mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-25 11:04:18 +08:00
d8d2a3ee47
With the pathmax gnulib module in place, we can use PATH_MAX consistently throughout, instead of the current mixbag of PATH_MAX and MAXPATHLEN uses. It's no longer necessary to include sys/param.h (supposedly, I can't check all ports touched here) for MAXPATHLEN. Don't remove sys/param.h from GDB's configure.ac, as later tests in the file use HAVE_SYS_PARAM_H checks. Tested on x86_64 Fedora 17. Also cross-built for --host=i686-w64-mingw32, and --host=i586-pc-msdosdjgpp. gdb/ 2013-07-01 Pedro Alves <palves@redhat.com> * defs.h: Include "pathmax.h". * utils.c: Don't include sys/param.h. (gdb_realpath): Remove code that checks for MAXPATHLEN. * solib-ia64-hpux.c (ia64_hpux_handle_load_event): Use PATH_MAX instead of MAXPATHLEN. * solib-sunos.c: Don't include sys/param.h. * xcoffread.c: Don't include sys/param.h. * bsd-kvm.c: Don't include sys/param.h. * darwin-nat.c: Don't include sys/param.h. (darwin_pid_to_exec_file): Use PATH_MAX instead of MAXPATHLEN. * darwin-nat-info.c: Don't include sys/param.h. * fbsd-nat.c (fbsd_pid_to_exec_file): Use PATH_MAX instead of MAXPATHLEN. * i386obsd-nat.c: Don't include sys/param.h. * inf-child.c: Don't include sys/param.h. (inf_child_fileio_readlink): Use PATH_MAX instead of MAXPATHLEN. * linux-fork.c: Don't include sys/param.h. (fork_save_infrun_state): Use PATH_MAX instead of MAXPATHLEN. * linux-nat.c: Don't include sys/param.h. (linux_child_pid_to_exec_file, linux_proc_pending_signals) (linux_proc_pending_signals): Use PATH_MAX instead of MAXPATHLEN. * m68klinux-nat.c: Don't include sys/param.h. * nbsd-nat.c: Don't include sys/param.h. (nbsd_pid_to_exec_file): Use PATH_MAX instead of MAXPATHLEN. * ppc-linux-nat.c: Don't include sys/param.h. * rs6000-nat.c: Don't include sys/param.h. * spu-linux-nat.c. Don't include sys/param.h. * windows-nat.c: Don't include sys/param.h. * xtensa-linux-nat.c: Don't include sys/param.h. * config/i386/nm-fbsd.h: Don't include sys/param.h. gdb/gdbserver/ 2013-07-01 Pedro Alves <palves@redhat.com> * server.h: Include "pathmax.h". * linux-low.c: Don't include sys/param.h. (linux_pid_exe_is_elf_64_file): Use PATH_MAX instead of MAXPATHLEN. * win32-low.c: Don't include sys/param.h. (win32_create_inferior): Use PATH_MAX instead of MAXPATHLEN.
633 lines
17 KiB
C
633 lines
17 KiB
C
/* SPU native-dependent code for GDB, the GNU debugger.
|
|
Copyright (C) 2006-2013 Free Software Foundation, Inc.
|
|
|
|
Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "gdbcore.h"
|
|
#include "gdb_string.h"
|
|
#include "target.h"
|
|
#include "inferior.h"
|
|
#include "inf-child.h"
|
|
#include "inf-ptrace.h"
|
|
#include "regcache.h"
|
|
#include "symfile.h"
|
|
#include "gdb_wait.h"
|
|
#include "gdbthread.h"
|
|
#include "gdb_bfd.h"
|
|
|
|
#include <sys/ptrace.h>
|
|
#include <asm/ptrace.h>
|
|
#include <sys/types.h>
|
|
|
|
#include "spu-tdep.h"
|
|
|
|
/* PPU side system calls. */
|
|
#define INSTR_SC 0x44000002
|
|
#define NR_spu_run 0x0116
|
|
|
|
|
|
/* Fetch PPU register REGNO. */
|
|
static ULONGEST
|
|
fetch_ppc_register (int regno)
|
|
{
|
|
PTRACE_TYPE_RET res;
|
|
|
|
int tid = TIDGET (inferior_ptid);
|
|
if (tid == 0)
|
|
tid = PIDGET (inferior_ptid);
|
|
|
|
#ifndef __powerpc64__
|
|
/* If running as a 32-bit process on a 64-bit system, we attempt
|
|
to get the full 64-bit register content of the target process.
