coreutils/init.cfg

793 lines
22 KiB
INI
Raw Normal View History

# This file is sourced by init.sh, *before* its initialization.
# Copyright (C) 2010-2023 Free Software Foundation, Inc.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
2017-09-19 16:13:23 +08:00
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# This goes hand in hand with the "exec 9>&2;" in tests/Makefile.am's
# TESTS_ENVIRONMENT definition.
stderr_fileno_=9
# Having an unsearchable directory in PATH causes execve to fail with EACCES
# when applied to an unresolvable program name, contrary to the desired ENOENT.
# Avoid the problem by rewriting PATH to exclude unsearchable directories.
# Also, if PATH lacks /sbin and/or /usr/sbin, append it/them.
sanitize_path_()
{
# FIXME: remove double quotes around $IFS when all tests use init.sh.
# They constitute a work-around for a bug in FreeBSD 8.1's /bin/sh.
local saved_IFS="$IFS"
IFS=:
set -- $PATH
IFS=$saved_IFS
local d d1
local colon=
local new_path=
for d in "$@"; do
test -z "$d" && d1=. || d1=$d
if ls -d "$d1/." > /dev/null 2>&1; then
new_path="$new_path$colon$d"
colon=':'
fi
done
for d in /sbin /usr/sbin ; do
case ":$new_path:" in
*:$d:*) ;;
*) new_path="$new_path:$d" ;;
esac
done
PATH=$new_path
export PATH
}
getlimits_()
{
eval $(getlimits)
test "$INT_MAX" || fatal_ "running getlimits"
}
require_no_default_acl_()
{
if getfacl --version < /dev/null > /dev/null 2>&1; then
getfacl "$1" | grep '^default:' && skip_ 'Default ACL detected'
else
ls -ld "$1" | grep '.........+' && skip_ 'ACL detected'
fi
}
require_acl_()
{
getfacl --version < /dev/null > /dev/null 2>&1 \
&& setfacl --version < /dev/null > /dev/null 2>&1 \
|| skip_ "This test requires getfacl and setfacl."
id -u bin > /dev/null 2>&1 \
|| skip_ "This test requires a local user named bin."
}
is_local_dir_()
{
test $# = 1 || framework_failure_
df --local "$1" >/dev/null 2>&1
}
require_mount_list_()
{
local mount_list_fail='cannot read table of mounted file systems'
df --local 2>&1 | grep -F "$mount_list_fail" >/dev/null &&
skip_ "$mount_list_fail"
}
dump_mount_list_()
{
cat /proc/self/mountinfo ||
cat /proc/self/mounts ||
cat /proc/mounts ||
cat /etc/mtab
}
require_local_dir_()
{
require_mount_list_
is_local_dir_ . ||
skip_ "This test must be run on a local file system."
}
require_selinux_()
{
# When in a chroot of an SELinux-enabled system, but with a mock-simulated
# SELinux-*disabled* system, recognize that SELinux is disabled system wide:
grep 'selinuxfs$' /proc/filesystems > /dev/null \
|| skip_ "this system lacks SELinux support"
# Independent of whether SELinux is enabled system-wide,
# the current file system may lack SELinux support.
# Also the current build may have SELinux support disabled.
case $(ls -Zd .) in
'? .'|'unlabeled .')
test -z "$CONFIG_HEADER" \
&& framework_failure_ 'CONFIG_HEADER not defined'
grep '^#define HAVE_SELINUX_SELINUX_H 1' "$CONFIG_HEADER" > /dev/null \
&& selinux_missing_="(file) system" || selinux_missing_="build"
skip_ "this $selinux_missing_ lacks SELinux support"
;;
esac
}
# Return the SELinux type component if available
get_selinux_type() { ls -Zd "$1" | sed -n 's/.*:\(.*_t\)[: ].*/\1/p'; }
# Whether SELinux Multi Level Security is enabled
mls_enabled_() {
sestatus 2>&1 |
grep 'Policy MLS status:.*enabled' > /dev/null
}
# Skip this test if we're not in SELinux "enforcing" mode.
require_selinux_enforcing_()
{
require_selinux_
test "$(getenforce)" = Enforcing \
|| skip_ "This test is useful only with SELinux in Enforcing mode."
