mirror of
https://github.com/coreutils/coreutils.git
synced 2024-12-11 19:04:13 +08:00
1657 lines
44 KiB
C
1657 lines
44 KiB
C
/* Extended regular expression matching and search library.
|
||
Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
|
||
This file is part of the GNU C Library.
|
||
Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2, or (at your option)
|
||
any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License along
|
||
with this program; if not, write to the Free Software Foundation,
|
||
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
|
||
|
||
static void re_string_construct_common (const char *str, Idx len,
|
||
re_string_t *pstr,
|
||
REG_TRANSLATE_TYPE trans, bool icase,
|
||
const re_dfa_t *dfa) internal_function;
|
||
static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa,
|
||
const re_node_set *nodes,
|
||
re_hashval_t hash) internal_function;
|
||
static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa,
|
||
const re_node_set *nodes,
|
||
unsigned int context,
|
||
re_hashval_t hash) internal_function;
|
||
|
||
/* Functions for string operation. */
|
||
|
||
/* This function allocate the buffers. It is necessary to call
|
||
re_string_reconstruct before using the object. */
|
||
|
||
static reg_errcode_t
|
||
internal_function
|
||
re_string_allocate (re_string_t *pstr, const char *str, Idx len, Idx init_len,
|
||
REG_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa)
|
||
{
|
||
reg_errcode_t ret;
|
||
Idx init_buf_len;
|
||
|
||
/* Ensure at least one character fits into the buffers. */
|
||
if (init_len < dfa->mb_cur_max)
|
||
init_len = dfa->mb_cur_max;
|
||
init_buf_len = (len + 1 < init_len) ? len + 1: init_len;
|
||
re_string_construct_common (str, len, pstr, trans, icase, dfa);
|
||
|
||
ret = re_string_realloc_buffers (pstr, init_buf_len);
|
||
if (BE (ret != REG_NOERROR, 0))
|
||
return ret;
|
||
|
||
pstr->word_char = dfa->word_char;
|
||
pstr->word_ops_used = dfa->word_ops_used;
|
||
pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
|
||
pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len;
|
||
pstr->valid_raw_len = pstr->valid_len;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* This function allocate the buffers, and initialize them. */
|
||
|
||
static reg_errcode_t
|
||
internal_function
|
||
re_string_construct (re_string_t *pstr, const char *str, Idx len,
|
||
REG_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa)
|
||
{
|
||
reg_errcode_t ret;
|
||
memset (pstr, '\0', sizeof (re_string_t));
|
||
re_string_construct_common (str, len, pstr, trans, icase, dfa);
|
||
|
||
if (len > 0)
|
||
{
|
||
ret = re_string_realloc_buffers (pstr, len + 1);
|
||
if (BE (ret != REG_NOERROR, 0))
|
||
return ret;
|
||
}
|
||
pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str;
|
||
|
||
if (icase)
|
||
{
|
||
#ifdef RE_ENABLE_I18N
|
||
if (dfa->mb_cur_max > 1)
|
||
{
|
||
while (1)
|
||
{
|
||
ret = build_wcs_upper_buffer (pstr);
|
||
if (BE (ret != REG_NOERROR, 0))
|
||
return ret;
|
||
if (pstr->valid_raw_len >= len)
|
||
break;
|
||
if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max)
|
||
break;
|
||
ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2);
|
||
if (BE (ret != REG_NOERROR, 0))
|
||
return ret;
|
||
}
|
||
}
|
||
else
|
||
#endif /* RE_ENABLE_I18N */
|
||
build_upper_buffer (pstr);
|
||
}
|
||
else
|
||
{
|
||
#ifdef RE_ENABLE_I18N
|
||
if (dfa->mb_cur_max > 1)
|
||
build_wcs_buffer (pstr);
|
||
else
|
||
#endif /* RE_ENABLE_I18N */
|
||
{
|
||
if (trans != NULL)
|
||
re_string_translate_buffer (pstr);
|
||
else
|
||
{
|
||
pstr->valid_len = pstr->bufs_len;
|
||
pstr->valid_raw_len = pstr->bufs_len;
|
||
}
|
||
}
|
||
}
|
||
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Helper functions for re_string_allocate, and re_string_construct. */
|
||
|
||
static reg_errcode_t
|
||
internal_function
|
||
re_string_realloc_buffers (re_string_t *pstr, Idx new_buf_len)
|
||
{
|
||
#ifdef RE_ENABLE_I18N
|
||
if (pstr->mb_cur_max > 1)
|
||
{
|
||
wint_t *new_wcs = re_xrealloc (pstr->wcs, wint_t, new_buf_len);
|
||
if (BE (new_wcs == NULL, 0))
|
||
return REG_ESPACE;
|
||
pstr->wcs = new_wcs;
|
||
if (pstr->offsets != NULL)
|
||
{
|
||
Idx *new_offsets = re_xrealloc (pstr->offsets, Idx, new_buf_len);
|
||
if (BE (new_offsets == NULL, 0))
|
||
return REG_ESPACE;
|
||
pstr->offsets = new_offsets;
|
||
}
|
||
}
|
||
#endif /* RE_ENABLE_I18N */
|
||
if (pstr->mbs_allocated)
|
||
{
|
||
unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char,
|
||
new_buf_len);
|
||
if (BE (new_mbs == NULL, 0))
|
||
return REG_ESPACE;
|
||
pstr->mbs = new_mbs;
|
||
}
|
||
pstr->bufs_len = new_buf_len;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
|
||
static void
|
||
internal_function
|
||
re_string_construct_common (const char *str, Idx len, re_string_t *pstr,
|
||
REG_TRANSLATE_TYPE trans, bool icase,
|
||
const re_dfa_t *dfa)
|
||
{
|
||
pstr->raw_mbs = (const unsigned char *) str;
|
||
pstr->len = len;
|
||
pstr->raw_len = len;
|
||
pstr->trans = (unsigned REG_TRANSLATE_TYPE) trans;
|
||
pstr->icase = icase;
|
||
pstr->mbs_allocated = (trans != NULL || icase);
|
||
pstr->mb_cur_max = dfa->mb_cur_max;
|
||
pstr->is_utf8 = dfa->is_utf8;
|
||
pstr->map_notascii = dfa->map_notascii;
|
||
pstr->stop = pstr->len;
|
||
pstr->raw_stop = pstr->stop;
|
||
}
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
|
||
/* Build wide character buffer PSTR->WCS.
|
||
If the byte sequence of the string are:
|
||
<mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3>
|
||
Then wide character buffer will be:
|
||
<wc1> , WEOF , <wc2> , WEOF , <wc3>
|
||
We use WEOF for padding, they indicate that the position isn't
|
||
a first byte of a multibyte character.
