mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 12:03:41 +08:00
f6df245f76
Convert more of mn10300 to multi-arch. Fix mips vs mn10300
1015 lines
28 KiB
C
1015 lines
28 KiB
C
/* Target-dependent code for the Matsushita MN10300 for GDB, the GNU debugger.
|
|
Copyright 1996, 1997, 1998, 2000 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "obstack.h"
|
|
#include "target.h"
|
|
#include "value.h"
|
|
#include "bfd.h"
|
|
#include "gdb_string.h"
|
|
#include "gdbcore.h"
|
|
#include "symfile.h"
|
|
|
|
extern void _initialize_mn10300_tdep (void);
|
|
static CORE_ADDR mn10300_analyze_prologue (struct frame_info *fi,
|
|
CORE_ADDR pc);
|
|
|
|
/* mn10300 private data */
|
|
struct gdbarch_tdep
|
|
{
|
|
int am33_mode;
|
|
#define AM33_MODE (gdbarch_tdep (current_gdbarch)->am33_mode)
|
|
};
|
|
|
|
/* Additional info used by the frame */
|
|
|
|
struct frame_extra_info
|
|
{
|
|
int status;
|
|
int stack_size;
|
|
};
|
|
|
|
|
|
static char *
|
|
register_name (int reg, char **regs, long sizeof_regs)
|
|
{
|
|
if (reg < 0 || reg >= sizeof_regs / sizeof (regs[0]))
|
|
return NULL;
|
|
else
|
|
return regs[reg];
|
|
}
|
|
|
|
static char *
|
|
mn10300_generic_register_name (int reg)
|
|
{
|
|
static char *regs[] =
|
|
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
|
"sp", "pc", "mdr", "psw", "lir", "lar", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "fp"
|
|
};
|
|
return register_name (reg, regs, sizeof regs);
|
|
}
|
|
|
|
|
|
static char *
|
|
am33_register_name (int reg)
|
|
{
|
|
static char *regs[] =
|
|
{ "d0", "d1", "d2", "d3", "a0", "a1", "a2", "a3",
|
|
"sp", "pc", "mdr", "psw", "lir", "lar", "",
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"ssp", "msp", "usp", "mcrh", "mcrl", "mcvf", "", "", ""
|
|
};
|
|
return register_name (reg, regs, sizeof regs);
|
|
}
|
|
|
|
CORE_ADDR
|
|
mn10300_saved_pc_after_call (struct frame_info *fi)
|
|
{
|
|
return read_memory_integer (read_register (SP_REGNUM), 4);
|
|
}
|
|
|
|
void
|
|
mn10300_extract_return_value (struct type *type, char *regbuf, char *valbuf)
|
|
{
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE (4), TYPE_LENGTH (type));
|
|
else
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE (0), TYPE_LENGTH (type));
|
|
}
|
|
|
|
CORE_ADDR
|
|
mn10300_extract_struct_value_address (char *regbuf)
|
|
{
|
|
return extract_address (regbuf + REGISTER_BYTE (4),
|
|
REGISTER_RAW_SIZE (4));
|
|
}
|
|
|
|
void
|
|
mn10300_store_return_value (struct type *type, char *valbuf)
|
|
{
|
|
if (TYPE_CODE (type) == TYPE_CODE_PTR)
|
|
write_register_bytes (REGISTER_BYTE (4), valbuf, TYPE_LENGTH (type));
|
|
else
|
|
write_register_bytes (REGISTER_BYTE (0), valbuf, TYPE_LENGTH (type));
|
|
}
|
|
|
|
static struct frame_info *analyze_dummy_frame (CORE_ADDR, CORE_ADDR);
|
|
static struct frame_info *
|
|
analyze_dummy_frame (CORE_ADDR pc, CORE_ADDR frame)
|
|
{
|
|
static struct frame_info *dummy = NULL;
|
|
if (dummy == NULL)
|
|
{
|
|
dummy = xmalloc (sizeof (struct frame_info));
|
|
dummy->saved_regs = xmalloc (SIZEOF_FRAME_SAVED_REGS);
|
|
dummy->extra_info = xmalloc (sizeof (struct frame_extra_info));
|
|
}
|
|
dummy->next = NULL;
|
|
dummy->prev = NULL;
|
|
dummy->pc = pc;
|
|
dummy->frame = frame;
|
|
dummy->extra_info->status = 0;
|
|
dummy->extra_info->stack_size = 0;
|
|
memset (dummy->saved_regs, '\000', SIZEOF_FRAME_SAVED_REGS);
|
|
mn10300_analyze_prologue (dummy, 0);
|
|
return dummy;
|
|
}
|
|
|
|
/* Values for frame_info.status */
|
|
|
|
#define MY_FRAME_IN_SP 0x1
|
|
#define MY_FRAME_IN_FP 0x2
|
|
#define NO_MORE_FRAMES 0x4
|
|
|
|
|
|
/* Should call_function allocate stack space for a struct return? */
|
|
int
|
|
mn10300_use_struct_convention (int gcc_p, struct type *type)
|
|
{
|
|
return (TYPE_NFIELDS (type) > 1 || TYPE_LENGTH (type) > 8);
|
|
}
|
|
|
|
/* The breakpoint instruction must be the same size as the smallest
|
|
instruction in the instruction set.