|
|
If the PPC special ptrace call fails, we're on a 32-bit system;
|
|
just fall through to the regular ptrace call in that case. */
|
|
{
|
|
gdb_byte buf[8];
|
|
|
|
errno = 0;
|
|
ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
|
|
(PTRACE_TYPE_ARG3) (regno * 8), buf);
|
|
if (errno == 0)
|
|
ptrace (PPC_PTRACE_PEEKUSR_3264, tid,
|
|
(PTRACE_TYPE_ARG3) (regno * 8 + 4), buf + 4);
|
|
if (errno == 0)
|
|
return (ULONGEST) *(uint64_t *)buf;
|
|
}
|
|
#endif
|
|
|
|
errno = 0;
|
|
res = ptrace (PT_READ_U, tid,
|
|
(PTRACE_TYPE_ARG3) (regno * sizeof (PTRACE_TYPE_RET)), 0);
|
|
if (errno != 0)
|
|
{
|
|
char mess[128];
|
|
xsnprintf (mess, sizeof mess, "reading PPC register #%d", regno);
|
|
perror_with_name (_(mess));
|
|
}
|
|
|
|
return (ULONGEST) (unsigned long) res;
|
|
}
|
|
|
|
/* Fetch WORD from PPU memory at (aligned) MEMADDR in thread TID. */
|
|
static int
|
|
fetch_ppc_memory_1 (int tid, ULONGEST memaddr, PTRACE_TYPE_RET *word)
|
|
{
|
|
errno = 0;
|
|
|
|
#ifndef __powerpc64__
|
|
if (memaddr >> 32)
|
|
{
|
|
uint64_t addr_8 = (uint64_t) memaddr;
|
|
ptrace (PPC_PTRACE_PEEKTEXT_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
|
|
}
|
|
else
|
|
#endif
|
|
*word = ptrace (PT_READ_I, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, 0);
|
|
|
|
return errno;
|
|
}
|
|
|
|
/* Store WORD into PPU memory at (aligned) MEMADDR in thread TID. */
|
|
static int
|
|
store_ppc_memory_1 (int tid, ULONGEST memaddr, PTRACE_TYPE_RET word)
|
|
{
|
|
errno = 0;
|
|
|
|
#ifndef __powerpc64__
|
|
if (memaddr >> 32)
|
|
{
|
|
uint64_t addr_8 = (uint64_t) memaddr;
|
|
ptrace (PPC_PTRACE_POKEDATA_3264, tid, (PTRACE_TYPE_ARG3) &addr_8, word);
|
|
}
|
|
else
|
|
#endif
|
|
ptrace (PT_WRITE_D, tid, (PTRACE_TYPE_ARG3) (size_t) memaddr, word);
|
|
|
|
return errno;
|
|
}
|
|
|
|
/* Fetch LEN bytes of PPU memory at MEMADDR to MYADDR. */
|
|
static int
|
|
fetch_ppc_memory (ULONGEST memaddr, gdb_byte *myaddr, int len)
|
|
{
|
|
int i, ret;
|
|
|
|
ULONGEST addr = memaddr & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
|
|
int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
|
|
/ sizeof (PTRACE_TYPE_RET));
|
|
PTRACE_TYPE_RET *buffer;
|
|
|
|
int tid = TIDGET (inferior_ptid);
|
|
if (tid == 0)
|
|
tid = PIDGET (inferior_ptid);
|
|
|
|
buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
|
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
|
|
{
|
|
ret = fetch_ppc_memory_1 (tid, addr, &buffer[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
memcpy (myaddr,
|
|
(char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
|
|
len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Store LEN bytes from MYADDR to PPU memory at MEMADDR. */
|
|
static int
|
|
store_ppc_memory (ULONGEST memaddr, const gdb_byte *myaddr, int len)
|
|
{
|
|
int i, ret;
|
|
|
|
