mirror of
https://github.com/coreutils/coreutils.git
synced 2024-12-12 19:34:40 +08:00
move sha256 and sha512 modules to gnulib
* bootstrap.conf (gnulib_modules) [sha256, sha512]: Add "crypto/" prefix to module name, now that they come from gnulib. * gl/lib/sha256.c: Remove file. * gl/lib/sha256.h: Likewise. * gl/lib/sha512.c: Likewise. * gl/lib/sha512.h: Likewise. * gl/lib/u64.h: Likewise. * gl/m4/sha256.m4: Likewise. * gl/m4/sha512.m4: Likewise. * gl/modules/sha256: Likewise. * gl/modules/sha512: Likewise.
This commit is contained in:
parent
295d47736a
commit
433881d802
@ -41,8 +41,10 @@ gnulib_modules="
|
||||
c-strtold calloc canon-host canonicalize chown cloexec
|
||||
config-h configmake
|
||||
closein closeout
|
||||
crypto/md5 crypto/sha1
|
||||
sha256 sha512
|
||||
crypto/md5
|
||||
crypto/sha1
|
||||
crypto/sha256
|
||||
crypto/sha512
|
||||
cycle-check
|
||||
d-ino d-type diacrit dirfd dirname dup2
|
||||
error euidaccess exclude exitfail fchdir fcntl fcntl-safer fdl
|
||||
|
550
gl/lib/sha256.c
550
gl/lib/sha256.c
@ -1,550 +0,0 @@
|
||||
/* sha256.c - Functions to compute SHA256 and SHA224 message digest of files or
|
||||
memory blocks according to the NIST specification FIPS-180-2.
|
||||
|
||||
Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||||
|
||||
/* Written by David Madore, considerably copypasting from
|
||||
Scott G. Miller's sha1.c
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
|
||||
#include "sha256.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <string.h>
|
||||
|
||||
#if USE_UNLOCKED_IO
|
||||
# include "unlocked-io.h"
|
||||
#endif
|
||||
|
||||
#ifdef WORDS_BIGENDIAN
|
||||
# define SWAP(n) (n)
|
||||
#else
|
||||
# define SWAP(n) \
|
||||
(((n) << 24) | (((n) & 0xff00) << 8) | (((n) >> 8) & 0xff00) | ((n) >> 24))
|
||||
#endif
|
||||
|
||||
#define BLOCKSIZE 4096
|
||||
#if BLOCKSIZE % 64 != 0
|
||||
# error "invalid BLOCKSIZE"
|
||||
#endif
|
||||
|
||||
/* This array contains the bytes used to pad the buffer to the next
|
||||
64-byte boundary. */
|
||||
static const unsigned char fillbuf[64] = { 0x80, 0 /* , 0, 0, ... */ };
|
||||
|
||||
|
||||
/*
|
||||
Takes a pointer to a 256 bit block of data (eight 32 bit ints) and
|
||||
intializes it to the start constants of the SHA256 algorithm. This
|
||||
must be called before using hash in the call to sha256_hash
|
||||
*/
|
||||
void
|
||||
sha256_init_ctx (struct sha256_ctx *ctx)
|
||||
{
|
||||
ctx->state[0] = 0x6a09e667UL;
|
||||
ctx->state[1] = 0xbb67ae85UL;
|
||||
ctx->state[2] = 0x3c6ef372UL;
|
||||
ctx->state[3] = 0xa54ff53aUL;
|
||||
ctx->state[4] = 0x510e527fUL;
|
||||
ctx->state[5] = 0x9b05688cUL;
|
||||
ctx->state[6] = 0x1f83d9abUL;
|
||||
ctx->state[7] = 0x5be0cd19UL;
|
||||
|
||||
ctx->total[0] = ctx->total[1] = 0;
|
||||
ctx->buflen = 0;
|
||||
}
|
||||
|
||||
void
|
||||
sha224_init_ctx (struct sha256_ctx *ctx)
|
||||
{
|
||||
ctx->state[0] = 0xc1059ed8UL;
|
||||
ctx->state[1] = 0x367cd507UL;
|
||||
ctx->state[2] = 0x3070dd17UL;
|
||||
ctx->state[3] = 0xf70e5939UL;
|
||||
ctx->state[4] = 0xffc00b31UL;
|
||||
ctx->state[5] = 0x68581511UL;
|
||||
ctx->state[6] = 0x64f98fa7UL;
|
||||
ctx->state[7] = 0xbefa4fa4UL;
|
||||
|
||||
ctx->total[0] = ctx->total[1] = 0;
|
||||
ctx->buflen = 0;
|
||||
}
|
||||
|
||||
/* Copy the value from v into the memory location pointed to by *cp,
|
||||
If your architecture allows unaligned access this is equivalent to
|
||||
* (uint32_t *) cp = v */
|
||||
static inline void
|
||||
set_uint32 (char *cp, uint32_t v)
|
||||
{
|
||||
memcpy (cp, &v, sizeof v);
|
||||
}
|
||||
|
||||
/* Put result from CTX in first 32 bytes following RESBUF. The result
|
||||
must be in little endian byte order. */
|
||||
void *
|
||||
sha256_read_ctx (const struct sha256_ctx *ctx, void *resbuf)
|
||||
{
|
||||
int i;
|
||||
char *r = resbuf;
|
||||
|
||||
for (i = 0; i < 8; i++)
|
||||
set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
|
||||
|
||||
return resbuf;
|
||||
}
|
||||
|
||||
void *
|
||||
sha224_read_ctx (const struct sha256_ctx *ctx, void *resbuf)
|
||||
{
|
||||
int i;
|
||||
char *r = resbuf;
|
||||
|
||||
for (i = 0; i < 7; i++)
|
||||
set_uint32 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
|
||||
|
||||
return resbuf;
|
||||
}
|
||||
|
||||
/* Process the remaining bytes in the internal buffer and the usual
|
||||
prolog according to the standard and write the result to RESBUF. */
|
||||
static void
|
||||
sha256_conclude_ctx (struct sha256_ctx *ctx)
|
||||
{
|
||||
/* Take yet unprocessed bytes into account. */
|
||||
uint32_t bytes = ctx->buflen;
|
||||
size_t size = (bytes < 56) ? 64 / 4 : 64 * 2 / 4;
|
||||
|
||||
/* Now count remaining bytes. */
|
||||
ctx->total[0] += bytes;
|
||||
if (ctx->total[0] < bytes)
|
||||
++ctx->total[1];
|
||||
|
||||
/* Put the 64-bit file length in *bits* at the end of the buffer. */
|
||||
ctx->buffer[size - 2] = SWAP ((ctx->total[1] << 3) | (ctx->total[0] >> 29));
|
||||
ctx->buffer[size - 1] = SWAP (ctx->total[0] << 3);
|
||||
|
||||
memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 4 - bytes);
|
||||
|
||||
/* Process last bytes. */
|
||||
sha256_process_block (ctx->buffer, size * 4, ctx);
|
||||
}
|
||||
|
||||
void *
|
||||
sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf)
|
||||
{
|
||||
sha256_conclude_ctx (ctx);
|
||||
return sha256_read_ctx (ctx, resbuf);
|
||||
}
|
||||
|
||||
void *
|
||||
sha224_finish_ctx (struct sha256_ctx *ctx, void *resbuf)
|
||||
{
|
||||
sha256_conclude_ctx (ctx);
|
||||
return sha224_read_ctx (ctx, resbuf);
|
||||
}
|
||||
|
||||
/* Compute SHA256 message digest for bytes read from STREAM. The
|
||||
resulting message digest number will be written into the 32 bytes
|
||||
beginning at RESBLOCK. */
|
||||
int
|
||||
sha256_stream (FILE *stream, void *resblock)
|
||||
{
|
||||
struct sha256_ctx ctx;
|
||||
char buffer[BLOCKSIZE + 72];
|
||||
size_t sum;
|
||||
|
||||
/* Initialize the computation context. */
|
||||
sha256_init_ctx (&ctx);
|
||||
|
||||
/* Iterate over full file contents. */
|
||||
while (1)
|
||||
{
|
||||
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
|
||||
computation function processes the whole buffer so that with the
|
||||
next round of the loop another block can be read. */
|
||||
size_t n;
|
||||
sum = 0;
|
||||
|
||||
/* Read block. Take care for partial reads. */
|
||||
while (1)
|
||||
{
|
||||
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
|
||||
|
||||
sum += n;
|
||||
|
||||
if (sum == BLOCKSIZE)
|
||||
break;
|
||||
|
||||
if (n == 0)
|
||||
{
|
||||
/* Check for the error flag IFF N == 0, so that we don't
|
||||
exit the loop after a partial read due to e.g., EAGAIN
|
||||
or EWOULDBLOCK. */
|
||||
if (ferror (stream))
|
||||
return 1;
|
||||
goto process_partial_block;
|
||||
}
|
||||
|
||||
/* We've read at least one byte, so ignore errors. But always
|
||||
check for EOF, since feof may be true even though N > 0.