}
require_smack_()
{
grep 'smackfs$' /proc/filesystems > /dev/null \
|| skip_ "this system lacks SMACK support"
test "$(ls -Zd .)" != '? .' \
|| skip_ "this file system lacks SMACK support"
}
require_openat_support_()
{
# Skip this test if your system has neither the openat-style functions
# nor /proc/self/fd support with which to emulate them.
test -z "$CONFIG_HEADER" \
&& framework_failure_ 'CONFIG_HEADER not defined'
_skip=yes
grep '^#define HAVE_OPENAT' "$CONFIG_HEADER" > /dev/null && _skip=no
test -d /proc/self/fd && _skip=no
if test $_skip = yes; then
skip_ 'this system lacks openat support'
fi
}
# Return true if command runs with the
# ulimit specified in the first argument
ulimit_supported_()
{
local v
v="$1"
shift
(
# Try to disable core dumps which may
# occur with memory constraints
trap '' SEGV; ulimit -c 0;
ulimit -v $v && "$@"
) >/dev/null 2>&1
}
maint: use adaptive approach for `ulimit -v` based tests When configured with either 'symlinks' or 'shebangs' as value for the --enable-single-binary option, tests based on `ulimit -v` are skipped. The reason is that the multicall 'coreutils' binary requires much more memory due to shared libraries being loaded, and the size of the 'date' binary (~290KiB) compared to the multicall binary (~5MiB), of course. Finally, in the case of 'shebangs', the starting shell requires more memory, too Instead of using hard-coded values for the memory limit, use an adaptive approach: first determine the amount of memory for a similar, yet more trivial invocation of the command, and then do the real test run using that limit (plus some buffer in some cases). * init.cfg (require_ulimit_v_): Remove function. (get_min_ulimit_v_): Add function to determine the minimum memory limit required for a given command in an adaptive way. * cfg.mk (sc_prohibit_test_ulimit_without_require_): Change the name of the above function in the syntax-check rule. * tests/cp/link-heap.sh: Use the above function to determine the minimum memory required to run a command simpler than in the real test run. Use that limit plus a buffer there. While at it, change to list of commands in the subshell to fail also if the beginning `ulimit -v` fails. * tests/dd/no-allocate.sh: Likewise. * tests/misc/csplit-heap.sh: Likewise. * tests/misc/cut-huge-range.sh: Likewise. * tests/misc/head-c.sh: Likewise. * tests/misc/printf-surprise.sh: Likewise. * tests/split/line-bytes.sh: Likewise. * tests/rm/many-dir-entries-vs-OOM.sh: Likewise - doing it separately for each program under test.
2015-09-23 05:23:26 +08:00
# Determine the minimum required VM limit to run the given command.
# Output that value to stdout ... to be used by the caller.
# Return 0 in case of success, and a non-Zero value otherwise.
get_min_ulimit_v_()
{
local v
local page_size
# Increase result by this amount to avoid alignment issues
page_size=$(getconf PAGESIZE || echo 4096)
page_size=$(($page_size / 1024))
maint: use adaptive approach for `ulimit -v` based tests When configured with either 'symlinks' or 'shebangs' as value for the --enable-single-binary option, tests based on `ulimit -v` are skipped. The reason is that the multicall 'coreutils' binary requires much more memory due to shared libraries being loaded, and the size of the 'date' binary (~290KiB) compared to the multicall binary (~5MiB), of course. Finally, in the case of 'shebangs', the starting shell requires more memory, too Instead of using hard-coded values for the memory limit, use an adaptive approach: first determine the amount of memory for a similar, yet more trivial invocation of the command, and then do the real test run using that limit (plus some buffer in some cases). * init.cfg (require_ulimit_v_): Remove function. (get_min_ulimit_v_): Add function to determine the minimum memory limit required for a given command in an adaptive way. * cfg.mk (sc_prohibit_test_ulimit_without_require_): Change the name of the above function in the syntax-check rule. * tests/cp/link-heap.sh: Use the above function to determine the minimum memory required to run a command simpler than in the real test run. Use that limit plus a buffer there. While at it, change to list of commands in the subshell to fail also if the beginning `ulimit -v` fails. * tests/dd/no-allocate.sh: Likewise. * tests/misc/csplit-heap.sh: Likewise. * tests/misc/cut-huge-range.sh: Likewise. * tests/misc/head-c.sh: Likewise. * tests/misc/printf-surprise.sh: Likewise. * tests/split/line-bytes.sh: Likewise. * tests/rm/many-dir-entries-vs-OOM.sh: Likewise - doing it separately for each program under test.
