets, ())
def test_memoryview_tolist(self):
# Most tolist() tests are in self.verify() etc.
a = array.array('h', list(range(-6, 6)))
m = memoryview(a)
self.assertEqual(m, a)
self.assertEqual(m.tolist(), a.tolist())
a = a[2::3]
m = m[2::3]
self.assertEqual(m, a)
self.assertEqual(m.tolist(), a.tolist())
ex = ndarray(list(range(2*3*5*7*11)), shape=[11,2,7,3,5], format='L')
m = memoryview(ex)
self.assertEqual(m.tolist(), ex.tolist())
ex = ndarray([(2, 5), (7, 11)], shape=[2], format='lh')
m = memoryview(ex)
self.assertRaises(NotImplementedError, m.tolist)
ex = ndarray([b'12345'], shape=[1], format="s")
m = memoryview(ex)
self.assertRaises(NotImplementedError, m.tolist)
ex = ndarray([b"a",b"b",b"c",b"d",b"e",b"f"], shape=[2,3], format='s')
m = memoryview(ex)
self.assertRaises(NotImplementedError, m.tolist)
def test_memoryview_repr(self):
m = memoryview(bytearray(9))
r = m.__repr__()
self.assertTrue(r.startswith("<memory"))
m.release()
r = m.__repr__()
self.assertTrue(r.startswith("<released"))
def test_memoryview_sequence(self):
for fmt in ('d', 'f'):
inf = float(3e400)
ex = array.array(fmt, [1.0, inf, 3.0])
m = memoryview(ex)
self.assertIn(1.0, m)
self.assertIn(5e700, m)
self.assertIn(3.0, m)
ex = ndarray(9.0, [], format='f')
m = memoryview(ex)
self.assertRaises(TypeError, eval, "9.0 in m", locals())
@contextlib.contextmanager
def assert_out_of_bounds_error(self, dim):
with self.assertRaises(IndexError) as cm:
yield
self.assertEqual(str(cm.exception),
"index out of bounds on dimension %d" % (dim,))
def test_memoryview_index(self):
# ndim = 0
ex = ndarray(12.5, shape=[], format='d')
m = memoryview(ex)
self.assertEqual(m[()], 12.5)
self.assertEqual(m[...], m)
self.assertEqual(m[...], ex)
self.assertRaises(TypeError, m.__getitem__, 0)
ex = ndarray((1,2,3), shape=[], format='iii')
m = memoryview(ex)
self.assertRaises(NotImplementedError, m.__getitem__, ())
# range
ex = ndarray(list(range(7)), shape=[7], flags=ND_WRITABLE)
m = memoryview(ex)
self.assertRaises(IndexError, m.__getitem__, 2**64)
self.assertRaises(TypeError, m.__getitem__, 2.0)
self.assertRaises(TypeError, m.__getitem__, 0.0)
# out of bounds
self.assertRaises(IndexError, m.__getitem__, -8)
self.assertRaises(IndexError, m.__getitem__, 8)
# multi-dimensional
ex = ndarray(list(range(12)), shape=[3,4], flags=ND_WRITABLE)
m = memoryview(ex)
self.assertEqual(m[0, 0], 0)
self.assertEqual(m[2, 0], 8)
self.assertEqual(m[2, 3], 11)
self.assertEqual(m[-1, -1], 11)
self.assertEqual(m[-3, -4], 0)
# out of bounds
for index in (3, -4):
with self.assert_out_of_bounds_error(dim=1):
m[index, 0]
for index in (4, -5):
with self.assert_out_of_bounds_error(dim=2):
m[0, index]
self.assertRaises(IndexError, m.__getitem__, (2**64, 0))
self.assertRaises(IndexError, m.__getitem__, (0, 2**64))
self.assertRaises(TypeError, m.__getitem__, (0, 0, 0))
self.assertRaises(TypeError, m.__getitem__, (0.0, 0.0))
# Not implemented: multidimensional sub-views
self.assertRaises(NotImplementedError, m.__getitem__, ())
self.assertRaises(NotImplementedError, m.__getitem__, 0)
def test_memoryview_assign(self):
# ndim = 0
ex = ndarray(12.5, shape=[], format='f', flags=ND_WRITABLE)
m = memoryview(ex)
m[()] = 22.5
self.assertEqual(m[()], 22.5)
m[...] = 23.5
self.assertEqual(m[()], 23.5)
self.assertRaises(TypeError, m.__setitem__, 0, 24.7)
# read-only
ex = ndarray(list(range(7)), shape=[7])
m = memoryview(ex)
self.assertRaises(TypeError, m.__setitem__, 2, 10)
# range
ex = ndarray(list(range(7)), shape=[7], flags=ND_WRITABLE)
m = memoryview(ex)
self.assertRaises(IndexError, m.__setitem__, 2**64, 9)
self.assertRaises(TypeError, m.__setitem__, 2.0, 10)
self.assertRaises(TypeError, m.__setitem__, 0.0, 11)
# out of bounds
self.assertRaises(IndexError, m.__setitem__, -8, 20)
self.assertRaises(IndexError, m.__setitem__, 8, 25)
# pack_single() success:
for fmt in fmtdict['@']:
if fmt == 'c' or fmt == '?':
continue
ex = ndarray([1,2,3], shape=[3], format=fmt, flags=ND_WRITABLE)
m = memoryview(ex)
i = randrange(-3, 3)
m[i] = 8
self.assertEqual(m[i], 8)
self.assertEqual(m[i], ex[i])
ex = ndarray([b'1', b'2', b'3'], shape=[3], format='c',
flags=ND_WRITABLE)
m = memoryview(ex)
m[2] = b'9'
self.assertEqual(m[2], b'9')
ex = ndarray([True, False, True], shape=[3], format='?',
flags=ND_WRITABLE)
m = memoryview(ex)
m[1] = True
self.assertIs(m[1], True)
# pack_single() exceptions:
nd = ndarray([b'x'], shape=[1], format='c', flags=ND_WRITABLE)
m = memoryview(nd)
self.assertRaises(TypeError, m.__setitem__, 0, 100)
ex = ndarray(list(range(120)), shape=[1,2,3,4,5], flags=ND_WRITABLE)
m1 = memoryview(ex)
for fmt, _range in fmtdict['@'].items():
if (fmt == '?'): # PyObject_IsTrue() accepts anything
continue
if fmt == 'c': # special case tested above
continue
m2 = m1.cast(fmt)
lo, hi = _range
if fmt == 'd' or fmt == 'f':
lo, hi = -2**1024, 2**1024
if fmt != 'P': # PyLong_AsVoidPtr() accepts negative numbers
self.assertRaises(ValueError, m2.__setitem__, 0, lo-1)
