cpython/Objects/funcobject.c

615 lines
14 KiB
C
Raw Normal View History

1991-02-19 20:39:46 +08:00
1990-10-14 20:07:46 +08:00
/* Function object implementation */
1997-05-02 11:12:38 +08:00
#include "Python.h"
#include "compile.h"
2001-08-02 12:15:00 +08:00
#include "eval.h"
1990-12-20 23:06:42 +08:00
#include "structmember.h"
1990-10-14 20:07:46 +08:00
1997-05-02 11:12:38 +08:00
PyObject *
2000-07-09 14:03:25 +08:00
PyFunction_New(PyObject *code, PyObject *globals)
1990-10-14 20:07:46 +08:00
{
1997-05-02 11:12:38 +08:00
PyFunctionObject *op = PyObject_NEW(PyFunctionObject,
&PyFunction_Type);
1990-10-14 20:07:46 +08:00
if (op != NULL) {
1997-05-02 11:12:38 +08:00
PyObject *doc;
PyObject *consts;
op->func_weakreflist = NULL;
1997-05-02 11:12:38 +08:00
Py_INCREF(code);
op->func_code = code;
1997-05-02 11:12:38 +08:00
Py_INCREF(globals);
1990-10-14 20:07:46 +08:00
op->func_globals = globals;
1997-05-02 11:12:38 +08:00
op->func_name = ((PyCodeObject *)code)->co_name;
Py_INCREF(op->func_name);
op->func_defaults = NULL; /* No default arguments */
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-26 04:06:59 +08:00
op->func_closure = NULL;
1997-05-02 11:12:38 +08:00
consts = ((PyCodeObject *)code)->co_consts;
if (PyTuple_Size(consts) >= 1) {
doc = PyTuple_GetItem(consts, 0);
if (!PyString_Check(doc) && !PyUnicode_Check(doc))
1997-05-02 11:12:38 +08:00
doc = Py_None;
}
else
1997-05-02 11:12:38 +08:00
doc = Py_None;
Py_INCREF(doc);
op->func_doc = doc;
op->func_dict = NULL;
1990-10-14 20:07:46 +08:00
}
else
return NULL;
PyObject_GC_Init(op);
1997-05-02 11:12:38 +08:00
return (PyObject *)op;
1990-10-14 20:07:46 +08:00
}
1997-05-02 11:12:38 +08:00
PyObject *
2000-07-09 14:03:25 +08:00
PyFunction_GetCode(PyObject *op)
1990-10-14 20:07:46 +08:00
{
1997-05-02 11:12:38 +08:00
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
1990-10-14 20:07:46 +08:00
return NULL;
}
1997-05-02 11:12:38 +08:00
return ((PyFunctionObject *) op) -> func_code;
1990-10-14 20:07:46 +08:00
}
1997-05-02 11:12:38 +08:00
PyObject *
2000-07-09 14:03:25 +08:00
PyFunction_GetGlobals(PyObject *op)
1990-10-14 20:07:46 +08:00
{
1997-05-02 11:12:38 +08:00
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
1990-10-14 20:07:46 +08:00
return NULL;
}
1997-05-02 11:12:38 +08:00
return ((PyFunctionObject *) op) -> func_globals;
1990-10-14 20:07:46 +08:00
}
1997-05-02 11:12:38 +08:00
PyObject *
2000-07-09 14:03:25 +08:00
PyFunction_GetDefaults(PyObject *op)
1994-08-30 16:27:36 +08:00
{
1997-05-02 11:12:38 +08:00
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
1994-08-30 16:27:36 +08:00
return NULL;
}
1997-05-02 11:12:38 +08:00
return ((PyFunctionObject *) op) -> func_defaults;
1994-08-30 16:27:36 +08:00
}
int
2000-07-09 14:03:25 +08:00
PyFunction_SetDefaults(PyObject *op, PyObject *defaults)
1994-08-30 16:27:36 +08:00
{
1997-05-02 11:12:38 +08:00
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
1994-08-30 16:27:36 +08:00
return -1;
}
1997-05-02 11:12:38 +08:00
if (defaults == Py_None)
defaults = NULL;
1998-04-11 06:16:39 +08:00
else if (PyTuple_Check(defaults)) {
1997-05-02 11:12:38 +08:00
Py_XINCREF(defaults);
1998-04-11 06:16:39 +08:00
}
1994-08-30 16:27:36 +08:00
else {
1997-05-02 11:12:38 +08:00