|
||||
Otherwise, we could end up calling fread after EOF. */
|
||||
if (feof (stream))
|
||||
goto process_partial_block;
|
||||
}
|
||||
|
||||
/* Process buffer with BLOCKSIZE bytes. Note that
|
||||
BLOCKSIZE % 64 == 0
|
||||
*/
|
||||
sha256_process_block (buffer, BLOCKSIZE, &ctx);
|
||||
}
|
||||
|
||||
process_partial_block:;
|
||||
|
||||
/* Process any remaining bytes. */
|
||||
if (sum > 0)
|
||||
sha256_process_bytes (buffer, sum, &ctx);
|
||||
|
||||
/* Construct result in desired memory. */
|
||||
sha256_finish_ctx (&ctx, resblock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* FIXME: Avoid code duplication */
|
||||
int
|
||||
sha224_stream (FILE *stream, void *resblock)
|
||||
{
|
||||
struct sha256_ctx ctx;
|
||||
char buffer[BLOCKSIZE + 72];
|
||||
size_t sum;
|
||||
|
||||
/* Initialize the computation context. */
|
||||
sha224_init_ctx (&ctx);
|
||||
|
||||
/* Iterate over full file contents. */
|
||||
while (1)
|
||||
{
|
||||
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
|
||||
computation function processes the whole buffer so that with the
|
||||
next round of the loop another block can be read. */
|
||||
size_t n;
|
||||
sum = 0;
|
||||
|
||||
/* Read block. Take care for partial reads. */
|
||||
while (1)
|
||||
{
|
||||
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
|
||||
|
||||
sum += n;
|
||||
|
||||
if (sum == BLOCKSIZE)
|
||||
break;
|
||||
|
||||
if (n == 0)
|
||||
{
|
||||
/* Check for the error flag IFF N == 0, so that we don't
|
||||
exit the loop after a partial read due to e.g., EAGAIN
|
||||
or EWOULDBLOCK. */
|
||||
if (ferror (stream))
|
||||
return 1;
|
||||
goto process_partial_block;
|
||||
}
|
||||
|
||||
/* We've read at least one byte, so ignore errors. But always
|
||||
check for EOF, since feof may be true even though N > 0.
|
||||
Otherwise, we could end up calling fread after EOF. */
|
||||
if (feof (stream))
|
||||
goto process_partial_block;
|
||||
}
|
||||
|
||||
/* Process buffer with BLOCKSIZE bytes. Note that
|
||||
BLOCKSIZE % 64 == 0
|
||||
*/
|
||||
sha256_process_block (buffer, BLOCKSIZE, &ctx);
|
||||
}
|
||||
|
||||
process_partial_block:;
|
||||
|
||||
/* Process any remaining bytes. */
|
||||
if (sum > 0)
|
||||
sha256_process_bytes (buffer, sum, &ctx);
|
||||
|
||||
/* Construct result in desired memory. */
|
||||
sha224_finish_ctx (&ctx, resblock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The
|
||||
result is always in little endian byte order, so that a byte-wise
|
||||
output yields to the wanted ASCII representation of the message
|
||||
digest. */
|
||||
void *
|
||||
sha256_buffer (const char *buffer, size_t len, void *resblock)
|
||||
{
|
||||
struct sha256_ctx ctx;
|
||||
|
||||
/* Initialize the computation context. */
|
||||
sha256_init_ctx (&ctx);
|
||||
|
||||
/* Process whole buffer but last len % 64 bytes. */
|
||||
sha256_process_bytes (buffer, len, &ctx);
|
||||
|
||||
/* Put result in desired memory area. */
|
||||
return sha256_finish_ctx (&ctx, resblock);
|
||||
}
|
||||
|
||||
void *
|
||||
sha224_buffer (const char *buffer, size_t len, void *resblock)
|
||||
{
|
||||
struct sha256_ctx ctx;
|
||||
|
||||
/* Initialize the computation context. */
|
||||
sha224_init_ctx (&ctx);
|
||||
|
||||
/* Process whole buffer but last len % 64 bytes. */
|
||||
sha256_process_bytes (buffer, len, &ctx);
|
||||
|
||||
/* Put result in desired memory area. */
|
||||
return sha224_finish_ctx (&ctx, resblock);
|
||||
}
|
||||
|
||||
void
|
||||
sha256_process_bytes (const void *buffer, size_t len, struct sha256_ctx *ctx)
|
||||
{
|
||||
/* When we already have some bits in our internal buffer concatenate
|
||||
both inputs first. */
|
||||
if (ctx->buflen != 0)
|
||||
{
|
||||
size_t left_over = ctx->buflen;
|
||||
size_t add = 128 - left_over > len ? len : 128 - left_over;
|
||||
|
||||
memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
|
||||
ctx->buflen += add;
|
||||
|
||||
if (ctx->buflen > 64)
|
||||
{
|
||||
sha256_process_block (ctx->buffer, ctx->buflen & ~63, ctx);
|
||||
|
||||
ctx->buflen &= 63;
|
||||
/* The regions in the following copy operation cannot overlap. */
|
||||
memcpy (ctx->buffer,
|
||||
&((char *) ctx->buffer)[(left_over + add) & ~63],
|
||||
ctx->buflen);
|
||||
}
|
||||
|
||||
buffer = (const char *) buffer + add;
|
||||
len -= add;
|
||||
}
|
||||
|
||||
/* Process available complete blocks. */
|
||||
if (len >= 64)
|
||||
{
|
||||
#if !_STRING_ARCH_unaligned
|
||||
# define alignof(type) offsetof (struct { char c; type x; }, x)
|
||||
# define UNALIGNED_P(p) (((size_t) p) % alignof (uint32_t) != 0)
|
||||
if (UNALIGNED_P (buffer))
|
||||
while (len > 64)
|
||||
{
|
||||
sha256_process_block (memcpy (ctx->buffer, buffer, 64), 64, ctx);
|
||||
buffer = (const char *) buffer + 64;
|
||||
len -= 64;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
sha256_process_block (buffer, len & ~63, ctx);
|
||||
buffer = (const char *) buffer + (len & ~63);
|
||||
len &= 63;
|
||||
}
|
||||
}
|
||||
|
||||
/* Move remaining bytes in internal buffer. */
|
||||
if (len > 0)
|
||||
{
|
||||
size_t left_over = ctx->buflen;
|
||||
|
||||
memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
|
||||
left_over += len;
|
||||
if (left_over >= 64)
|
||||
{
|
||||
sha256_process_block (ctx->buffer, 64, ctx);
|
||||
left_over -= 64;
|
||||
memcpy (ctx->buffer, &ctx->buffer[16], left_over);
|
||||
}
|
||||
ctx->buflen = left_over;
|
||||
}
|
||||
}
|
||||
|
||||
/* --- Code below is the primary difference between sha1.c and sha256.c --- */
|
||||
|
||||
/* SHA256 round constants */
|
||||
#define K(I) sha256_round_constants[I]
|
||||
static const uint32_t sha256_round_constants[64] = {
|
||||
0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL,
|
||||
0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL,
|
||||
0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL,
|
||||
0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL,
|
||||
0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL,
|
||||
0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL,
|
||||
0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL,
|
||||
0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL,
|
||||
0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL,
|
||||
0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL,
|
||||
0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL,
|
||||
0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL,
|
||||
0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL,
|
||||
0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL,
|
||||
0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL,
|
||||
0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL,
|
||||
};
|
||||
|
||||
/* Round functions. */
|
||||
#define F2(A,B,C) ( ( A & B ) | ( C & ( A | B ) ) )
|
||||
#define F1(E,F,G) ( G ^ ( E & ( F ^ G ) ) )
|
||||
|
||||
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
||||
It is assumed that LEN % 64 == 0.