self.assertRaises(TypeError, m2.__setitem__, 0, "xyz")
self.assertRaises(ValueError, m2.__setitem__, 0, hi)
# invalid item
m2 = m1.cast('c')
self.assertRaises(ValueError, m2.__setitem__, 0, b'\xff\xff')
# format not implemented
ex = ndarray(list(range(1)), shape=[1], format="xL", flags=ND_WRITABLE)
m = memoryview(ex)
self.assertRaises(NotImplementedError, m.__setitem__, 0, 1)
ex = ndarray([b'12345'], shape=[1], format="s", flags=ND_WRITABLE)
m = memoryview(ex)
self.assertRaises(NotImplementedError, m.__setitem__, 0, 1)
# multi-dimensional
ex = ndarray(list(range(12)), shape=[3,4], flags=ND_WRITABLE)
m = memoryview(ex)
m[0,1] = 42
self.assertEqual(ex[0][1], 42)
m[-1,-1] = 43
self.assertEqual(ex[2][3], 43)
# errors
for index in (3, -4):
with self.assert_out_of_bounds_error(dim=1):
m[index, 0] = 0
for index in (4, -5):
with self.assert_out_of_bounds_error(dim=2):
m[0, index] = 0
self.assertRaises(IndexError, m.__setitem__, (2**64, 0), 0)
self.assertRaises(IndexError, m.__setitem__, (0, 2**64), 0)
self.assertRaises(TypeError, m.__setitem__, (0, 0, 0), 0)
self.assertRaises(TypeError, m.__setitem__, (0.0, 0.0), 0)
# Not implemented: multidimensional sub-views
self.assertRaises(NotImplementedError, m.__setitem__, 0, [2, 3])
def test_memoryview_slice(self):
ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE)
m = memoryview(ex)
# zero step
self.assertRaises(ValueError, m.__getitem__, slice(0,2,0))
self.assertRaises(ValueError, m.__setitem__, slice(0,2,0),
bytearray([1,2]))
# 0-dim slicing (identity function)
self.assertRaises(NotImplementedError, m.__getitem__, ())
# multidimensional slices
ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE)
m = memoryview(ex)
self.assertRaises(NotImplementedError, m.__getitem__,
(slice(0,2,1), slice(0,2,1)))
self.assertRaises(NotImplementedError, m.__setitem__,
(slice(0,2,1), slice(0,2,1)), bytearray([1,2]))
# invalid slice tuple
self.assertRaises(TypeError, m.__getitem__, (slice(0,2,1), {}))
self.assertRaises(TypeError, m.__setitem__, (slice(0,2,1), {}),
bytearray([1,2]))
# rvalue is not an exporter
self.assertRaises(TypeError, m.__setitem__, slice(0,1,1), [1])
# non-contiguous slice assignment
for flags in (0, ND_PIL):
ex1 = ndarray(list(range(12)), shape=[12], strides=[-1], offset=11,
flags=ND_WRITABLE|flags)
ex2 = ndarray(list(range(24)), shape=[12], strides=[2], flags=flags)
m1 = memoryview(ex1)
m2 = memoryview(ex2)
ex1[2:5] = ex1[2:5]
m1[2:5] = m2[2:5]
self.assertEqual(m1, ex1)
self.assertEqual(m2, ex2)
ex1[1:3][::-1] = ex2[0:2][::1]
m1[1:3][::-1] = m2[0:2][::1]
self.assertEqual(m1, ex1)
self.assertEqual(m2, ex2)
ex1[4:1:-2][::-1] = ex1[1:4:2][::1]
m1[4:1:-2][::-1] = m1[1:4:2][::1]
self.assertEqual(m1, ex1)
self.assertEqual(m2, ex2)
def test_memoryview_array(self):
def cmptest(testcase, a, b, m, singleitem):
for i, _ in enumerate(a):
ai = a[i]
mi = m[i]
testcase.assertEqual(ai, mi)
a[i] = singleitem
if singleitem != ai:
testcase.assertNotEqual(a, m)
testcase.assertNotEqual(a, b)
else:
testcase.assertEqual(a, m)
testcase.assertEqual(a, b)
m[i] = singleitem
testcase.assertEqual(a, m)
testcase.assertEqual(b, m)
a[i] = ai
m[i] = mi
for n in range(1, 5):
for fmt, items, singleitem in iter_format(n, 'array'):
for lslice in genslices(n):
for rslice in genslices(n):
a = array.array(fmt, items)
b = array.array(fmt, items)
m = memoryview(b)
self.assertEqual(m, a)
self.assertEqual(m.tolist(), a.tolist())
self.assertEqual(m.tobytes(), a.tobytes())
self.assertEqual(len(m), len(a))
cmptest(self, a, b, m, singleitem)
array_err = None
have_resize = None
try:
al = a[lslice]
ar = a[rslice]
a[lslice] = a[rslice]
have_resize = len(al) != len(ar)
except Exception as e:
array_err = e.__class__
m_err = None
try:
m[lslice] = m[rslice]
except Exception as e:
m_err = e.__class__
if have_resize: # memoryview cannot change shape
self.assertIs(m_err, ValueError)
elif m_err or array_err:
self.assertIs(m_err, array_err)
else:
self.assertEqual(m, a)
self.assertEqual(m.tolist(), a.tolist())
self.assertEqual(m.tobytes(), a.tobytes())
cmptest(self, a, b, m, singleitem)
def test_memoryview_compare_special_cases(self):
a = array.array('L', [1, 2, 3])
b = array.array('L', [1, 2, 7])
# Ordering comparisons raise:
v = memoryview(a)
w = memoryview(b)
for attr in ('__lt__', '__le__', '__gt__', '__ge__'):
self.assertIs(getattr(v, attr)(w), NotImplemented)
self.assertIs(getattr(a, attr)(v), NotImplemented)
# Released views compare equal to themselves:
v = memoryview(a)
v.release()
self.assertEqual(v, v)
self.assertNotEqual(v, a)
self.assertNotEqual(a, v)
v = memoryview(a)
w = memoryview(a)
w.release()
self.assertNotEqual(v, w)
self.assertNotEqual(w, v)
# Operand does not implement the buffer protocol:
v = memoryview(a)
self.assertNotEqual(v, [1, 2, 3])
# NaNs
nd = ndarray([(0, 0)], shape=[1], format='l x d x', flags=ND_WRITABLE)
nd[0] = (-1, float('nan'))
self.assertNotEqual(memoryview(nd), nd)