ULONGEST addr = memaddr & -(ULONGEST) sizeof (PTRACE_TYPE_RET);
|
|
int count = ((((memaddr + len) - addr) + sizeof (PTRACE_TYPE_RET) - 1)
|
|
/ sizeof (PTRACE_TYPE_RET));
|
|
PTRACE_TYPE_RET *buffer;
|
|
|
|
int tid = TIDGET (inferior_ptid);
|
|
if (tid == 0)
|
|
tid = PIDGET (inferior_ptid);
|
|
|
|
buffer = (PTRACE_TYPE_RET *) alloca (count * sizeof (PTRACE_TYPE_RET));
|
|
|
|
if (addr != memaddr || len < (int) sizeof (PTRACE_TYPE_RET))
|
|
{
|
|
ret = fetch_ppc_memory_1 (tid, addr, &buffer[0]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (count > 1)
|
|
{
|
|
ret = fetch_ppc_memory_1 (tid, addr + (count - 1)
|
|
* sizeof (PTRACE_TYPE_RET),
|
|
&buffer[count - 1]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_TYPE_RET) - 1)),
|
|
myaddr, len);
|
|
|
|
for (i = 0; i < count; i++, addr += sizeof (PTRACE_TYPE_RET))
|
|
{
|
|
ret = store_ppc_memory_1 (tid, addr, buffer[i]);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* If the PPU thread is currently stopped on a spu_run system call,
|
|
return to FD and ADDR the file handle and NPC parameter address
|
|
used with the system call. Return non-zero if successful. */
|
|
static int
|
|
parse_spufs_run (int *fd, ULONGEST *addr)
|
|
{
|
|
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
|
|
gdb_byte buf[4];
|
|
ULONGEST pc = fetch_ppc_register (32); /* nip */
|
|
|
|
/* Fetch instruction preceding current NIP. */
|
|
if (fetch_ppc_memory (pc-4, buf, 4) != 0)
|
|
return 0;
|
|
/* It should be a "sc" instruction. */
|
|
if (extract_unsigned_integer (buf, 4, byte_order) != INSTR_SC)
|
|
return 0;
|
|
/* System call number should be NR_spu_run. */
|
|
if (fetch_ppc_register (0) != NR_spu_run)
|
|
return 0;
|
|
|
|
/* Register 3 contains fd, register 4 the NPC param pointer. */
|
|
*fd = fetch_ppc_register (34); /* orig_gpr3 */
|
|
*addr = fetch_ppc_register (4);
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Copy LEN bytes at OFFSET in spufs file ANNEX into/from READBUF or WRITEBUF,
|
|
using the /proc file system. */
|
|
static LONGEST
|
|
spu_proc_xfer_spu (const char *annex, gdb_byte *readbuf,
|
|
const gdb_byte *writebuf,
|
|
ULONGEST offset, LONGEST len)
|
|
{
|
|
char buf[128];
|
|
int fd = 0;
|
|
int ret = -1;
|
|
int pid = PIDGET (inferior_ptid);
|
|
|
|
if (!annex)
|
|
return 0;
|
|
|
|
xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
|
|
fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
|
|
if (fd <= 0)
|
|
return -1;
|
|
|
|
if (offset != 0
|
|
&& lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
|
|
{
|
|
close (fd);
|
|
return 0;
|
|
}
|
|
|
|
if (writebuf)
|
|
ret = write (fd, writebuf, (size_t) len);
|
|
else if (readbuf)
|
|
ret = read (fd, readbuf, (size_t) len);
|
|
|
|
close (fd);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* Inferior memory should contain an SPE executable image at location ADDR.