PyErr_SetString(PyExc_SystemError, "non-tuple default args");
1994-08-30 16:27:36 +08:00
return -1;
}
1997-05-02 11:12:38 +08:00
Py_XDECREF(((PyFunctionObject *) op) -> func_defaults);
((PyFunctionObject *) op) -> func_defaults = defaults;
1994-08-30 16:27:36 +08:00
return 0;
}
PEP 227 implementation The majority of the changes are in the compiler. The mainloop changes primarily to implement the new opcodes and to pass a function's closure to eval_code2(). Frames and functions got new slots to hold the closure. Include/compile.h Add co_freevars and co_cellvars slots to code objects. Update PyCode_New() to take freevars and cellvars as arguments Include/funcobject.h Add func_closure slot to function objects. Add GetClosure()/SetClosure() functions (and corresponding macros) for getting at the closure. Include/frameobject.h PyFrame_New() now takes a closure. Include/opcode.h Add four new opcodes: MAKE_CLOSURE, LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF. Remove comment about old requirement for opcodes to fit in 7 bits. compile.c Implement changes to code objects for co_freevars and co_cellvars. Modify symbol table to use st_cur_name (string object for the name of the current scope) and st_cur_children (list of nested blocks). Also define st_nested, which might more properly be called st_cur_nested. Add several DEF_XXX flags to track def-use information for free variables. New or modified functions of note: com_make_closure(struct compiling *, PyCodeObject *) Emit LOAD_CLOSURE opcodes as needed to pass cells for free variables into nested scope. com_addop_varname(struct compiling *, int, char *) Emits opcodes for LOAD_DEREF and STORE_DEREF. get_ref_type(struct compiling *, char *name) Return NAME_CLOSURE if ref type is FREE or CELL symtable_load_symbols(struct compiling *) Decides what variables are cell or free based on def-use info. Can now raise SyntaxError if nested scopes are mixed with exec or from blah import *. make_scope_info(PyObject *, PyObject *, int, int) Helper functions for symtable scope stack. symtable_update_free_vars(struct symtable *) After a code block has been analyzed, it must check each of its children for free variables that are not defined in the block. If a variable is free in a child and not defined in the parent, then it is defined by block the enclosing the current one or it is a global. This does the right logic. symtable_add_use() is now a macro for symtable_add_def() symtable_assign(struct symtable *, node *) Use goto instead of for (;;) Fixed bug in symtable where name of keyword argument in function call was treated as assignment in the scope of the call site. Ex: def f(): g(a=2) # a was considered a local of f ceval.c eval_code2() now take one more argument, a closure. Implement LOAD_CLOSURE, LOAD_DEREF, STORE_DEREF, MAKE_CLOSURE> Also: When name error occurs for global variable, report that the name was global in the error mesage. Objects/frameobject.c Initialize f_closure to be a tuple containing space for cellvars and freevars. f_closure is NULL if neither are present. Objects/funcobject.c Add support for func_closure. Python/import.c Change the magic number. Python/marshal.c Track changes to code objects.