2015-09-23 05:23:26 +08:00
for v in $( seq 5000 5000 50000 ); do
if ulimit_supported_ $v "$@"; then
local prev_v
maint: use adaptive approach for `ulimit -v` based tests When configured with either 'symlinks' or 'shebangs' as value for the --enable-single-binary option, tests based on `ulimit -v` are skipped. The reason is that the multicall 'coreutils' binary requires much more memory due to shared libraries being loaded, and the size of the 'date' binary (~290KiB) compared to the multicall binary (~5MiB), of course. Finally, in the case of 'shebangs', the starting shell requires more memory, too Instead of using hard-coded values for the memory limit, use an adaptive approach: first determine the amount of memory for a similar, yet more trivial invocation of the command, and then do the real test run using that limit (plus some buffer in some cases). * init.cfg (require_ulimit_v_): Remove function. (get_min_ulimit_v_): Add function to determine the minimum memory limit required for a given command in an adaptive way. * cfg.mk (sc_prohibit_test_ulimit_without_require_): Change the name of the above function in the syntax-check rule. * tests/cp/link-heap.sh: Use the above function to determine the minimum memory required to run a command simpler than in the real test run. Use that limit plus a buffer there. While at it, change to list of commands in the subshell to fail also if the beginning `ulimit -v` fails. * tests/dd/no-allocate.sh: Likewise. * tests/misc/csplit-heap.sh: Likewise. * tests/misc/cut-huge-range.sh: Likewise. * tests/misc/head-c.sh: Likewise. * tests/misc/printf-surprise.sh: Likewise. * tests/split/line-bytes.sh: Likewise. * tests/rm/many-dir-entries-vs-OOM.sh: Likewise - doing it separately for each program under test.
2015-09-23 05:23:26 +08:00
prev_v=$v
for v in $( seq $(($prev_v-1000)) -1000 1000 ); do
ulimit_supported_ $v "$@" ||
{
ret_v=$((prev_v + $page_size))
echo $ret_v
return 0
}
maint: use adaptive approach for `ulimit -v` based tests When configured with either 'symlinks' or 'shebangs' as value for the --enable-single-binary option, tests based on `ulimit -v` are skipped. The reason is that the multicall 'coreutils' binary requires much more memory due to shared libraries being loaded, and the size of the 'date' binary (~290KiB) compared to the multicall binary (~5MiB), of course. Finally, in the case of 'shebangs', the starting shell requires more memory, too Instead of using hard-coded values for the memory limit, use an adaptive approach: first determine the amount of memory for a similar, yet more trivial invocation of the command, and then do the real test run using that limit (plus some buffer in some cases). * init.cfg (require_ulimit_v_): Remove function. (get_min_ulimit_v_): Add function to determine the minimum memory limit required for a given command in an adaptive way. * cfg.mk (sc_prohibit_test_ulimit_without_require_): Change the name of the above function in the syntax-check rule. * tests/cp/link-heap.sh: Use the above function to determine the minimum memory required to run a command simpler than in the real test run. Use that limit plus a buffer there. While at it, change to list of commands in the subshell to fail also if the beginning `ulimit -v` fails. * tests/dd/no-allocate.sh: Likewise. * tests/misc/csplit-heap.sh: Likewise. * tests/misc/cut-huge-range.sh: Likewise. * tests/misc/head-c.sh: Likewise. * tests/misc/printf-surprise.sh: Likewise. * tests/split/line-bytes.sh: Likewise. * tests/rm/many-dir-entries-vs-OOM.sh: Likewise - doing it separately for each program under test.
2015-09-23 05:23:26 +08:00
prev_v=$v
done
fi
done
# The above did not find a working limit. Echo a very small number - just
# in case the caller does not handle the non-Zero return value.
echo 1; return 1
}
require_readable_root_()
{
test -r / || skip_ "/ is not readable"
}
# Skip the current test if strace is not available or doesn't work
# with the named syscall. Usage: require_strace_ unlink
require_strace_()
{
test $# = 1 || framework_failure_
strace -V < /dev/null > /dev/null 2>&1 ||
skip_ 'no strace program'
strace -qe "$1" echo > /dev/null 2>&1 ||
skip_ 'strace -qe "'"$1"'" does not work'
# On some linux/sparc64 systems, strace works fine on 32-bit executables,
# but prints only one line of output for every 64-bit executable.
strace -o log-help ls --help >/dev/null || framework_failure_
n_lines_help=$(wc -l < log-help)
rm -f log-help
if test $n_lines_help = 0 || test $n_lines_help = 1; then
skip_ 'strace produces no more than one line of output'
fi
}
# Skip the current test if valgrind doesn't work,
# which could happen if not installed,
# or hasn't support for the built architecture,
# or hasn't appropriate error suppressions installed etc.
require_valgrind_()
{
valgrind --error-exitcode=1 true 2>/dev/null ||
skip_ "requires a working valgrind"