|
|
|
|
The Matsushita mn10x00 processors have single byte instructions
|
|
so we need a single byte breakpoint. Matsushita hasn't defined
|
|
one, so we defined it ourselves. */
|
|
|
|
unsigned char *
|
|
mn10300_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
|
|
{
|
|
static char breakpoint[] =
|
|
{0xff};
|
|
*bp_size = 1;
|
|
return breakpoint;
|
|
}
|
|
|
|
|
|
/* Fix fi->frame if it's bogus at this point. This is a helper
|
|
function for mn10300_analyze_prologue. */
|
|
|
|
static void
|
|
fix_frame_pointer (struct frame_info *fi, int stack_size)
|
|
{
|
|
if (fi && fi->next == NULL)
|
|
{
|
|
if (fi->extra_info->status & MY_FRAME_IN_SP)
|
|
fi->frame = read_sp () - stack_size;
|
|
else if (fi->extra_info->status & MY_FRAME_IN_FP)
|
|
fi->frame = read_register (A3_REGNUM);
|
|
}
|
|
}
|
|
|
|
|
|
/* Set offsets of registers saved by movm instruction.
|
|
This is a helper function for mn10300_analyze_prologue. */
|
|
|
|
static void
|
|
set_movm_offsets (struct frame_info *fi, int movm_args)
|
|
{
|
|
int offset = 0;
|
|
|
|
if (fi == NULL || movm_args == 0)
|
|
return;
|
|
|
|
if (movm_args & 0x10)
|
|
{
|
|
fi->saved_regs[A3_REGNUM] = fi->frame + offset;
|
|
offset += 4;
|
|
}
|
|
if (movm_args & 0x20)
|
|
{
|
|
fi->saved_regs[A2_REGNUM] = fi->frame + offset;
|
|
offset += 4;
|
|
}
|
|
if (movm_args & 0x40)
|
|
{
|
|
fi->saved_regs[D3_REGNUM] = fi->frame + offset;
|
|
offset += 4;
|
|
}
|
|
if (movm_args & 0x80)
|
|
{
|
|
fi->saved_regs[D2_REGNUM] = fi->frame + offset;
|
|
offset += 4;
|
|
}
|
|
if (AM33_MODE && movm_args & 0x02)
|
|
{
|
|
fi->saved_regs[E0_REGNUM + 5] = fi->frame + offset;
|
|
fi->saved_regs[E0_REGNUM + 4] = fi->frame + offset + 4;
|
|
fi->saved_regs[E0_REGNUM + 3] = fi->frame + offset + 8;
|
|
fi->saved_regs[E0_REGNUM + 2] = fi->frame + offset + 12;
|
|
}
|
|
}
|
|
|
|
|
|
/* The main purpose of this file is dealing with prologues to extract
|
|
information about stack frames and saved registers.
|
|
|
|
For reference here's how prologues look on the mn10300:
|
|
|
|
With frame pointer:
|
|
movm [d2,d3,a2,a3],sp
|
|
mov sp,a3
|
|
add <size>,sp
|
|
|
|
Without frame pointer:
|
|
movm [d2,d3,a2,a3],sp (if needed)
|
|
add <size>,sp
|
|
|
|
One day we might keep the stack pointer constant, that won't
|
|
change the code for prologues, but it will make the frame
|
|
pointerless case much more common. */
|
|
|
|
/* Analyze the prologue to determine where registers are saved,
|
|
the end of the prologue, etc etc. Return the end of the prologue
|
|
scanned.
|
|
|
|
We store into FI (if non-null) several tidbits of information:
|
|
|
|
* stack_size -- size of this stack frame. Note that if we stop in
|
|
certain parts of the prologue/epilogue we may claim the size of the
|
|
current frame is zero. This happens when the current frame has
|
|
not been allocated yet or has already been deallocated.