|
||
|
||
Note that this function assumes PSTR->VALID_LEN elements are already
|
||
built and starts from PSTR->VALID_LEN. */
|
||
|
||
static void
|
||
internal_function
|
||
build_wcs_buffer (re_string_t *pstr)
|
||
{
|
||
#ifdef _LIBC
|
||
unsigned char buf[MB_LEN_MAX];
|
||
assert (MB_LEN_MAX >= pstr->mb_cur_max);
|
||
#else
|
||
unsigned char buf[64];
|
||
#endif
|
||
mbstate_t prev_st;
|
||
Idx byte_idx, end_idx, remain_len;
|
||
size_t mbclen;
|
||
|
||
/* Build the buffers from pstr->valid_len to either pstr->len or
|
||
pstr->bufs_len. */
|
||
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
|
||
for (byte_idx = pstr->valid_len; byte_idx < end_idx;)
|
||
{
|
||
wchar_t wc;
|
||
const char *p;
|
||
|
||
remain_len = end_idx - byte_idx;
|
||
prev_st = pstr->cur_state;
|
||
/* Apply the translation if we need. */
|
||
if (BE (pstr->trans != NULL, 0))
|
||
{
|
||
int i, ch;
|
||
|
||
for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
|
||
{
|
||
ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i];
|
||
buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch];
|
||
}
|
||
p = (const char *) buf;
|
||
}
|
||
else
|
||
p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx;
|
||
mbclen = mbrtowc (&wc, p, remain_len, &pstr->cur_state);
|
||
if (BE (mbclen == (size_t) -2, 0))
|
||
{
|
||
/* The buffer doesn't have enough space, finish to build. */
|
||
pstr->cur_state = prev_st;
|
||
break;
|
||
}
|
||
else if (BE (mbclen == (size_t) -1 || mbclen == 0, 0))
|
||
{
|
||
/* We treat these cases as a singlebyte character. */
|
||
mbclen = 1;
|
||
wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
|
||
if (BE (pstr->trans != NULL, 0))
|
||
wc = pstr->trans[wc];
|
||
pstr->cur_state = prev_st;
|
||
}
|
||
|
||
/* Write wide character and padding. */
|
||
pstr->wcs[byte_idx++] = wc;
|
||
/* Write paddings. */
|
||
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
|
||
pstr->wcs[byte_idx++] = WEOF;
|
||
}
|
||
pstr->valid_len = byte_idx;
|
||
pstr->valid_raw_len = byte_idx;
|
||
}
|
||
|
||
/* Build wide character buffer PSTR->WCS like build_wcs_buffer,
|
||
but for REG_ICASE. */
|
||
|
||
static reg_errcode_t
|
||
internal_function
|
||
build_wcs_upper_buffer (re_string_t *pstr)
|
||
{
|
||
mbstate_t prev_st;
|
||
Idx src_idx, byte_idx, end_idx, remain_len;
|
||
size_t mbclen;
|
||
#ifdef _LIBC
|
||
char buf[MB_LEN_MAX];
|
||
assert (MB_LEN_MAX >= pstr->mb_cur_max);
|
||
#else
|
||
char buf[64];
|
||
#endif
|
||
|
||
byte_idx = pstr->valid_len;
|
||
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
|
||
|
||
/* The following optimization assumes that ASCII characters can be
|
||
mapped to wide characters with a simple cast. */
|
||
if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed)
|
||
{
|
||
while (byte_idx < end_idx)
|
||
{
|
||
wchar_t wc;
|
||
|
||
if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx])
|
||
&& mbsinit (&pstr->cur_state))
|
||
{
|
||
/* In case of a singlebyte character. */
|
||
pstr->mbs[byte_idx]
|
||
= toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]);
|
||
/* The next step uses the assumption that wchar_t is encoded
|
||
ASCII-safe: all ASCII values can be converted like this. */
|
||
pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx];
|
||
++byte_idx;
|
||
continue;
|
||
}
|
||
|
||
remain_len = end_idx - byte_idx;
|
||
prev_st = pstr->cur_state;
|
||
mbclen = mbrtowc (&wc,
|
||
((const char *) pstr->raw_mbs + pstr->raw_mbs_idx
|
||
+ byte_idx), remain_len, &pstr->cur_state);
|
||
if (BE ((size_t) (mbclen + 2) > 2, 1))
|
||
{
|
||
wchar_t wcu = wc;
|
||
if (iswlower (wc))
|
||
{
|
||
size_t mbcdlen;
|
||
|
||
wcu = towupper (wc);
|
||
mbcdlen = wcrtomb (buf, wcu, &prev_st);
|
||
if (BE (mbclen == mbcdlen, 1))
|
||
memcpy (pstr->mbs + byte_idx, buf, mbclen);
|
||
else
|
||
{
|
||
src_idx = byte_idx;
|
||
goto offsets_needed;
|
||
}
|
||
}
|
||
else
|
||
memcpy (pstr->mbs + byte_idx,
|
||
pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen);
|
||
pstr->wcs[byte_idx++] = wcu;
|
||
/* Write paddings. */
|
||
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
|
||
pstr->wcs[byte_idx++] = WEOF;
|
||
}
|
||
else if (mbclen == (size_t) -1 || mbclen == 0)
|
||
{
|
||
/* It is an invalid character or '\0'. Just use the byte. */
|
||
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx];
|
||
pstr->mbs[byte_idx] = ch;
|
||
/* And also cast it to wide char. */
|
||
pstr->wcs[byte_idx++] = (wchar_t) ch;
|
||
if (BE (mbclen == (size_t) -1, 0))
|
||
pstr->cur_state = prev_st;
|
||
}
|
||
else
|
||
{
|
||
/* The buffer doesn't have enough space, finish to build. */
|
||
pstr->cur_state = prev_st;
|
||
break;
|
||
}
|
||
}
|
||
pstr->valid_len = byte_idx;
|
||
pstr->valid_raw_len = byte_idx;
|
||
return REG_NOERROR;
|
||
}
|
||
else
|
||
for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;)
|
||
{
|
||
wchar_t wc;
|
||
const char *p;
|
||
offsets_needed:
|
||
remain_len = end_idx - byte_idx;
|
||
prev_st = pstr->cur_state;
|
||
if (BE (pstr->trans != NULL, 0))
|
||
{
|
||
int i, ch;
|
||
|
||
for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i)
|
||
{
|
||
ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i];
|
||
buf[i] = pstr->trans[ch];
|
||
}
|
||
p = (const char *) buf;
|
||
}
|
||
else
|
||
p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx;
|
||
mbclen = mbrtowc (&wc, p, remain_len, &pstr->cur_state);
|
||
if (BE ((size_t) (mbclen + 2) > 2, 1))
|
||
{
|
||
wchar_t wcu = wc;
|
||
if (iswlower (wc))
|
||
{
|
||
size_t mbcdlen;
|
||
|
||
wcu = towupper (wc);
|
||
mbcdlen = wcrtomb ((char *) buf, wcu, &prev_st);
|
||
if (BE (mbclen == mbcdlen, 1))
|
||
memcpy (pstr->mbs + byte_idx, buf, mbclen);
|
||
else if (mbcdlen != (size_t) -1)
|
||
{
|
||
size_t i;
|
||
|
||
if (byte_idx + mbcdlen > pstr->bufs_len)
|
||
{
|
||
pstr->cur_state = prev_st;
|
||
break;
|
||
}
|
||
|
||
if (pstr->offsets == NULL)
|
||
{
|
||
pstr->offsets = re_xmalloc (Idx, pstr->bufs_len);
|
||
|
||
if (pstr->offsets == NULL)
|
||
return REG_ESPACE;
|
||
}
|
||
if (!pstr->offsets_needed)
|
||
{
|
||
for (i = 0; i < (size_t) byte_idx; ++i)
|
||
pstr->offsets[i] = i;
|
||
pstr->offsets_needed = 1;
|
||
}
|
||
|
||
memcpy (pstr->mbs + byte_idx, buf, mbcdlen);
|
||
pstr->wcs[byte_idx] = wcu;
|
||
pstr->offsets[byte_idx] = src_idx;
|
||
for (i = 1; i < mbcdlen; ++i)
|
||
{
|
||
pstr->offsets[byte_idx + i]
|
||
= src_idx + (i < mbclen ? i : mbclen - 1);
|
||
pstr->wcs[byte_idx + i] = WEOF;
|
||
}
|
||
pstr->len += mbcdlen - mbclen;
|
||
if (pstr->raw_stop > src_idx)
|
||
pstr->stop += mbcdlen - mbclen;
|
||
end_idx = (pstr->bufs_len > pstr->len)
|
||
? pstr->len : pstr->bufs_len;
|
||
byte_idx += mbcdlen;
|
||
src_idx += mbclen;
|
||
continue;
|
||
}
|
||
else
|
||
memcpy (pstr->mbs + byte_idx, p, mbclen);
|
||
}
|
||
else
|
||
memcpy (pstr->mbs + byte_idx, p, mbclen);
|
||
|
||
if (BE (pstr->offsets_needed != 0, 0))
|
||
{
|
||
size_t i;
|
||
for (i = 0; i < mbclen; ++i)
|
||
pstr->offsets[byte_idx + i] = src_idx + i;
|
||
}
|
||
src_idx += mbclen;
|
||
|
||
pstr->wcs[byte_idx++] = wcu;
|
||
/* Write paddings. */
|
||
for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;)
|
||
pstr->wcs[byte_idx++] = WEOF;
|
||
}
|
||
else if (mbclen == (size_t) -1 || mbclen == 0)
|
||
{
|
||
/* It is an invalid character or '\0'. Just use the byte. */
|
||
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx];
|
||
|
||
if (BE (pstr->trans != NULL, 0))
|
||
ch = pstr->trans [ch];
|
||
pstr->mbs[byte_idx] = ch;
|
||
|
||
if (BE (pstr->offsets_needed != 0, 0))
|
||
pstr->offsets[byte_idx] = src_idx;
|
||
++src_idx;
|
||
|
||
/* And also cast it to wide char. */
|
||
pstr->wcs[byte_idx++] = (wchar_t) ch;
|
||
if (BE (mbclen == (size_t) -1, 0))
|
||
pstr->cur_state = prev_st;
|
||
}
|
||
else
|
||
{
|
||
/* The buffer doesn't have enough space, finish to build. */
|
||
pstr->cur_state = prev_st;
|
||
break;
|
||
}
|
||
}
|
||
pstr->valid_len = byte_idx;
|
||
pstr->valid_raw_len = src_idx;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Skip characters until the index becomes greater than NEW_RAW_IDX.