}
# Skip the current test if setfacl doesn't work on the current file system,
# which could happen if not installed, or if ACLs are not supported by the
# kernel or the file system, or are turned off via mount options.
#
# Work around the following two issues:
#
# 1) setfacl maps ACLs into file permission bits if on "noacl" file systems.
#
# On file systems which do not support ACLs (e.g. ext4 mounted with -o noacl),
# setfacl operates on the regular file permission bits, and only fails if the
# given ACL spec does not fit into there. Thus, to test if ACLs really work
# on the current file system, pass an ACL spec which can't be mapped that way.
# "Default" ACLs (-d) seem to fulfill this requirement.
#
# 2) setfacl only invokes the underlying system call if the ACL would change.
#
# If the given ACL spec would not change the ACLs on the file, then setfacl
# does not invoke the underlying system call - setxattr(). Therefore, to test
# if setting ACLs really works on the current file system, call setfacl twice
# with conflictive ACL specs.
require_setfacl_()
{
local d='acltestdir_'
mkdir $d || framework_failure_
local f=0
setfacl -d -m user::r-x $d \
&& setfacl -d -m user::rwx $d \
|| f=1
rm -rf $d || framework_failure_
test $f = 0 \
|| skip_ "setfacl does not work on the current file system"
}
# Require a controlling input 'terminal'.
require_controlling_input_terminal_()
{
have_input_tty=yes
tty -s || have_input_tty=no
test -t 0 || have_input_tty=no
if test "$have_input_tty" = no; then
skip_ 'requires controlling input terminal
This test must have a controlling input "terminal", so it may not be
run via "batch", "at", or "ssh". On some systems, it may not even be
run in the background.'
fi
}
require_built_()
{
skip_=no
for i in "$@"; do
case " $built_programs " in
*" $i "*) ;;
*) echo "$i: not built" 1>&2; skip_=yes ;;
esac
done
test $skip_ = yes && skip_ "required program(s) not built"
}
require_file_system_bytes_free_()
{
local req=$1
local expr=$(stat -f --printf "$req / %S <= %a" .)
$AWK "BEGIN{ exit !($expr) }" \
|| skip_ "this test needs at least $req bytes of free space"
}
uid_is_privileged_()
{
# Make sure id -u succeeds.
my_uid=$(id -u) \
|| { echo "$0: cannot run 'id -u'" 1>&2; return 1; }
# Make sure it gives valid output.
case $my_uid in
0) ;;
*[!0-9]*)
echo "$0: invalid output ('$my_uid') from 'id -u'" 1>&2
return 1 ;;
*) return 1 ;;
esac
}
get_process_status_()
{
sed -n '/^State:[ ]*\([[:alpha:]]\).*/s//\1/p' /proc/$1/status
}
# Convert an ls-style permission string, like drwxr----x and -rw-r-x-wx
# to the equivalent chmod --mode (-m) argument, (=,u=rwx,g=r,o=x and
# =,u=rw,g=rx,o=wx). Ignore ACLs.
rwx_to_mode_()
{
case $# in
1) rwx=$1;;
*) echo "$0: wrong number of arguments" 1>&2
echo "Usage: $0 ls-style-mode-string" 1>&2
return;;
esac
case $rwx in
[ld-][rwx-][rwx-][rwxsS-][rwx-][rwx-][rwxsS-][rwx-][rwx-][rwxtT-]) ;;
[ld-][rwx-][rwx-][rwxsS-][rwx-][rwx-][rwxsS-][rwx-][rwx-][rwxtT-][+.]) ;;
*) echo "$0: invalid mode string: $rwx" 1>&2; return;;