|
|
|
|
* fsr -- Addresses of registers saved in the stack by this frame.
|
|
|
|
* status -- A (relatively) generic status indicator. It's a bitmask
|
|
with the following bits:
|
|
|
|
MY_FRAME_IN_SP: The base of the current frame is actually in
|
|
the stack pointer. This can happen for frame pointerless
|
|
functions, or cases where we're stopped in the prologue/epilogue
|
|
itself. For these cases mn10300_analyze_prologue will need up
|
|
update fi->frame before returning or analyzing the register
|
|
save instructions.
|
|
|
|
MY_FRAME_IN_FP: The base of the current frame is in the
|
|
frame pointer register ($a2).
|
|
|
|
NO_MORE_FRAMES: Set this if the current frame is "start" or
|
|
if the first instruction looks like mov <imm>,sp. This tells
|
|
frame chain to not bother trying to unwind past this frame. */
|
|
|
|
static CORE_ADDR
|
|
mn10300_analyze_prologue (struct frame_info *fi, CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr, func_end, addr, stop;
|
|
CORE_ADDR stack_size;
|
|
int imm_size;
|
|
unsigned char buf[4];
|
|
int status, movm_args = 0;
|
|
char *name;
|
|
|
|
/* Use the PC in the frame if it's provided to look up the
|
|
start of this function. */
|
|
pc = (fi ? fi->pc : pc);
|
|
|
|
/* Find the start of this function. */
|
|
status = find_pc_partial_function (pc, &name, &func_addr, &func_end);
|
|
|
|
/* Do nothing if we couldn't find the start of this function or if we're
|
|
stopped at the first instruction in the prologue. */
|
|
if (status == 0)
|
|
{
|
|
return pc;
|
|
}
|
|
|
|
/* If we're in start, then give up. */
|
|
if (strcmp (name, "start") == 0)
|
|
{
|
|
if (fi != NULL)
|
|
fi->extra_info->status = NO_MORE_FRAMES;
|
|
return pc;
|
|
}
|
|
|
|
/* At the start of a function our frame is in the stack pointer. */
|
|
if (fi)
|
|
fi->extra_info->status = MY_FRAME_IN_SP;
|
|
|
|
/* Get the next two bytes into buf, we need two because rets is a two
|
|
byte insn and the first isn't enough to uniquely identify it. */
|
|
status = read_memory_nobpt (pc, buf, 2);
|
|
if (status != 0)
|
|
return pc;
|
|
|
|
/* If we're physically on an "rets" instruction, then our frame has
|
|
already been deallocated. Note this can also be true for retf
|
|
and ret if they specify a size of zero.
|
|
|
|
In this case fi->frame is bogus, we need to fix it. */
|
|
if (fi && buf[0] == 0xf0 && buf[1] == 0xfc)
|
|
{
|
|
if (fi->next == NULL)
|
|
fi->frame = read_sp ();
|
|
return fi->pc;
|
|
}
|
|
|
|
/* Similarly if we're stopped on the first insn of a prologue as our
|
|
frame hasn't been allocated yet. */
|
|
if (fi && fi->pc == func_addr)
|
|
{
|
|
if (fi->next == NULL)
|
|
fi->frame = read_sp ();
|
|
return fi->pc;
|
|
}
|
|
|
|
/* Figure out where to stop scanning. */
|
|
stop = fi ? fi->pc : func_end;
|
|
|
|
/* Don't walk off the end of the function. */
|
|
stop = stop > func_end ? func_end : stop;
|
|
|
|
/* Start scanning on the first instruction of this function. */
|
|
addr = func_addr;
|
|
|
|
/* Suck in two bytes. */
|
|
status = read_memory_nobpt (addr, buf, 2);
|
|
if (status != 0)
|
|
{
|
|
fix_frame_pointer (fi, 0);
|
|
return addr;
|
|
}
|
|
|
|
/* First see if this insn sets the stack pointer; if so, it's something
|
|
we won't understand, so quit now. */
|
|
if (buf[0] == 0xf2 && (buf[1] & 0xf3) == 0xf0)
|
|
{
|
|
if (fi)
|
|
fi->extra_info->status = NO_MORE_FRAMES;
|
|
return addr;
|
|
}
|
|
|
|
/* Now look for movm [regs],sp, which saves the callee saved registers.