|
||
Return the index. */
|
||
|
||
static Idx
|
||
internal_function
|
||
re_string_skip_chars (re_string_t *pstr, Idx new_raw_idx, wint_t *last_wc)
|
||
{
|
||
mbstate_t prev_st;
|
||
Idx rawbuf_idx;
|
||
size_t mbclen;
|
||
wchar_t wc = 0;
|
||
|
||
/* Skip the characters which are not necessary to check. */
|
||
for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len;
|
||
rawbuf_idx < new_raw_idx;)
|
||
{
|
||
Idx remain_len;
|
||
remain_len = pstr->len - rawbuf_idx;
|
||
prev_st = pstr->cur_state;
|
||
mbclen = mbrtowc (&wc, (const char *) pstr->raw_mbs + rawbuf_idx,
|
||
remain_len, &pstr->cur_state);
|
||
if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0))
|
||
{
|
||
/* We treat these cases as a singlebyte character. */
|
||
mbclen = 1;
|
||
pstr->cur_state = prev_st;
|
||
}
|
||
/* Then proceed the next character. */
|
||
rawbuf_idx += mbclen;
|
||
}
|
||
*last_wc = (wint_t) wc;
|
||
return rawbuf_idx;
|
||
}
|
||
#endif /* RE_ENABLE_I18N */
|
||
|
||
/* Build the buffer PSTR->MBS, and apply the translation if we need.
|
||
This function is used in case of REG_ICASE. */
|
||
|
||
static void
|
||
internal_function
|
||
build_upper_buffer (re_string_t *pstr)
|
||
{
|
||
Idx char_idx, end_idx;
|
||
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
|
||
|
||
for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx)
|
||
{
|
||
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx];
|
||
if (BE (pstr->trans != NULL, 0))
|
||
ch = pstr->trans[ch];
|
||
if (islower (ch))
|
||
pstr->mbs[char_idx] = toupper (ch);
|
||
else
|
||
pstr->mbs[char_idx] = ch;
|
||
}
|
||
pstr->valid_len = char_idx;
|
||
pstr->valid_raw_len = char_idx;
|
||
}
|
||
|
||
/* Apply TRANS to the buffer in PSTR. */
|
||
|
||
static void
|
||
internal_function
|
||
re_string_translate_buffer (re_string_t *pstr)
|
||
{
|
||
Idx buf_idx, end_idx;
|
||
end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len;
|
||
|
||
for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx)
|
||
{
|
||
int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx];
|
||
pstr->mbs[buf_idx] = pstr->trans[ch];
|
||
}
|
||
|
||
pstr->valid_len = buf_idx;
|
||
pstr->valid_raw_len = buf_idx;
|
||
}
|
||
|
||
/* This function re-construct the buffers.
|
||
Concretely, convert to wide character in case of pstr->mb_cur_max > 1,
|
||
convert to upper case in case of REG_ICASE, apply translation. */
|
||
|
||
static reg_errcode_t
|
||
internal_function
|
||
re_string_reconstruct (re_string_t *pstr, Idx idx, int eflags)
|
||
{
|
||
Idx offset;
|
||
|
||
if (BE (pstr->raw_mbs_idx <= idx, 0))
|
||
offset = idx - pstr->raw_mbs_idx;
|
||
else
|
||
{
|
||
/* Reset buffer. */
|
||
#ifdef RE_ENABLE_I18N
|
||
if (pstr->mb_cur_max > 1)
|
||
memset (&pstr->cur_state, '\0', sizeof (mbstate_t));
|
||
#endif /* RE_ENABLE_I18N */
|
||
pstr->len = pstr->raw_len;
|
||
pstr->stop = pstr->raw_stop;
|
||
pstr->valid_len = 0;
|
||
pstr->raw_mbs_idx = 0;
|
||
pstr->valid_raw_len = 0;
|
||
pstr->offsets_needed = 0;
|
||
pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF
|
||
: CONTEXT_NEWLINE | CONTEXT_BEGBUF);
|
||
if (!pstr->mbs_allocated)
|
||
pstr->mbs = (unsigned char *) pstr->raw_mbs;
|
||
offset = idx;
|
||
}
|
||
|
||
if (BE (offset != 0, 1))
|
||
{
|
||
/* Are the characters which are already checked remain? */
|
||
if (BE (offset < pstr->valid_raw_len, 1)
|
||
#ifdef RE_ENABLE_I18N
|
||
/* Handling this would enlarge the code too much.