|
||||
Most of this code comes from GnuPG's cipher/sha1.c. */
|
||||
|
||||
void
|
||||
sha256_process_block (const void *buffer, size_t len, struct sha256_ctx *ctx)
|
||||
{
|
||||
const uint32_t *words = buffer;
|
||||
size_t nwords = len / sizeof (uint32_t);
|
||||
const uint32_t *endp = words + nwords;
|
||||
uint32_t x[16];
|
||||
uint32_t a = ctx->state[0];
|
||||
uint32_t b = ctx->state[1];
|
||||
uint32_t c = ctx->state[2];
|
||||
uint32_t d = ctx->state[3];
|
||||
uint32_t e = ctx->state[4];
|
||||
uint32_t f = ctx->state[5];
|
||||
uint32_t g = ctx->state[6];
|
||||
uint32_t h = ctx->state[7];
|
||||
|
||||
/* First increment the byte count. FIPS PUB 180-2 specifies the possible
|
||||
length of the file up to 2^64 bits. Here we only compute the
|
||||
number of bytes. Do a double word increment. */
|
||||
ctx->total[0] += len;
|
||||
if (ctx->total[0] < len)
|
||||
++ctx->total[1];
|
||||
|
||||
#define rol(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
|
||||
#define S0(x) (rol(x,25)^rol(x,14)^(x>>3))
|
||||
#define S1(x) (rol(x,15)^rol(x,13)^(x>>10))
|
||||
#define SS0(x) (rol(x,30)^rol(x,19)^rol(x,10))
|
||||
#define SS1(x) (rol(x,26)^rol(x,21)^rol(x,7))
|
||||
|
||||
#define M(I) ( tm = S1(x[(I-2)&0x0f]) + x[(I-7)&0x0f] \
|
||||
+ S0(x[(I-15)&0x0f]) + x[I&0x0f] \
|
||||
, x[I&0x0f] = tm )
|
||||
|
||||
#define R(A,B,C,D,E,F,G,H,K,M) do { t0 = SS0(A) + F2(A,B,C); \
|
||||
t1 = H + SS1(E) \
|
||||
+ F1(E,F,G) \
|
||||
+ K \
|
||||
+ M; \
|
||||
D += t1; H = t0 + t1; \
|
||||
} while(0)
|
||||
|
||||
while (words < endp)
|
||||
{
|
||||
uint32_t tm;
|
||||
uint32_t t0, t1;
|
||||
int t;
|
||||
/* FIXME: see sha1.c for a better implementation. */
|
||||
for (t = 0; t < 16; t++)
|
||||
{
|
||||
x[t] = SWAP (*words);
|
||||
words++;
|
||||
}
|
||||
|
||||
R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
|
||||
R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
|
||||
R( g, h, a, b, c, d, e, f, K( 2), x[ 2] );
|
||||
R( f, g, h, a, b, c, d, e, K( 3), x[ 3] );
|
||||
R( e, f, g, h, a, b, c, d, K( 4), x[ 4] );
|
||||
R( d, e, f, g, h, a, b, c, K( 5), x[ 5] );
|
||||
R( c, d, e, f, g, h, a, b, K( 6), x[ 6] );
|
||||
R( b, c, d, e, f, g, h, a, K( 7), x[ 7] );
|
||||
R( a, b, c, d, e, f, g, h, K( 8), x[ 8] );
|
||||
R( h, a, b, c, d, e, f, g, K( 9), x[ 9] );
|
||||
R( g, h, a, b, c, d, e, f, K(10), x[10] );
|
||||
R( f, g, h, a, b, c, d, e, K(11), x[11] );
|
||||
R( e, f, g, h, a, b, c, d, K(12), x[12] );
|
||||
R( d, e, f, g, h, a, b, c, K(13), x[13] );
|
||||
R( c, d, e, f, g, h, a, b, K(14), x[14] );
|
||||
R( b, c, d, e, f, g, h, a, K(15), x[15] );
|
||||
R( a, b, c, d, e, f, g, h, K(16), M(16) );
|
||||
R( h, a, b, c, d, e, f, g, K(17), M(17) );
|
||||
R( g, h, a, b, c, d, e, f, K(18), M(18) );
|
||||
R( f, g, h, a, b, c, d, e, K(19), M(19) );
|
||||
R( e, f, g, h, a, b, c, d, K(20), M(20) );
|
||||
R( d, e, f, g, h, a, b, c, K(21), M(21) );
|
||||
R( c, d, e, f, g, h, a, b, K(22), M(22) );
|
||||
R( b, c, d, e, f, g, h, a, K(23), M(23) );
|
||||
R( a, b, c, d, e, f, g, h, K(24), M(24) );
|
||||
R( h, a, b, c, d, e, f, g, K(25), M(25) );
|
||||
R( g, h, a, b, c, d, e, f, K(26), M(26) );
|
||||
R( f, g, h, a, b, c, d, e, K(27), M(27) );
|
||||
R( e, f, g, h, a, b, c, d, K(28), M(28) );
|
||||
R( d, e, f, g, h, a, b, c, K(29), M(29) );
|
||||
R( c, d, e, f, g, h, a, b, K(30), M(30) );
|
||||
R( b, c, d, e, f, g, h, a, K(31), M(31) );
|
||||
R( a, b, c, d, e, f, g, h, K(32), M(32) );
|
||||
R( h, a, b, c, d, e, f, g, K(33), M(33) );
|
||||
R( g, h, a, b, c, d, e, f, K(34), M(34) );
|
||||
R( f, g, h, a, b, c, d, e, K(35), M(35) );
|
||||
R( e, f, g, h, a, b, c, d, K(36), M(36) );
|
||||
R( d, e, f, g, h, a, b, c, K(37), M(37) );
|
||||
R( c, d, e, f, g, h, a, b, K(38), M(38) );
|
||||
R( b, c, d, e, f, g, h, a, K(39), M(39) );
|
||||
R( a, b, c, d, e, f, g, h, K(40), M(40) );
|
||||
R( h, a, b, c, d, e, f, g, K(41), M(41) );
|
||||
R( g, h, a, b, c, d, e, f, K(42), M(42) );
|
||||
R( f, g, h, a, b, c, d, e, K(43), M(43) );
|
||||
R( e, f, g, h, a, b, c, d, K(44), M(44) );
|
||||
R( d, e, f, g, h, a, b, c, K(45), M(45) );
|
||||
R( c, d, e, f, g, h, a, b, K(46), M(46) );
|
||||
R( b, c, d, e, f, g, h, a, K(47), M(47) );
|
||||
R( a, b, c, d, e, f, g, h, K(48), M(48) );
|
||||
R( h, a, b, c, d, e, f, g, K(49), M(49) );
|
||||
R( g, h, a, b, c, d, e, f, K(50), M(50) );
|
||||
R( f, g, h, a, b, c, d, e, K(51), M(51) );
|
||||
R( e, f, g, h, a, b, c, d, K(52), M(52) );
|
||||
R( d, e, f, g, h, a, b, c, K(53), M(53) );
|
||||
R( c, d, e, f, g, h, a, b, K(54), M(54) );
|
||||
R( b, c, d, e, f, g, h, a, K(55), M(55) );
|
||||
R( a, b, c, d, e, f, g, h, K(56), M(56) );
|
||||
R( h, a, b, c, d, e, f, g, K(57), M(57) );
|
||||
R( g, h, a, b, c, d, e, f, K(58), M(58) );
|
||||
R( f, g, h, a, b, c, d, e, K(59), M(59) );
|
||||
R( e, f, g, h, a, b, c, d, K(60), M(60) );
|
||||
R( d, e, f, g, h, a, b, c, K(61), M(61) );
|
||||
R( c, d, e, f, g, h, a, b, K(62), M(62) );
|
||||
R( b, c, d, e, f, g, h, a, K(63), M(63) );
|
||||
|
||||
a = ctx->state[0] += a;
|
||||
b = ctx->state[1] += b;
|
||||
c = ctx->state[2] += c;
|
||||
d = ctx->state[3] += d;
|
||||
e = ctx->state[4] += e;
|
||||
f = ctx->state[5] += f;
|
||||
g = ctx->state[6] += g;
|
||||
h = ctx->state[7] += h;
|
||||
}
|
||||
}
|
@ -1,83 +0,0 @@
|
||||
/* Declarations of functions and data types used for SHA256 and SHA224 sum
|
||||
library functions.
|
||||
Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||||
|
||||
#ifndef SHA256_H
|
||||
# define SHA256_H 1
|
||||
|
||||
# include <stdio.h>
|
||||
# include <stdint.h>
|
||||
|
||||
/* Structure to save state of computation between the single steps. */
|
||||
struct sha256_ctx
|
||||
{
|
||||
uint32_t state[8];
|
||||
|
||||
uint32_t total[2];
|
||||
uint32_t buflen;
|
||||
uint32_t buffer[32];
|
||||
};
|
||||
|
||||
enum { SHA224_DIGEST_SIZE = 24 };
|
||||
enum { SHA256_DIGEST_SIZE = 32 };
|
||||
|
||||
/* Initialize structure containing state of computation. */
|
||||
extern void sha256_init_ctx (struct sha256_ctx *ctx);
|
||||
extern void sha224_init_ctx (struct sha256_ctx *ctx);
|
||||
|
||||
/* Starting with the result of former calls of this function (or the
|
||||
initialization function update the context for the next LEN bytes
|
||||
starting at BUFFER.
|
||||
It is necessary that LEN is a multiple of 64!!! */
|
||||
extern void sha256_process_block (const void *buffer, size_t len,
|
||||
struct sha256_ctx *ctx);
|
||||
|
||||
/* Starting with the result of former calls of this function (or the
|
||||
initialization function update the context for the next LEN bytes
|
||||
starting at BUFFER.