|
|
|
|
At this time we don't know if fi->frame is valid, so we only note
|
|
that we encountered a movm instruction. Later, we'll set the entries
|
|
in fsr.regs as needed. */
|
|
if (buf[0] == 0xcf)
|
|
{
|
|
/* Extract the register list for the movm instruction. */
|
|
status = read_memory_nobpt (addr + 1, buf, 1);
|
|
movm_args = *buf;
|
|
|
|
addr += 2;
|
|
|
|
/* Quit now if we're beyond the stop point. */
|
|
if (addr >= stop)
|
|
{
|
|
/* Fix fi->frame since it's bogus at this point. */
|
|
if (fi && fi->next == NULL)
|
|
fi->frame = read_sp ();
|
|
|
|
/* Note if/where callee saved registers were saved. */
|
|
set_movm_offsets (fi, movm_args);
|
|
return addr;
|
|
}
|
|
|
|
/* Get the next two bytes so the prologue scan can continue. */
|
|
status = read_memory_nobpt (addr, buf, 2);
|
|
if (status != 0)
|
|
{
|
|
/* Fix fi->frame since it's bogus at this point. */
|
|
if (fi && fi->next == NULL)
|
|
fi->frame = read_sp ();
|
|
|
|
/* Note if/where callee saved registers were saved. */
|
|
set_movm_offsets (fi, movm_args);
|
|
return addr;
|
|
}
|
|
}
|
|
|
|
/* Now see if we set up a frame pointer via "mov sp,a3" */
|
|
if (buf[0] == 0x3f)
|
|
{
|
|
addr += 1;
|
|
|
|
/* The frame pointer is now valid. */
|
|
if (fi)
|
|
{
|
|
fi->extra_info->status |= MY_FRAME_IN_FP;
|
|
fi->extra_info->status &= ~MY_FRAME_IN_SP;
|
|
}
|
|
|
|
/* Quit now if we're beyond the stop point. */
|
|
if (addr >= stop)
|
|
{
|
|
/* Fix fi->frame if it's bogus at this point. */
|
|
fix_frame_pointer (fi, 0);
|
|
|
|
/* Note if/where callee saved registers were saved. */
|
|
set_movm_offsets (fi, movm_args);
|
|
return addr;
|
|
}
|
|
|
|
/* Get two more bytes so scanning can continue. */
|
|
status = read_memory_nobpt (addr, buf, 2);
|
|
if (status != 0)
|
|
{
|
|
/* Fix fi->frame if it's bogus at this point. */
|
|
fix_frame_pointer (fi, 0);
|
|
|
|
/* Note if/where callee saved registers were saved. */
|
|
set_movm_offsets (fi, movm_args);
|
|
return addr;
|
|
}
|
|
}
|
|
|
|
/* Next we should allocate the local frame. No more prologue insns
|
|
are found after allocating the local frame.
|
|
|
|
Search for add imm8,sp (0xf8feXX)
|
|
or add imm16,sp (0xfafeXXXX)
|
|
or add imm32,sp (0xfcfeXXXXXXXX).
|
|
|
|
If none of the above was found, then this prologue has no
|
|
additional stack. */
|
|
|
|
status = read_memory_nobpt (addr, buf, 2);
|
|
if (status != 0)
|
|
{
|
|
/* Fix fi->frame if it's bogus at this point. */
|
|
fix_frame_pointer (fi, 0);
|
|
|
|
/* Note if/where callee saved registers were saved. */
|
|
set_movm_offsets (fi, movm_args);
|
|
return addr;
|
|
}
|
|
|
|
imm_size = 0;
|
|
if (buf[0] == 0xf8 && buf[1] == 0xfe)
|
|
imm_size = 1;
|
|
else if (buf[0] == 0xfa && buf[1] == 0xfe)
|
|
imm_size = 2;
|
|
else if (buf[0] == 0xfc && buf[1] == 0xfe)
|
|
imm_size = 4;
|
|
|
|
if (imm_size != 0)
|
|
{
|
|
/* Suck in imm_size more bytes, they'll hold the size of the
|
|
current frame. */
|
|
status = read_memory_nobpt (addr + 2, buf, imm_size);
|
|
if (status != 0)
|
|
{
|
|
/* Fix fi->frame if it's bogus at this point. */
|
|
fix_frame_pointer (fi, 0);
|
|
|
|
/* Note if/where callee saved registers were saved. */
|
|
set_movm_offsets (fi, movm_args);
|
|
return addr;
|
|
}
|
|
|
|
/* Note the size of the stack in the frame info structure. */
|
|
stack_size = extract_signed_integer (buf, imm_size);
|
|
if (fi)
|
|
fi->extra_info->stack_size = stack_size;
|
|
|
|
/* We just consumed 2 + imm_size bytes. */
|
|
addr += 2 + imm_size;
|
|
|
|
/* No more prologue insns follow, so begin preparation to return. */
|
|
/* Fix fi->frame if it's bogus at this point. */
|
|
fix_frame_pointer (fi, stack_size);
|
|
|
|
/* Note if/where callee saved registers were saved. */
|
|
set_movm_offsets (fi, movm_args);
|
|
return addr;
|
|
}
|
|
|
|
/* We never found an insn which allocates local stack space, regardless
|
|
this is the end of the prologue. */
|
|
/* Fix fi->frame if it's bogus at this point. */
|
|
fix_frame_pointer (fi, 0);
|
|
|
|
/* Note if/where callee saved registers were saved. */
|
|
set_movm_offsets (fi, movm_args);
|
|
return addr;
|
|
}
|
|
|
|
/* Function: frame_chain
|
|
Figure out and return the caller's frame pointer given current
|
|
frame_info struct.