|
||
Accept a slowdown in that case. */
|
||
&& pstr->offsets_needed == 0
|
||
#endif
|
||
)
|
||
{
|
||
/* Yes, move them to the front of the buffer. */
|
||
pstr->tip_context = re_string_context_at (pstr, offset - 1, eflags);
|
||
#ifdef RE_ENABLE_I18N
|
||
if (pstr->mb_cur_max > 1)
|
||
memmove (pstr->wcs, pstr->wcs + offset,
|
||
(pstr->valid_len - offset) * sizeof (wint_t));
|
||
#endif /* RE_ENABLE_I18N */
|
||
if (BE (pstr->mbs_allocated, 0))
|
||
memmove (pstr->mbs, pstr->mbs + offset,
|
||
pstr->valid_len - offset);
|
||
pstr->valid_len -= offset;
|
||
pstr->valid_raw_len -= offset;
|
||
#if DEBUG
|
||
assert (pstr->valid_len > 0);
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
/* No, skip all characters until IDX. */
|
||
#ifdef RE_ENABLE_I18N
|
||
if (BE (pstr->offsets_needed, 0))
|
||
{
|
||
pstr->len = pstr->raw_len - idx + offset;
|
||
pstr->stop = pstr->raw_stop - idx + offset;
|
||
pstr->offsets_needed = 0;
|
||
}
|
||
#endif
|
||
pstr->valid_len = 0;
|
||
pstr->valid_raw_len = 0;
|
||
#ifdef RE_ENABLE_I18N
|
||
if (pstr->mb_cur_max > 1)
|
||
{
|
||
Idx wcs_idx;
|
||
wint_t wc = WEOF;
|
||
|
||
if (pstr->is_utf8)
|
||
{
|
||
const unsigned char *raw, *p, *q, *end;
|
||
|
||
/* Special case UTF-8. Multi-byte chars start with any
|
||
byte other than 0x80 - 0xbf. */
|
||
raw = pstr->raw_mbs + pstr->raw_mbs_idx;
|
||
end = raw + (offset - pstr->mb_cur_max);
|
||
for (p = raw + offset - 1; p >= end; --p)
|
||
if ((*p & 0xc0) != 0x80)
|
||
{
|
||
mbstate_t cur_state;
|
||
wchar_t wc2;
|
||
Idx mlen = raw + pstr->len - p;
|
||
unsigned char buf[6];
|
||
size_t mbclen;
|
||
|
||
q = p;
|
||
if (BE (pstr->trans != NULL, 0))
|
||
{
|
||
int i = mlen < 6 ? mlen : 6;
|
||
while (--i >= 0)
|
||
buf[i] = pstr->trans[p[i]];
|
||
q = buf;
|
||
}
|
||
/* XXX Don't use mbrtowc, we know which conversion
|
||
to use (UTF-8 -> UCS4). */
|
||
memset (&cur_state, 0, sizeof (cur_state));
|
||
mbclen = mbrtowc (&wc2, (const char *) p, mlen,
|
||
&cur_state);
|
||
if (raw + offset - p <= mbclen && mbclen < (size_t) -2)
|
||
{
|
||
memset (&pstr->cur_state, '\0',
|
||
sizeof (mbstate_t));
|
||
pstr->valid_len = mbclen - (raw + offset - p);
|
||
wc = wc2;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (wc == WEOF)
|
||
pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx;
|
||
if (BE (pstr->valid_len, 0))
|
||
{
|
||
for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx)
|
||
pstr->wcs[wcs_idx] = WEOF;
|
||
if (pstr->mbs_allocated)
|
||
memset (pstr->mbs, -1, pstr->valid_len);
|
||
}
|
||
pstr->valid_raw_len = pstr->valid_len;
|
||
pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0)
|
||
&& IS_WIDE_WORD_CHAR (wc))
|
||
? CONTEXT_WORD
|
||
: ((IS_WIDE_NEWLINE (wc)
|
||
&& pstr->newline_anchor)
|
||
? CONTEXT_NEWLINE : 0));
|
||
}
|
||
else
|
||
#endif /* RE_ENABLE_I18N */
|
||
{
|
||
int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1];
|
||
if (pstr->trans)
|
||
c = pstr->trans[c];
|
||
pstr->tip_context = (bitset_contain (pstr->word_char, c)
|
||
? CONTEXT_WORD
|
||
: ((IS_NEWLINE (c) && pstr->newline_anchor)
|
||
? CONTEXT_NEWLINE : 0));
|
||
}
|
||
}
|
||
if (!BE (pstr->mbs_allocated, 0))
|
||
pstr->mbs += offset;
|
||
}
|
||
pstr->raw_mbs_idx = idx;
|
||
pstr->len -= offset;
|
||
pstr->stop -= offset;
|
||
|
||
/* Then build the buffers. */
|
||
#ifdef RE_ENABLE_I18N
|
||
if (pstr->mb_cur_max > 1)
|
||
{
|
||
if (pstr->icase)
|
||
{
|
||
reg_errcode_t ret = build_wcs_upper_buffer (pstr);
|
||
if (BE (ret != REG_NOERROR, 0))
|
||
return ret;
|
||
}
|
||
else
|
||
build_wcs_buffer (pstr);
|
||
}
|
||
else
|
||
#endif /* RE_ENABLE_I18N */
|
||
if (BE (pstr->mbs_allocated, 0))
|
||
{
|
||
if (pstr->icase)
|
||
build_upper_buffer (pstr);
|
||
else if (pstr->trans != NULL)
|
||
re_string_translate_buffer (pstr);
|
||
}
|
||
else
|
||
pstr->valid_len = pstr->len;
|
||
|
||
pstr->cur_idx = 0;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
static unsigned char
|
||
internal_function __attribute ((pure))
|
||
re_string_peek_byte_case (const re_string_t *pstr, Idx idx)
|
||
{
|
||
int ch;
|
||
Idx off;
|
||
|
||
/* Handle the common (easiest) cases first. */
|
||
if (BE (!pstr->mbs_allocated, 1))
|
||
return re_string_peek_byte (pstr, idx);
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
if (pstr->mb_cur_max > 1
|
||
&& ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx))
|
||
return re_string_peek_byte (pstr, idx);
|
||
#endif
|
||
|
||
off = pstr->cur_idx + idx;
|
||
#ifdef RE_ENABLE_I18N
|
||
if (pstr->offsets_needed)
|
||
off = pstr->offsets[off];
|
||
#endif
|
||
|
||
ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
/* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I
|
||
this function returns CAPITAL LETTER I instead of first byte of
|
||
DOTLESS SMALL LETTER I. The latter would confuse the parser,
|
||
since peek_byte_case doesn't advance cur_idx in any way. */
|
||
if (pstr->offsets_needed && !isascii (ch))
|
||
return re_string_peek_byte (pstr, idx);
|
||
#endif
|
||
|
||
return ch;
|
||
}
|
||
|
||
static unsigned char
|
||
internal_function __attribute ((pure))
|
||
re_string_fetch_byte_case (re_string_t *pstr)
|
||
{
|
||
if (BE (!pstr->mbs_allocated, 1))
|
||
return re_string_fetch_byte (pstr);
|
||
|
||
#ifdef RE_ENABLE_I18N
|
||
if (pstr->offsets_needed)
|
||
{
|
||
Idx off;
|
||
int ch;
|
||
|
||
/* For tr_TR.UTF-8 [[:islower:]] there is
|
||
[[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip
|
||
in that case the whole multi-byte character and return
|
||
the original letter. On the other side, with
|
||
[[: DOTLESS SMALL LETTER I return [[:I, as doing
|
||
anything else would complicate things too much. */
|
||
|
||
if (!re_string_first_byte (pstr, pstr->cur_idx))
|
||
return re_string_fetch_byte (pstr);
|
||
|
||
off = pstr->offsets[pstr->cur_idx];
|
||
ch = pstr->raw_mbs[pstr->raw_mbs_idx + off];
|
||
|
||
if (! isascii (ch))
|
||
return re_string_fetch_byte (pstr);
|
||
|
||
re_string_skip_bytes (pstr,
|
||
re_string_char_size_at (pstr, pstr->cur_idx));
|
||
return ch;
|
||
}
|
||
#endif
|
||
|
||
return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++];
