mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-25 11:04:18 +08:00
efe59759d8
* gdbarch.sh (DEPRECATED_NPC_REGNUM): Deprecate NPC_REGNUM. * gdbarch.h, gdbarch.c: Regenerate. * core-sol2.c, hppa-tdep.c, lynx-nat.c, procfs.c: Update. * regcache.c, remote-vxsparc.c, sparc-linux-nat.c: Update. * sparc-nat.c, sparc-tdep.c, sparc64-tdep.c: Update. * sparcnbsd-tdep.c: Update.
1501 lines
42 KiB
C
1501 lines
42 KiB
C
/* Target-dependent code for UltraSPARC.
|
||
|
||
Copyright 2003 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "arch-utils.h"
|
||
#include "floatformat.h"
|
||
#include "frame.h"
|
||
#include "frame-base.h"
|
||
#include "frame-unwind.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbtypes.h"
|
||
#include "osabi.h"
|
||
#include "regcache.h"
|
||
#include "target.h"
|
||
#include "value.h"
|
||
|
||
#include "gdb_assert.h"
|
||
#include "gdb_string.h"
|
||
|
||
#include "sparc64-tdep.h"
|
||
|
||
/* This file implements the The SPARC 64-bit ABI as defined by the
|
||
section "Low-Level System Information" of the SPARC Compliance
|
||
Definition (SCD) 2.4.1, which is the 64-bit System V psABI for
|
||
SPARC. */
|
||
|
||
/* Please use the sparc32_-prefix for 32-bit specific code, the
|
||
sparc64_-prefix for 64-bit specific code and the sparc_-prefix for
|
||
code can handle both. */
|
||
|
||
/* The stack pointer is offset from the stack frame by a BIAS of 2047
|
||
(0x7ff) for 64-bit code. BIAS is likely to be defined on SPARC
|
||
hosts, so undefine it first. */
|
||
#undef BIAS
|
||
#define BIAS 2047
|
||
|
||
/* Macros to extract fields from SPARC instructions. */
|
||
#define X_OP(i) (((i) >> 30) & 0x3)
|
||
#define X_A(i) (((i) >> 29) & 1)
|
||
#define X_COND(i) (((i) >> 25) & 0xf)
|
||
#define X_OP2(i) (((i) >> 22) & 0x7)
|
||
#define X_IMM22(i) ((i) & 0x3fffff)
|
||
#define X_OP3(i) (((i) >> 19) & 0x3f)
|
||
/* Sign extension macros. */
|
||
#define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
|
||
#define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
|
||
|
||
/* Fetch the instruction at PC. Instructions are always big-endian
|
||
even if the processor operates in little-endian mode. */
|
||
|
||
static unsigned long
|
||
sparc_fetch_instruction (CORE_ADDR pc)
|
||
{
|
||
unsigned char buf[4];
|
||
unsigned long insn;
|
||
int i;
|
||
|
||
read_memory (pc, buf, sizeof (buf));
|
||
|
||
insn = 0;
|
||
for (i = 0; i < sizeof (buf); i++)
|
||
insn = (insn << 8) | buf[i];
|
||
return insn;
|
||
}
|
||
|
||
/* The functions on this page are intended to be used to classify
|
||
function arguments. */
|
||
|
||
/* Return the contents if register REGNUM as an address. */
|
||
|
||
static CORE_ADDR
|
||
sparc_address_from_register (int regnum)
|
||
{
|
||
ULONGEST addr;
|
||
|
||
regcache_cooked_read_unsigned (current_regcache, regnum, &addr);
|
||
return addr;
|
||
}
|
||
|
||
/* Check whether TYPE is "Integral or Pointer". */
|
||
|
||
static int
|
||
sparc64_integral_or_pointer_p (const struct type *type)
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_RANGE:
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
gdb_assert (len == 1 || len == 2 || len == 4 || len == 8);
|
||
}
|
||
return 1;
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_REF:
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
gdb_assert (len == 8);
|
||
}
|
||
return 1;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Check whether TYPE is "Floating". */
|
||
|
||
static int
|
||
sparc64_floating_p (const struct type *type)
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_FLT:
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
gdb_assert (len == 4 || len == 8 || len == 16);