|
|
|
|
We don't handle dummy frames yet but we would probably just return the
|
|
stack pointer that was in use at the time the function call was made? */
|
|
|
|
CORE_ADDR
|
|
mn10300_frame_chain (struct frame_info *fi)
|
|
{
|
|
struct frame_info *dummy;
|
|
/* Walk through the prologue to determine the stack size,
|
|
location of saved registers, end of the prologue, etc. */
|
|
if (fi->extra_info->status == 0)
|
|
mn10300_analyze_prologue (fi, (CORE_ADDR) 0);
|
|
|
|
/* Quit now if mn10300_analyze_prologue set NO_MORE_FRAMES. */
|
|
if (fi->extra_info->status & NO_MORE_FRAMES)
|
|
return 0;
|
|
|
|
/* Now that we've analyzed our prologue, determine the frame
|
|
pointer for our caller.
|
|
|
|
If our caller has a frame pointer, then we need to
|
|
find the entry value of $a3 to our function.
|
|
|
|
If fsr.regs[A3_REGNUM] is nonzero, then it's at the memory
|
|
location pointed to by fsr.regs[A3_REGNUM].
|
|
|
|
Else it's still in $a3.
|
|
|
|
If our caller does not have a frame pointer, then his
|
|
frame base is fi->frame + -caller's stack size. */
|
|
|
|
/* The easiest way to get that info is to analyze our caller's frame.
|
|
So we set up a dummy frame and call mn10300_analyze_prologue to
|
|
find stuff for us. */
|
|
dummy = analyze_dummy_frame (FRAME_SAVED_PC (fi), fi->frame);
|
|
|
|
if (dummy->extra_info->status & MY_FRAME_IN_FP)
|
|
{
|
|
/* Our caller has a frame pointer. So find the frame in $a3 or
|
|
in the stack. */
|
|
if (fi->saved_regs[A3_REGNUM])
|
|
return (read_memory_integer (fi->saved_regs[A3_REGNUM], REGISTER_SIZE));
|
|
else
|
|
return read_register (A3_REGNUM);
|
|
}
|
|
else
|
|
{
|
|
int adjust = 0;
|
|
|
|
adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
|
|
adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
|
|
adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
|
|
adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
|
|
if (AM33_MODE)
|
|
{
|
|
adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
|
|
adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
|
|
adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
|
|
adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
|
|
}
|
|
|
|
/* Our caller does not have a frame pointer. So his frame starts
|
|
at the base of our frame (fi->frame) + register save space
|
|
+ <his size>. */
|
|
return fi->frame + adjust + -dummy->extra_info->stack_size;
|
|
}
|
|
}
|
|
|
|
/* Function: skip_prologue
|
|
Return the address of the first inst past the prologue of the function. */
|
|
|
|
CORE_ADDR
|
|
mn10300_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
/* We used to check the debug symbols, but that can lose if
|
|
we have a null prologue. */
|
|
return mn10300_analyze_prologue (NULL, pc);
|
|
}
|
|
|
|
|
|
/* Function: pop_frame
|
|
This routine gets called when either the user uses the `return'
|
|
command, or the call dummy breakpoint gets hit. */
|
|
|
|
void
|
|
mn10300_pop_frame (struct frame_info *frame)
|
|
{
|
|
int regnum;
|
|
|
|
if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
|
|
generic_pop_dummy_frame ();
|
|
else
|
|
{
|
|
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
|
|
|
|
/* Restore any saved registers. */
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|
if (frame->saved_regs[regnum] != 0)
|
|
{
|
|
ULONGEST value;
|
|
|
|
value = read_memory_unsigned_integer (frame->saved_regs[regnum],
|
|
REGISTER_RAW_SIZE (regnum));
|
|
write_register (regnum, value);
|
|
}
|
|
|
|
/* Actually cut back the stack. */
|
|
write_register (SP_REGNUM, FRAME_FP (frame));
|
|
|
|
/* Don't we need to set the PC?!? XXX FIXME. */
|
|
}
|
|
|
|
/* Throw away any cached frame information. */
|
|
flush_cached_frames ();
|
|
}
|
|
|
|
/* Function: push_arguments
|
|
Setup arguments for a call to the target. Arguments go in
|
|
order on the stack. */
|
|
|
|
CORE_ADDR
|
|
mn10300_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
int argnum = 0;
|
|
int len = 0;
|
|
int stack_offset = 0;
|
|
int regsused = struct_return ? 1 : 0;
|
|
|
|
/* This should be a nop, but align the stack just in case something
|
|
went wrong. Stacks are four byte aligned on the mn10300. */
|
|
sp &= ~3;
|
|
|
|
/* Now make space on the stack for the args.