|
||
}
|
||
|
||
static void
|
||
internal_function
|
||
re_string_destruct (re_string_t *pstr)
|
||
{
|
||
#ifdef RE_ENABLE_I18N
|
||
re_free (pstr->wcs);
|
||
re_free (pstr->offsets);
|
||
#endif /* RE_ENABLE_I18N */
|
||
if (pstr->mbs_allocated)
|
||
re_free (pstr->mbs);
|
||
}
|
||
|
||
/* Return the context at IDX in INPUT. */
|
||
|
||
static unsigned int
|
||
internal_function
|
||
re_string_context_at (const re_string_t *input, Idx idx, int eflags)
|
||
{
|
||
int c;
|
||
if (BE (! REG_VALID_INDEX (idx), 0))
|
||
/* In this case, we use the value stored in input->tip_context,
|
||
since we can't know the character in input->mbs[-1] here. */
|
||
return input->tip_context;
|
||
if (BE (idx == input->len, 0))
|
||
return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF
|
||
: CONTEXT_NEWLINE | CONTEXT_ENDBUF);
|
||
#ifdef RE_ENABLE_I18N
|
||
if (input->mb_cur_max > 1)
|
||
{
|
||
wint_t wc;
|
||
Idx wc_idx = idx;
|
||
while(input->wcs[wc_idx] == WEOF)
|
||
{
|
||
#ifdef DEBUG
|
||
/* It must not happen. */
|
||
assert (REG_VALID_INDEX (wc_idx));
|
||
#endif
|
||
--wc_idx;
|
||
if (! REG_VALID_INDEX (wc_idx))
|
||
return input->tip_context;
|
||
}
|
||
wc = input->wcs[wc_idx];
|
||
if (BE (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc))
|
||
return CONTEXT_WORD;
|
||
return (IS_WIDE_NEWLINE (wc) && input->newline_anchor
|
||
? CONTEXT_NEWLINE : 0);
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
c = re_string_byte_at (input, idx);
|
||
if (bitset_contain (input->word_char, c))
|
||
return CONTEXT_WORD;
|
||
return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0;
|
||
}
|
||
}
|
||
|
||
/* Functions for set operation. */
|
||
|
||
static reg_errcode_t
|
||
internal_function
|
||
re_node_set_alloc (re_node_set *set, Idx size)
|
||
{
|
||
set->alloc = size;
|
||
set->nelem = 0;
|
||
set->elems = re_xmalloc (Idx, size);
|
||
if (BE (set->elems == NULL, 0))
|
||
return REG_ESPACE;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
static reg_errcode_t
|
||
internal_function
|
||
re_node_set_init_1 (re_node_set *set, Idx elem)
|
||
{
|
||
set->alloc = 1;
|
||
set->nelem = 1;
|
||
set->elems = re_malloc (Idx, 1);
|
||
if (BE (set->elems == NULL, 0))
|
||
{
|
||
set->alloc = set->nelem = 0;
|
||
return REG_ESPACE;
|
||
}
|
||
set->elems[0] = elem;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
static reg_errcode_t
|
||
internal_function
|
||
re_node_set_init_2 (re_node_set *set, Idx elem1, Idx elem2)
|
||
{
|
||
set->alloc = 2;
|
||
set->elems = re_malloc (Idx, 2);
|
||
if (BE (set->elems == NULL, 0))
|
||
return REG_ESPACE;
|
||
if (elem1 == elem2)
|
||
{
|
||
set->nelem = 1;
|
||
set->elems[0] = elem1;
|
||
}
|
||
else
|
||
{
|
||
set->nelem = 2;
|
||
if (elem1 < elem2)
|
||
{
|
||
set->elems[0] = elem1;
|
||
set->elems[1] = elem2;
|
||
}
|
||
else
|
||
{
|
||
set->elems[0] = elem2;
|
||
set->elems[1] = elem1;
|
||
}
|
||
}
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
static reg_errcode_t
|
||
internal_function
|
||
re_node_set_init_copy (re_node_set *dest, const re_node_set *src)
|
||
{
|
||
dest->nelem = src->nelem;
|
||
if (src->nelem > 0)
|
||
{
|
||
dest->alloc = dest->nelem;
|
||
dest->elems = re_malloc (Idx, dest->alloc);
|
||
if (BE (dest->elems == NULL, 0))
|
||
{
|
||
dest->alloc = dest->nelem = 0;
|
||
return REG_ESPACE;
|
||
}
|
||
memcpy (dest->elems, src->elems, src->nelem * sizeof dest->elems[0]);
|
||
}
|
||
else
|
||
re_node_set_init_empty (dest);
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Calculate the intersection of the sets SRC1 and SRC2. And merge it to
|
||
DEST. Return value indicate the error code or REG_NOERROR if succeeded.
|
||
Note: We assume dest->elems is NULL, when dest->alloc is 0. */
|
||
|
||
static reg_errcode_t
|
||
internal_function
|
||
re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1,
|
||
const re_node_set *src2)
|
||
{
|
||
Idx i1, i2, is, id, delta, sbase;
|
||
if (src1->nelem == 0 || src2->nelem == 0)
|
||
return REG_NOERROR;
|
||
|
||
/* We need dest->nelem + 2 * elems_in_intersection; this is a
|
||
conservative estimate. */
|
||
if (src1->nelem + src2->nelem + dest->nelem > dest->alloc)
|
||
{
|
||
Idx new_alloc = src1->nelem + src2->nelem + dest->alloc;
|
||
Idx *new_elems;
|
||
if (sizeof (Idx) < 3
|
||
&& (new_alloc < dest->alloc
|
||
|| ((Idx) (src1->nelem + src2->nelem) < src1->nelem)))
|
||
return REG_ESPACE;
|
||
new_elems = re_xrealloc (dest->elems, Idx, new_alloc);
|
||
if (BE (new_elems == NULL, 0))
|
||
return REG_ESPACE;
|
||
dest->elems = new_elems;
|
||
dest->alloc = new_alloc;
|
||
}
|
||
|
||
/* Find the items in the intersection of SRC1 and SRC2, and copy
|
||
into the top of DEST those that are not already in DEST itself. */
|
||
sbase = dest->nelem + src1->nelem + src2->nelem;
|
||
i1 = src1->nelem - 1;
|
||
i2 = src2->nelem - 1;
|
||
id = dest->nelem - 1;
|
||
for (;;)
|
||
{
|
||
if (src1->elems[i1] == src2->elems[i2])
|
||
{
|
||
/* Try to find the item in DEST. Maybe we could binary search? */
|
||
while (REG_VALID_INDEX (id) && dest->elems[id] > src1->elems[i1])
|
||
--id;
|
||
|
||
if (! REG_VALID_INDEX (id) || dest->elems[id] != src1->elems[i1])
|
||
dest->elems[--sbase] = src1->elems[i1];
|
||
|
||
if (! REG_VALID_INDEX (--i1) || ! REG_VALID_INDEX (--i2))
|
||
break;
|
||
}
|
||
|
||
/* Lower the highest of the two items. */
|
||
else if (src1->elems[i1] < src2->elems[i2])
|
||
{
|
||
if (! REG_VALID_INDEX (--i2))
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
if (! REG_VALID_INDEX (--i1))
|
||
break;
|
||
}
|
||
}
|
||
|
||
id = dest->nelem - 1;
|
||
is = dest->nelem + src1->nelem + src2->nelem - 1;
|
||
delta = is - sbase + 1;
|
||
|
||
/* Now copy. When DELTA becomes zero, the remaining
|
||
DEST elements are already in place; this is more or
|
||
less the same loop that is in re_node_set_merge. */
|
||
dest->nelem += delta;
|
||
if (delta > 0 && REG_VALID_INDEX (id))
|
||
for (;;)
|
||
{
|
||
if (dest->elems[is] > dest->elems[id])
|
||
{
|
||
/* Copy from the top. */
|
||
dest->elems[id + delta--] = dest->elems[is--];
|
||
if (delta == 0)