2001-01-26 04:06:59 +08:00
PyObject *
PyFunction_GetClosure(PyObject *op)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return NULL;
}
return ((PyFunctionObject *) op) -> func_closure;
}
int
PyFunction_SetClosure(PyObject *op, PyObject *closure)
{
if (!PyFunction_Check(op)) {
PyErr_BadInternalCall();
return -1;
}
if (closure == Py_None)
closure = NULL;
else if (PyTuple_Check(closure)) {
Py_XINCREF(closure);
}
else {
PyErr_SetString(PyExc_SystemError, "non-tuple closure");
return -1;
}
Py_XDECREF(((PyFunctionObject *) op) -> func_closure);
((PyFunctionObject *) op) -> func_closure = closure;
return 0;
}
1990-10-14 20:07:46 +08:00
/* Methods */
1997-05-02 11:12:38 +08:00
#define OFF(x) offsetof(PyFunctionObject, x)
1990-12-20 23:06:42 +08:00
static struct memberlist func_memberlist[] = {
{"func_code", T_OBJECT, OFF(func_code)},
{"func_globals", T_OBJECT, OFF(func_globals), READONLY},
{"func_name", T_OBJECT, OFF(func_name), READONLY},
{"__name__", T_OBJECT, OFF(func_name), READONLY},
{"func_closure", T_OBJECT, OFF(func_closure), READONLY},
{"func_defaults", T_OBJECT, OFF(func_defaults)},
{"func_doc", T_OBJECT, OFF(func_doc)},
{"__doc__", T_OBJECT, OFF(func_doc)},
{"func_dict", T_OBJECT, OFF(func_dict)},
{"__dict__", T_OBJECT, OFF(func_dict)},
{NULL} /* Sentinel */
1990-12-20 23:06:42 +08:00
};
1997-05-02 11:12:38 +08:00
static PyObject *
2001-08-02 12:15:00 +08:00
func_getattro(PyObject *op, PyObject *name)
1990-12-20 23:06:42 +08:00
{
char *sname = PyString_AsString(name);
if (sname[0] != '_' && PyEval_GetRestricted()) {
1997-05-02 11:12:38 +08:00
PyErr_SetString(PyExc_RuntimeError,
1995-01-10 18:39:49 +08:00
"function attributes not accessible in restricted mode");
return NULL;
}
/* If func_dict is being accessed but no attribute has been set
* yet, then initialize it to the empty dictionary.
*/
if ((!strcmp(sname, "func_dict") || !strcmp(sname, "__dict__"))
&& ((PyFunctionObject*)op)->func_dict == NULL)
{
PyFunctionObject* funcop = (PyFunctionObject*)op;
funcop->func_dict = PyDict_New();
if (funcop->func_dict == NULL)
return NULL;
}
2001-08-02 12:15:00 +08:00
return PyObject_GenericGetAttr(op, name);
1990-12-20 23:06:42 +08:00
}
static int
2001-08-02 12:15:00 +08:00
func_setattro(PyObject *op, PyObject *name, PyObject *value)
{
char *sname = PyString_AsString(name);
if (PyEval_GetRestricted()) {
PyErr_SetString(PyExc_RuntimeError,
"function attributes not settable in restricted mode");
return -1;
}
if (strcmp(sname, "func_code") == 0) {
/* not legal to del f.func_code or to set it to anything
* other than a code object.
*/
if (value == NULL || !PyCode_Check(value)) {
PyErr_SetString(
PyExc_TypeError,
"func_code must be set to a code object");
return -1;
}
}
else if (strcmp(sname, "func_defaults") == 0) {
/* legal to del f.func_defaults. Can only set
* func_defaults to NULL or a tuple.
*/
if (value == Py_None)
value = NULL;
if (value != NULL && !PyTuple_Check(value)) {
PyErr_SetString(
PyExc_TypeError,
"func_defaults must be set to a tuple object");
return -1;
}
}
else if (!strcmp(sname, "func_dict") || !strcmp(sname, "__dict__")) {
/* It is illegal to del f.func_dict. Can only set
* func_dict to a dictionary.