|
|
|
|
XXX This doesn't appear to handle pass-by-invisible reference
|
|
arguments. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
int arg_length = (TYPE_LENGTH (VALUE_TYPE (args[argnum])) + 3) & ~3;
|
|
|
|
while (regsused < 2 && arg_length > 0)
|
|
{
|
|
regsused++;
|
|
arg_length -= 4;
|
|
}
|
|
len += arg_length;
|
|
}
|
|
|
|
/* Allocate stack space. */
|
|
sp -= len;
|
|
|
|
regsused = struct_return ? 1 : 0;
|
|
/* Push all arguments onto the stack. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
int len;
|
|
char *val;
|
|
|
|
/* XXX Check this. What about UNIONS? */
|
|
if (TYPE_CODE (VALUE_TYPE (*args)) == TYPE_CODE_STRUCT
|
|
&& TYPE_LENGTH (VALUE_TYPE (*args)) > 8)
|
|
{
|
|
/* XXX Wrong, we want a pointer to this argument. */
|
|
len = TYPE_LENGTH (VALUE_TYPE (*args));
|
|
val = (char *) VALUE_CONTENTS (*args);
|
|
}
|
|
else
|
|
{
|
|
len = TYPE_LENGTH (VALUE_TYPE (*args));
|
|
val = (char *) VALUE_CONTENTS (*args);
|
|
}
|
|
|
|
while (regsused < 2 && len > 0)
|
|
{
|
|
write_register (regsused, extract_unsigned_integer (val, 4));
|
|
val += 4;
|
|
len -= 4;
|
|
regsused++;
|
|
}
|
|
|
|
while (len > 0)
|
|
{
|
|
write_memory (sp + stack_offset, val, 4);
|
|
len -= 4;
|
|
val += 4;
|
|
stack_offset += 4;
|
|
}
|
|
|
|
args++;
|
|
}
|
|
|
|
/* Make space for the flushback area. */
|
|
sp -= 8;
|
|
return sp;
|
|
}
|
|
|
|
/* Function: push_return_address (pc)
|
|
Set up the return address for the inferior function call.
|
|
Needed for targets where we don't actually execute a JSR/BSR instruction */
|
|
|
|
CORE_ADDR
|
|
mn10300_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
|
|
{
|
|
unsigned char buf[4];
|
|
|
|
store_unsigned_integer (buf, 4, CALL_DUMMY_ADDRESS ());
|
|
write_memory (sp - 4, buf, 4);
|
|
return sp - 4;
|
|
}
|
|
|
|
/* Function: store_struct_return (addr,sp)
|
|
Store the structure value return address for an inferior function
|
|
call. */
|
|
|
|
CORE_ADDR
|
|
mn10300_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
|
|
{
|
|
/* The structure return address is passed as the first argument. */
|
|
write_register (0, addr);
|
|
return sp;
|
|
}
|
|
|
|
/* Function: frame_saved_pc
|
|
Find the caller of this frame. We do this by seeing if RP_REGNUM
|
|
is saved in the stack anywhere, otherwise we get it from the
|
|
registers. If the inner frame is a dummy frame, return its PC
|
|
instead of RP, because that's where "caller" of the dummy-frame
|
|
will be found. */
|
|
|
|
CORE_ADDR
|
|
mn10300_frame_saved_pc (struct frame_info *fi)
|
|
{
|
|
int adjust = 0;
|
|
|
|
adjust += (fi->saved_regs[D2_REGNUM] ? 4 : 0);
|
|
adjust += (fi->saved_regs[D3_REGNUM] ? 4 : 0);
|
|
adjust += (fi->saved_regs[A2_REGNUM] ? 4 : 0);
|
|
adjust += (fi->saved_regs[A3_REGNUM] ? 4 : 0);
|
|
if (AM33_MODE)
|
|
{
|
|
adjust += (fi->saved_regs[E0_REGNUM + 5] ? 4 : 0);
|
|
adjust += (fi->saved_regs[E0_REGNUM + 4] ? 4 : 0);
|
|
adjust += (fi->saved_regs[E0_REGNUM + 3] ? 4 : 0);
|
|
adjust += (fi->saved_regs[E0_REGNUM + 2] ? 4 : 0);
|
|
}
|
|
|
|
return (read_memory_integer (fi->frame + adjust, REGISTER_SIZE));
|
|
}
|
|
|
|
/* Function: mn10300_init_extra_frame_info
|
|
Setup the frame's frame pointer, pc, and frame addresses for saved
|
|
registers. Most of the work is done in mn10300_analyze_prologue().
