mirror of
https://github.com/coreutils/coreutils.git
synced 2024-11-26 03:13:42 +08:00
378 lines
11 KiB
C
378 lines
11 KiB
C
/* sha.c - Functions to compute the SHA1 hash (message-digest) of files
|
|
or blocks of memory. Complies to the NIST specification FIPS-180-1.
|
|
|
|
Copyright (C) 2000, 2001 Scott G. Miller
|
|
|
|
Credits:
|
|
Robert Klep <robert@ilse.nl> -- Expansion function fix
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#include <sys/types.h>
|
|
|
|
#if STDC_HEADERS || defined _LIBC
|
|
# include <stdlib.h>
|
|
# include <string.h>
|
|
#else
|
|
# ifndef HAVE_MEMCPY
|
|
# define memcpy(d, s, n) bcopy ((s), (d), (n))
|
|
# endif
|
|
#endif
|
|
|
|
#include "md5.h"
|
|
#include "sha.h"
|
|
#include "unlocked-io.h"
|
|
|
|
/*
|
|
Not-swap is a macro that does an endian swap on architectures that are
|
|
big-endian, as SHA needs some data in a little-endian format
|
|
*/
|
|
|
|
#ifdef WORDS_BIGENDIAN
|
|
# define NOTSWAP(n) (n)
|
|
# define SWAP(n) \
|
|
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
|
|
#else
|
|
# define NOTSWAP(n) \
|
|
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
|
|
# define SWAP(n) (n)
|
|
#endif
|
|
|
|
/* This array contains the bytes used to pad the buffer to the next
|
|
64-byte boundary. (RFC 1321, 3.1: Step 1) */
|
|
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
|
|
|
|
|
|
/*
|
|
Takes a pointer to a 160 bit block of data (five 32 bit ints) and
|
|
intializes it to the start constants of the SHA1 algorithm. This
|
|
must be called before using hash in the call to sha_hash
|
|
*/
|
|
void
|
|
sha_init_ctx (struct sha_ctx *ctx)
|
|
{
|
|
ctx->A = 0x67452301;
|
|
ctx->B = 0xefcdab89;
|
|
ctx->C = 0x98badcfe;
|
|
ctx->D = 0x10325476;
|
|
ctx->E = 0xc3d2e1f0;
|
|
|
|
ctx->total[0] = ctx->total[1] = 0;
|
|
ctx->buflen = 0;
|
|
}
|
|
|
|
/* Put result from CTX in first 20 bytes following RESBUF. The result
|
|
must be in little endian byte order.
|
|
|
|
IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
aligned for a 32 bits value. */
|
|
void *
|
|
sha_read_ctx (const struct sha_ctx *ctx, void *resbuf)
|
|
{
|
|
((md5_uint32 *) resbuf)[0] = NOTSWAP (ctx->A);
|
|
((md5_uint32 *) resbuf)[1] = NOTSWAP (ctx->B);
|
|
((md5_uint32 *) resbuf)[2] = NOTSWAP (ctx->C);
|
|
((md5_uint32 *) resbuf)[3] = NOTSWAP (ctx->D);
|
|
((md5_uint32 *) resbuf)[4] = NOTSWAP (ctx->E);
|
|
|
|
return resbuf;
|
|
}
|
|
|
|
/* Process the remaining bytes in the internal buffer and the usual
|
|
prolog according to the standard and write the result to RESBUF.