*/
if (value == NULL) {
PyErr_SetString(
PyExc_TypeError,
"function's dictionary may not be deleted");
return -1;
}
if (!PyDict_Check(value)) {
PyErr_SetString(
PyExc_TypeError,
"setting function's dictionary to a non-dict");
return -1;
}
}
2001-08-02 12:15:00 +08:00
return PyObject_GenericSetAttr(op, name, value);
}
1990-10-14 20:07:46 +08:00
static void
2000-07-09 14:03:25 +08:00
func_dealloc(PyFunctionObject *op)
1990-10-14 20:07:46 +08:00
{
PyObject_ClearWeakRefs((PyObject *) op);
PyObject_GC_Fini(op);
1997-05-02 11:12:38 +08:00
Py_DECREF(op->func_code);
Py_DECREF(op->func_globals);
Py_DECREF(op->func_name);
Py_XDECREF(op->func_defaults);
Py_XDECREF(op->func_doc);
Py_XDECREF(op->func_dict);
Py_XDECREF(op->func_closure);
2000-07-01 09:00:38 +08:00
op = (PyFunctionObject *) PyObject_AS_GC(op);
PyObject_DEL(op);
1990-10-14 20:07:46 +08:00
}
1997-05-02 11:12:38 +08:00
static PyObject*
2000-07-09 14:03:25 +08:00
func_repr(PyFunctionObject *op)
{
char buf[140];
1997-05-02 11:12:38 +08:00
if (op->func_name == Py_None)
sprintf(buf, "<anonymous function at %p>", op);
else
sprintf(buf, "<function %.100s at %p>",
1997-05-02 11:12:38 +08:00
PyString_AsString(op->func_name),
op);
1997-05-02 11:12:38 +08:00
return PyString_FromString(buf);
}
static int
func_traverse(PyFunctionObject *f, visitproc visit, void *arg)
{
int err;
if (f->func_code) {
err = visit(f->func_code, arg);
if (err)
return err;
}
if (f->func_globals) {
err = visit(f->func_globals, arg);
if (err)
return err;
}
if (f->func_defaults) {
err = visit(f->func_defaults, arg);
if (err)
return err;
}
if (f->func_doc) {
err = visit(f->func_doc, arg);
if (err)
return err;
}
if (f->func_name) {
err = visit(f->func_name, arg);
if (err)
return err;
}
if (f->func_dict) {
err = visit(f->func_dict, arg);
if (err)
return err;
}
if (f->func_closure) {
err = visit(f->func_closure, arg);
if (err)
return err;
}
return 0;
}
2001-08-02 12:15:00 +08:00
static PyObject *
function_call(PyObject *func, PyObject *arg, PyObject *kw)
{
PyObject *result;
PyObject *argdefs;
PyObject **d, **k;
int nk, nd;
argdefs = PyFunction_GET_DEFAULTS(func);
if (argdefs != NULL && PyTuple_Check(argdefs)) {
d = &PyTuple_GET_ITEM((PyTupleObject *)argdefs, 0);
nd = PyTuple_Size(argdefs);
}
else {
d = NULL;
nd = 0;
}
if (kw != NULL && PyDict_Check(kw)) {
int pos, i;
nk = PyDict_Size(kw);
k = PyMem_NEW(PyObject *, 2*nk);
if (k == NULL) {
PyErr_NoMemory();
Py_DECREF(arg);
return NULL;
}
pos = i = 0;
while (PyDict_Next(kw, &pos, &k[i], &k[i+1]))
i += 2;
nk = i/2;
/* XXX This is broken if the caller deletes dict items! */
}
else {
k = NULL;
nk = 0;
}
result = PyEval_EvalCodeEx(
(PyCodeObject *)PyFunction_GET_CODE(func),
PyFunction_GET_GLOBALS(func), (PyObject *)NULL,
&PyTuple_GET_ITEM(arg, 0), PyTuple_Size(arg),
k, nk, d, nd,
PyFunction_GET_CLOSURE(func));
if (k != NULL)
PyMem_DEL(k);
return result;
}
/* Bind a function to an object */
static PyObject *
func_descr_get(PyObject *func, PyObject *obj, PyObject *type)
{
if (obj == Py_None)
obj = NULL;
return PyMethod_New(func, obj, type);
}
1997-05-02 11:12:38 +08:00
PyTypeObject PyFunction_Type = {
PyObject_HEAD_INIT(&PyType_Type)
1990-10-14 20:07:46 +08:00
0,
"function",
sizeof(PyFunctionObject) + PyGC_HEAD_SIZE,
1990-10-14 20:07:46 +08:00
0,
2001-08-02 12:15:00 +08:00
(destructor)func_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
(reprfunc)func_repr, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
function_call, /* tp_call */
0, /* tp_str */
func_getattro, /* tp_getattro */
func_setattro, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_GC, /* tp_flags */
0, /* tp_doc */
(traverseproc)func_traverse, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
offsetof(PyFunctionObject, func_weakreflist), /* tp_weaklistoffset */
2001-08-02 12:15:00 +08:00
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
func_memberlist, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
func_descr_get, /* tp_descr_get */
0, /* tp_descr_set */
offsetof(PyFunctionObject, func_dict), /* tp_dictoffset */
};
/* Class method object */
/* A class method receives the class as implicit first argument,
just like an instance method receives the instance.