|
||||
It is NOT required that LEN is a multiple of 64. */
|
||||
extern void sha256_process_bytes (const void *buffer, size_t len,
|
||||
struct sha256_ctx *ctx);
|
||||
|
||||
/* Process the remaining bytes in the buffer and put result from CTX
|
||||
in first 32 (28) bytes following RESBUF. The result is always in little
|
||||
endian byte order, so that a byte-wise output yields to the wanted
|
||||
ASCII representation of the message digest. */
|
||||
extern void *sha256_finish_ctx (struct sha256_ctx *ctx, void *resbuf);
|
||||
extern void *sha224_finish_ctx (struct sha256_ctx *ctx, void *resbuf);
|
||||
|
||||
|
||||
/* Put result from CTX in first 32 (28) bytes following RESBUF. The result is
|
||||
always in little endian byte order, so that a byte-wise output yields
|
||||
to the wanted ASCII representation of the message digest. */
|
||||
extern void *sha256_read_ctx (const struct sha256_ctx *ctx, void *resbuf);
|
||||
extern void *sha224_read_ctx (const struct sha256_ctx *ctx, void *resbuf);
|
||||
|
||||
|
||||
/* Compute SHA256 (SHA224) message digest for bytes read from STREAM. The
|
||||
resulting message digest number will be written into the 32 (28) bytes
|
||||
beginning at RESBLOCK. */
|
||||
extern int sha256_stream (FILE *stream, void *resblock);
|
||||
extern int sha224_stream (FILE *stream, void *resblock);
|
||||
|
||||
/* Compute SHA256 (SHA224) message digest for LEN bytes beginning at BUFFER. The
|
||||
result is always in little endian byte order, so that a byte-wise
|
||||
output yields to the wanted ASCII representation of the message
|
||||
digest. */
|
||||
extern void *sha256_buffer (const char *buffer, size_t len, void *resblock);
|
||||
extern void *sha224_buffer (const char *buffer, size_t len, void *resblock);
|
||||
|
||||
#endif
|
600
gl/lib/sha512.c
600
gl/lib/sha512.c
@ -1,600 +0,0 @@
|
||||
/* sha512.c - Functions to compute SHA512 and SHA384 message digest of files or
|
||||
memory blocks according to the NIST specification FIPS-180-2.
|
||||
|
||||
Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||||
|
||||
/* Written by David Madore, considerably copypasting from
|
||||
Scott G. Miller's sha1.c
|
||||
*/
|
||||
|
||||
#include <config.h>
|
||||
|
||||
#include "sha512.h"
|
||||
|
||||
#include <stddef.h>
|
||||
#include <string.h>
|
||||
|
||||
#if USE_UNLOCKED_IO
|
||||
# include "unlocked-io.h"
|
||||
#endif
|
||||
|
||||
#ifdef WORDS_BIGENDIAN
|
||||
# define SWAP(n) (n)
|
||||
#else
|
||||
# define SWAP(n) \
|
||||
u64or (u64or (u64or (u64shl (n, 56), \
|
||||
u64shl (u64and (n, u64lo (0x0000ff00)), 40)), \
|
||||
u64or (u64shl (u64and (n, u64lo (0x00ff0000)), 24), \
|
||||
u64shl (u64and (n, u64lo (0xff000000)), 8))), \
|
||||
u64or (u64or (u64and (u64shr (n, 8), u64lo (0xff000000)), \
|
||||
u64and (u64shr (n, 24), u64lo (0x00ff0000))), \
|
||||
u64or (u64and (u64shr (n, 40), u64lo (0x0000ff00)), \
|
||||
u64shr (n, 56))))
|
||||
#endif
|
||||
|
||||
#define BLOCKSIZE 4096
|
||||
#if BLOCKSIZE % 128 != 0
|
||||
# error "invalid BLOCKSIZE"
|
||||
#endif
|
||||
|
||||
/* This array contains the bytes used to pad the buffer to the next
|
||||
128-byte boundary. */
|
||||
static const unsigned char fillbuf[128] = { 0x80, 0 /* , 0, 0, ... */ };
|
||||
|
||||
|
||||
/*
|
||||
Takes a pointer to a 512 bit block of data (eight 64 bit ints) and
|
||||
intializes it to the start constants of the SHA512 algorithm. This
|
||||
must be called before using hash in the call to sha512_hash
|
||||
*/
|
||||
void
|
||||
sha512_init_ctx (struct sha512_ctx *ctx)
|
||||
{
|
||||
ctx->state[0] = u64hilo (0x6a09e667, 0xf3bcc908);
|
||||
ctx->state[1] = u64hilo (0xbb67ae85, 0x84caa73b);
|
||||
ctx->state[2] = u64hilo (0x3c6ef372, 0xfe94f82b);
|
||||
ctx->state[3] = u64hilo (0xa54ff53a, 0x5f1d36f1);
|
||||
ctx->state[4] = u64hilo (0x510e527f, 0xade682d1);
|
||||
ctx->state[5] = u64hilo (0x9b05688c, 0x2b3e6c1f);
|
||||
ctx->state[6] = u64hilo (0x1f83d9ab, 0xfb41bd6b);
|
||||
ctx->state[7] = u64hilo (0x5be0cd19, 0x137e2179);
|
||||
|
||||
ctx->total[0] = ctx->total[1] = u64lo (0);
|
||||
ctx->buflen = 0;
|
||||
}
|
||||
|
||||
void
|
||||
sha384_init_ctx (struct sha512_ctx *ctx)
|
||||
{
|
||||
ctx->state[0] = u64hilo (0xcbbb9d5d, 0xc1059ed8);
|
||||
ctx->state[1] = u64hilo (0x629a292a, 0x367cd507);
|
||||
ctx->state[2] = u64hilo (0x9159015a, 0x3070dd17);
|
||||
ctx->state[3] = u64hilo (0x152fecd8, 0xf70e5939);
|
||||
ctx->state[4] = u64hilo (0x67332667, 0xffc00b31);
|
||||
ctx->state[5] = u64hilo (0x8eb44a87, 0x68581511);
|
||||
ctx->state[6] = u64hilo (0xdb0c2e0d, 0x64f98fa7);
|
||||
ctx->state[7] = u64hilo (0x47b5481d, 0xbefa4fa4);
|
||||
|
||||
ctx->total[0] = ctx->total[1] = u64lo (0);
|
||||
ctx->buflen = 0;
|
||||
}
|
||||
|
||||
/* Copy the value from V into the memory location pointed to by *CP,
|
||||
If your architecture allows unaligned access, this is equivalent to
|
||||
* (__typeof__ (v) *) cp = v */
|
||||
static inline void
|
||||
set_uint64 (char *cp, u64 v)
|
||||
{
|
||||
memcpy (cp, &v, sizeof v);
|
||||
}
|
||||
|
||||
/* Put result from CTX in first 64 bytes following RESBUF.
|
||||
The result must be in little endian byte order. */
|
||||
void *
|
||||
sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
|
||||
{
|
||||
int i;
|
||||
char *r = resbuf;
|
||||
|
||||
for (i = 0; i < 8; i++)
|
||||
set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
|
||||
|
||||
return resbuf;
|
||||
}
|
||||
|
||||
void *
|
||||
sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf)
|
||||
{
|
||||
int i;
|
||||
char *r = resbuf;
|
||||
|
||||
for (i = 0; i < 6; i++)
|
||||
set_uint64 (r + i * sizeof ctx->state[0], SWAP (ctx->state[i]));
|
||||
|
||||
return resbuf;
|
||||
}
|
||||
|
||||
/* Process the remaining bytes in the internal buffer and the usual
|
||||
prolog according to the standard and write the result to RESBUF. */
|
||||
static void
|
||||
sha512_conclude_ctx (struct sha512_ctx *ctx)
|
||||
{
|
||||
/* Take yet unprocessed bytes into account. */
|
||||
size_t bytes = ctx->buflen;
|
||||
size_t size = (bytes < 112) ? 128 / 8 : 128 * 2 / 8;
|
||||
|
||||
/* Now count remaining bytes. */
|
||||
ctx->total[0] = u64plus (ctx->total[0], u64lo (bytes));
|
||||
if (u64lt (ctx->total[0], u64lo (bytes)))
|
||||
ctx->total[1] = u64plus (ctx->total[1], u64lo (1));
|
||||
|
||||
/* Put the 64-bit file length in *bits* at the end of the buffer. */
|
||||
ctx->buffer[size - 2] = SWAP (u64or (u64shl (ctx->total[1], 3),
|
||||
u64shr (ctx->total[0], 61)));
|
||||
ctx->buffer[size - 1] = SWAP (u64shl (ctx->total[0], 3));
|
||||
|
||||
memcpy (&((char *) ctx->buffer)[bytes], fillbuf, (size - 2) * 8 - bytes);
|
||||
|
||||
/* Process last bytes. */
|
||||
sha512_process_block (ctx->buffer, size * 8, ctx);
|
||||
}
|
||||
|
||||
void *
|
||||
sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
|
||||
{
|
||||
sha512_conclude_ctx (ctx);
|
||||
return sha512_read_ctx (ctx, resbuf);
|
||||
}
|
||||
|
||||
void *
|
||||
sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf)
|
||||
{
|
||||
sha512_conclude_ctx (ctx);
|
||||
return sha384_read_ctx (ctx, resbuf);
|
||||
}
|
||||
|
||||
/* Compute SHA512 message digest for bytes read from STREAM. The
|
||||
resulting message digest number will be written into the 64 bytes
|
||||
beginning at RESBLOCK. */
|
||||
int
|
||||
sha512_stream (FILE *stream, void *resblock)
|
||||
{
|
||||
struct sha512_ctx ctx;
|
||||
char buffer[BLOCKSIZE + 72];
|
||||
size_t sum;
|
||||
|
||||
/* Initialize the computation context. */
|
||||
sha512_init_ctx (&ctx);
|
||||
|
||||
/* Iterate over full file contents. */
|
||||
while (1)
|
||||
{
|
||||
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
|
||||
computation function processes the whole buffer so that with the
|
||||
next round of the loop another block can be read. */
|
||||
size_t n;
|
||||
sum = 0;
|
||||
|
||||
/* Read block. Take care for partial reads. */
|
||||
while (1)
|
||||
{
|
||||
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
|
||||
|
||||
sum += n;
|
||||
|
||||
if (sum == BLOCKSIZE)
|
||||
break;
|
||||
|
||||
if (n == 0)
|
||||
{
|
||||
/* Check for the error flag IFF N == 0, so that we don't
|
||||
exit the loop after a partial read due to e.g., EAGAIN
|
||||
or EWOULDBLOCK. */
|
||||
if (ferror (stream))
|
||||
return 1;
|
||||
goto process_partial_block;
|
||||
}
|
||||
|
||||
/* We've read at least one byte, so ignore errors. But always
|
||||
check for EOF, since feof may be true even though N > 0.