|
|
|
|
Note that when we are called for the last frame (currently active frame),
|
|
that fi->pc and fi->frame will already be setup. However, fi->frame will
|
|
be valid only if this routine uses FP. For previous frames, fi-frame will
|
|
always be correct. mn10300_analyze_prologue will fix fi->frame if
|
|
it's not valid.
|
|
|
|
We can be called with the PC in the call dummy under two circumstances.
|
|
First, during normal backtracing, second, while figuring out the frame
|
|
pointer just prior to calling the target function (see run_stack_dummy). */
|
|
|
|
void
|
|
mn10300_init_extra_frame_info (struct frame_info *fi)
|
|
{
|
|
if (fi->next)
|
|
fi->pc = FRAME_SAVED_PC (fi->next);
|
|
|
|
frame_saved_regs_zalloc (fi);
|
|
fi->extra_info = (struct frame_extra_info *)
|
|
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
|
|
|
fi->extra_info->status = 0;
|
|
fi->extra_info->stack_size = 0;
|
|
|
|
mn10300_analyze_prologue (fi, 0);
|
|
}
|
|
|
|
/* Function: mn10300_virtual_frame_pointer
|
|
Return the register that the function uses for a frame pointer,
|
|
plus any necessary offset to be applied to the register before
|
|
any frame pointer offsets. */
|
|
|
|
void
|
|
mn10300_virtual_frame_pointer (CORE_ADDR pc, long *reg, long *offset)
|
|
{
|
|
struct frame_info *dummy = analyze_dummy_frame (pc, 0);
|
|
/* Set up a dummy frame_info, Analyze the prolog and fill in the
|
|
extra info. */
|
|
/* Results will tell us which type of frame it uses. */
|
|
if (dummy->extra_info->status & MY_FRAME_IN_SP)
|
|
{
|
|
*reg = SP_REGNUM;
|
|
*offset = -(dummy->extra_info->stack_size);
|
|
}
|
|
else
|
|
{
|
|
*reg = A3_REGNUM;
|
|
*offset = 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
mn10300_reg_struct_has_addr (int gcc_p, struct type *type)
|
|
{
|
|
return (TYPE_LENGTH (type) > 8);
|
|
}
|
|
|
|
static struct type *
|
|
mn10300_register_virtual_type (int reg)
|
|
{
|
|
return builtin_type_int;
|
|
}
|
|
|
|
static int
|
|
mn10300_register_byte (int reg)
|
|
{
|
|
return (reg * 4);
|
|
}
|
|
|
|
static int
|
|
mn10300_register_virtual_size (int reg)
|
|
{
|
|
return 4;
|
|
}
|
|
|
|
static int
|
|
mn10300_register_raw_size (int reg)
|
|
{
|
|
return 4;
|
|
}
|
|
|
|
static void
|
|
mn10300_print_register (const char *name, int regnum, int reg_width)
|
|
{
|
|
char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
|
|
|
|
if (reg_width)
|
|
printf_filtered ("%*s: ", reg_width, name);
|
|
else
|
|
printf_filtered ("%s: ", name);
|
|
|
|
/* Get the data */
|
|
if (read_relative_register_raw_bytes (regnum, raw_buffer))
|
|
{
|
|
printf_filtered ("[invalid]");
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
int byte;
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
{
|
|
for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
|
|
byte < REGISTER_RAW_SIZE (regnum);
|
|
byte++)
|
|
printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
|
|
}
|
|
else
|
|
{
|
|
for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
|
|
byte >= 0;
|
|
byte--)
|
|
printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
mn10300_do_registers_info (int regnum, int fpregs)
|
|
{
|
|
if (regnum >= 0)
|
|
{
|
|
const char *name = REGISTER_NAME (regnum);
|
|
if (name == NULL || name[0] == '\0')
|
|
error ("Not a valid register for the current processor type");
|
|
mn10300_print_register (name, regnum, 0);
|
|
printf_filtered ("\n");
|
|
}
|
|
else
|
|