|
||
}
|
||
return 1;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Check whether TYPE is "Structure or Union". */
|
||
|
||
static int
|
||
sparc64_structure_or_union_p (const struct type *type)
|
||
{
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
return 1;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* UltraSPARC architecture specific information. */
|
||
|
||
struct gdbarch_tdep
|
||
{
|
||
/* Offset of saved PC in jmp_buf. */
|
||
int jb_pc_offset;
|
||
};
|
||
|
||
/* Register information. */
|
||
|
||
struct sparc64_register_info
|
||
{
|
||
char *name;
|
||
struct type **type;
|
||
};
|
||
|
||
static struct sparc64_register_info sparc64_register_info[] =
|
||
{
|
||
{ "g0", &builtin_type_int64 },
|
||
{ "g1", &builtin_type_int64 },
|
||
{ "g2", &builtin_type_int64 },
|
||
{ "g3", &builtin_type_int64 },
|
||
{ "g4", &builtin_type_int64 },
|
||
{ "g5", &builtin_type_int64 },
|
||
{ "g6", &builtin_type_int64 },
|
||
{ "g7", &builtin_type_int64 },
|
||
|
||
{ "o0", &builtin_type_int64 },
|
||
{ "o1", &builtin_type_int64 },
|
||
{ "o2", &builtin_type_int64 },
|
||
{ "o3", &builtin_type_int64 },
|
||
{ "o4", &builtin_type_int64 },
|
||
{ "o5", &builtin_type_int64 },
|
||
{ "sp", &builtin_type_void_data_ptr },
|
||
{ "o7", &builtin_type_int64 },
|
||
|
||
{ "l0", &builtin_type_int64 },
|
||
{ "l1", &builtin_type_int64 },
|
||
{ "l2", &builtin_type_int64 },
|
||
{ "l3", &builtin_type_int64 },
|
||
{ "l4", &builtin_type_int64 },
|
||
{ "l5", &builtin_type_int64 },
|
||
{ "l6", &builtin_type_int64 },
|
||
{ "l7", &builtin_type_int64 },
|
||
|
||
{ "i0", &builtin_type_int64 },
|
||
{ "i1", &builtin_type_int64 },
|
||
{ "i2", &builtin_type_int64 },
|
||
{ "i3", &builtin_type_int64 },
|
||
{ "i4", &builtin_type_int64 },
|
||
{ "i5", &builtin_type_int64 },
|
||
{ "fp", &builtin_type_void_data_ptr },
|
||
{ "i7", &builtin_type_int64 },
|
||
|
||
{ "f0", &builtin_type_float },
|
||
{ "f1", &builtin_type_float },
|
||
{ "f2", &builtin_type_float },
|
||
{ "f3", &builtin_type_float },
|
||
{ "f4", &builtin_type_float },
|
||
{ "f5", &builtin_type_float },
|
||
{ "f6", &builtin_type_float },
|
||
{ "f7", &builtin_type_float },
|
||
{ "f8", &builtin_type_float },
|
||
{ "f9", &builtin_type_float },
|
||
{ "f10", &builtin_type_float },
|
||
{ "f11", &builtin_type_float },
|
||
{ "f12", &builtin_type_float },
|
||
{ "f13", &builtin_type_float },
|
||
{ "f14", &builtin_type_float },
|
||
{ "f15", &builtin_type_float },
|
||
{ "f16", &builtin_type_float },
|
||
{ "f17", &builtin_type_float },
|
||
{ "f18", &builtin_type_float },
|
||
{ "f19", &builtin_type_float },
|
||
{ "f20", &builtin_type_float },
|
||
{ "f21", &builtin_type_float },
|
||
{ "f22", &builtin_type_float },
|
||
{ "f23", &builtin_type_float },
|
||
{ "f24", &builtin_type_float },
|
||
{ "f25", &builtin_type_float },
|
||
{ "f26", &builtin_type_float },
|
||
{ "f27", &builtin_type_float },
|
||
{ "f28", &builtin_type_float },
|
||
{ "f29", &builtin_type_float },
|
||
{ "f30", &builtin_type_float },
|
||
{ "f31", &builtin_type_float },
|
||
{ "f32", &builtin_type_double },
|
||
{ "f34", &builtin_type_double },
|
||
{ "f36", &builtin_type_double },
|
||
{ "f38", &builtin_type_double },
|
||
{ "f40", &builtin_type_double },
|
||
{ "f42", &builtin_type_double },
|
||
{ "f44", &builtin_type_double },
|
||
{ "f46", &builtin_type_double },
|
||
{ "f48", &builtin_type_double },
|
||
{ "f50", &builtin_type_double },
|
||
{ "f52", &builtin_type_double },
|
||
{ "f54", &builtin_type_double },
|
||
{ "f56", &builtin_type_double },
|
||
{ "f58", &builtin_type_double },
|
||
{ "f60", &builtin_type_double },
|
||