# Depends on issue #15625: the struct module does not understand 'u'.
a = array.array('u', 'xyz')
v = memoryview(a)
self.assertNotEqual(a, v)
self.assertNotEqual(v, a)
# Some ctypes format strings are unknown to the struct module.
if ctypes:
# format: "T{>l:x:>l:y:}"
class BEPoint(ctypes.BigEndianStructure):
_fields_ = [("x", ctypes.c_long), ("y", ctypes.c_long)]
point = BEPoint(100, 200)
a = memoryview(point)
b = memoryview(point)
self.assertNotEqual(a, b)
self.assertNotEqual(a, point)
self.assertNotEqual(point, a)
self.assertRaises(NotImplementedError, a.tolist)
def test_memoryview_compare_ndim_zero(self):
nd1 = ndarray(1729, shape=[], format='@L')
nd2 = ndarray(1729, shape=[], format='L', flags=ND_WRITABLE)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, w)
self.assertEqual(w, v)
self.assertEqual(v, nd2)
self.assertEqual(nd2, v)
self.assertEqual(w, nd1)
self.assertEqual(nd1, w)
self.assertFalse(v.__ne__(w))
self.assertFalse(w.__ne__(v))
w[()] = 1728
self.assertNotEqual(v, w)
self.assertNotEqual(w, v)
self.assertNotEqual(v, nd2)
self.assertNotEqual(nd2, v)
self.assertNotEqual(w, nd1)
self.assertNotEqual(nd1, w)
self.assertFalse(v.__eq__(w))
self.assertFalse(w.__eq__(v))
nd = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE|ND_PIL)
ex = ndarray(list(range(12)), shape=[12], flags=ND_WRITABLE|ND_PIL)
m = memoryview(ex)
self.assertEqual(m, nd)
m[9] = 100
self.assertNotEqual(m, nd)
# struct module: equal
nd1 = ndarray((1729, 1.2, b'12345'), shape=[], format='Lf5s')
nd2 = ndarray((1729, 1.2, b'12345'), shape=[], format='hf5s',
flags=ND_WRITABLE)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, w)
self.assertEqual(w, v)
self.assertEqual(v, nd2)
self.assertEqual(nd2, v)
self.assertEqual(w, nd1)
self.assertEqual(nd1, w)
# struct module: not equal
nd1 = ndarray((1729, 1.2, b'12345'), shape=[], format='Lf5s')
nd2 = ndarray((-1729, 1.2, b'12345'), shape=[], format='hf5s',
flags=ND_WRITABLE)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertNotEqual(v, w)
self.assertNotEqual(w, v)
self.assertNotEqual(v, nd2)
self.assertNotEqual(nd2, v)
self.assertNotEqual(w, nd1)
self.assertNotEqual(nd1, w)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
def test_memoryview_compare_ndim_one(self):
# contiguous
nd1 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h')
nd2 = ndarray([-529, 576, -625, 676, 729], shape=[5], format='@h')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# contiguous, struct module
nd1 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='<i')
nd2 = ndarray([-529, 576, -625, 676, 729], shape=[5], format='>h')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# non-contiguous
nd1 = ndarray([-529, -625, -729], shape=[3], format='@h')
nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd2[::2])
self.assertEqual(w[::2], nd1)
self.assertEqual(v, w[::2])
self.assertEqual(v[::-1], w[::-2])
# non-contiguous, struct module
nd1 = ndarray([-529, -625, -729], shape=[3], format='!h')
nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='<l')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd2[::2])
self.assertEqual(w[::2], nd1)
self.assertEqual(v, w[::2])
self.assertEqual(v[::-1], w[::-2])
# non-contiguous, suboffsets
nd1 = ndarray([-529, -625, -729], shape=[3], format='@h')
nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='@h',
flags=ND_PIL)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd2[::2])
self.assertEqual(w[::2], nd1)
self.assertEqual(v, w[::2])
self.assertEqual(v[::-1], w[::-2])
# non-contiguous, suboffsets, struct module
nd1 = ndarray([-529, -625, -729], shape=[3], format='h 0c')
nd2 = ndarray([-529, 576, -625, 676, -729], shape=[5], format='> h',
flags=ND_PIL)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd2[::2])
self.assertEqual(w[::2], nd1)
self.assertEqual(v, w[::2])
self.assertEqual(v[::-1], w[::-2])
def test_memoryview_compare_zero_shape(self):
# zeros in shape
nd1 = ndarray([900, 961], shape=[0], format='@h')
nd2 = ndarray([-900, -961], shape=[0], format='@h')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, nd2)
self.assertEqual(w, nd1)
self.assertEqual(v, w)
# zeros in shape, struct module
nd1 = ndarray([900, 961], shape=[0], format='= h0c')
nd2 = ndarray([-900, -961], shape=[0], format='@ i')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, nd2)
self.assertEqual(w, nd1)
self.assertEqual(v, w)
def test_memoryview_compare_zero_strides(self):
# zero strides
nd1 = ndarray([900, 900, 900, 900], shape=[4], format='@L')
nd2 = ndarray([900], shape=[4], strides=[0], format='L')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, nd2)
self.assertEqual(w, nd1)
self.assertEqual(v, w)
# zero strides, struct module
nd1 = ndarray([(900, 900)]*4, shape=[4], format='@ Li')
nd2 = ndarray([(900, 900)], shape=[4], strides=[0], format='!L h')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, nd2)
self.assertEqual(w, nd1)
self.assertEqual(v, w)
def test_memoryview_compare_random_formats(self):
# random single character native formats
n = 10
for char in fmtdict['@m']:
fmt, items, singleitem = randitems(n, 'memoryview', '@', char)
for flags in (0, ND_PIL):
nd = ndarray(items, shape=[n], format=fmt, flags=flags)
m = memoryview(nd)
self.assertEqual(m, nd)
nd = nd[::-3]
m = memoryview(nd)
self.assertEqual(m, nd)
# random formats
n = 10