esac
# Perform these conversions:
# S s
# s xs
# T t
# t xt
# The 'T' and 't' ones are only valid for 'other'.
s='s/S/@/;s/s/x@/;s/@/s/'
t='s/T/@/;s/t/x@/;s/@/t/'
u=$(echo $rwx|sed 's/^.\(...\).*/,u=\1/;s/-//g;s/^,u=$//;'$s)
g=$(echo $rwx|sed 's/^....\(...\).*/,g=\1/;s/-//g;s/^,g=$//;'$s)
o=$(echo $rwx|sed 's/^.......\(...\).*/,o=\1/;s/-//g;s/^,o=$//;'$s';'$t)
echo "=$u$g$o"
}
# Set the global variable stty_reversible_ to a space-separated list of the
# reversible settings from stty.c. stty_reversible_ also starts and ends
# with a space.
stty_reversible_init_()
{
require_perl_
# Pad start with one space for the first option to match in query function.
stty_reversible_=' '$(perl -lne '/^ *{"(.*?)",.*\bREV\b/ and print $1' \
"$abs_top_srcdir"/src/stty.c | tr '\n' ' ')
# Ensure that there are at least 62, i.e., so we're alerted if
# reformatting the source empties the list.
test 62 -le $(echo "$stty_reversible_"|wc -w) \
|| framework_failure_ "too few reversible settings"
}
# Test whether $1 is one of stty's reversible options.
stty_reversible_query_()
{
case $stty_reversible_ in
'')
framework_failure_ "stty_reversible_init_() not called?";;
*" $1 "*)
return 0;;
*)
return 1;;
esac
}
skip_if_()
{
case $1 in
root) skip_ must be run as root ;;
non-root) skip_ must be run as non-root ;;
*) ;; # FIXME?
esac
}
very_expensive_()
{
if test "$RUN_VERY_EXPENSIVE_TESTS" != yes; then
skip_ 'very expensive: disabled by default
This test is very expensive, so it is disabled by default.
To run it anyway, rerun make check with the RUN_VERY_EXPENSIVE_TESTS
environment variable set to yes. E.g.,
env RUN_VERY_EXPENSIVE_TESTS=yes make check
or use the shortcut target of the toplevel Makefile,
make check-very-expensive
'
fi
}
expensive_()
{
if test "$RUN_EXPENSIVE_TESTS" != yes; then
skip_ 'expensive: disabled by default
This test is relatively expensive, so it is disabled by default.
To run it anyway, rerun make check with the RUN_EXPENSIVE_TESTS
environment variable set to yes. E.g.,
env RUN_EXPENSIVE_TESTS=yes make check
or use the shortcut target of the toplevel Makefile,
make check-expensive
'
fi
}
# Test whether we can run our just-built root owned rm,
# i.e., that $NON_ROOT_USERNAME has access to the build directory.
nonroot_has_perm_()
{
require_built_ chroot
local rm_version=$(
chroot: perform chdir("/") again unless new --skip-chdir is specified Since commit v8.22-94-g99960ee, chroot(1) skips the chroot(2) syscall for "/" arguments (and synonyms). The problem is that it also skips the following chdir("/") call in that case. The latter breaks existing scripts which expect "/" to be the working directory inside the chroot. While the first part of the change - i.e., skipping chroot("/") - is okay for consistency with systems where it might succeed for a non-root user, the second part might be malicious, e.g. cd /home/user && chroot '/' bin/foo In the "best" case, chroot(1) could not execute 'bin/foo' with ENOENT, but in the worst case, chroot(1) would execute '/home/user/bin/foo' in the case that exists - instead of '/bin/foo'. Revert that second part of the patch, i.e., perform the chdir("/) in the common case again - unless the new --skip-chdir option is specified. Restrict this new option to the case of "/" arguments. * src/chroot.c (SKIP_CHDIR): Add enum. (long_opts): Add entry for the new --skip-chdir option. (usage): Add --skip-chdir option, and while at it, move the other to options into alphabetical order. (main): Accept the above new option, allowing it only in the case when NEWROOT is the old "/". Move down the chdir() call after the if-clause to ensure it is run in any case - unless --skip-chdir is specified. Add a 'newroot' variable for the new root directory as it is used in a couple of places now. * tests/misc/chroot-fail.sh: Invert the last tests which check the working directory of the execvp()ed program when a "/"-like argument was passed: now expect it to be "/" - unless --skip-chdir is given. * doc/coreutils.texi (chroot invocation): Document the new option. Document that chroot(1) usually calls chdir("/") unless the new --skip-chdir option is specified. Sort options. * NEWS (Changes in behavior): Mention the fix. (New features): Mention the new option. * init.cfg (nonroot_has_perm_): Add chroot's new --skip-chdir option. * tests/cp/preserve-gid.sh (t1): Likewise. * tests/cp/special-bits.sh: Likewise. * tests/id/setgid.sh: Likewise. * tests/misc/truncate-owned-by-other.sh: Likewise. * tests/mv/sticky-to-xpart.sh: Likewise. * tests/rm/fail-2eperm.sh: Likewise. * tests/rm/no-give-up.sh: Likewise. * tests/touch/now-owned-by-other.sh: Likewise. Reported by Andreas Schwab in http://bugs.gnu.org/18062
2014-08-01 08:07:33 +08:00
chroot --skip-chdir --user=$NON_ROOT_USERNAME / env PATH="$PATH" \
rm --version |
sed -n '1s/.* //p'
)
case ":$rm_version:" in
:$PACKAGE_VERSION:) ;;
*) return 1;;
esac
}
require_root_()
{
uid_is_privileged_ || skip_ "must be run as root"