|
|
|
|
IMPORTANT: On some systems it is required that RESBUF is correctly
|
|
aligned for a 32 bits value. */
|
|
void *
|
|
sha_finish_ctx (struct sha_ctx *ctx, void *resbuf)
|
|
{
|
|
/* Take yet unprocessed bytes into account. */
|
|
md5_uint32 bytes = ctx->buflen;
|
|
size_t pad;
|
|
|
|
/* Now count remaining bytes. */
|
|
ctx->total[0] += bytes;
|
|
if (ctx->total[0] < bytes)
|
|
++ctx->total[1];
|
|
|
|
pad = bytes >= 56 ? 64 + 56 - bytes : 56 - bytes;
|
|
memcpy (&ctx->buffer[bytes], fillbuf, pad);
|
|
|
|
/* Put the 64-bit file length in *bits* at the end of the buffer. */
|
|
*(md5_uint32 *) &ctx->buffer[bytes + pad + 4] = NOTSWAP (ctx->total[0] << 3);
|
|
*(md5_uint32 *) &ctx->buffer[bytes + pad] = NOTSWAP ((ctx->total[1] << 3) |
|
|
(ctx->total[0] >> 29));
|
|
|
|
/* Process last bytes. */
|
|
sha_process_block (ctx->buffer, bytes + pad + 8, ctx);
|
|
|
|
return sha_read_ctx (ctx, resbuf);
|
|
}
|
|
|
|
/* Compute SHA1 message digest for bytes read from STREAM. The
|
|
resulting message digest number will be written into the 16 bytes
|
|
beginning at RESBLOCK. */
|
|
int
|
|
sha_stream (FILE *stream, void *resblock)
|
|
{
|
|
/* Important: BLOCKSIZE must be a multiple of 64. */
|
|
#define BLOCKSIZE 4096
|
|
struct sha_ctx ctx;
|
|
char buffer[BLOCKSIZE + 72];
|
|
size_t sum;
|
|
|
|
/* Initialize the computation context. */
|
|
sha_init_ctx (&ctx);
|
|
|
|
/* Iterate over full file contents. */
|
|
while (1)
|
|
{
|
|
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
|
|
computation function processes the whole buffer so that with the
|
|
next round of the loop another block can be read. */
|
|
size_t n;
|
|
sum = 0;
|
|
|
|
/* Read block. Take care for partial reads. */
|
|
do
|
|
{
|
|
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
|
|
|
|
sum += n;
|
|
}
|
|
while (sum < BLOCKSIZE && n != 0);
|
|
if (n == 0 && ferror (stream))
|
|
return 1;
|
|
|
|
/* If end of file is reached, end the loop. */
|
|
if (n == 0)
|
|
break;
|
|
|
|
/* Process buffer with BLOCKSIZE bytes. Note that
|
|
BLOCKSIZE % 64 == 0
|
|
*/
|
|
sha_process_block (buffer, BLOCKSIZE, &ctx);
|
|
}
|
|
|
|
/* Add the last bytes if necessary. */
|
|
if (sum > 0)
|
|
sha_process_bytes (buffer, sum, &ctx);
|
|
|
|
/* Construct result in desired memory. */
|
|
sha_finish_ctx (&ctx, resblock);
|
|
return 0;
|
|
}
|
|
|
|
/* Compute MD5 message digest for LEN bytes beginning at BUFFER. The
|
|
result is always in little endian byte order, so that a byte-wise
|
|
output yields to the wanted ASCII representation of the message
|
|
digest. */
|
|
void *
|
|
sha_buffer (const char *buffer, size_t len, void *resblock)
|
|
{
|
|
struct sha_ctx ctx;
|
|
|
|
/* Initialize the computation context. */
|
|
sha_init_ctx (&ctx);
|
|
|
|
/* Process whole buffer but last len % 64 bytes. */
|
|
sha_process_bytes (buffer, len, &ctx);
|
|
|
|
/* Put result in desired memory area. */
|
|
return sha_finish_ctx (&ctx, resblock);
|
|
}
|
|
|
|
void
|
|
sha_process_bytes (const void *buffer, size_t len, struct sha_ctx *ctx)
|
|
{
|
|
/* When we already have some bits in our internal buffer concatenate
|
|
both inputs first. */
|
|
if (ctx->buflen != 0)
|
|
{
|
|
size_t left_over = ctx->buflen;
|
|
size_t add = 128 - left_over > len ? len : 128 - left_over;
|
|
|
|
memcpy (&ctx->buffer[left_over], buffer, add);
|
|
ctx->buflen += add;
|
|
|
|
if (left_over + add > 64)
|
|
{
|
|
sha_process_block (ctx->buffer, (left_over + add) & ~63, ctx);
|
|
/* The regions in the following copy operation cannot overlap. */
|
|
memcpy (ctx->buffer, &ctx->buffer[(left_over + add) & ~63],
|
|
(left_over + add) & 63);
|
|
ctx->buflen = (left_over + add) & 63;
|
|
}
|
|
|
|
buffer = (const char *) buffer + add;
|
|
len -= add;
|
|
}
|
|
|
|
/* Process available complete blocks. */
|
|
if (len > 64)
|
|
{
|
|
sha_process_block (buffer, len & ~63, ctx);
|
|
buffer = (const char *) buffer + (len & ~63);
|
|
len &= 63;
|
|
}
|
|
|
|
/* Move remaining bytes in internal buffer. */
|
|
if (len > 0)
|
|
{
|
|
memcpy (ctx->buffer, buffer, len);
|
|
ctx->buflen = len;
|
|
}
|
|
}
|
|
|
|
/* --- Code below is the primary difference between md5.c and sha.c --- */
|
|
|
|
/* SHA1 round constants */
|
|
#define K1 0x5a827999L
|
|
#define K2 0x6ed9eba1L
|
|
#define K3 0x8f1bbcdcL
|
|
#define K4 0xca62c1d6L
|
|
|
|
/* Round functions. Note that F2 is the same as F4. */
|
|
#define F1(B,C,D) ( D ^ ( B & ( C ^ D ) ) )
|
|
#define F2(B,C,D) (B ^ C ^ D)
|
|
#define F3(B,C,D) ( ( B & C ) | ( D & ( B | C ) ) )
|
|
#define F4(B,C,D) (B ^ C ^ D)
|
|
|
|
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
|
It is assumed that LEN % 64 == 0.