for _ in range(100):
fmt, items, singleitem = randitems(n)
for flags in (0, ND_PIL):
nd = ndarray(items, shape=[n], format=fmt, flags=flags)
m = memoryview(nd)
self.assertEqual(m, nd)
nd = nd[::-3]
m = memoryview(nd)
self.assertEqual(m, nd)
def test_memoryview_compare_multidim_c(self):
# C-contiguous, different values
nd1 = ndarray(list(range(-15, 15)), shape=[3, 2, 5], format='@h')
nd2 = ndarray(list(range(0, 30)), shape=[3, 2, 5], format='@h')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# C-contiguous, different values, struct module
nd1 = ndarray([(0, 1, 2)]*30, shape=[3, 2, 5], format='=f q xxL')
nd2 = ndarray([(-1.2, 1, 2)]*30, shape=[3, 2, 5], format='< f 2Q')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# C-contiguous, different shape
nd1 = ndarray(list(range(30)), shape=[2, 3, 5], format='L')
nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='L')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# C-contiguous, different shape, struct module
nd1 = ndarray([(0, 1, 2)]*21, shape=[3, 7], format='! b B xL')
nd2 = ndarray([(0, 1, 2)]*21, shape=[7, 3], format='= Qx l xxL')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# C-contiguous, different format, struct module
nd1 = ndarray(list(range(30)), shape=[2, 3, 5], format='L')
nd2 = ndarray(list(range(30)), shape=[2, 3, 5], format='l')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, nd2)
self.assertEqual(w, nd1)
self.assertEqual(v, w)
def test_memoryview_compare_multidim_fortran(self):
# Fortran-contiguous, different values
nd1 = ndarray(list(range(-15, 15)), shape=[5, 2, 3], format='@h',
flags=ND_FORTRAN)
nd2 = ndarray(list(range(0, 30)), shape=[5, 2, 3], format='@h',
flags=ND_FORTRAN)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# Fortran-contiguous, different values, struct module
nd1 = ndarray([(2**64-1, -1)]*6, shape=[2, 3], format='=Qq',
flags=ND_FORTRAN)
nd2 = ndarray([(-1, 2**64-1)]*6, shape=[2, 3], format='=qQ',
flags=ND_FORTRAN)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# Fortran-contiguous, different shape
nd1 = ndarray(list(range(-15, 15)), shape=[2, 3, 5], format='l',
flags=ND_FORTRAN)
nd2 = ndarray(list(range(-15, 15)), shape=[3, 2, 5], format='l',
flags=ND_FORTRAN)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# Fortran-contiguous, different shape, struct module
nd1 = ndarray(list(range(-15, 15)), shape=[2, 3, 5], format='0ll',
flags=ND_FORTRAN)
nd2 = ndarray(list(range(-15, 15)), shape=[3, 2, 5], format='l',
flags=ND_FORTRAN)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# Fortran-contiguous, different format, struct module
nd1 = ndarray(list(range(30)), shape=[5, 2, 3], format='@h',
flags=ND_FORTRAN)
nd2 = ndarray(list(range(30)), shape=[5, 2, 3], format='@b',
flags=ND_FORTRAN)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, nd2)
self.assertEqual(w, nd1)
self.assertEqual(v, w)
def test_memoryview_compare_multidim_mixed(self):
# mixed C/Fortran contiguous
lst1 = list(range(-15, 15))
lst2 = transpose(lst1, [3, 2, 5])
nd1 = ndarray(lst1, shape=[3, 2, 5], format='@l')
nd2 = ndarray(lst2, shape=[3, 2, 5], format='l', flags=ND_FORTRAN)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, w)
# mixed C/Fortran contiguous, struct module
lst1 = [(-3.3, -22, b'x')]*30
lst1[5] = (-2.2, -22, b'x')
lst2 = transpose(lst1, [3, 2, 5])
nd1 = ndarray(lst1, shape=[3, 2, 5], format='d b c')
nd2 = ndarray(lst2, shape=[3, 2, 5], format='d h c', flags=ND_FORTRAN)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, w)
# different values, non-contiguous
ex1 = ndarray(list(range(40)), shape=[5, 8], format='@I')
nd1 = ex1[3:1:-1, ::-2]
ex2 = ndarray(list(range(40)), shape=[5, 8], format='I')
nd2 = ex2[1:3:1, ::-2]
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# same values, non-contiguous, struct module
ex1 = ndarray([(2**31-1, -2**31)]*22, shape=[11, 2], format='=ii')
nd1 = ex1[3:1:-1, ::-2]
ex2 = ndarray([(2**31-1, -2**31)]*22, shape=[11, 2], format='>ii')
nd2 = ex2[1:3:1, ::-2]
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, nd2)
self.assertEqual(w, nd1)
self.assertEqual(v, w)
# different shape
ex1 = ndarray(list(range(30)), shape=[2, 3, 5], format='b')
nd1 = ex1[1:3:, ::-2]
nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='b')
nd2 = ex2[1:3:, ::-2]
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# different shape, struct module
ex1 = ndarray(list(range(30)), shape=[2, 3, 5], format='B')
nd1 = ex1[1:3:, ::-2]
nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='b')
nd2 = ex2[1:3:, ::-2]
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# different format, struct module
ex1 = ndarray([(2, b'123')]*30, shape=[5, 3, 2], format='b3s')
nd1 = ex1[1:3:, ::-2]
nd2 = ndarray([(2, b'123')]*30, shape=[5, 3, 2], format='i3s')
nd2 = ex2[1:3:, ::-2]
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
def test_memoryview_compare_multidim_zero_shape(self):
# zeros in shape
nd1 = ndarray(list(range(30)), shape=[0, 3, 2], format='i')
nd2 = ndarray(list(range(30)), shape=[5, 0, 2], format='@i')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# zeros in shape, struct module
nd1 = ndarray(list(range(30)), shape=[0, 3, 2], format='i')
nd2 = ndarray(list(range(30)), shape=[5, 0, 2], format='@i')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