To declare a class method, use this idiom:
class C:
def f(cls, arg1, arg2, ...): ...
f = classmethod(f)
It can be called either on the class (e.g. C.f()) or on an instance
(e.g. C().f()); the instance is ignored except for its class.
If a class method is called for a derived class, the derived class
object is passed as the implied first argument.
Class methods are different than C++ or Java static methods.
If you want those, see static methods below.
*/
typedef struct {
PyObject_HEAD
PyObject *cm_callable;
} classmethod;
static void
cm_dealloc(classmethod *cm)
{
Py_XDECREF(cm->cm_callable);
PyObject_DEL(cm);
}
static PyObject *
cm_descr_get(PyObject *self, PyObject *obj, PyObject *type)
{
classmethod *cm = (classmethod *)self;
if (cm->cm_callable == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"uninitialized classmethod object");
return NULL;
}
return PyMethod_New(cm->cm_callable,
type, (PyObject *)(type->ob_type));
}
static int
cm_init(PyObject *self, PyObject *args, PyObject *kwds)
{
classmethod *cm = (classmethod *)self;
PyObject *callable;
if (!PyArg_ParseTuple(args, "O:callable", &callable))
return -1;
Py_INCREF(callable);
cm->cm_callable = callable;
return 0;
}
PyTypeObject PyClassMethod_Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"classmethod",
sizeof(classmethod),
0,
(destructor)cm_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
cm_descr_get, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
cm_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
};
PyObject *
PyClassMethod_New(PyObject *callable)
{
classmethod *cm = (classmethod *)
PyType_GenericAlloc(&PyClassMethod_Type, 0);
if (cm != NULL) {
Py_INCREF(callable);
cm->cm_callable = callable;
}
return (PyObject *)cm;
}
/* Static method object */
/* A static method does not receive an implicit first argument.
To declare a static method, use this idiom:
class C:
def f(arg1, arg2, ...): ...
f = staticmethod(f)
It can be called either on the class (e.g. C.f()) or on an instance
(e.g. C().f()); the instance is ignored except for its class.
Static methods in Python are similar to those found in Java or C++.
For a more advanced concept, see class methods above.
*/
typedef struct {
PyObject_HEAD
PyObject *sm_callable;
} staticmethod;
static void
sm_dealloc(staticmethod *sm)
{
Py_XDECREF(sm->sm_callable);
PyObject_DEL(sm);
}
static PyObject *
sm_descr_get(PyObject *self, PyObject *obj, PyObject *type)
{
staticmethod *sm = (staticmethod *)self;
if (sm->sm_callable == NULL) {
PyErr_SetString(PyExc_RuntimeError,
"uninitialized staticmethod object");
return NULL;
}
Py_INCREF(sm->sm_callable);
return sm->sm_callable;
}
static int
sm_init(PyObject *self, PyObject *args, PyObject *kwds)
{
staticmethod *sm = (staticmethod *)self;
PyObject *callable;
if (!PyArg_ParseTuple(args, "O:callable", &callable))
return -1;
Py_INCREF(callable);
sm->sm_callable = callable;
return 0;
}
PyTypeObject PyStaticMethod_Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"staticmethod",
sizeof(staticmethod),
0,
(destructor)sm_dealloc, /* tp_dealloc */
0, /* tp_print */
0, /* tp_getattr */
0, /* tp_setattr */
0, /* tp_compare */
0, /* tp_repr */
0, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
0, /* tp_hash */
0, /* tp_call */
0, /* tp_str */
PyObject_GenericGetAttr, /* tp_getattro */
0, /* tp_setattro */
0, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
0, /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
0, /* tp_methods */
0, /* tp_members */
0, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
sm_descr_get, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
sm_init, /* tp_init */
PyType_GenericAlloc, /* tp_alloc */
PyType_GenericNew, /* tp_new */
1990-10-14 20:07:46 +08:00
};
2001-08-02 12:15:00 +08:00
PyObject *
PyStaticMethod_New(PyObject *callable)
{
staticmethod *sm = (staticmethod *)
PyType_GenericAlloc(&PyStaticMethod_Type, 0);
if (sm != NULL) {
Py_INCREF(callable);
sm->sm_callable = callable;
}
return (PyObject *)sm;
}