{ "f62", &builtin_type_double },
|
||
|
||
{ "pc", &builtin_type_void_func_ptr },
|
||
{ "npc", &builtin_type_void_func_ptr },
|
||
|
||
/* This raw register contains the contents of %cwp, %pstate, %asi
|
||
and %ccr as laid out in a %tstate register. */
|
||
/* FIXME: Give it a name until we start using register groups. */
|
||
{ "state", &builtin_type_int64 },
|
||
|
||
{ "fsr", &builtin_type_int64 },
|
||
{ "fprs", &builtin_type_int64 },
|
||
|
||
/* "Although Y is a 64-bit register, its high-order 32 bits are
|
||
reserved and always read as 0." */
|
||
{ "y", &builtin_type_int64 }
|
||
};
|
||
|
||
/* Total number of registers. */
|
||
#define SPARC64_NUM_REGS \
|
||
(sizeof (sparc64_register_info) / sizeof (sparc64_register_info[0]))
|
||
|
||
/* We provide the aliases %d0..%d62 and %q0..%q60 for the floating
|
||
registers as "psuedo" registers. */
|
||
|
||
static struct sparc64_register_info sparc64_pseudo_register_info[] =
|
||
{
|
||
{ "cwp", &builtin_type_int64 },
|
||
{ "pstate", &builtin_type_int64 },
|
||
{ "asi", &builtin_type_int64 },
|
||
{ "ccr", &builtin_type_int64 },
|
||
|
||
{ "d0", &builtin_type_double },
|
||
{ "d2", &builtin_type_double },
|
||
{ "d4", &builtin_type_double },
|
||
{ "d6", &builtin_type_double },
|
||
{ "d8", &builtin_type_double },
|
||
{ "d10", &builtin_type_double },
|
||
{ "d12", &builtin_type_double },
|
||
{ "d14", &builtin_type_double },
|
||
{ "d16", &builtin_type_double },
|
||
{ "d18", &builtin_type_double },
|
||
{ "d20", &builtin_type_double },
|
||
{ "d22", &builtin_type_double },
|
||
{ "d24", &builtin_type_double },
|
||
{ "d26", &builtin_type_double },
|
||
{ "d28", &builtin_type_double },
|
||
{ "d30", &builtin_type_double },
|
||
{ "d32", &builtin_type_double },
|
||
{ "d34", &builtin_type_double },
|
||
{ "d36", &builtin_type_double },
|
||
{ "d38", &builtin_type_double },
|
||
{ "d40", &builtin_type_double },
|
||
{ "d42", &builtin_type_double },
|
||
{ "d44", &builtin_type_double },
|
||
{ "d46", &builtin_type_double },
|
||
{ "d48", &builtin_type_double },
|
||
{ "d50", &builtin_type_double },
|
||
{ "d52", &builtin_type_double },
|
||
{ "d54", &builtin_type_double },
|
||
{ "d56", &builtin_type_double },
|
||
{ "d58", &builtin_type_double },
|
||
{ "d60", &builtin_type_double },
|
||
{ "d62", &builtin_type_double },
|
||
|
||
{ "q0", &builtin_type_long_double },
|
||
{ "q4", &builtin_type_long_double },
|
||
{ "q8", &builtin_type_long_double },
|
||
{ "q12", &builtin_type_long_double },
|
||
{ "q16", &builtin_type_long_double },
|
||
{ "q20", &builtin_type_long_double },
|
||
{ "q24", &builtin_type_long_double },
|
||
{ "q28", &builtin_type_long_double },
|
||
{ "q32", &builtin_type_long_double },
|
||
{ "q36", &builtin_type_long_double },
|
||
{ "q40", &builtin_type_long_double },
|
||
{ "q44", &builtin_type_long_double },
|
||
{ "q48", &builtin_type_long_double },
|
||
{ "q52", &builtin_type_long_double },
|
||
{ "q56", &builtin_type_long_double },
|
||
{ "q60", &builtin_type_long_double }
|
||
};
|
||
|
||
/* Total number of pseudo registers. */
|
||
#define SPARC64_NUM_PSEUDO_REGS \
|
||
(sizeof (sparc64_pseudo_register_info) \
|
||
/ sizeof (sparc64_pseudo_register_info[0]))
|
||
|
||
/* Return the name of register REGNUM. */
|
||
|
||
static const char *
|
||
sparc64_register_name (int regnum)
|
||
{
|
||
if (regnum >= 0 && regnum < SPARC64_NUM_REGS)
|
||
return sparc64_register_info[regnum].name;
|
||
|
||
if (regnum >= SPARC64_NUM_REGS
|
||
&& regnum < SPARC64_NUM_REGS + SPARC64_NUM_PSEUDO_REGS)
|
||
return sparc64_pseudo_register_info[regnum - SPARC64_NUM_REGS].name;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type of data in