def test_memoryview_compare_multidim_zero_strides(self):
# zero strides
nd1 = ndarray([900]*80, shape=[4, 5, 4], format='@L')
nd2 = ndarray([900], shape=[4, 5, 4], strides=[0, 0, 0], format='L')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, nd2)
self.assertEqual(w, nd1)
self.assertEqual(v, w)
self.assertEqual(v.tolist(), w.tolist())
# zero strides, struct module
nd1 = ndarray([(1, 2)]*10, shape=[2, 5], format='=lQ')
nd2 = ndarray([(1, 2)], shape=[2, 5], strides=[0, 0], format='<lQ')
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, nd2)
self.assertEqual(w, nd1)
self.assertEqual(v, w)
def test_memoryview_compare_multidim_suboffsets(self):
# suboffsets
ex1 = ndarray(list(range(40)), shape=[5, 8], format='@I')
nd1 = ex1[3:1:-1, ::-2]
ex2 = ndarray(list(range(40)), shape=[5, 8], format='I', flags=ND_PIL)
nd2 = ex2[1:3:1, ::-2]
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# suboffsets, struct module
ex1 = ndarray([(2**64-1, -1)]*40, shape=[5, 8], format='=Qq',
flags=ND_WRITABLE)
ex1[2][7] = (1, -2)
nd1 = ex1[3:1:-1, ::-2]
ex2 = ndarray([(2**64-1, -1)]*40, shape=[5, 8], format='>Qq',
flags=ND_PIL|ND_WRITABLE)
ex2[2][7] = (1, -2)
nd2 = ex2[1:3:1, ::-2]
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, nd2)
self.assertEqual(w, nd1)
self.assertEqual(v, w)
# suboffsets, different shape
ex1 = ndarray(list(range(30)), shape=[2, 3, 5], format='b',
flags=ND_PIL)
nd1 = ex1[1:3:, ::-2]
nd2 = ndarray(list(range(30)), shape=[3, 2, 5], format='b')
nd2 = ex2[1:3:, ::-2]
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# suboffsets, different shape, struct module
ex1 = ndarray([(2**8-1, -1)]*40, shape=[2, 3, 5], format='Bb',
flags=ND_PIL|ND_WRITABLE)
nd1 = ex1[1:2:, ::-2]
ex2 = ndarray([(2**8-1, -1)]*40, shape=[3, 2, 5], format='Bb')
nd2 = ex2[1:2:, ::-2]
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# suboffsets, different format
ex1 = ndarray(list(range(30)), shape=[5, 3, 2], format='i', flags=ND_PIL)
nd1 = ex1[1:3:, ::-2]
ex2 = ndarray(list(range(30)), shape=[5, 3, 2], format='@I', flags=ND_PIL)
nd2 = ex2[1:3:, ::-2]
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, nd2)
self.assertEqual(w, nd1)
self.assertEqual(v, w)
# suboffsets, different format, struct module
ex1 = ndarray([(b'hello', b'', 1)]*27, shape=[3, 3, 3], format='5s0sP',
flags=ND_PIL|ND_WRITABLE)
ex1[1][2][2] = (b'sushi', b'', 1)
nd1 = ex1[1:3:, ::-2]
ex2 = ndarray([(b'hello', b'', 1)]*27, shape=[3, 3, 3], format='5s0sP',
flags=ND_PIL|ND_WRITABLE)
ex1[1][2][2] = (b'sushi', b'', 1)
nd2 = ex2[1:3:, ::-2]
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertNotEqual(v, nd2)
self.assertNotEqual(w, nd1)
self.assertNotEqual(v, w)
# initialize mixed C/Fortran + suboffsets
lst1 = list(range(-15, 15))
lst2 = transpose(lst1, [3, 2, 5])
nd1 = ndarray(lst1, shape=[3, 2, 5], format='@l', flags=ND_PIL)
nd2 = ndarray(lst2, shape=[3, 2, 5], format='l', flags=ND_FORTRAN|ND_PIL)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, w)
# initialize mixed C/Fortran + suboffsets, struct module
lst1 = [(b'sashimi', b'sliced', 20.05)]*30
lst1[11] = (b'ramen', b'spicy', 9.45)
lst2 = transpose(lst1, [3, 2, 5])
nd1 = ndarray(lst1, shape=[3, 2, 5], format='< 10p 9p d', flags=ND_PIL)
nd2 = ndarray(lst2, shape=[3, 2, 5], format='> 10p 9p d',
flags=ND_FORTRAN|ND_PIL)
v = memoryview(nd1)
w = memoryview(nd2)
self.assertEqual(v, nd1)
self.assertEqual(w, nd2)
self.assertEqual(v, w)
def test_memoryview_compare_not_equal(self):
# items not equal
for byteorder in ['=', '<', '>', '!']:
x = ndarray([2**63]*120, shape=[3,5,2,2,2], format=byteorder+'Q')
y = ndarray([2**63]*120, shape=[3,5,2,2,2], format=byteorder+'Q',
flags=ND_WRITABLE|ND_FORTRAN)
y[2][3][1][1][1] = 1
a = memoryview(x)
b = memoryview(y)
self.assertEqual(a, x)
self.assertEqual(b, y)
self.assertNotEqual(a, b)
self.assertNotEqual(a, y)
self.assertNotEqual(b, x)
x = ndarray([(2**63, 2**31, 2**15)]*120, shape=[3,5,2,2,2],
format=byteorder+'QLH')
y = ndarray([(2**63, 2**31, 2**15)]*120, shape=[3,5,2,2,2],
format=byteorder+'QLH', flags=ND_WRITABLE|ND_FORTRAN)
y[2][3][1][1][1] = (1, 1, 1)
a = memoryview(x)
b = memoryview(y)
self.assertEqual(a, x)
self.assertEqual(b, y)
self.assertNotEqual(a, b)
self.assertNotEqual(a, y)
self.assertNotEqual(b, x)
def test_memoryview_check_released(self):
a = array.array('d', [1.1, 2.2, 3.3])
m = memoryview(a)
m.release()
# PyMemoryView_FromObject()
self.assertRaises(ValueError, memoryview, m)
# memoryview.cast()
self.assertRaises(ValueError, m.cast, 'c')
# getbuffer()
self.assertRaises(ValueError, ndarray, m)
# memoryview.tolist()
self.assertRaises(ValueError, m.tolist)
# memoryview.tobytes()
self.assertRaises(ValueError, m.tobytes)
# sequence
self.assertRaises(ValueError, eval, "1.0 in m", locals())
# subscript
self.assertRaises(ValueError, m.__getitem__, 0)
# assignment
self.assertRaises(ValueError, m.__setitem__, 0, 1)
for attr in ('obj', 'nbytes', 'readonly', 'itemsize', 'format', 'ndim',
'shape', 'strides', 'suboffsets', 'c_contiguous',
'f_contiguous', 'contiguous'):
self.assertRaises(ValueError, m.__getattribute__, attr)
# richcompare
b = array.array('d', [1.1, 2.2, 3.3])
m1 = memoryview(a)
m2 = memoryview(b)
self.assertEqual(m1, m2)
m1.release()
self.assertNotEqual(m1, m2)
self.assertNotEqual(m1, a)
self.assertEqual(m1, m1)
def test_memoryview_tobytes(self):