|
||||
Otherwise, we could end up calling fread after EOF. */
|
||||
if (feof (stream))
|
||||
goto process_partial_block;
|
||||
}
|
||||
|
||||
/* Process buffer with BLOCKSIZE bytes. Note that
|
||||
BLOCKSIZE % 128 == 0
|
||||
*/
|
||||
sha512_process_block (buffer, BLOCKSIZE, &ctx);
|
||||
}
|
||||
|
||||
process_partial_block:;
|
||||
|
||||
/* Process any remaining bytes. */
|
||||
if (sum > 0)
|
||||
sha512_process_bytes (buffer, sum, &ctx);
|
||||
|
||||
/* Construct result in desired memory. */
|
||||
sha512_finish_ctx (&ctx, resblock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* FIXME: Avoid code duplication */
|
||||
int
|
||||
sha384_stream (FILE *stream, void *resblock)
|
||||
{
|
||||
struct sha512_ctx ctx;
|
||||
char buffer[BLOCKSIZE + 72];
|
||||
size_t sum;
|
||||
|
||||
/* Initialize the computation context. */
|
||||
sha384_init_ctx (&ctx);
|
||||
|
||||
/* Iterate over full file contents. */
|
||||
while (1)
|
||||
{
|
||||
/* We read the file in blocks of BLOCKSIZE bytes. One call of the
|
||||
computation function processes the whole buffer so that with the
|
||||
next round of the loop another block can be read. */
|
||||
size_t n;
|
||||
sum = 0;
|
||||
|
||||
/* Read block. Take care for partial reads. */
|
||||
while (1)
|
||||
{
|
||||
n = fread (buffer + sum, 1, BLOCKSIZE - sum, stream);
|
||||
|
||||
sum += n;
|
||||
|
||||
if (sum == BLOCKSIZE)
|
||||
break;
|
||||
|
||||
if (n == 0)
|
||||
{
|
||||
/* Check for the error flag IFF N == 0, so that we don't
|
||||
exit the loop after a partial read due to e.g., EAGAIN
|
||||
or EWOULDBLOCK. */
|
||||
if (ferror (stream))
|
||||
return 1;
|
||||
goto process_partial_block;
|
||||
}
|
||||
|
||||
/* We've read at least one byte, so ignore errors. But always
|
||||
check for EOF, since feof may be true even though N > 0.
|
||||
Otherwise, we could end up calling fread after EOF. */
|
||||
if (feof (stream))
|
||||
goto process_partial_block;
|
||||
}
|
||||
|
||||
/* Process buffer with BLOCKSIZE bytes. Note that
|
||||
BLOCKSIZE % 128 == 0
|
||||
*/
|
||||
sha512_process_block (buffer, BLOCKSIZE, &ctx);
|
||||
}
|
||||
|
||||
process_partial_block:;
|
||||
|
||||
/* Process any remaining bytes. */
|
||||
if (sum > 0)
|
||||
sha512_process_bytes (buffer, sum, &ctx);
|
||||
|
||||
/* Construct result in desired memory. */
|
||||
sha384_finish_ctx (&ctx, resblock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Compute SHA512 message digest for LEN bytes beginning at BUFFER. The
|
||||
result is always in little endian byte order, so that a byte-wise
|
||||
output yields to the wanted ASCII representation of the message
|
||||
digest. */
|
||||
void *
|
||||
sha512_buffer (const char *buffer, size_t len, void *resblock)
|
||||
{
|
||||
struct sha512_ctx ctx;
|
||||
|
||||
/* Initialize the computation context. */
|
||||
sha512_init_ctx (&ctx);
|
||||
|
||||
/* Process whole buffer but last len % 128 bytes. */
|
||||
sha512_process_bytes (buffer, len, &ctx);
|
||||
|
||||
/* Put result in desired memory area. */
|
||||
return sha512_finish_ctx (&ctx, resblock);
|
||||
}
|
||||
|
||||
void *
|
||||
sha384_buffer (const char *buffer, size_t len, void *resblock)
|
||||
{
|
||||
struct sha512_ctx ctx;
|
||||
|
||||
/* Initialize the computation context. */
|
||||
sha384_init_ctx (&ctx);
|
||||
|
||||
/* Process whole buffer but last len % 128 bytes. */
|
||||
sha512_process_bytes (buffer, len, &ctx);
|
||||
|
||||
/* Put result in desired memory area. */
|
||||
return sha384_finish_ctx (&ctx, resblock);
|
||||
}
|
||||
|
||||
void
|
||||
sha512_process_bytes (const void *buffer, size_t len, struct sha512_ctx *ctx)
|
||||
{
|
||||
/* When we already have some bits in our internal buffer concatenate
|
||||
both inputs first. */
|
||||
if (ctx->buflen != 0)
|
||||
{
|
||||
size_t left_over = ctx->buflen;
|
||||
size_t add = 256 - left_over > len ? len : 256 - left_over;
|
||||
|
||||
memcpy (&((char *) ctx->buffer)[left_over], buffer, add);
|
||||
ctx->buflen += add;
|
||||
|
||||
if (ctx->buflen > 128)
|
||||
{
|
||||
sha512_process_block (ctx->buffer, ctx->buflen & ~127, ctx);
|
||||
|
||||
ctx->buflen &= 127;
|
||||
/* The regions in the following copy operation cannot overlap. */
|
||||
memcpy (ctx->buffer,
|
||||
&((char *) ctx->buffer)[(left_over + add) & ~127],
|
||||
ctx->buflen);
|
||||
}
|
||||
|
||||
buffer = (const char *) buffer + add;
|
||||
len -= add;
|
||||
}
|
||||
|
||||
/* Process available complete blocks. */
|
||||
if (len >= 128)
|
||||
{
|
||||
#if !_STRING_ARCH_unaligned
|
||||
# define alignof(type) offsetof (struct { char c; type x; }, x)
|
||||
# define UNALIGNED_P(p) (((size_t) p) % alignof (u64) != 0)
|
||||
if (UNALIGNED_P (buffer))
|
||||
while (len > 128)
|
||||
{
|
||||
sha512_process_block (memcpy (ctx->buffer, buffer, 128), 128, ctx);
|
||||
buffer = (const char *) buffer + 128;
|
||||
len -= 128;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
sha512_process_block (buffer, len & ~127, ctx);
|
||||
buffer = (const char *) buffer + (len & ~127);
|
||||
len &= 127;
|
||||
}
|
||||
}
|
||||
|
||||
/* Move remaining bytes in internal buffer. */
|
||||
if (len > 0)
|
||||
{
|
||||
size_t left_over = ctx->buflen;
|
||||
|
||||
memcpy (&((char *) ctx->buffer)[left_over], buffer, len);
|
||||
left_over += len;
|
||||
if (left_over >= 128)
|
||||
{
|
||||
sha512_process_block (ctx->buffer, 128, ctx);
|
||||
left_over -= 128;
|
||||
memcpy (ctx->buffer, &ctx->buffer[16], left_over);
|
||||
}
|
||||
ctx->buflen = left_over;
|
||||
}
|
||||
}
|
||||
|
||||
/* --- Code below is the primary difference between sha1.c and sha512.c --- */
|
||||
|
||||
/* SHA512 round constants */
|
||||
#define K(I) sha512_round_constants[I]
|
||||
static u64 const sha512_round_constants[80] = {
|
||||
u64init (0x428a2f98, 0xd728ae22), u64init (0x71374491, 0x23ef65cd),
|
||||
u64init (0xb5c0fbcf, 0xec4d3b2f), u64init (0xe9b5dba5, 0x8189dbbc),