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
/* Slide from the bottom. */
|
||
dest->elems[id + delta] = dest->elems[id];
|
||
if (! REG_VALID_INDEX (--id))
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Copy remaining SRC elements. */
|
||
memcpy (dest->elems, dest->elems + sbase, delta * sizeof dest->elems[0]);
|
||
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Calculate the union set of the sets SRC1 and SRC2. And store it to
|
||
DEST. Return value indicate the error code or REG_NOERROR if succeeded. */
|
||
|
||
static reg_errcode_t
|
||
internal_function
|
||
re_node_set_init_union (re_node_set *dest, const re_node_set *src1,
|
||
const re_node_set *src2)
|
||
{
|
||
Idx i1, i2, id;
|
||
if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0)
|
||
{
|
||
dest->alloc = src1->nelem + src2->nelem;
|
||
if (sizeof (Idx) < 2 && dest->alloc < src1->nelem)
|
||
return REG_ESPACE;
|
||
dest->elems = re_xmalloc (Idx, dest->alloc);
|
||
if (BE (dest->elems == NULL, 0))
|
||
return REG_ESPACE;
|
||
}
|
||
else
|
||
{
|
||
if (src1 != NULL && src1->nelem > 0)
|
||
return re_node_set_init_copy (dest, src1);
|
||
else if (src2 != NULL && src2->nelem > 0)
|
||
return re_node_set_init_copy (dest, src2);
|
||
else
|
||
re_node_set_init_empty (dest);
|
||
return REG_NOERROR;
|
||
}
|
||
for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;)
|
||
{
|
||
if (src1->elems[i1] > src2->elems[i2])
|
||
{
|
||
dest->elems[id++] = src2->elems[i2++];
|
||
continue;
|
||
}
|
||
if (src1->elems[i1] == src2->elems[i2])
|
||
++i2;
|
||
dest->elems[id++] = src1->elems[i1++];
|
||
}
|
||
if (i1 < src1->nelem)
|
||
{
|
||
memcpy (dest->elems + id, src1->elems + i1,
|
||
(src1->nelem - i1) * sizeof dest->elems[0]);
|
||
id += src1->nelem - i1;
|
||
}
|
||
else if (i2 < src2->nelem)
|
||
{
|
||
memcpy (dest->elems + id, src2->elems + i2,
|
||
(src2->nelem - i2) * sizeof dest->elems[0]);
|
||
id += src2->nelem - i2;
|
||
}
|
||
dest->nelem = id;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Calculate the union set of the sets DEST and SRC. And store it to
|
||
DEST. Return value indicate the error code or REG_NOERROR if succeeded. */
|
||
|
||
static reg_errcode_t
|
||
internal_function
|
||
re_node_set_merge (re_node_set *dest, const re_node_set *src)
|
||
{
|
||
Idx is, id, sbase, delta;
|
||
if (src == NULL || src->nelem == 0)
|
||
return REG_NOERROR;
|
||
if (sizeof (Idx) < 3
|
||
&& ((Idx) (2 * src->nelem) < src->nelem
|
||
|| (Idx) (2 * src->nelem + dest->nelem) < dest->nelem))
|
||
return REG_ESPACE;
|
||
if (dest->alloc < 2 * src->nelem + dest->nelem)
|
||
{
|
||
Idx new_alloc = src->nelem + dest->alloc;
|
||
Idx *new_buffer;
|
||
if (sizeof (Idx) < 4 && new_alloc < dest->alloc)
|
||
return REG_ESPACE;
|
||
new_buffer = re_x2realloc (dest->elems, Idx, &new_alloc);
|
||
if (BE (new_buffer == NULL, 0))
|
||
return REG_ESPACE;
|
||
dest->elems = new_buffer;
|
||
dest->alloc = new_alloc;
|
||
}
|
||
|
||
if (BE (dest->nelem == 0, 0))
|
||
{
|
||
dest->nelem = src->nelem;
|
||
memcpy (dest->elems, src->elems, src->nelem * sizeof dest->elems[0]);
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Copy into the top of DEST the items of SRC that are not
|
||
found in DEST. Maybe we could binary search in DEST? */
|
||
for (sbase = dest->nelem + 2 * src->nelem,
|
||
is = src->nelem - 1, id = dest->nelem - 1;
|
||
REG_VALID_INDEX (is) && REG_VALID_INDEX (id); )
|
||
{
|
||
if (dest->elems[id] == src->elems[is])
|
||
is--, id--;
|
||
else if (dest->elems[id] < src->elems[is])
|
||
dest->elems[--sbase] = src->elems[is--];
|
||
else /* if (dest->elems[id] > src->elems[is]) */
|
||
--id;
|
||
}
|
||
|
||
if (REG_VALID_INDEX (is))
|
||
{
|
||
/* If DEST is exhausted, the remaining items of SRC must be unique. */
|
||
sbase -= is + 1;
|
||
memcpy (dest->elems + sbase, src->elems,
|
||
(is + 1) * sizeof dest->elems[0]);
|
||
}
|
||
|
||
id = dest->nelem - 1;
|
||
is = dest->nelem + 2 * src->nelem - 1;
|
||
delta = is - sbase + 1;
|
||
if (delta == 0)
|
||
return REG_NOERROR;
|
||
|
||
/* Now copy. When DELTA becomes zero, the remaining
|
||
DEST elements are already in place. */
|
||
dest->nelem += delta;
|
||
for (;;)
|
||
{
|
||
if (dest->elems[is] > dest->elems[id])
|
||
{
|
||
/* Copy from the top. */
|
||
dest->elems[id + delta--] = dest->elems[is--];
|
||
if (delta == 0)
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
/* Slide from the bottom. */
|
||
dest->elems[id + delta] = dest->elems[id];
|
||
if (! REG_VALID_INDEX (--id))
|
||
{
|
||
/* Copy remaining SRC elements. */
|
||
memcpy (dest->elems, dest->elems + sbase,
|
||
delta * sizeof dest->elems[0]);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Insert the new element ELEM to the re_node_set* SET.
|
||
SET should not already have ELEM.
|
||
Return true if successful. */
|
||
|
||
static bool
|
||
internal_function
|
||
re_node_set_insert (re_node_set *set, Idx elem)
|
||
{
|
||
Idx idx;
|
||
/* In case the set is empty. */
|
||
if (set->alloc == 0)
|
||
return re_node_set_init_1 (set, elem) == REG_NOERROR;
|
||
|
||
if (BE (set->nelem, 0) == 0)
|
||
{
|
||
/* We already guaranteed above that set->alloc != 0. */
|
||
set->elems[0] = elem;
|
||
++set->nelem;
|
||
return true;
|
||
}
|
||
|
||
/* Realloc if we need. */
|
||
if (set->alloc == set->nelem)
|
||
{
|
||
Idx *new_elems = re_x2realloc (set->elems, Idx, &set->alloc);
|
||
if (BE (new_elems == NULL, 0))
|
||
return false;
|
||
set->elems = new_elems;
|
||
}
|
||
|
||
/* Move the elements which follows the new element. Test the
|
||
first element separately to skip a check in the inner loop. */
|
||
if (elem < set->elems[0])
|
||
{
|
||
idx = 0;
|
||
for (idx = set->nelem; idx > 0; idx--)
|
||
set->elems[idx] = set->elems[idx - 1];
|
||
}
|
||
else
|
||
{
|
||
for (idx = set->nelem; set->elems[idx - 1] > elem; idx--)
|
||
set->elems[idx] = set->elems[idx - 1];
|
||
}
|
||
|
||
/* Insert the new element. */
|
||
set->elems[idx] = elem;
|
||
++set->nelem;
|
||
return true;
|
||
}
|
||
|
||
/* Insert the new element ELEM to the re_node_set* SET.
|
||
SET should not already have any element greater than or equal to ELEM.