# Many implicit tests are already in self.verify().
t = (-529, 576, -625, 676, -729)
nd = ndarray(t, shape=[5], format='@h')
m = memoryview(nd)
self.assertEqual(m, nd)
self.assertEqual(m.tobytes(), nd.tobytes())
nd = ndarray([t], shape=[1], format='>hQiLl')
m = memoryview(nd)
self.assertEqual(m, nd)
self.assertEqual(m.tobytes(), nd.tobytes())
nd = ndarray([t for _ in range(12)], shape=[2,2,3], format='=hQiLl')
m = memoryview(nd)
self.assertEqual(m, nd)
self.assertEqual(m.tobytes(), nd.tobytes())
nd = ndarray([t for _ in range(120)], shape=[5,2,2,3,2],
format='<hQiLl')
m = memoryview(nd)
self.assertEqual(m, nd)
self.assertEqual(m.tobytes(), nd.tobytes())
# Unknown formats are handled: tobytes() purely depends on itemsize.
if ctypes:
# format: "T{>l:x:>l:y:}"
class BEPoint(ctypes.BigEndianStructure):
_fields_ = [("x", ctypes.c_long), ("y", ctypes.c_long)]
point = BEPoint(100, 200)
a = memoryview(point)
self.assertEqual(a.tobytes(), bytes(point))
def test_memoryview_get_contiguous(self):
# Many implicit tests are already in self.verify().
# no buffer interface
self.assertRaises(TypeError, get_contiguous, {}, PyBUF_READ, 'F')
# writable request to read-only object
self.assertRaises(BufferError, get_contiguous, b'x', PyBUF_WRITE, 'C')
# writable request to non-contiguous object
nd = ndarray([1, 2, 3], shape=[2], strides=[2])
self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'A')
# scalar, read-only request from read-only exporter
nd = ndarray(9, shape=(), format="L")
for order in ['C', 'F', 'A']:
m = get_contiguous(nd, PyBUF_READ, order)
self.assertEqual(m, nd)
self.assertEqual(m[()], 9)
# scalar, read-only request from writable exporter
nd = ndarray(9, shape=(), format="L", flags=ND_WRITABLE)
for order in ['C', 'F', 'A']:
m = get_contiguous(nd, PyBUF_READ, order)
self.assertEqual(m, nd)
self.assertEqual(m[()], 9)
# scalar, writable request
for order in ['C', 'F', 'A']:
nd[()] = 9
m = get_contiguous(nd, PyBUF_WRITE, order)
self.assertEqual(m, nd)
self.assertEqual(m[()], 9)
m[()] = 10
self.assertEqual(m[()], 10)
self.assertEqual(nd[()], 10)
# zeros in shape
nd = ndarray([1], shape=[0], format="L", flags=ND_WRITABLE)
for order in ['C', 'F', 'A']:
m = get_contiguous(nd, PyBUF_READ, order)
self.assertRaises(IndexError, m.__getitem__, 0)
self.assertEqual(m, nd)
self.assertEqual(m.tolist(), [])
nd = ndarray(list(range(8)), shape=[2, 0, 7], format="L",
flags=ND_WRITABLE)
for order in ['C', 'F', 'A']:
m = get_contiguous(nd, PyBUF_READ, order)
self.assertEqual(ndarray(m).tolist(), [[], []])
# one-dimensional
nd = ndarray([1], shape=[1], format="h", flags=ND_WRITABLE)
for order in ['C', 'F', 'A']:
m = get_contiguous(nd, PyBUF_WRITE, order)
self.assertEqual(m, nd)
self.assertEqual(m.tolist(), nd.tolist())
nd = ndarray([1, 2, 3], shape=[3], format="b", flags=ND_WRITABLE)
for order in ['C', 'F', 'A']:
m = get_contiguous(nd, PyBUF_WRITE, order)
self.assertEqual(m, nd)
self.assertEqual(m.tolist(), nd.tolist())
# one-dimensional, non-contiguous
nd = ndarray([1, 2, 3], shape=[2], strides=[2], flags=ND_WRITABLE)
for order in ['C', 'F', 'A']:
m = get_contiguous(nd, PyBUF_READ, order)
self.assertEqual(m, nd)
self.assertEqual(m.tolist(), nd.tolist())
self.assertRaises(TypeError, m.__setitem__, 1, 20)
self.assertEqual(m[1], 3)
self.assertEqual(nd[1], 3)
nd = nd[::-1]
for order in ['C', 'F', 'A']:
m = get_contiguous(nd, PyBUF_READ, order)
self.assertEqual(m, nd)
self.assertEqual(m.tolist(), nd.tolist())
self.assertRaises(TypeError, m.__setitem__, 1, 20)
self.assertEqual(m[1], 1)
self.assertEqual(nd[1], 1)
# multi-dimensional, contiguous input
nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE)
for order in ['C', 'A']:
m = get_contiguous(nd, PyBUF_WRITE, order)
self.assertEqual(ndarray(m).tolist(), nd.tolist())
self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'F')
m = get_contiguous(nd, PyBUF_READ, order)
self.assertEqual(ndarray(m).tolist(), nd.tolist())
nd = ndarray(list(range(12)), shape=[3, 4],
flags=ND_WRITABLE|ND_FORTRAN)
for order in ['F', 'A']:
m = get_contiguous(nd, PyBUF_WRITE, order)
self.assertEqual(ndarray(m).tolist(), nd.tolist())
self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE, 'C')
m = get_contiguous(nd, PyBUF_READ, order)