|
||
register REGNUM. */
|
||
|
||
static struct type *
|
||
sparc64_register_type (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
if (regnum >= SPARC64_NUM_REGS
|
||
&& regnum < SPARC64_NUM_REGS + SPARC64_NUM_PSEUDO_REGS)
|
||
return *sparc64_pseudo_register_info[regnum - SPARC64_NUM_REGS].type;
|
||
|
||
gdb_assert (regnum >= 0 && regnum < SPARC64_NUM_REGS);
|
||
return *sparc64_register_info[regnum].type;
|
||
}
|
||
|
||
static void
|
||
sparc64_pseudo_register_read (struct gdbarch *gdbarch,
|
||
struct regcache *regcache,
|
||
int regnum, void *buf)
|
||
{
|
||
gdb_assert (regnum >= SPARC64_NUM_REGS);
|
||
|
||
if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
|
||
{
|
||
regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
|
||
regcache_raw_read (regcache, regnum, buf);
|
||
regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 4);
|
||
}
|
||
else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
|
||
{
|
||
regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
|
||
regcache_raw_read (regcache, regnum, buf);
|
||
}
|
||
else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
|
||
{
|
||
regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
|
||
regcache_raw_read (regcache, regnum, buf);
|
||
regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 4);
|
||
regcache_raw_read (regcache, regnum + 2, ((char *)buf) + 8);
|
||
regcache_raw_read (regcache, regnum + 3, ((char *)buf) + 12);
|
||
}
|
||
else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
|
||
{
|
||
regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
|
||
regcache_raw_read (regcache, regnum, buf);
|
||
regcache_raw_read (regcache, regnum + 1, ((char *)buf) + 8);
|
||
}
|
||
else if (regnum == SPARC64_CWP_REGNUM
|
||
|| regnum == SPARC64_PSTATE_REGNUM
|
||
|| regnum == SPARC64_ASI_REGNUM
|
||
|| regnum == SPARC64_CCR_REGNUM)
|
||
{
|
||
ULONGEST state;
|
||
|
||
regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
|
||
switch (regnum)
|
||
{
|
||
case SPARC64_CWP_REGNUM:
|
||
state = (state >> 0) & ((1 << 5) - 1);
|
||
break;
|
||
case SPARC64_PSTATE_REGNUM:
|
||
state = (state >> 8) & ((1 << 12) - 1);
|
||
break;
|
||
case SPARC64_ASI_REGNUM:
|
||
state = (state >> 24) & ((1 << 8) - 1);
|
||
break;
|
||
case SPARC64_CCR_REGNUM:
|
||
state = (state >> 32) & ((1 << 8) - 1);
|
||
break;
|
||
}
|
||
store_unsigned_integer (buf, 8, state);
|
||
}
|
||
}
|
||
|
||
static void
|
||
sparc64_pseudo_register_write (struct gdbarch *gdbarch,
|
||
struct regcache *regcache,
|
||
int regnum, const void *buf)
|
||
{
|
||
gdb_assert (regnum >= SPARC64_NUM_REGS);
|
||
|
||
if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D30_REGNUM)
|
||
{
|
||
regnum = SPARC_F0_REGNUM + 2 * (regnum - SPARC64_D0_REGNUM);
|
||
regcache_raw_write (regcache, regnum, buf);
|
||
regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 4);
|
||
}
|
||
else if (regnum >= SPARC64_D32_REGNUM && regnum <= SPARC64_D62_REGNUM)
|
||
{
|
||
regnum = SPARC64_F32_REGNUM + (regnum - SPARC64_D32_REGNUM);
|
||
regcache_raw_write (regcache, regnum, buf);
|
||
}
|
||
else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q28_REGNUM)
|
||
{
|
||
regnum = SPARC_F0_REGNUM + 4 * (regnum - SPARC64_Q0_REGNUM);
|
||
regcache_raw_write (regcache, regnum, buf);
|
||
regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 4);
|
||
regcache_raw_write (regcache, regnum + 2, ((const char *)buf) + 8);
|
||
regcache_raw_write (regcache, regnum + 3, ((const char *)buf) + 12);
|
||
}
|
||
else if (regnum >= SPARC64_Q32_REGNUM && regnum <= SPARC64_Q60_REGNUM)
|
||
{
|
||
regnum = SPARC64_F32_REGNUM + 2 * (regnum - SPARC64_Q32_REGNUM);
|
||