|
|
Allocate a BFD representing that executable. Return NULL on error. */
|
|
|
|
static void *
|
|
spu_bfd_iovec_open (struct bfd *nbfd, void *open_closure)
|
|
{
|
|
return open_closure;
|
|
}
|
|
|
|
static int
|
|
spu_bfd_iovec_close (struct bfd *nbfd, void *stream)
|
|
{
|
|
xfree (stream);
|
|
|
|
/* Zero means success. */
|
|
return 0;
|
|
}
|
|
|
|
static file_ptr
|
|
spu_bfd_iovec_pread (struct bfd *abfd, void *stream, void *buf,
|
|
file_ptr nbytes, file_ptr offset)
|
|
{
|
|
ULONGEST addr = *(ULONGEST *)stream;
|
|
|
|
if (fetch_ppc_memory (addr + offset, buf, nbytes) != 0)
|
|
{
|
|
bfd_set_error (bfd_error_invalid_operation);
|
|
return -1;
|
|
}
|
|
|
|
return nbytes;
|
|
}
|
|
|
|
static int
|
|
spu_bfd_iovec_stat (struct bfd *abfd, void *stream, struct stat *sb)
|
|
{
|
|
/* We don't have an easy way of finding the size of embedded spu
|
|
images. We could parse the in-memory ELF header and section
|
|
table to find the extent of the last section but that seems
|
|
pointless when the size is needed only for checks of other
|
|
parsed values in dbxread.c. */
|
|
sb->st_size = INT_MAX;
|
|
return 0;
|
|
}
|
|
|
|
static bfd *
|
|
spu_bfd_open (ULONGEST addr)
|
|
{
|
|
struct bfd *nbfd;
|
|
asection *spu_name;
|
|
|
|
ULONGEST *open_closure = xmalloc (sizeof (ULONGEST));
|
|
*open_closure = addr;
|
|
|
|
nbfd = gdb_bfd_openr_iovec ("<in-memory>", "elf32-spu",
|
|
spu_bfd_iovec_open, open_closure,
|
|
spu_bfd_iovec_pread, spu_bfd_iovec_close,
|
|
spu_bfd_iovec_stat);
|
|
if (!nbfd)
|
|
return NULL;
|
|
|
|
if (!bfd_check_format (nbfd, bfd_object))
|
|
{
|
|
gdb_bfd_unref (nbfd);
|
|
return NULL;
|
|
}
|
|
|
|
/* Retrieve SPU name note and update BFD name. */
|
|
spu_name = bfd_get_section_by_name (nbfd, ".note.spu_name");
|
|
if (spu_name)
|
|
{
|
|
int sect_size = bfd_section_size (nbfd, spu_name);
|
|
if (sect_size > 20)
|
|
{
|
|
char *buf = alloca (sect_size - 20 + 1);
|
|
bfd_get_section_contents (nbfd, spu_name, buf, 20, sect_size - 20);
|
|
buf[sect_size - 20] = '\0';
|
|
|
|
xfree ((char *)nbfd->filename);
|
|
nbfd->filename = xstrdup (buf);
|
|
}
|
|
}
|
|
|
|
return nbfd;
|
|
}
|
|
|
|
/* INFERIOR_FD is a file handle passed by the inferior to the
|
|
spu_run system call. Assuming the SPE context was allocated
|
|
by the libspe library, try to retrieve the main SPE executable
|
|
file from its copy within the target process. */
|
|
static void
|
|
spu_symbol_file_add_from_memory (int inferior_fd)
|
|
{
|
|
ULONGEST addr;
|
|
struct bfd *nbfd;
|
|
|
|
char id[128];
|
|
char annex[32];
|
|
int len;
|
|
|
|
/* Read object ID. */
|
|
xsnprintf (annex, sizeof annex, "%d/object-id", inferior_fd);
|
|
len = spu_proc_xfer_spu (annex, id, NULL, 0, sizeof id);
|
|
if (len <= 0 || len >= sizeof id)
|
|
return;
|
|
id[len] = 0;
|
|
addr = strtoulst (id, NULL, 16);
|
|
if (!addr)
|
|
return;
|
|
|
|
/* Open BFD representing SPE executable and read its symbols. */
|
|
nbfd = spu_bfd_open (addr);
|
|
if (nbfd)
|
|
{
|
|
struct cleanup *cleanup = make_cleanup_bfd_unref (nbfd);
|
|
|
|
symbol_file_add_from_bfd (nbfd, SYMFILE_VERBOSE | SYMFILE_MAINLINE,
|
|
NULL, 0, NULL);
|
|
do_cleanups (cleanup);
|
|
}
|
|
}
|
|
|
|
|
|
/* Override the post_startup_inferior routine to continue running
|
|
the inferior until the first spu_run system call. */
|
|
static void
|
|
spu_child_post_startup_inferior (ptid_t ptid)
|
|
{
|
|
int fd;
|
|
ULONGEST addr;
|
|
|
|
int tid = TIDGET (ptid);
|
|
if (tid == 0)
|
|