self.assertEqual(ndarray(m).tolist(), nd.tolist())
# multi-dimensional, non-contiguous input
nd = ndarray(list(range(12)), shape=[3, 4], flags=ND_WRITABLE|ND_PIL)
for order in ['C', 'F', 'A']:
self.assertRaises(BufferError, get_contiguous, nd, PyBUF_WRITE,
order)
m = get_contiguous(nd, PyBUF_READ, order)
self.assertEqual(ndarray(m).tolist(), nd.tolist())
# flags
nd = ndarray([1,2,3,4,5], shape=[3], strides=[2])
m = get_contiguous(nd, PyBUF_READ, 'C')
self.assertTrue(m.c_contiguous)
def test_memoryview_serializing(self):
# C-contiguous
size = struct.calcsize('i')
a = array.array('i', [1,2,3,4,5])
m = memoryview(a)
buf = io.BytesIO(m)
b = bytearray(5*size)
buf.readinto(b)
self.assertEqual(m.tobytes(), b)
# C-contiguous, multi-dimensional
size = struct.calcsize('L')
nd = ndarray(list(range(12)), shape=[2,3,2], format="L")
m = memoryview(nd)
buf = io.BytesIO(m)
b = bytearray(2*3*2*size)
buf.readinto(b)
self.assertEqual(m.tobytes(), b)
# Fortran contiguous, multi-dimensional
#size = struct.calcsize('L')
#nd = ndarray(list(range(12)), shape=[2,3,2], format="L",
# flags=ND_FORTRAN)
#m = memoryview(nd)
#buf = io.BytesIO(m)
#b = bytearray(2*3*2*size)
#buf.readinto(b)
#self.assertEqual(m.tobytes(), b)
def test_memoryview_hash(self):
# bytes exporter
b = bytes(list(range(12)))
m = memoryview(b)
self.assertEqual(hash(b), hash(m))
# C-contiguous
mc = m.cast('c', shape=[3,4])
self.assertEqual(hash(mc), hash(b))
# non-contiguous
mx = m[::-2]
b = bytes(list(range(12))[::-2])
self.assertEqual(hash(mx), hash(b))
# Fortran contiguous
nd = ndarray(list(range(30)), shape=[3,2,5], flags=ND_FORTRAN)
m = memoryview(nd)
self.assertEqual(hash(m), hash(nd))
# multi-dimensional slice
nd = ndarray(list(range(30)), shape=[3,2,5])
x = nd[::2, ::, ::-1]
m = memoryview(x)
self.assertEqual(hash(m), hash(x))
# multi-dimensional slice with suboffsets
nd = ndarray(list(range(30)), shape=[2,5,3], flags=ND_PIL)
x = nd[::2, ::, ::-1]
m = memoryview(x)
self.assertEqual(hash(m), hash(x))
# equality-hash invariant
x = ndarray(list(range(12)), shape=[12], format='B')
a = memoryview(x)
y = ndarray(list(range(12)), shape=[12], format='b')
b = memoryview(y)
self.assertEqual(a, b)
self.assertEqual(hash(a), hash(b))
# non-byte formats
nd = ndarray(list(range(12)), shape=[2,2,3], format='L')
m = memoryview(nd)
self.assertRaises(ValueError, m.__hash__)
nd = ndarray(list(range(-6, 6)), shape=[2,2,3], format='h')
m = memoryview(nd)
self.assertRaises(ValueError, m.__hash__)
nd = ndarray(list(range(12)), shape=[2,2,3], format='= L')
m = memoryview(nd)
self.assertRaises(ValueError, m.__hash__)
nd = ndarray(list(range(-6, 6)), shape=[2,2,3], format='< h')
m = memoryview(nd)
self.assertRaises(ValueError, m.__hash__)
def test_memoryview_release(self):
# Create re-exporter from getbuffer(memoryview), then release the view.
a = bytearray([1,2,3])
m = memoryview(a)
nd = ndarray(m) # re-exporter
self.assertRaises(BufferError, m.release)
del nd
m.release()
a = bytearray([1,2,3])
m = memoryview(a)
nd1 = ndarray(m, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
nd2 = ndarray(nd1, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
self.assertIs(nd2.obj, m)
self.assertRaises(BufferError, m.release)
del nd1, nd2
m.release()
# chained views
a = bytearray([1,2,3])
m1 = memoryview(a)
m2 = memoryview(m1)
nd = ndarray(m2) # re-exporter
m1.release()
self.assertRaises(BufferError, m2.release)
del nd
m2.release()
a = bytearray([1,2,3])
m1 = memoryview(a)
m2 = memoryview(m1)
nd1 = ndarray(m2, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
nd2 = ndarray(nd1, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
self.assertIs(nd2.obj, m2)
m1.release()
self.assertRaises(BufferError, m2.release)
del nd1, nd2
m2.release()
# Allow changing layout while buffers are exported.
nd = ndarray([1,2,3], shape=[3], flags=ND_VAREXPORT)
m1 = memoryview(nd)
nd.push([4,5,6,7,8], shape=[5]) # mutate nd
m2 = memoryview(nd)
x = memoryview(m1)
self.assertEqual(x.tolist(), m1.tolist())
y = memoryview(m2)
self.assertEqual(y.tolist(), m2.tolist())
self.assertEqual(y.tolist(), nd.tolist())
m2.release()
y.release()
nd.pop() # pop the current view
self.assertEqual(x.tolist(), nd.tolist())
del nd
m1.release()
x.release()