regcache_raw_write (regcache, regnum, buf);
|
||
regcache_raw_write (regcache, regnum + 1, ((const char *)buf) + 8);
|
||
}
|
||
else if (regnum == SPARC64_CWP_REGNUM
|
||
|| regnum == SPARC64_PSTATE_REGNUM
|
||
|| regnum == SPARC64_ASI_REGNUM
|
||
|| regnum == SPARC64_CCR_REGNUM)
|
||
{
|
||
ULONGEST state, bits;
|
||
|
||
regcache_raw_read_unsigned (regcache, SPARC64_STATE_REGNUM, &state);
|
||
bits = extract_unsigned_integer (buf, 8);
|
||
switch (regnum)
|
||
{
|
||
case SPARC64_CWP_REGNUM:
|
||
state |= ((bits & ((1 << 5) - 1)) << 0);
|
||
break;
|
||
case SPARC64_PSTATE_REGNUM:
|
||
state |= ((bits & ((1 << 12) - 1)) << 8);
|
||
break;
|
||
case SPARC64_ASI_REGNUM:
|
||
state |= ((bits & ((1 << 8) - 1)) << 24);
|
||
break;
|
||
case SPARC64_CCR_REGNUM:
|
||
state |= ((bits & ((1 << 8) - 1)) << 32);
|
||
break;
|
||
}
|
||
regcache_raw_write_unsigned (regcache, SPARC64_STATE_REGNUM, state);
|
||
}
|
||
}
|
||
|
||
/* Use the program counter to determine the contents and size of a
|
||
breakpoint instruction. Return a pointer to a string of bytes that
|
||
encode a breakpoint instruction, store the length of the string in
|
||
*LEN and optionally adjust *PC to point to the correct memory
|
||
location for inserting the breakpoint. */
|
||
|
||
static const unsigned char *
|
||
sparc_breakpoint_from_pc (CORE_ADDR *pc, int *len)
|
||
{
|
||
static unsigned char break_insn[] = { 0x91, 0xd0, 0x20, 0x01 };
|
||
|
||
*len = sizeof (break_insn);
|
||
return break_insn;
|
||
}
|
||
|
||
|
||
struct sparc64_frame_cache
|
||
{
|
||
/* Base address. */
|
||
CORE_ADDR base;
|
||
CORE_ADDR pc;
|
||
|
||
/* Do we have a frame? */
|
||
int frameless_p;
|
||
};
|
||
|
||
/* Allocate and initialize a frame cache. */
|
||
|
||
static struct sparc64_frame_cache *
|
||
sparc64_alloc_frame_cache (void)
|
||
{
|
||
struct sparc64_frame_cache *cache;
|
||
int i;
|
||
|
||
cache = FRAME_OBSTACK_ZALLOC (struct sparc64_frame_cache);
|
||
|
||
/* Base address. */
|
||
cache->base = 0;
|
||
cache->pc = 0;
|
||
|
||
/* Frameless until proven otherwise. */
|
||
cache->frameless_p = 1;
|
||
|
||
return cache;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sparc64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
|
||
struct sparc64_frame_cache *cache)
|
||
{
|
||
unsigned long insn;
|
||
|
||
if (current_pc <= pc)
|
||
return current_pc;
|
||
|
||
/* Check whether the function starts with a SAVE instruction. */
|
||
insn = sparc_fetch_instruction (pc);
|
||
if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
|
||
{
|
||
cache->frameless_p = 0;
|
||
return pc + 4;
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sparc64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
return frame_unwind_register_unsigned (next_frame, SPARC64_PC_REGNUM);
|
||
}
|
||
|
||
/* Return PC of first real instruction of the function starting at
|
||
START_PC. */
|
||
|
||
static CORE_ADDR
|
||
sparc64_skip_prologue (CORE_ADDR start_pc)
|
||
{
|
||
struct symtab_and_line sal;
|
||
CORE_ADDR func_start, func_end;
|
||
struct sparc64_frame_cache cache;
|
||
|
||
/* This is the preferred method, find the end of the prologue by
|
||
using the debugging information. */
|
||
if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
|
||
{
|
||
sal = find_pc_line (func_start, 0);
|
||
|
||
if (sal.end < func_end
|
||
&& start_pc <= sal.end)
|
||
return sal.end;
|
||
}
|
||
|
||
return sparc64_analyze_prologue (start_pc, 0xffffffffffffffffUL, &cache);
|
||
}
|
||
|
||
/* Normal frames. */
|
||
|
||
static struct sparc64_frame_cache *
|
||
sparc64_frame_cache (struct frame_info *next_frame, void **this_cache)
|
||
{
|
||
struct sparc64_frame_cache *cache;