NON_ROOT_USERNAME=${NON_ROOT_USERNAME=nobody}
NON_ROOT_GID=${NON_ROOT_GID=$(id -g $NON_ROOT_USERNAME)}
# When the current test invokes chroot, call nonroot_has_perm_
# to check for a common problem.
grep '^[ ]*chroot' "../$0" \
&& { nonroot_has_perm_ \
|| skip_ "user $NON_ROOT_USERNAME lacks execute permissions"; }
}
skip_if_root_() { uid_is_privileged_ && skip_ "must be run as non-root"; }
# Set 'groups' to a space-separated list of at least two groups
# of which the user is a member.
require_membership_in_two_groups_()
{
test $# = 0 || framework_failure_
groups=
for group_ in 1 \
${COREUTILS_GROUPS-$( (id -G || /usr/xpg4/bin/id -G) 2>/dev/null)}
do
# Skip group numbers equal to 2**N - 1 for common N,
# as they are possibly reserved groups like 'nogroup'.
case $group_ in
1 | 32767 | 65535 | 2147483647 | 4294967295) ;;
9223372036854775807 | 18446744073709551615) ;;
*) test -z "$groups" || groups="$groups "
groups="$groups$group_";;
esac
done
case "$groups" in
*' '*) ;;
*) skip_ 'requires membership in two groups
this test requires that you be a member of more than one group,
but running '\''id -G'\'' either failed or found just one. If you really
are a member of at least two groups, then rerun this test with
COREUTILS_GROUPS set in your environment to the space-separated list
of group names or numbers. E.g.,
env COREUTILS_GROUPS='\''users cdrom'\'' make check
'
;;
esac
}
# Is /proc/$PID/status supported?
require_proc_pid_status_()
{
sleep 2 &
local pid=$!
sleep .5
grep '^State:[ ]*[S]' /proc/$pid/status > /dev/null 2>&1 ||
skip_ "/proc/$pid/status: missing or 'different'"
kill $pid
}
# Does trap support signal names?
# Old versions of ash did not.
require_trap_signame_()
{
(trap '' CHLD) || skip_ 'requires trap with signal name support'
}
# Does kill support sending signal to whole group?
# dash 0.5.8 at least does not.
require_kill_group_()
{
kill -0 -- -1 || skip_ 'requires kill with group signalling support'
}
# Return nonzero if the specified path is on a file system for
# which SEEK_DATA support exists.
seek_data_capable_()
{
# Check that SEEK_HOLE support is enabled
# Note APFS was seen to not create sparse files < 16MiB
if ! truncate -s16M file.sparse_; then
warn_ "can't create a sparse file: assuming not SEEK_DATA capable"
return 1
fi
if ! cp --debug --reflink=never file.sparse_ file.sparse_.cp \
| grep SEEK_HOLE; then
return 1
fi
# Check that SEEK_HOLE is supported on the passed file
{ python3 < /dev/null && PYTHON_=python3; } ||
{ python < /dev/null && PYTHON_=python; }
if test x"$PYTHON_" = x; then
warn_ 'seek_data_capable_: python missing: assuming not SEEK_DATA capable'