|
|
Most of this code comes from GnuPG's cipher/sha1.c. */
|
|
|
|
void
|
|
sha_process_block (const void *buffer, size_t len, struct sha_ctx *ctx)
|
|
{
|
|
const md5_uint32 *words = buffer;
|
|
size_t nwords = len / sizeof (md5_uint32);
|
|
const md5_uint32 *endp = words + nwords;
|
|
md5_uint32 x[16];
|
|
md5_uint32 a = ctx->A;
|
|
md5_uint32 b = ctx->B;
|
|
md5_uint32 c = ctx->C;
|
|
md5_uint32 d = ctx->D;
|
|
md5_uint32 e = ctx->E;
|
|
|
|
/* First increment the byte count. RFC 1321 specifies the possible
|
|
length of the file up to 2^64 bits. Here we only compute the
|
|
number of bytes. Do a double word increment. */
|
|
ctx->total[0] += len;
|
|
if (ctx->total[0] < len)
|
|
++ctx->total[1];
|
|
|
|
#define M(I) ( tm = x[I&0x0f] ^ x[(I-14)&0x0f] \
|
|
^ x[(I-8)&0x0f] ^ x[(I-3)&0x0f] \
|
|
, (x[I&0x0f] = rol(tm, 1)) )
|
|
|
|
#define R(A,B,C,D,E,F,K,M) do { E += rol( A, 5 ) \
|
|
+ F( B, C, D ) \
|
|
+ K \
|
|
+ M; \
|
|
B = rol( B, 30 ); \
|
|
} while(0)
|
|
|
|
while (words < endp)
|
|
{
|
|
md5_uint32 tm;
|
|
int t;
|
|
/* FIXME: see sha1.c for a better implementation. */
|
|
for (t = 0; t < 16; t++)
|
|
{
|
|
x[t] = NOTSWAP (*words);
|
|
words++;
|
|
}
|
|
|
|
R( a, b, c, d, e, F1, K1, x[ 0] );
|
|
R( e, a, b, c, d, F1, K1, x[ 1] );
|
|
R( d, e, a, b, c, F1, K1, x[ 2] );
|
|
R( c, d, e, a, b, F1, K1, x[ 3] );
|
|
R( b, c, d, e, a, F1, K1, x[ 4] );
|
|
R( a, b, c, d, e, F1, K1, x[ 5] );
|
|
R( e, a, b, c, d, F1, K1, x[ 6] );
|
|
R( d, e, a, b, c, F1, K1, x[ 7] );
|
|
R( c, d, e, a, b, F1, K1, x[ 8] );
|
|
R( b, c, d, e, a, F1, K1, x[ 9] );
|
|
R( a, b, c, d, e, F1, K1, x[10] );
|
|
R( e, a, b, c, d, F1, K1, x[11] );
|
|
R( d, e, a, b, c, F1, K1, x[12] );
|
|
R( c, d, e, a, b, F1, K1, x[13] );
|
|
R( b, c, d, e, a, F1, K1, x[14] );
|
|
R( a, b, c, d, e, F1, K1, x[15] );
|
|
R( e, a, b, c, d, F1, K1, M(16) );
|
|
R( d, e, a, b, c, F1, K1, M(17) );
|
|
R( c, d, e, a, b, F1, K1, M(18) );
|
|
R( b, c, d, e, a, F1, K1, M(19) );
|
|
R( a, b, c, d, e, F2, K2, M(20) );
|
|
R( e, a, b, c, d, F2, K2, M(21) );
|
|
R( d, e, a, b, c, F2, K2, M(22) );
|
|
R( c, d, e, a, b, F2, K2, M(23) );
|
|
R( b, c, d, e, a, F2, K2, M(24) );
|
|
R( a, b, c, d, e, F2, K2, M(25) );
|
|