|
||
|
||
if (*this_cache)
|
||
return *this_cache;
|
||
|
||
cache = sparc64_alloc_frame_cache ();
|
||
*this_cache = cache;
|
||
|
||
/* In priciple, for normal frames, %fp (%i6) holds the frame
|
||
pointer, which holds the base address for the current stack
|
||
frame. */
|
||
|
||
cache->base = frame_unwind_register_unsigned (next_frame, SPARC_FP_REGNUM);
|
||
if (cache->base == 0)
|
||
return cache;
|
||
|
||
cache->pc = frame_func_unwind (next_frame);
|
||
if (cache->pc != 0)
|
||
sparc64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
|
||
|
||
if (cache->frameless_p)
|
||
{
|
||
/* We didn't find a valid frame, which means that CACHE->base
|
||
currently holds the frame pointer for our calling frame. */
|
||
cache->base = frame_unwind_register_unsigned (next_frame,
|
||
SPARC_SP_REGNUM);
|
||
}
|
||
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
sparc64_frame_this_id (struct frame_info *next_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct sparc64_frame_cache *cache =
|
||
sparc64_frame_cache (next_frame, this_cache);
|
||
|
||
/* This marks the outermost frame. */
|
||
if (cache->base == 0)
|
||
return;
|
||
|
||
(*this_id) = frame_id_build (cache->base, cache->pc);
|
||
}
|
||
|
||
static void
|
||
sparc64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
|
||
int regnum, int *optimizedp,
|
||
enum lval_type *lvalp, CORE_ADDR *addrp,
|
||
int *realnump, void *valuep)
|
||
{
|
||
struct sparc64_frame_cache *cache =
|
||
sparc64_frame_cache (next_frame, this_cache);
|
||
|
||
if (regnum == SPARC64_PC_REGNUM || regnum == SPARC64_NPC_REGNUM)
|
||
{
|
||
*optimizedp = 0;
|
||
*lvalp = not_lval;
|
||
*addrp = 0;
|
||
*realnump = -1;
|
||
if (valuep)
|
||
{
|
||
CORE_ADDR pc = (regnum == SPARC64_NPC_REGNUM) ? 4 : 0;
|
||
|
||
regnum = cache->frameless_p ? SPARC_O7_REGNUM : SPARC_I7_REGNUM;
|
||
pc += frame_unwind_register_unsigned (next_frame, regnum) + 8;
|
||
store_unsigned_integer (valuep, 8, pc);
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* The previous frame's `local' and `in' registers have been saved
|
||
in the register save area. */
|
||
if (!cache->frameless_p
|
||
&& regnum >= SPARC_L0_REGNUM && regnum <= SPARC_I7_REGNUM)
|
||
{
|
||
*optimizedp = 0;
|
||
*lvalp = lval_memory;
|
||
*addrp = cache->base + BIAS + (regnum - SPARC_L0_REGNUM) * 8;
|
||
*realnump = -1;
|
||
if (valuep)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
||
|
||
/* Read the value in from memory. */
|
||
read_memory (*addrp, valuep, register_size (gdbarch, regnum));
|
||
}
|
||
return;
|
||
}
|
||
|
||
/* The previous frame's `out' registers are accessable as the
|
||
current frame's `in' registers. */
|
||
if (!cache->frameless_p
|
||
&& regnum >= SPARC_O0_REGNUM && regnum <= SPARC_O7_REGNUM)
|
||
regnum += (SPARC_I0_REGNUM - SPARC_O0_REGNUM);
|
||
|
||
frame_register_unwind (next_frame, regnum,
|
||
optimizedp, lvalp, addrp, realnump, valuep);
|
||
}
|
||
|
||
static const struct frame_unwind sparc64_frame_unwind =
|
||
{
|
||
NORMAL_FRAME,
|
||
sparc64_frame_this_id,
|
||
sparc64_frame_prev_register
|
||
};
|
||
|
||
static const struct frame_unwind *
|
||
sparc64_frame_sniffer (struct frame_info *next_frame)
|
||
{
|
||
return &sparc64_frame_unwind;
|
||
}
|
||
|
||
|
||
static CORE_ADDR
|
||
sparc64_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
||
{
|
||
struct sparc64_frame_cache *cache =
|
||
sparc64_frame_cache (next_frame, this_cache);
|
||
|
||
/* ??? Should we take BIAS into account here? */
|
||
return cache->base;
|
||
}
|
||
|
||
static const struct frame_base sparc64_frame_base =
|
||
{
|
||
&sparc64_frame_unwind,
|
||
sparc64_frame_base_address,