return 1
fi
# Use timeout if available to skip cases where SEEK_DATA takes a long time.
# We saw FreeBSD 9.1 take 35s to return from SEEK_DATA for a 1TiB empty file.
# Note lseek() is uninterruptible on FreeBSD 9.1, but it does eventually
# return, and the timeout will ensure a failure return from the process.
timeout --version >/dev/null && TIMEOUT_='timeout 10'
$TIMEOUT_ $PYTHON_ "$abs_srcdir"/tests/seek-data-capable "$@"
}
# Skip the current test if "." lacks d_type support.
require_dirent_d_type_()
{
python < /dev/null \
|| skip_ python missing: assuming no d_type support
python "$abs_srcdir"/tests/d_type-check \
|| skip_ requires d_type support
}
# Skip the current test if we lack Perl.
require_perl_()
{
: ${PERL=perl}
$PERL -e 'use warnings' > /dev/null 2>&1 \
|| skip_ 'configure did not find a usable version of Perl'
}
# Does the current (working-dir) file system support sparse files?
require_sparse_support_()
{
test $# = 0 || framework_failure_
# Test whether we can create a sparse file.
# For example, on Darwin6.5 with a file system of type hfs, it's not possible.
# NTFS requires 128K before a hole appears in a sparse file.
t=sparse.$$
dd bs=1 seek=128K of=$t < /dev/null 2> /dev/null
set x $(du -sk $t)
kb_size=$2
rm -f $t
if test $kb_size -ge 128; then
skip_ 'this file system does not support sparse files'
fi
}
# Libraries needed when we compile a shared library.
gcc_shared_libs_=
# Compile a shared lib using the GCC options for doing so.
# Pass input and output file as parameters respectively.
# Any other optional parameters are passed to $CC.
gcc_shared_()
{
local in=$1
local out=$2
shift 2 || return 1
$CC -Wall -shared --std=gnu99 -fPIC -O2 $* "$in" -o "$out" $gcc_shared_libs_
}
# There are a myriad of ways to build shared libs,
# so we only consider running tests requiring shared libs,
# on platforms that support building them as follows.
require_gcc_shared_()
{
# Try two different values for gcc_shared_libs_.
gcc_shared_libs_='-ldl'
if gcc_shared_ '-' 'd.so' -xc < /dev/null 2>&1; then
:
else
gcc_shared_libs_=
if gcc_shared_ '-' 'd.so' -xc < /dev/null 2>&1; then
:
else
skip_ '$CC -shared ... failed to build a shared lib'
fi
fi
rm -f d.so
}
mkfifo_or_skip_()
{
test $# = 1 || framework_failure_
if ! mkfifo "$1"; then
# Make an exception of this case -- usually we interpret framework-creation
# failure as a test failure. However, in this case, when running on a SunOS
# system using a file system NFS mounted from OpenBSD, the above fails like
# this:
# mkfifo: cannot make fifo 'fifo-10558': Not owner
skip_ 'unable to create a fifo'
fi
}
trap_sigpipe_or_skip_()
{
timeout --version >/dev/null ||
skip_ 'trapping SIGPIPE cannot be safely checked'
(trap '' PIPE && timeout 10 yes |:) 2>&1 | grep 'Broken pipe' >/dev/null ||
skip_ 'trapping SIGPIPE is not supported'
}
require_bash_as_SHELL_()
{
if bash --version >/dev/null 2>&1; then
SHELL='bash'
else
skip_ 'bash is required'
fi
}
# Disable the current test if the working directory seems to have
# the setgid bit set.
skip_if_setgid_()
{
setgid_tmpdir=setgid-$$
(umask 77; mkdir $setgid_tmpdir)
perms=$(stat --printf %A $setgid_tmpdir)
rmdir $setgid_tmpdir
case $perms in
drwx------);;
drwxr-xr-x);; # Windows98 + DJGPP 2.03
*) skip_ 'this directory has the setgid bit set';;
esac
}
# Skip if files are created with a different group to the current user
# This can happen due to a setgid dir, or by some other mechanism on OS X:
2017-09-19 16:13:23 +08:00
# https://unix.stackexchange.com/q/63865
# https://bugs.gnu.org/14024#41
skip_if_nondefault_group_()
{
touch grp.$$
gen_ug=$(stat -c '%u:%g' grp.$$)
rm grp.$$
test "$gen_ug" = "$(id -ru):$(id -rg)" ||
skip_ 'Files are created with a different gid'
}
skip_if_mcstransd_is_running_()