|
||
Return true if successful. */
|
||
|
||
static bool
|
||
internal_function
|
||
re_node_set_insert_last (re_node_set *set, Idx elem)
|
||
{
|
||
/* Realloc if we need. */
|
||
if (set->alloc == set->nelem)
|
||
{
|
||
Idx *new_elems;
|
||
new_elems = re_x2realloc (set->elems, Idx, &set->alloc);
|
||
if (BE (new_elems == NULL, 0))
|
||
return false;
|
||
set->elems = new_elems;
|
||
}
|
||
|
||
/* Insert the new element. */
|
||
set->elems[set->nelem++] = elem;
|
||
return true;
|
||
}
|
||
|
||
/* Compare two node sets SET1 and SET2.
|
||
Return true if SET1 and SET2 are equivalent. */
|
||
|
||
static bool
|
||
internal_function __attribute ((pure))
|
||
re_node_set_compare (const re_node_set *set1, const re_node_set *set2)
|
||
{
|
||
Idx i;
|
||
if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem)
|
||
return false;
|
||
for (i = set1->nelem ; REG_VALID_INDEX (--i) ; )
|
||
if (set1->elems[i] != set2->elems[i])
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */
|
||
|
||
static Idx
|
||
internal_function __attribute ((pure))
|
||
re_node_set_contains (const re_node_set *set, Idx elem)
|
||
{
|
||
__re_size_t idx, right, mid;
|
||
if (! REG_VALID_NONZERO_INDEX (set->nelem))
|
||
return 0;
|
||
|
||
/* Binary search the element. */
|
||
idx = 0;
|
||
right = set->nelem - 1;
|
||
while (idx < right)
|
||
{
|
||
mid = (idx + right) / 2;
|
||
if (set->elems[mid] < elem)
|
||
idx = mid + 1;
|
||
else
|
||
right = mid;
|
||
}
|
||
return set->elems[idx] == elem ? idx + 1 : 0;
|
||
}
|
||
|
||
static void
|
||
internal_function
|
||
re_node_set_remove_at (re_node_set *set, Idx idx)
|
||
{
|
||
if (idx < 0 || idx >= set->nelem)
|
||
return;
|
||
--set->nelem;
|
||
for (; idx < set->nelem; idx++)
|
||
set->elems[idx] = set->elems[idx + 1];
|
||
}
|
||
|
||
|
||
/* Add the token TOKEN to dfa->nodes, and return the index of the token.
|
||
Or return REG_MISSING if an error occurred. */
|
||
|
||
static Idx
|
||
internal_function
|
||
re_dfa_add_node (re_dfa_t *dfa, re_token_t token)
|
||
{
|
||
int type = token.type;
|
||
if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0))
|
||
{
|
||
Idx new_nodes_alloc = dfa->nodes_alloc;
|
||
Idx *new_nexts, *new_indices;
|
||
re_node_set *new_edests, *new_eclosures;
|
||
|
||
re_token_t *new_nodes = re_x2realloc (dfa->nodes, re_token_t,
|
||
&new_nodes_alloc);
|
||
if (BE (new_nodes == NULL, 0))
|
||
return REG_MISSING;
|
||
dfa->nodes = new_nodes;
|
||
new_nexts = re_realloc (dfa->nexts, Idx, new_nodes_alloc);
|
||
new_indices = re_realloc (dfa->org_indices, Idx, new_nodes_alloc);
|
||
new_edests = re_xrealloc (dfa->edests, re_node_set, new_nodes_alloc);
|
||
new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc);
|
||
if (BE (new_nexts == NULL || new_indices == NULL
|
||
|| new_edests == NULL || new_eclosures == NULL, 0))
|
||
return REG_MISSING;
|
||
dfa->nexts = new_nexts;
|
||
dfa->org_indices = new_indices;
|
||
dfa->edests = new_edests;
|
||
dfa->eclosures = new_eclosures;
|
||
dfa->nodes_alloc = new_nodes_alloc;
|
||
}
|
||
dfa->nodes[dfa->nodes_len] = token;
|
||
dfa->nodes[dfa->nodes_len].constraint = 0;
|
||
#ifdef RE_ENABLE_I18N
|
||
dfa->nodes[dfa->nodes_len].accept_mb =
|
||
(type == OP_PERIOD && dfa->mb_cur_max > 1) || type == COMPLEX_BRACKET;
|
||
#endif
|
||
dfa->nexts[dfa->nodes_len] = REG_MISSING;
|
||
re_node_set_init_empty (dfa->edests + dfa->nodes_len);
|
||
re_node_set_init_empty (dfa->eclosures + dfa->nodes_len);
|
||
return dfa->nodes_len++;
|
||
}
|
||
|
||
static inline re_hashval_t
|
||
internal_function
|
||
calc_state_hash (const re_node_set *nodes, unsigned int context)
|
||
{
|
||
re_hashval_t hash = nodes->nelem + context;
|
||
Idx i;
|
||
for (i = 0 ; i < nodes->nelem ; i++)
|
||
hash += nodes->elems[i];
|
||
return hash;
|
||
}
|
||
|
||
/* Search for the state whose node_set is equivalent to NODES.
|
||
Return the pointer to the state, if we found it in the DFA.
|
||
Otherwise create the new one and return it. In case of an error
|
||
return NULL and set the error code in ERR.
|
||
Note: - We assume NULL as the invalid state, then it is possible that
|
||
return value is NULL and ERR is REG_NOERROR.
|
||
- We never return non-NULL value in case of any errors, it is for
|
||
optimization. */
|
||
|
||
static re_dfastate_t*
|
||
internal_function
|
||
re_acquire_state (reg_errcode_t *err, re_dfa_t *dfa, const re_node_set *nodes)
|
||
{
|
||
re_hashval_t hash;
|
||
re_dfastate_t *new_state;
|
||
struct re_state_table_entry *spot;
|
||
Idx i;
|
||
#ifdef lint
|
||
/* Suppress bogus uninitialized-variable warnings. */
|
||
*err = REG_NOERROR;
|
||
#endif
|
||
if (BE (nodes->nelem == 0, 0))
|
||
{
|
||
*err = REG_NOERROR;
|
||
return NULL;
|
||
}
|
||
hash = calc_state_hash (nodes, 0);
|
||
spot = dfa->state_table + (hash & dfa->state_hash_mask);
|
||
|
||
for (i = 0 ; i < spot->num ; i++)
|
||
{
|
||
re_dfastate_t *state = spot->array[i];
|
||
if (hash != state->hash)
|
||
continue;
|
||
if (re_node_set_compare (&state->nodes, nodes))
|
||
return state;
|
||
}
|
||
|
||
/* There are no appropriate state in the dfa, create the new one. */
|
||
new_state = create_ci_newstate (dfa, nodes, hash);
|
||
if (BE (new_state != NULL, 1))
|
||
return new_state;
|
||
else
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Search for the state whose node_set is equivalent to NODES and
|
||
whose context is equivalent to CONTEXT.
|
||
Return the pointer to the state, if we found it in the DFA.
|
||
Otherwise create the new one and return it. In case of an error
|
||
return NULL and set the error code in ERR.
|
||
Note: - We assume NULL as the invalid state, then it is possible that
|
||
return value is NULL and ERR is REG_NOERROR.