|
||
sparc64_frame_base_address,
|
||
sparc64_frame_base_address
|
||
};
|
||
|
||
static struct frame_id
|
||
sparc_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
CORE_ADDR sp;
|
||
|
||
sp = frame_unwind_register_unsigned (next_frame, SPARC_SP_REGNUM);
|
||
return frame_id_build (sp, frame_pc_unwind (next_frame));
|
||
}
|
||
|
||
/* Check whether TYPE must be 16-byte aligned. */
|
||
|
||
static int
|
||
sparc64_16_byte_align_p (struct type *type)
|
||
{
|
||
if (sparc64_floating_p (type) && TYPE_LENGTH (type) == 16)
|
||
return 1;
|
||
|
||
if (sparc64_structure_or_union_p (type))
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
||
if (sparc64_16_byte_align_p (TYPE_FIELD_TYPE (type, i)))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Store floating fields of element ELEMENT of an "parameter array"
|
||
that has type TYPE and is stored at BITPOS in VALBUF in the
|
||
apropriate registers of REGCACHE. This function can be called
|
||
recursively and therefore handles floating types in addition to
|
||
structures. */
|
||
|
||
static void
|
||
sparc64_store_floating_fields (struct regcache *regcache, struct type *type,
|
||
char *valbuf, int element, int bitpos)
|
||
{
|
||
gdb_assert (element < 16);
|
||
|
||
if (sparc64_floating_p (type))
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
int regnum;
|
||
|
||
if (len == 16)
|
||
{
|
||
gdb_assert (bitpos == 0);
|
||
gdb_assert ((element % 2) == 0);
|
||
|
||
regnum = SPARC64_Q0_REGNUM + element / 2;
|
||
regcache_cooked_write (regcache, regnum, valbuf);
|
||
}
|
||
else if (len == 8)
|
||
{
|
||
gdb_assert (bitpos == 0 || bitpos == 64);
|
||
|
||
regnum = SPARC64_D0_REGNUM + element + bitpos / 64;
|
||
regcache_cooked_write (regcache, regnum, valbuf + (bitpos / 8));
|
||
}
|
||
else
|
||
{
|
||
gdb_assert (len == 4);
|
||
gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 128);
|
||
|
||
regnum = SPARC_F0_REGNUM + element * 2 + bitpos / 32;
|
||
regcache_cooked_write (regcache, regnum, valbuf + (bitpos / 8));
|
||
}
|
||
}
|
||
else if (sparc64_structure_or_union_p (type))
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
||
sparc64_store_floating_fields (regcache, TYPE_FIELD_TYPE (type, i),
|
||
valbuf, element,
|
||
bitpos + TYPE_FIELD_BITPOS (type, i));
|
||
}
|
||
}
|
||
|
||
/* Fetch floating fields from a variable of type TYPE from the
|
||
appropriate registers for BITPOS in REGCACHE and store it at BITPOS
|
||
in VALBUF. This function can be called recursively and therefore
|
||
handles floating types in addition to structures. */
|
||
|
||
static void
|
||
sparc64_extract_floating_fields (struct regcache *regcache, struct type *type,
|
||
char *valbuf, int bitpos)
|
||
{
|
||
if (sparc64_floating_p (type))
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
int regnum;
|
||
|
||
if (len == 16)
|
||
{
|
||
gdb_assert (bitpos == 0 || bitpos == 128);
|
||
|
||
regnum = SPARC64_Q0_REGNUM + bitpos / 128;
|
||
regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
|
||
}
|
||
else if (len == 8)
|
||
{
|
||
gdb_assert (bitpos % 64 == 0 && bitpos >= 0 && bitpos < 256);
|
||
|
||
regnum = SPARC64_D0_REGNUM + bitpos / 64;
|
||
regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
|
||
}
|
||
else
|
||
{
|
||
gdb_assert (len == 4);
|
||
gdb_assert (bitpos % 32 == 0 && bitpos >= 0 && bitpos < 256);
|
||
|
||
regnum = SPARC_F0_REGNUM + bitpos / 32;
|
||
regcache_cooked_read (regcache, regnum, valbuf + (bitpos / 8));
|
||
}
|
||
}
|
||
else if (sparc64_structure_or_union_p (type))
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
||
sparc64_extract_floating_fields (regcache, TYPE_FIELD_TYPE (type, i),
|