{
test $# = 0 || framework_failure_
# When mcstransd is running, you'll see only the 3-component
# version of file-system context strings. Detect that,
# and if it's running, skip this test.
__ctx=$(stat --printf='%C\n' .) || framework_failure_
case $__ctx in
*:*:*:*) __ctx_ok=1 ;; # four components is ok
*:*:*) # three components is ok too if there is no MLS
mls_enabled_ || __ctx_ok=1 ;;
esac
test "$__ctx_ok" ||
skip_ "unexpected context '$__ctx'; turn off mcstransd"
}
# Skip the current test if umask doesn't work as usual.
# This test should be run in the temporary directory that ends
# up being removed via the trap commands.
working_umask_or_skip_()
{
umask 022
touch file1 file2
chmod 644 file2
perms=$(ls -l file1 file2 | sed 's/ .*//' | uniq)
rm -f file1 file2
case $perms in
*'
'*) skip_ 'your build directory has unusual umask semantics'
esac
}
# Retry a function requiring a sufficient delay to _pass_
# using a truncated exponential backoff method.
# Example: retry_delay_ dd_reblock_1 .1 6
# This example will call the dd_reblock_1 function with
# an initial delay of .1 second and call it at most 6 times
# with a max delay of 3.2s (doubled each time), or a total of 6.3s
# Note ensure you do _not_ quote the parameter to GNU sleep in
# your function, as it may contain separate values that sleep
# needs to accumulate.
# Further function arguments will be forwarded to the test function.
retry_delay_()
{
local test_func=$1
local init_delay=$2
local max_n_tries=$3
shift 3 || return 1
local attempt=1
local num_sleeps=$attempt
local time_fail
while test $attempt -le $max_n_tries; do
local delay=$($AWK -v n=$num_sleeps -v s="$init_delay" \
'BEGIN { print s * n }')
"$test_func" "$delay" "$@" && { time_fail=0; break; } || time_fail=1
attempt=$(expr $attempt + 1)
num_sleeps=$(expr $num_sleeps '*' 2)
done
test "$time_fail" = 0
}
# Call this with a list of programs under test immediately after
# sourcing init.sh.
print_ver_()
{
tests: ensure programs are built before testing programs may not be built due to missing system dependencies, or any program can be excluded at configure time with --enable-no-install-program. So ensure we're not testing the system versions in these cases. * init.cfg (print_ver_): Call require_built_ first. * tests/misc/tty-eof.pl: Skip programs not built. * tests/Coreutils.pm (run_tests): Likewise. * tests/misc/ls-misc.pl: Use 'env test' rather than abs path. * tests/misc/test-diag.pl: Likewise. * tests/local.mk: Adjust include order for dependencies. * tests/misc/arch.sh: Remove redundant calls to require_built_. * tests/misc/chroot-fail.sh: Likewise. * tests/misc/groups-dash.sh: Likewise. * tests/misc/groups-version.sh: Likewise. * tests/misc/stdbuf.sh: Likewise. * tests/cp/acl.sh: Remove problematic call to print_ver_ [gs]etfacl. * tests/mv/acl.sh: Likewise. * cfg.mk (sc_env_test_dependencies): A new syntax check to enforce specifying dependencies with print_ver_ for programs specified through the env command. * du/bigtime.sh: Add new print_ver_ dependencies. * du/max-depth.sh: Likewise. * dd/ascii.sh: Likewise. * tests/ls/capability.sh: Likewise. * tests/ls/root-rel-symlink-color.sh: Likewise. * tests/misc/chroot-fail.sh: Likewise. * tests/misc/readlink-fp-loop.sh: Likewise. * tests/misc/sort-debug-keys.sh: Likewise. * tests/readlink/can-e.sh: Likewise. * tests/readlink/can-f.sh: Likewise. * tests/readlink/can-m.sh: Likewise. * tests/tail-2/inotify-race.sh: Likewise. * tests/tail-2/inotify-race2.sh: Likewise. * tests/touch/no-create-missing.sh: Likewise. * tests/touch/no-dereference.sh: Likewise. * tests/misc/printenv.sh: Tweak to avoid syntax check trigger. * tests/misc/help-version.sh: Likewise. * tests/misc/yes.sh: Likewise. * tests/misc/printf-quote.sh: Use previously unused $prog. * configure.ac (EXTRA_MANS): Add $gl_no_install_prog to the list so that check-x-vs-1 syntax check is satisfied.
2015-11-10 22:05:50 +08:00
require_built_ "$@"
if test "$VERBOSE" = yes; then
local i
for i in $*; do
env $i --version
done
fi
}
# Are we running on GNU/Hurd?
require_gnu_()
{
test "$(uname)" = GNU \
|| skip_ 'not running on GNU/Hurd'
}
sanitize_path_