tid = PIDGET (ptid);
|
|
|
|
while (!parse_spufs_run (&fd, &addr))
|
|
{
|
|
ptrace (PT_SYSCALL, tid, (PTRACE_TYPE_ARG3) 0, 0);
|
|
waitpid (tid, NULL, __WALL | __WNOTHREAD);
|
|
}
|
|
}
|
|
|
|
/* Override the post_attach routine to try load the SPE executable
|
|
file image from its copy inside the target process. */
|
|
static void
|
|
spu_child_post_attach (int pid)
|
|
{
|
|
int fd;
|
|
ULONGEST addr;
|
|
|
|
/* Like child_post_startup_inferior, if we happened to attach to
|
|
the inferior while it wasn't currently in spu_run, continue
|
|
running it until we get back there. */
|
|
while (!parse_spufs_run (&fd, &addr))
|
|
{
|
|
ptrace (PT_SYSCALL, pid, (PTRACE_TYPE_ARG3) 0, 0);
|
|
waitpid (pid, NULL, __WALL | __WNOTHREAD);
|
|
}
|
|
|
|
/* If the user has not provided an executable file, try to extract
|
|
the image from inside the target process. */
|
|
if (!get_exec_file (0))
|
|
spu_symbol_file_add_from_memory (fd);
|
|
}
|
|
|
|
/* Wait for child PTID to do something. Return id of the child,
|
|
minus_one_ptid in case of error; store status into *OURSTATUS. */
|
|
static ptid_t
|
|
spu_child_wait (struct target_ops *ops,
|
|
ptid_t ptid, struct target_waitstatus *ourstatus, int options)
|
|
{
|
|
int save_errno;
|
|
int status;
|
|
pid_t pid;
|
|
|
|
do
|
|
{
|
|
set_sigint_trap (); /* Causes SIGINT to be passed on to the
|
|
attached process. */
|
|
|
|
pid = waitpid (PIDGET (ptid), &status, 0);
|
|
if (pid == -1 && errno == ECHILD)
|
|
/* Try again with __WCLONE to check cloned processes. */
|
|
pid = waitpid (PIDGET (ptid), &status, __WCLONE);
|
|
|
|
save_errno = errno;
|
|
|
|
/* Make sure we don't report an event for the exit of the
|
|
original program, if we've detached from it. */
|
|
if (pid != -1 && !WIFSTOPPED (status) && pid != PIDGET (inferior_ptid))
|
|
{
|
|
pid = -1;
|
|
save_errno = EINTR;
|
|
}
|
|
|
|
clear_sigint_trap ();
|
|
}
|
|
while (pid == -1 && save_errno == EINTR);
|
|
|
|
if (pid == -1)
|
|
{
|
|
warning (_("Child process unexpectedly missing: %s"),
|
|
safe_strerror (save_errno));
|
|
|
|
/* Claim it exited with unknown signal. */
|
|
ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
|
|
ourstatus->value.sig = GDB_SIGNAL_UNKNOWN;
|
|
return inferior_ptid;
|
|
}
|
|
|
|
store_waitstatus (ourstatus, status);
|
|
return pid_to_ptid (pid);
|
|
}
|
|
|
|
/* Override the fetch_inferior_register routine. */
|
|
static void
|
|
spu_fetch_inferior_registers (struct target_ops *ops,
|
|
struct regcache *regcache, int regno)
|
|
{
|
|
int fd;
|
|
ULONGEST addr;
|
|
|
|
/* We must be stopped on a spu_run system call. */
|
|
if (!parse_spufs_run (&fd, &addr))
|
|
return;
|
|
|
|
/* The ID register holds the spufs file handle. */
|
|
if (regno == -1 || regno == SPU_ID_REGNUM)
|
|
{
|
|
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
|
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
|
gdb_byte buf[4];
|
|
store_unsigned_integer (buf, 4, byte_order, fd);
|
|
regcache_raw_supply (regcache, SPU_ID_REGNUM, buf);
|
|
}
|
|
|
|
/* The NPC register is found at ADDR. */
|
|
if (regno == -1 || regno == SPU_PC_REGNUM)
|
|
{
|
|
gdb_byte buf[4];
|
|
if (fetch_ppc_memory (addr, buf, 4) == 0)
|
|
regcache_raw_supply (regcache, SPU_PC_REGNUM, buf);
|
|
}
|
|
|
|
/* The GPRs are found in the "regs" spufs file. */
|
|
if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
|
|
{
|
|
gdb_byte buf[16 * SPU_NUM_GPRS];
|
|
char annex[32];
|
|
int i;
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/regs", fd);