|
||||
u64init (0x3956c25b, 0xf348b538), u64init (0x59f111f1, 0xb605d019),
|
||||
u64init (0x923f82a4, 0xaf194f9b), u64init (0xab1c5ed5, 0xda6d8118),
|
||||
u64init (0xd807aa98, 0xa3030242), u64init (0x12835b01, 0x45706fbe),
|
||||
u64init (0x243185be, 0x4ee4b28c), u64init (0x550c7dc3, 0xd5ffb4e2),
|
||||
u64init (0x72be5d74, 0xf27b896f), u64init (0x80deb1fe, 0x3b1696b1),
|
||||
u64init (0x9bdc06a7, 0x25c71235), u64init (0xc19bf174, 0xcf692694),
|
||||
u64init (0xe49b69c1, 0x9ef14ad2), u64init (0xefbe4786, 0x384f25e3),
|
||||
u64init (0x0fc19dc6, 0x8b8cd5b5), u64init (0x240ca1cc, 0x77ac9c65),
|
||||
u64init (0x2de92c6f, 0x592b0275), u64init (0x4a7484aa, 0x6ea6e483),
|
||||
u64init (0x5cb0a9dc, 0xbd41fbd4), u64init (0x76f988da, 0x831153b5),
|
||||
u64init (0x983e5152, 0xee66dfab), u64init (0xa831c66d, 0x2db43210),
|
||||
u64init (0xb00327c8, 0x98fb213f), u64init (0xbf597fc7, 0xbeef0ee4),
|
||||
u64init (0xc6e00bf3, 0x3da88fc2), u64init (0xd5a79147, 0x930aa725),
|
||||
u64init (0x06ca6351, 0xe003826f), u64init (0x14292967, 0x0a0e6e70),
|
||||
u64init (0x27b70a85, 0x46d22ffc), u64init (0x2e1b2138, 0x5c26c926),
|
||||
u64init (0x4d2c6dfc, 0x5ac42aed), u64init (0x53380d13, 0x9d95b3df),
|
||||
u64init (0x650a7354, 0x8baf63de), u64init (0x766a0abb, 0x3c77b2a8),
|
||||
u64init (0x81c2c92e, 0x47edaee6), u64init (0x92722c85, 0x1482353b),
|
||||
u64init (0xa2bfe8a1, 0x4cf10364), u64init (0xa81a664b, 0xbc423001),
|
||||
u64init (0xc24b8b70, 0xd0f89791), u64init (0xc76c51a3, 0x0654be30),
|
||||
u64init (0xd192e819, 0xd6ef5218), u64init (0xd6990624, 0x5565a910),
|
||||
u64init (0xf40e3585, 0x5771202a), u64init (0x106aa070, 0x32bbd1b8),
|
||||
u64init (0x19a4c116, 0xb8d2d0c8), u64init (0x1e376c08, 0x5141ab53),
|
||||
u64init (0x2748774c, 0xdf8eeb99), u64init (0x34b0bcb5, 0xe19b48a8),
|
||||
u64init (0x391c0cb3, 0xc5c95a63), u64init (0x4ed8aa4a, 0xe3418acb),
|
||||
u64init (0x5b9cca4f, 0x7763e373), u64init (0x682e6ff3, 0xd6b2b8a3),
|
||||
u64init (0x748f82ee, 0x5defb2fc), u64init (0x78a5636f, 0x43172f60),
|
||||
u64init (0x84c87814, 0xa1f0ab72), u64init (0x8cc70208, 0x1a6439ec),
|
||||
u64init (0x90befffa, 0x23631e28), u64init (0xa4506ceb, 0xde82bde9),
|
||||
u64init (0xbef9a3f7, 0xb2c67915), u64init (0xc67178f2, 0xe372532b),
|
||||
u64init (0xca273ece, 0xea26619c), u64init (0xd186b8c7, 0x21c0c207),
|
||||
u64init (0xeada7dd6, 0xcde0eb1e), u64init (0xf57d4f7f, 0xee6ed178),
|
||||
u64init (0x06f067aa, 0x72176fba), u64init (0x0a637dc5, 0xa2c898a6),
|
||||
u64init (0x113f9804, 0xbef90dae), u64init (0x1b710b35, 0x131c471b),
|
||||
u64init (0x28db77f5, 0x23047d84), u64init (0x32caab7b, 0x40c72493),
|
||||
u64init (0x3c9ebe0a, 0x15c9bebc), u64init (0x431d67c4, 0x9c100d4c),
|
||||
u64init (0x4cc5d4be, 0xcb3e42b6), u64init (0x597f299c, 0xfc657e2a),
|
||||
u64init (0x5fcb6fab, 0x3ad6faec), u64init (0x6c44198c, 0x4a475817),
|
||||
};
|
||||
|
||||
/* Round functions. */
|
||||
#define F2(A, B, C) u64or (u64and (A, B), u64and (C, u64or (A, B)))
|
||||
#define F1(E, F, G) u64xor (G, u64and (E, u64xor (F, G)))
|
||||
|
||||
/* Process LEN bytes of BUFFER, accumulating context into CTX.
|
||||
It is assumed that LEN % 128 == 0.
|
||||
Most of this code comes from GnuPG's cipher/sha1.c. */
|
||||
|
||||
void
|
||||
sha512_process_block (const void *buffer, size_t len, struct sha512_ctx *ctx)
|
||||
{
|
||||
u64 const *words = buffer;
|
||||
u64 const *endp = words + len / sizeof (u64);
|
||||
u64 x[16];
|
||||
u64 a = ctx->state[0];
|
||||
u64 b = ctx->state[1];
|
||||
u64 c = ctx->state[2];
|
||||
u64 d = ctx->state[3];
|
||||
u64 e = ctx->state[4];
|
||||
u64 f = ctx->state[5];
|
||||
u64 g = ctx->state[6];
|
||||
u64 h = ctx->state[7];
|
||||
|
||||
/* First increment the byte count. FIPS PUB 180-2 specifies the possible
|
||||
length of the file up to 2^128 bits. Here we only compute the
|
||||
number of bytes. Do a double word increment. */
|
||||
ctx->total[0] = u64plus (ctx->total[0], u64lo (len));
|
||||
if (u64lt (ctx->total[0], u64lo (len)))
|
||||
ctx->total[1] = u64plus (ctx->total[1], u64lo (1));
|
||||
|
||||
#define S0(x) u64xor (u64rol(x, 63), u64xor (u64rol (x, 56), u64shr (x, 7)))
|
||||
#define S1(x) u64xor (u64rol (x, 45), u64xor (u64rol (x, 3), u64shr (x, 6)))
|
||||
#define SS0(x) u64xor (u64rol (x, 36), u64xor (u64rol (x, 30), u64rol (x, 25)))
|
||||
#define SS1(x) u64xor (u64rol(x, 50), u64xor (u64rol (x, 46), u64rol (x, 23)))
|
||||
|
||||
#define M(I) (x[(I) & 15] \
|
||||
= u64plus (x[(I) & 15], \
|
||||
u64plus (S1 (x[((I) - 2) & 15]), \
|
||||
u64plus (x[((I) - 7) & 15], \
|
||||
S0 (x[((I) - 15) & 15])))))
|
||||
|
||||
#define R(A, B, C, D, E, F, G, H, K, M) \
|
||||
do \
|
||||
{ \
|
||||
u64 t0 = u64plus (SS0 (A), F2 (A, B, C)); \
|
||||
u64 t1 = \
|
||||
u64plus (H, u64plus (SS1 (E), \
|
||||
u64plus (F1 (E, F, G), u64plus (K, M)))); \
|
||||
D = u64plus (D, t1); \
|
||||
H = u64plus (t0, t1); \
|
||||
} \
|
||||
while (0)
|
||||
|
||||
while (words < endp)
|
||||
{
|
||||
int t;
|
||||
/* FIXME: see sha1.c for a better implementation. */
|
||||
for (t = 0; t < 16; t++)
|
||||
{
|
||||
x[t] = SWAP (*words);
|
||||
words++;
|
||||
}
|
||||
|
||||
R( a, b, c, d, e, f, g, h, K( 0), x[ 0] );
|
||||
R( h, a, b, c, d, e, f, g, K( 1), x[ 1] );
|
||||
R( g, h, a, b, c, d, e, f, K( 2), x[ 2] );
|
||||
R( f, g, h, a, b, c, d, e, K( 3), x[ 3] );
|
||||
R( e, f, g, h, a, b, c, d, K( 4), x[ 4] );
|
||||
R( d, e, f, g, h, a, b, c, K( 5), x[ 5] );
|
||||
R( c, d, e, f, g, h, a, b, K( 6), x[ 6] );
|
||||
R( b, c, d, e, f, g, h, a, K( 7), x[ 7] );
|
||||
R( a, b, c, d, e, f, g, h, K( 8), x[ 8] );
|
||||
R( h, a, b, c, d, e, f, g, K( 9), x[ 9] );
|
||||
R( g, h, a, b, c, d, e, f, K(10), x[10] );
|
||||
R( f, g, h, a, b, c, d, e, K(11), x[11] );
|
||||
R( e, f, g, h, a, b, c, d, K(12), x[12] );
|
||||
R( d, e, f, g, h, a, b, c, K(13), x[13] );
|
||||
R( c, d, e, f, g, h, a, b, K(14), x[14] );