R( e, a, b, c, d, F2, K2, M(26) );
|
|
R( d, e, a, b, c, F2, K2, M(27) );
|
|
R( c, d, e, a, b, F2, K2, M(28) );
|
|
R( b, c, d, e, a, F2, K2, M(29) );
|
|
R( a, b, c, d, e, F2, K2, M(30) );
|
|
R( e, a, b, c, d, F2, K2, M(31) );
|
|
R( d, e, a, b, c, F2, K2, M(32) );
|
|
R( c, d, e, a, b, F2, K2, M(33) );
|
|
R( b, c, d, e, a, F2, K2, M(34) );
|
|
R( a, b, c, d, e, F2, K2, M(35) );
|
|
R( e, a, b, c, d, F2, K2, M(36) );
|
|
R( d, e, a, b, c, F2, K2, M(37) );
|
|
R( c, d, e, a, b, F2, K2, M(38) );
|
|
R( b, c, d, e, a, F2, K2, M(39) );
|
|
R( a, b, c, d, e, F3, K3, M(40) );
|
|
R( e, a, b, c, d, F3, K3, M(41) );
|
|
R( d, e, a, b, c, F3, K3, M(42) );
|
|
R( c, d, e, a, b, F3, K3, M(43) );
|
|
R( b, c, d, e, a, F3, K3, M(44) );
|
|
R( a, b, c, d, e, F3, K3, M(45) );
|
|
R( e, a, b, c, d, F3, K3, M(46) );
|
|
R( d, e, a, b, c, F3, K3, M(47) );
|
|
R( c, d, e, a, b, F3, K3, M(48) );
|
|
R( b, c, d, e, a, F3, K3, M(49) );
|
|
R( a, b, c, d, e, F3, K3, M(50) );
|
|
R( e, a, b, c, d, F3, K3, M(51) );
|
|
R( d, e, a, b, c, F3, K3, M(52) );
|
|
R( c, d, e, a, b, F3, K3, M(53) );
|
|
R( b, c, d, e, a, F3, K3, M(54) );
|
|
R( a, b, c, d, e, F3, K3, M(55) );
|
|
R( e, a, b, c, d, F3, K3, M(56) );
|
|
R( d, e, a, b, c, F3, K3, M(57) );
|
|
R( c, d, e, a, b, F3, K3, M(58) );
|
|
R( b, c, d, e, a, F3, K3, M(59) );
|
|
R( a, b, c, d, e, F4, K4, M(60) );
|
|
R( e, a, b, c, d, F4, K4, M(61) );
|
|
R( d, e, a, b, c, F4, K4, M(62) );
|
|
R( c, d, e, a, b, F4, K4, M(63) );
|
|
R( b, c, d, e, a, F4, K4, M(64) );
|
|
R( a, b, c, d, e, F4, K4, M(65) );
|
|
R( e, a, b, c, d, F4, K4, M(66) );
|
|
R( d, e, a, b, c, F4, K4, M(67) );
|
|
R( c, d, e, a, b, F4, K4, M(68) );
|
|
R( b, c, d, e, a, F4, K4, M(69) );
|
|
R( a, b, c, d, e, F4, K4, M(70) );
|
|
R( e, a, b, c, d, F4, K4, M(71) );
|
|
R( d, e, a, b, c, F4, K4, M(72) );
|
|
R( c, d, e, a, b, F4, K4, M(73) );
|
|
R( b, c, d, e, a, F4, K4, M(74) );
|
|
R( a, b, c, d, e, F4, K4, M(75) );
|
|
R( e, a, b, c, d, F4, K4, M(76) );
|
|
R( d, e, a, b, c, F4, K4, M(77) );
|
|
R( c, d, e, a, b, F4, K4, M(78) );
|
|
R( b, c, d, e, a, F4, K4, M(79) );
|
|
|
|
a = ctx->A += a;
|
|
b = ctx->B += b;
|
|
c = ctx->C += c;
|
|
d = ctx->D += d;
|
|
e = ctx->E += e;
|
|
}
|
|
}
|