|
|
if (spu_proc_xfer_spu (annex, buf, NULL, 0, sizeof buf) == sizeof buf)
|
|
for (i = 0; i < SPU_NUM_GPRS; i++)
|
|
regcache_raw_supply (regcache, i, buf + i*16);
|
|
}
|
|
}
|
|
|
|
/* Override the store_inferior_register routine. */
|
|
static void
|
|
spu_store_inferior_registers (struct target_ops *ops,
|
|
struct regcache *regcache, int regno)
|
|
{
|
|
int fd;
|
|
ULONGEST addr;
|
|
|
|
/* We must be stopped on a spu_run system call. */
|
|
if (!parse_spufs_run (&fd, &addr))
|
|
return;
|
|
|
|
/* The NPC register is found at ADDR. */
|
|
if (regno == -1 || regno == SPU_PC_REGNUM)
|
|
{
|
|
gdb_byte buf[4];
|
|
regcache_raw_collect (regcache, SPU_PC_REGNUM, buf);
|
|
store_ppc_memory (addr, buf, 4);
|
|
}
|
|
|
|
/* The GPRs are found in the "regs" spufs file. */
|
|
if (regno == -1 || (regno >= 0 && regno < SPU_NUM_GPRS))
|
|
{
|
|
gdb_byte buf[16 * SPU_NUM_GPRS];
|
|
char annex[32];
|
|
int i;
|
|
|
|
for (i = 0; i < SPU_NUM_GPRS; i++)
|
|
regcache_raw_collect (regcache, i, buf + i*16);
|
|
|
|
xsnprintf (annex, sizeof annex, "%d/regs", fd);
|
|
spu_proc_xfer_spu (annex, NULL, buf, 0, sizeof buf);
|
|
}
|
|
}
|
|
|
|
/* Override the to_xfer_partial routine. */
|
|
static LONGEST
|
|
spu_xfer_partial (struct target_ops *ops,
|
|
enum target_object object, const char *annex,
|
|
gdb_byte *readbuf, const gdb_byte *writebuf,
|
|
ULONGEST offset, LONGEST len)
|
|
{
|
|
if (object == TARGET_OBJECT_SPU)
|
|
return spu_proc_xfer_spu (annex, readbuf, writebuf, offset, len);
|
|
|
|
if (object == TARGET_OBJECT_MEMORY)
|
|
{
|
|
int fd;
|
|
ULONGEST addr;
|
|
char mem_annex[32], lslr_annex[32];
|
|
gdb_byte buf[32];
|
|
ULONGEST lslr;
|
|
LONGEST ret;
|
|
|
|
/* We must be stopped on a spu_run system call. */
|
|
if (!parse_spufs_run (&fd, &addr))
|
|
return 0;
|
|
|
|
/* Use the "mem" spufs file to access SPU local store. */
|
|
xsnprintf (mem_annex, sizeof mem_annex, "%d/mem", fd);
|
|
ret = spu_proc_xfer_spu (mem_annex, readbuf, writebuf, offset, len);
|
|
if (ret > 0)
|
|
return ret;
|
|
|
|
/* SPU local store access wraps the address around at the
|
|
local store limit. We emulate this here. To avoid needing
|
|
an extra access to retrieve the LSLR, we only do that after
|
|
trying the original address first, and getting end-of-file. */
|
|
xsnprintf (lslr_annex, sizeof lslr_annex, "%d/lslr", fd);
|
|
memset (buf, 0, sizeof buf);
|
|
if (spu_proc_xfer_spu (lslr_annex, buf, NULL, 0, sizeof buf) <= 0)
|
|
return ret;
|
|
|
|
lslr = strtoulst (buf, NULL, 16);
|
|
return spu_proc_xfer_spu (mem_annex, readbuf, writebuf,
|
|
offset & lslr, len);
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Override the to_can_use_hw_breakpoint routine. */
|
|
static int
|
|
spu_can_use_hw_breakpoint (int type, int cnt, int othertype)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Initialize SPU native target. */
|
|
void
|
|
_initialize_spu_nat (void)
|
|
{
|
|
/* Generic ptrace methods. */
|
|
struct target_ops *t;
|
|
t = inf_ptrace_target ();
|
|
|
|
/* Add SPU methods. */
|
|
t->to_post_attach = spu_child_post_attach;
|
|
t->to_post_startup_inferior = spu_child_post_startup_inferior;
|
|
t->to_wait = spu_child_wait;
|
|
t->to_fetch_registers = spu_fetch_inferior_registers;
|
|
t->to_store_registers = spu_store_inferior_registers;
|
|
t->to_xfer_partial = spu_xfer_partial;
|
|
t->to_can_use_hw_breakpoint = spu_can_use_hw_breakpoint;
|
|
|
|
/* Register SPU target. */
|
|
add_target (t);
|
|
}
|