|
||||
R( b, c, d, e, f, g, h, a, K(15), x[15] );
|
||||
R( a, b, c, d, e, f, g, h, K(16), M(16) );
|
||||
R( h, a, b, c, d, e, f, g, K(17), M(17) );
|
||||
R( g, h, a, b, c, d, e, f, K(18), M(18) );
|
||||
R( f, g, h, a, b, c, d, e, K(19), M(19) );
|
||||
R( e, f, g, h, a, b, c, d, K(20), M(20) );
|
||||
R( d, e, f, g, h, a, b, c, K(21), M(21) );
|
||||
R( c, d, e, f, g, h, a, b, K(22), M(22) );
|
||||
R( b, c, d, e, f, g, h, a, K(23), M(23) );
|
||||
R( a, b, c, d, e, f, g, h, K(24), M(24) );
|
||||
R( h, a, b, c, d, e, f, g, K(25), M(25) );
|
||||
R( g, h, a, b, c, d, e, f, K(26), M(26) );
|
||||
R( f, g, h, a, b, c, d, e, K(27), M(27) );
|
||||
R( e, f, g, h, a, b, c, d, K(28), M(28) );
|
||||
R( d, e, f, g, h, a, b, c, K(29), M(29) );
|
||||
R( c, d, e, f, g, h, a, b, K(30), M(30) );
|
||||
R( b, c, d, e, f, g, h, a, K(31), M(31) );
|
||||
R( a, b, c, d, e, f, g, h, K(32), M(32) );
|
||||
R( h, a, b, c, d, e, f, g, K(33), M(33) );
|
||||
R( g, h, a, b, c, d, e, f, K(34), M(34) );
|
||||
R( f, g, h, a, b, c, d, e, K(35), M(35) );
|
||||
R( e, f, g, h, a, b, c, d, K(36), M(36) );
|
||||
R( d, e, f, g, h, a, b, c, K(37), M(37) );
|
||||
R( c, d, e, f, g, h, a, b, K(38), M(38) );
|
||||
R( b, c, d, e, f, g, h, a, K(39), M(39) );
|
||||
R( a, b, c, d, e, f, g, h, K(40), M(40) );
|
||||
R( h, a, b, c, d, e, f, g, K(41), M(41) );
|
||||
R( g, h, a, b, c, d, e, f, K(42), M(42) );
|
||||
R( f, g, h, a, b, c, d, e, K(43), M(43) );
|
||||
R( e, f, g, h, a, b, c, d, K(44), M(44) );
|
||||
R( d, e, f, g, h, a, b, c, K(45), M(45) );
|
||||
R( c, d, e, f, g, h, a, b, K(46), M(46) );
|
||||
R( b, c, d, e, f, g, h, a, K(47), M(47) );
|
||||
R( a, b, c, d, e, f, g, h, K(48), M(48) );
|
||||
R( h, a, b, c, d, e, f, g, K(49), M(49) );
|
||||
R( g, h, a, b, c, d, e, f, K(50), M(50) );
|
||||
R( f, g, h, a, b, c, d, e, K(51), M(51) );
|
||||
R( e, f, g, h, a, b, c, d, K(52), M(52) );
|
||||
R( d, e, f, g, h, a, b, c, K(53), M(53) );
|
||||
R( c, d, e, f, g, h, a, b, K(54), M(54) );
|
||||
R( b, c, d, e, f, g, h, a, K(55), M(55) );
|
||||
R( a, b, c, d, e, f, g, h, K(56), M(56) );
|
||||
R( h, a, b, c, d, e, f, g, K(57), M(57) );
|
||||
R( g, h, a, b, c, d, e, f, K(58), M(58) );
|
||||
R( f, g, h, a, b, c, d, e, K(59), M(59) );
|
||||
R( e, f, g, h, a, b, c, d, K(60), M(60) );
|
||||
R( d, e, f, g, h, a, b, c, K(61), M(61) );
|
||||
R( c, d, e, f, g, h, a, b, K(62), M(62) );
|
||||
R( b, c, d, e, f, g, h, a, K(63), M(63) );
|
||||
R( a, b, c, d, e, f, g, h, K(64), M(64) );
|
||||
R( h, a, b, c, d, e, f, g, K(65), M(65) );
|
||||
R( g, h, a, b, c, d, e, f, K(66), M(66) );
|
||||
R( f, g, h, a, b, c, d, e, K(67), M(67) );
|
||||
R( e, f, g, h, a, b, c, d, K(68), M(68) );
|
||||
R( d, e, f, g, h, a, b, c, K(69), M(69) );
|
||||
R( c, d, e, f, g, h, a, b, K(70), M(70) );
|
||||
R( b, c, d, e, f, g, h, a, K(71), M(71) );
|
||||
R( a, b, c, d, e, f, g, h, K(72), M(72) );
|
||||
R( h, a, b, c, d, e, f, g, K(73), M(73) );
|
||||
R( g, h, a, b, c, d, e, f, K(74), M(74) );
|
||||
R( f, g, h, a, b, c, d, e, K(75), M(75) );
|
||||
R( e, f, g, h, a, b, c, d, K(76), M(76) );
|
||||
R( d, e, f, g, h, a, b, c, K(77), M(77) );
|
||||
R( c, d, e, f, g, h, a, b, K(78), M(78) );
|
||||
R( b, c, d, e, f, g, h, a, K(79), M(79) );
|
||||
|
||||
a = ctx->state[0] = u64plus (ctx->state[0], a);
|
||||
b = ctx->state[1] = u64plus (ctx->state[1], b);
|
||||
c = ctx->state[2] = u64plus (ctx->state[2], c);
|
||||
d = ctx->state[3] = u64plus (ctx->state[3], d);
|
||||
e = ctx->state[4] = u64plus (ctx->state[4], e);
|
||||
f = ctx->state[5] = u64plus (ctx->state[5], f);
|
||||
g = ctx->state[6] = u64plus (ctx->state[6], g);
|
||||
h = ctx->state[7] = u64plus (ctx->state[7], h);
|
||||
}
|
||||
}
|
@ -1,87 +0,0 @@
|
||||
/* Declarations of functions and data types used for SHA512 and SHA384 sum
|
||||
library functions.
|
||||
Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||||
|
||||
#ifndef SHA512_H
|
||||
# define SHA512_H 1
|
||||
|
||||
# include <stdio.h>
|
||||
|
||||
# include "u64.h"
|
||||
|
||||
/* Structure to save state of computation between the single steps. */
|
||||
struct sha512_ctx
|
||||
{
|
||||
u64 state[8];
|
||||
|
||||
u64 total[2];
|
||||
size_t buflen;
|
||||
u64 buffer[32];
|
||||
};
|
||||
|
||||
enum { SHA384_DIGEST_SIZE = 48 };
|
||||
enum { SHA512_DIGEST_SIZE = 64 };
|
||||
|
||||
/* Initialize structure containing state of computation. */
|
||||
extern void sha512_init_ctx (struct sha512_ctx *ctx);
|
||||
extern void sha384_init_ctx (struct sha512_ctx *ctx);
|
||||
|
||||
/* Starting with the result of former calls of this function (or the
|
||||
initialization function update the context for the next LEN bytes
|
||||
starting at BUFFER.
|
||||
It is necessary that LEN is a multiple of 128!!! */
|
||||
extern void sha512_process_block (const void *buffer, size_t len,
|
||||
struct sha512_ctx *ctx);
|
||||
|
||||
/* Starting with the result of former calls of this function (or the
|
||||
initialization function update the context for the next LEN bytes
|
||||
starting at BUFFER.
|
||||
It is NOT required that LEN is a multiple of 128. */
|
||||
extern void sha512_process_bytes (const void *buffer, size_t len,
|
||||
struct sha512_ctx *ctx);
|
||||
|
||||
/* Process the remaining bytes in the buffer and put result from CTX
|
||||
in first 64 (48) bytes following RESBUF. The result is always in little
|
||||
endian byte order, so that a byte-wise output yields to the wanted
|
||||
ASCII representation of the message digest. */
|
||||
extern void *sha512_finish_ctx (struct sha512_ctx *ctx, void *resbuf);
|
||||
extern void *sha384_finish_ctx (struct sha512_ctx *ctx, void *resbuf);
|
||||
|
||||
|
||||
/* Put result from CTX in first 64 (48) bytes following RESBUF. The result is
|
||||
always in little endian byte order, so that a byte-wise output yields
|
||||
to the wanted ASCII representation of the message digest.