|
||
- We never return non-NULL value in case of any errors, it is for
|
||
optimization. */
|
||
|
||
static re_dfastate_t*
|
||
internal_function
|
||
re_acquire_state_context (reg_errcode_t *err, re_dfa_t *dfa,
|
||
const re_node_set *nodes, unsigned int context)
|
||
{
|
||
re_hashval_t hash;
|
||
re_dfastate_t *new_state;
|
||
struct re_state_table_entry *spot;
|
||
Idx i;
|
||
#ifdef lint
|
||
/* Suppress bogus uninitialized-variable warnings. */
|
||
*err = REG_NOERROR;
|
||
#endif
|
||
if (nodes->nelem == 0)
|
||
{
|
||
*err = REG_NOERROR;
|
||
return NULL;
|
||
}
|
||
hash = calc_state_hash (nodes, context);
|
||
spot = dfa->state_table + (hash & dfa->state_hash_mask);
|
||
|
||
for (i = 0 ; i < spot->num ; i++)
|
||
{
|
||
re_dfastate_t *state = spot->array[i];
|
||
if (state->hash == hash
|
||
&& state->context == context
|
||
&& re_node_set_compare (state->entrance_nodes, nodes))
|
||
return state;
|
||
}
|
||
/* There are no appropriate state in `dfa', create the new one. */
|
||
new_state = create_cd_newstate (dfa, nodes, context, hash);
|
||
if (BE (new_state != NULL, 1))
|
||
return new_state;
|
||
else
|
||
{
|
||
*err = REG_ESPACE;
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
/* Finish initialization of the new state NEWSTATE, and using its hash value
|
||
HASH put in the appropriate bucket of DFA's state table. Return value
|
||
indicates the error code if failed. */
|
||
|
||
static reg_errcode_t
|
||
internal_function
|
||
register_state (const re_dfa_t *dfa, re_dfastate_t *newstate, re_hashval_t hash)
|
||
{
|
||
struct re_state_table_entry *spot;
|
||
reg_errcode_t err;
|
||
Idx i;
|
||
|
||
newstate->hash = hash;
|
||
err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
return REG_ESPACE;
|
||
for (i = 0; i < newstate->nodes.nelem; i++)
|
||
{
|
||
Idx elem = newstate->nodes.elems[i];
|
||
if (!IS_EPSILON_NODE (dfa->nodes[elem].type))
|
||
{
|
||
bool ok = re_node_set_insert_last (&newstate->non_eps_nodes, elem);
|
||
if (BE (! ok, 0))
|
||
return REG_ESPACE;
|
||
}
|
||
}
|
||
|
||
spot = dfa->state_table + (hash & dfa->state_hash_mask);
|
||
if (BE (spot->alloc <= spot->num, 0))
|
||
{
|
||
Idx new_alloc = spot->num;
|
||
re_dfastate_t **new_array = re_x2realloc (spot->array, re_dfastate_t *,
|
||
&new_alloc);
|
||
if (BE (new_array == NULL, 0))
|
||
return REG_ESPACE;
|
||
spot->array = new_array;
|
||
spot->alloc = new_alloc;
|
||
}
|
||
spot->array[spot->num++] = newstate;
|
||
return REG_NOERROR;
|
||
}
|
||
|
||
/* Create the new state which is independ of contexts.
|
||
Return the new state if succeeded, otherwise return NULL. */
|
||
|
||
static re_dfastate_t *
|
||
internal_function
|
||
create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes,
|
||
re_hashval_t hash)
|
||
{
|
||
Idx i;
|
||
reg_errcode_t err;
|
||
re_dfastate_t *newstate;
|
||
|
||
newstate = re_calloc (re_dfastate_t, 1);
|
||
if (BE (newstate == NULL, 0))
|
||
return NULL;
|
||
err = re_node_set_init_copy (&newstate->nodes, nodes);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
{
|
||
re_free (newstate);
|
||
return NULL;
|
||
}
|
||
|
||
newstate->entrance_nodes = &newstate->nodes;
|
||
for (i = 0 ; i < nodes->nelem ; i++)
|
||
{
|
||
re_token_t *node = dfa->nodes + nodes->elems[i];
|
||
re_token_type_t type = node->type;
|
||
if (type == CHARACTER && !node->constraint)
|
||
continue;
|
||
#ifdef RE_ENABLE_I18N
|
||
newstate->accept_mb |= node->accept_mb;
|
||
#endif /* RE_ENABLE_I18N */
|
||
|
||
/* If the state has the halt node, the state is a halt state. */
|
||
if (type == END_OF_RE)
|
||
newstate->halt = 1;
|
||
else if (type == OP_BACK_REF)
|
||
newstate->has_backref = 1;
|
||
else if (type == ANCHOR || node->constraint)
|
||
newstate->has_constraint = 1;
|
||
}
|
||
err = register_state (dfa, newstate, hash);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
{
|
||
free_state (newstate);
|
||
newstate = NULL;
|
||
}
|
||
return newstate;
|
||
}
|
||
|
||
/* Create the new state which is depend on the context CONTEXT.
|
||
Return the new state if succeeded, otherwise return NULL. */
|
||
|
||
static re_dfastate_t *
|
||
internal_function
|
||
create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes,
|
||
unsigned int context, re_hashval_t hash)
|
||
{
|
||
Idx i, nctx_nodes = 0;
|
||
reg_errcode_t err;
|
||
re_dfastate_t *newstate;
|
||
|
||
newstate = re_calloc (re_dfastate_t, 1);
|
||
if (BE (newstate == NULL, 0))
|
||
return NULL;
|
||
err = re_node_set_init_copy (&newstate->nodes, nodes);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
{
|
||
re_free (newstate);
|
||
return NULL;
|
||
}
|
||
|
||
newstate->context = context;
|
||
newstate->entrance_nodes = &newstate->nodes;
|
||
|
||
for (i = 0 ; i < nodes->nelem ; i++)
|
||
{
|
||
unsigned int constraint = 0;
|
||
re_token_t *node = dfa->nodes + nodes->elems[i];
|
||
re_token_type_t type = node->type;
|
||
if (node->constraint)
|
||
constraint = node->constraint;
|
||
|
||
if (type == CHARACTER && !constraint)
|
||
continue;
|
||
#ifdef RE_ENABLE_I18N
|
||
newstate->accept_mb |= node->accept_mb;
|
||
#endif /* RE_ENABLE_I18N */
|
||
|
||
/* If the state has the halt node, the state is a halt state. */
|
||
if (type == END_OF_RE)
|
||
newstate->halt = 1;
|
||
else if (type == OP_BACK_REF)
|
||
newstate->has_backref = 1;
|
||
else if (type == ANCHOR)
|
||
constraint = node->opr.ctx_type;
|
||
|
||
if (constraint)
|
||
{
|
||
if (newstate->entrance_nodes == &newstate->nodes)
|
||
{
|
||
newstate->entrance_nodes = re_malloc (re_node_set, 1);
|
||
if (BE (newstate->entrance_nodes == NULL, 0))
|
||
{
|
||
free_state (newstate);
|
||
return NULL;
|
||
}
|
||
re_node_set_init_copy (newstate->entrance_nodes, nodes);
|
||
nctx_nodes = 0;
|
||
newstate->has_constraint = 1;
|
||
}
|
||
|
||
if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context))
|
||
{
|
||
re_node_set_remove_at (&newstate->nodes, i - nctx_nodes);
|
||
++nctx_nodes;
|
||
}
|
||
}
|
||
}
|
||
err = register_state (dfa, newstate, hash);
|
||
if (BE (err != REG_NOERROR, 0))
|
||
{
|
||
free_state (newstate);
|
||
newstate = NULL;
|
||
}
|
||
return newstate;
|
||
}
|
||
|
||
static void
|
||
internal_function
|
||
free_state (re_dfastate_t *state)
|
||
{
|
||
re_node_set_free (&state->non_eps_nodes);
|
||
re_node_set_free (&state->inveclosure);
|
||
if (state->entrance_nodes != &state->nodes)
|
||
{
|
||
re_node_set_free (state->entrance_nodes);
|
||
re_free (state->entrance_nodes);
|
||
}
|
||
re_node_set_free (&state->nodes);
|
||
re_free (state->word_trtable);
|
||
re_free (state->trtable);
|
||
re_free (state);
|
||
}
|