{
|
|
/* print registers in an array 4x8 */
|
|
int r;
|
|
int reg;
|
|
const int nr_in_row = 4;
|
|
const int reg_width = 4;
|
|
for (r = 0; r < NUM_REGS; r += nr_in_row)
|
|
{
|
|
int c;
|
|
int printing = 0;
|
|
int padding = 0;
|
|
for (c = r; c < r + nr_in_row; c++)
|
|
{
|
|
const char *name = REGISTER_NAME (c);
|
|
if (name != NULL && *name != '\0')
|
|
{
|
|
printing = 1;
|
|
while (padding > 0)
|
|
{
|
|
printf_filtered (" ");
|
|
padding--;
|
|
}
|
|
mn10300_print_register (name, c, reg_width);
|
|
printf_filtered (" ");
|
|
}
|
|
else
|
|
{
|
|
padding += (reg_width + 2 + 8 + 1);
|
|
}
|
|
}
|
|
if (printing)
|
|
printf_filtered ("\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Dump out the mn10300 speciic architecture information. */
|
|
|
|
static void
|
|
mn10300_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
|
fprintf_unfiltered (file, "mn10300_dump_tdep: am33_mode = %d\n",
|
|
tdep->am33_mode);
|
|
}
|
|
|
|
static struct gdbarch *
|
|
mn10300_gdbarch_init (struct gdbarch_info info,
|
|
struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep = NULL;
|
|
int am33_mode;
|
|
gdbarch_register_name_ftype *register_name;
|
|
int mach;
|
|
int num_regs;
|
|
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
tdep = xmalloc (sizeof (struct gdbarch_tdep));
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
|
|
if (info.bfd_arch_info != NULL
|
|
&& info.bfd_arch_info->arch == bfd_arch_mn10300)
|
|
mach = info.bfd_arch_info->mach;
|
|
else
|
|
mach = 0;
|
|
switch (mach)
|
|
{
|
|
case 0:
|
|
case bfd_mach_mn10300:
|
|
am33_mode = 0;
|
|
register_name = mn10300_generic_register_name;
|
|
num_regs = 32;
|
|
break;
|
|
case bfd_mach_am33:
|
|
am33_mode = 1;
|
|
register_name = am33_register_name;
|
|
num_regs = 32;
|
|
break;
|
|
default:
|
|
internal_error ("mn10300_gdbarch_init: Unknown mn10300 variant");
|
|
return NULL; /* keep GCC happy. */
|
|
}
|
|
|
|
set_gdbarch_register_size (gdbarch, 4);
|
|
set_gdbarch_max_register_raw_size (gdbarch, 4);
|
|
set_gdbarch_register_virtual_type (gdbarch, mn10300_register_virtual_type);
|
|
set_gdbarch_register_byte (gdbarch, mn10300_register_byte);
|
|
set_gdbarch_register_virtual_size (gdbarch, mn10300_register_virtual_size);
|
|
set_gdbarch_register_raw_size (gdbarch, mn10300_register_raw_size);
|
|
set_gdbarch_call_dummy_p (gdbarch, 1);
|
|
set_gdbarch_register_name (gdbarch, register_name);
|
|
set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
|
|
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 0);
|
|
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
|
set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
|
|
set_gdbarch_push_arguments (gdbarch, mn10300_push_arguments);
|
|
set_gdbarch_push_return_address (gdbarch, mn10300_push_return_address);
|
|
set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
|
|
set_gdbarch_reg_struct_has_addr (gdbarch, mn10300_reg_struct_has_addr);
|
|
set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
|
|
set_gdbarch_num_regs (gdbarch, num_regs);
|
|
set_gdbarch_do_registers_info (gdbarch, mn10300_do_registers_info);
|
|
|
|
tdep->am33_mode = am33_mode;
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
void
|
|
_initialize_mn10300_tdep (void)
|
|
{
|
|
/* printf("_initialize_mn10300_tdep\n"); */
|
|
|
|
tm_print_insn = print_insn_mn10300;
|
|
|
|
register_gdbarch_init (bfd_arch_mn10300, mn10300_gdbarch_init);
|
|
}
|