|
||||
|
||||
IMPORTANT: On some systems it is required that RESBUF is correctly
|
||||
aligned for a 32 bits value. */
|
||||
extern void *sha512_read_ctx (const struct sha512_ctx *ctx, void *resbuf);
|
||||
extern void *sha384_read_ctx (const struct sha512_ctx *ctx, void *resbuf);
|
||||
|
||||
|
||||
/* Compute SHA512 (SHA384) message digest for bytes read from STREAM. The
|
||||
resulting message digest number will be written into the 64 (48) bytes
|
||||
beginning at RESBLOCK. */
|
||||
extern int sha512_stream (FILE *stream, void *resblock);
|
||||
extern int sha384_stream (FILE *stream, void *resblock);
|
||||
|
||||
/* Compute SHA512 (SHA384) message digest for LEN bytes beginning at BUFFER. The
|
||||
result is always in little endian byte order, so that a byte-wise
|
||||
output yields to the wanted ASCII representation of the message
|
||||
digest. */
|
||||
extern void *sha512_buffer (const char *buffer, size_t len, void *resblock);
|
||||
extern void *sha384_buffer (const char *buffer, size_t len, void *resblock);
|
||||
|
||||
#endif
|
159
gl/lib/u64.h
159
gl/lib/u64.h
@ -1,159 +0,0 @@
|
||||
/* uint64_t-like operations that work even on hosts lacking uint64_t
|
||||
|
||||
Copyright (C) 2006 Free Software Foundation, Inc.
|
||||
|
||||
This program is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||||
|
||||
/* Written by Paul Eggert. */
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
|
||||
/* Return X rotated left by N bits, where 0 < N < 64. */
|
||||
#define u64rol(x, n) u64or (u64shl (x, n), u64shr (x, 64 - n))
|
||||
|
||||
#ifdef UINT64_MAX
|
||||
|
||||
/* Native implementations are trivial. See below for comments on what
|
||||
these operations do. */
|
||||
typedef uint64_t u64;
|
||||
# define u64hilo(hi, lo) ((u64) (((u64) (hi) << 32) + (lo)))
|
||||
# define u64init(hi, lo) u64hilo (hi, lo)
|
||||
# define u64lo(x) ((u64) (x))
|
||||
# define u64lt(x, y) ((x) < (y))
|
||||
# define u64and(x, y) ((x) & (y))
|
||||
# define u64or(x, y) ((x) | (y))
|
||||
# define u64xor(x, y) ((x) ^ (y))
|
||||
# define u64plus(x, y) ((x) + (y))
|
||||
# define u64shl(x, n) ((x) << (n))
|
||||
# define u64shr(x, n) ((x) >> (n))
|
||||
|
||||
#else
|
||||
|
||||
/* u64 is a 64-bit unsigned integer value.
|
||||
u64init (HI, LO), is like u64hilo (HI, LO), but for use in
|
||||
initializer contexts. */
|
||||
# ifdef WORDS_BIGENDIAN
|
||||
typedef struct { uint32_t hi, lo; } u64;
|
||||
# define u64init(hi, lo) { hi, lo }
|
||||
# else
|
||||
typedef struct { uint32_t lo, hi; } u64;
|
||||
# define u64init(hi, lo) { lo, hi }
|
||||
# endif
|
||||
|
||||
/* Given the high and low-order 32-bit quantities HI and LO, return a u64
|
||||
value representing (HI << 32) + LO. */
|
||||
static inline u64
|
||||
u64hilo (uint32_t hi, uint32_t lo)
|
||||
{
|
||||
u64 r;
|
||||
r.hi = hi;
|
||||
r.lo = lo;
|
||||
return r;
|
||||
}
|
||||
|
||||
/* Return a u64 value representing LO. */
|
||||
static inline u64
|
||||
u64lo (uint32_t lo)
|
||||
{
|
||||
u64 r;
|
||||
r.hi = 0;
|
||||
r.lo = lo;
|
||||
return r;
|
||||
}
|
||||
|
||||
/* Return X < Y. */
|
||||
static inline int
|
||||
u64lt (u64 x, u64 y)
|
||||
{
|
||||
return x.hi < y.hi || (x.hi == y.hi && x.lo < y.lo);
|
||||
}
|
||||
|
||||
/* Return X & Y. */
|
||||
static inline u64
|
||||
u64and (u64 x, u64 y)
|
||||
{
|
||||
u64 r;
|
||||
r.hi = x.hi & y.hi;
|
||||
r.lo = x.lo & y.lo;
|
||||
return r;
|
||||
}
|
||||
|
||||
/* Return X | Y. */
|
||||
static inline u64
|
||||
u64or (u64 x, u64 y)
|
||||
{
|
||||
u64 r;
|
||||
r.hi = x.hi | y.hi;
|
||||
r.lo = x.lo | y.lo;
|
||||
return r;
|
||||
}
|
||||
|
||||
/* Return X ^ Y. */
|
||||
static inline u64
|
||||
u64xor (u64 x, u64 y)
|
||||
{
|
||||
u64 r;
|
||||
r.hi = x.hi ^ y.hi;
|
||||
r.lo = x.lo ^ y.lo;
|
||||
return r;
|
||||
}
|
||||
|
||||
/* Return X + Y. */
|
||||
static inline u64
|
||||
u64plus (u64 x, u64 y)
|
||||
{
|
||||
u64 r;
|
||||
r.lo = x.lo + y.lo;
|
||||
r.hi = x.hi + y.hi + (r.lo < x.lo);
|
||||
return r;
|
||||
}
|
||||
|
||||
/* Return X << N. */
|
||||
static inline u64
|
||||
u64shl (u64 x, int n)
|
||||
{
|
||||
u64 r;
|
||||
if (n < 32)
|
||||
{
|
||||
r.hi = (x.hi << n) | (x.lo >> (32 - n));
|
||||
r.lo = x.lo << n;
|
||||
}
|
||||
else
|
||||
{
|
||||
r.hi = x.lo << (n - 32);
|
||||
r.lo = 0;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
/* Return X >> N. */
|
||||
static inline u64
|
||||
u64shr (u64 x, int n)
|
||||
{
|
||||
u64 r;
|
||||
if (n < 32)
|
||||
{
|
||||
r.hi = x.hi >> n;
|
||||
r.lo = (x.hi << (32 - n)) | (x.lo >> n);
|
||||
}
|
||||
else
|
||||
{
|
||||
r.hi = 0;
|
||||
r.lo = x.hi >> (n - 32);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
#endif
|
@ -1,13 +0,0 @@
|
||||
# sha256.m4 serial 2
|
||||
dnl Copyright (C) 2005, 2008 Free Software Foundation, Inc.
|
||||
dnl This file is free software; the Free Software Foundation
|
||||
dnl gives unlimited permission to copy and/or distribute it,
|
||||
dnl with or without modifications, as long as this notice is preserved.
|
||||
|
||||
AC_DEFUN([gl_SHA256],
|
||||
[
|
||||
AC_LIBOBJ([sha256])
|
||||
|
||||
dnl Prerequisites of lib/sha256.c.
|
||||
AC_REQUIRE([AC_C_BIGENDIAN])
|
||||
])
|
@ -1,13 +0,0 @@
|
||||
# sha512.m4 serial 3
|
||||
dnl Copyright (C) 2005, 2006, 2008 Free Software Foundation, Inc.
|
||||
dnl This file is free software; the Free Software Foundation
|
||||
dnl gives unlimited permission to copy and/or distribute it,
|
||||
dnl with or without modifications, as long as this notice is preserved.
|
||||
|
||||
AC_DEFUN([gl_SHA512],
|
||||
[
|
||||
AC_LIBOBJ([sha512])
|
||||
|
||||
dnl Prerequisites of lib/sha512.c.
|
||||
AC_REQUIRE([AC_C_BIGENDIAN])
|
||||
])
|
@ -1,24 +0,0 @@
|
||||
Description:
|
||||
Compute SHA224 and SHA256 checksums.
|
||||
|
||||
Files:
|
||||
lib/sha256.h
|
||||
lib/sha256.c
|
||||
m4/sha256.m4
|
||||
|
||||
Depends-on:
|
||||
stdint
|
||||
|
||||
configure.ac:
|
||||
gl_SHA256
|
||||
|
||||
Makefile.am:
|
||||
|
||||
Include:
|
||||
"sha256.h"
|
||||
|
||||
License:
|
||||
LGPLv2+
|
||||
|
||||
Maintainer:
|
||||
Jim Meyering
|
@ -1,25 +0,0 @@
|
||||
Description:
|
||||
Compute SHA384 and SHA512 checksums.
|
||||
|
||||
Files:
|
||||
lib/sha512.h
|
||||
lib/sha512.c
|
||||
m4/sha512.m4
|
||||
lib/u64.h
|
||||
|
||||
Depends-on:
|
||||
stdint
|
||||
|
||||
configure.ac:
|
||||
gl_SHA512
|
||||
|
||||
Makefile.am:
|
||||
|
||||
Include:
|
||||
"sha512.h"
|
||||
|
||||
License:
|
||||
LGPLv2+
|
||||
|
||||
Maintainer:
|
||||
Jim Meyering
|
Loading…
Reference in New Issue
Block a user