# If multiple memoryviews share the same managed buffer, implicit
# release() in the context manager's __exit__() method should still
# work.
def catch22(b):
with memoryview(b) as m2:
pass
x = bytearray(b'123')
with memoryview(x) as m1:
catch22(m1)
self.assertEqual(m1[0], ord(b'1'))
x = ndarray(list(range(12)), shape=[2,2,3], format='l')
y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
self.assertIs(z.obj, x)
with memoryview(z) as m:
catch22(m)
self.assertEqual(m[0:1].tolist(), [[[0, 1, 2], [3, 4, 5]]])
# Test garbage collection.
for flags in (0, ND_REDIRECT):
x = bytearray(b'123')
with memoryview(x) as m1:
del x
y = ndarray(m1, getbuf=PyBUF_FULL_RO, flags=flags)
with memoryview(y) as m2:
del y
z = ndarray(m2, getbuf=PyBUF_FULL_RO, flags=flags)
with memoryview(z) as m3:
del z
catch22(m3)
catch22(m2)
catch22(m1)
self.assertEqual(m1[0], ord(b'1'))
self.assertEqual(m2[1], ord(b'2'))
self.assertEqual(m3[2], ord(b'3'))
del m3
del m2
del m1
x = bytearray(b'123')
with memoryview(x) as m1:
del x
y = ndarray(m1, getbuf=PyBUF_FULL_RO, flags=flags)
with memoryview(y) as m2:
del y
z = ndarray(m2, getbuf=PyBUF_FULL_RO, flags=flags)
with memoryview(z) as m3:
del z
catch22(m1)
catch22(m2)
catch22(m3)
self.assertEqual(m1[0], ord(b'1'))
self.assertEqual(m2[1], ord(b'2'))
self.assertEqual(m3[2], ord(b'3'))
del m1, m2, m3
# memoryview.release() fails if the view has exported buffers.
x = bytearray(b'123')
with self.assertRaises(BufferError):
with memoryview(x) as m:
ex = ndarray(m)
m[0] == ord(b'1')
def test_memoryview_redirect(self):
nd = ndarray([1.0 * x for x in range(12)], shape=[12], format='d')
a = array.array('d', [1.0 * x for x in range(12)])
for x in (nd, a):
y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
m = memoryview(z)
self.assertIs(y.obj, x)
self.assertIs(z.obj, x)
self.assertIs(m.obj, x)
self.assertEqual(m, x)
self.assertEqual(m, y)
self.assertEqual(m, z)
self.assertEqual(m[1:3], x[1:3])
self.assertEqual(m[1:3], y[1:3])
self.assertEqual(m[1:3], z[1:3])
del y, z
self.assertEqual(m[1:3], x[1:3])
def test_memoryview_from_static_exporter(self):
fmt = 'B'
lst = [0,1,2,3,4,5,6,7,8,9,10,11]
# exceptions
self.assertRaises(TypeError, staticarray, 1, 2, 3)
# view.obj==x
x = staticarray()
y = memoryview(x)
self.verify(y, obj=x,
itemsize=1, fmt=fmt, readonly=True,
ndim=1, shape=[12], strides=[1],
lst=lst)
for i in range(12):
self.assertEqual(y[i], i)
del x
del y
x = staticarray()
y = memoryview(x)
del y
del x
x = staticarray()
y = ndarray(x, getbuf=PyBUF_FULL_RO)
z = ndarray(y, getbuf=PyBUF_FULL_RO)
m = memoryview(z)
self.assertIs(y.obj, x)
self.assertIs(m.obj, z)
self.verify(m, obj=z,
itemsize=1, fmt=fmt, readonly=True,
ndim=1, shape=[12], strides=[1],
lst=lst)
del x, y, z, m
x = staticarray()
y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
m = memoryview(z)
self.assertIs(y.obj, x)
self.assertIs(z.obj, x)
self.assertIs(m.obj, x)
self.verify(m, obj=x,
itemsize=1, fmt=fmt, readonly=True,
ndim=1, shape=[12], strides=[1],
lst=lst)
del x, y, z, m
# view.obj==NULL
x = staticarray(legacy_mode=True)
y = memoryview(x)
self.verify(y, obj=None,
itemsize=1, fmt=fmt, readonly=True,
ndim=1, shape=[12], strides=[1],
lst=lst)
for i in range(12):
self.assertEqual(y[i], i)
del x
del y
x = staticarray(legacy_mode=True)
y = memoryview(x)
del y
del x
x = staticarray(legacy_mode=True)
y = ndarray(x, getbuf=PyBUF_FULL_RO)
z = ndarray(y, getbuf=PyBUF_FULL_RO)
m = memoryview(z)
self.assertIs(y.obj, None)
self.assertIs(m.obj, z)
self.verify(m, obj=z,
itemsize=1, fmt=fmt, readonly=True,
ndim=1, shape=[12], strides=[1],
lst=lst)
del x, y, z, m
x = staticarray(legacy_mode=True)
y = ndarray(x, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
z = ndarray(y, getbuf=PyBUF_FULL_RO, flags=ND_REDIRECT)
m = memoryview(z)
# Clearly setting view.obj==NULL is inferior, since it
# messes up the redirection chain:
self.assertIs(y.obj, None)
self.assertIs(z.obj, y)
self.assertIs(m.obj, y)
self.verify(m, obj=y,
itemsize=1, fmt=fmt, readonly=True,
ndim=1, shape=[12], strides=[1],
lst=lst)
del x, y, z, m
def test_memoryview_getbuffer_undefined(self):
# getbufferproc does not adhere to the new documentation
nd = ndarray([1,2,3], [3], flags=ND_GETBUF_FAIL|ND_GETBUF_UNDEFINED)
self.assertRaises(BufferError, memoryview, nd)
def test_issue_7385(self):
x = ndarray([1,2,3], shape=[3], flags=ND_GETBUF_FAIL)
self.assertRaises(BufferError, memoryview, x)
@support.cpython_only
def test_pybuffer_size_from_format(self):
# basic tests
for format in ('', 'ii', '3s'):
self.assertEqual(_testcapi.PyBuffer_SizeFromFormat(format),
struct.calcsize(format))
if __name__ == "__main__":
unittest.main()