||
valbuf,
|
||
bitpos + TYPE_FIELD_BITPOS (type, i));
|
||
}
|
||
}
|
||
|
||
/* Store the NARGS arguments ARGS and STRUCT_ADDR (if STRUCT_RETURN is
|
||
non-zero) in REGCACHE and on the stack (starting from address SP). */
|
||
|
||
static CORE_ADDR
|
||
sparc64_store_arguments (struct regcache *regcache, int nargs,
|
||
struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
/* Number of extended words in the "parameter array". */
|
||
int num_elements = 0;
|
||
int element = 0;
|
||
int i;
|
||
|
||
/* Take BIAS into account. */
|
||
sp += BIAS;
|
||
|
||
/* First we calculate the number of extended words in the "parameter
|
||
array". While doing so we also convert some of the arguments. */
|
||
|
||
if (struct_return)
|
||
num_elements++;
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
struct type *type = VALUE_TYPE (args[i]);
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
if (sparc64_structure_or_union_p (type))
|
||
{
|
||
/* Structure or Union arguments. */
|
||
if (len <= 16)
|
||
{
|
||
if (num_elements % 2 && sparc64_16_byte_align_p (type))
|
||
num_elements++;
|
||
num_elements += ((len + 7) / 8);
|
||
}
|
||
else
|
||
{
|
||
/* The psABI says that "Structures or unions larger than
|
||
sixteen bytes are copied by the caller and passed
|
||
indirectly; the caller will pass the address of a
|
||
correctly aligned structure value. This sixty-four
|
||
bit address will occupy one word in the parameter
|
||
array, and may be promoted to an %o register like any
|
||
other pointer value." Allocate memory for these
|
||
values on the stack. */
|
||
sp -= len;
|
||
|
||
/* Use 16-byte alignment for these values. That's
|
||
always correct, and wasting a few bytes shouldn't be
|
||
a problem. */
|
||
sp &= ~0xf;
|
||
|
||
write_memory (sp, VALUE_CONTENTS (args[i]), len);
|
||
args[i] = value_from_pointer (lookup_pointer_type (type), sp);
|
||
num_elements++;
|
||
}
|
||
}
|
||
else if (sparc64_floating_p (type))
|
||
{
|
||
/* Floating arguments. */
|
||
|
||
if (len == 16)
|
||
{
|
||
/* The psABI says that "Each quad-precision parameter
|
||
value will be assigned to two extended words in the
|
||
parameter array. */
|
||
num_elements += 2;
|
||
|
||
/* The psABI says that "Long doubles must be
|
||
quad-aligned, and thus a hole might be introduced
|
||
into the parameter array to force alignment." Skip
|
||
an element if necessary. */
|
||
if (num_elements % 2)
|
||
num_elements++;
|
||
}
|
||
else
|
||
num_elements++;
|
||
}
|
||
else
|
||
{
|
||
/* Integral and pointer arguments. */
|
||
gdb_assert (sparc64_integral_or_pointer_p (type));
|
||
|
||
/* The psABI says that "Each argument value of integral type
|
||
smaller than an extended word will be widened by the
|
||
caller to an extended word according to the signed-ness
|
||
of the argument type." */
|
||
if (len < 8)
|
||
args[i] = value_cast (builtin_type_int64, args[i]);
|
||
num_elements++;
|
||
}
|
||
}
|
||
|
||
/* Allocate the "parameter array". */
|
||
sp -= num_elements * 8;
|
||
|
||
/* The psABI says that "Every stack frame must be 16-byte aligned." */
|
||
sp &= ~0xf;
|
||
|
||
/* Now we store the arguments in to the "paramater array". Some
|
||
Integer or Pointer arguments and Structure or Union arguments
|
||
will be passed in %o registers. Some Floating arguments and
|
||
floating members of structures are passed in floating-point
|
||
registers. However, for functions with variable arguments,
|
||
floating arguments are stored in an %0 register, and for
|
||
functions without a prototype floating arguments are stored in
|
||
both a floating-point and an %o registers, or a floating-point
|
||
register and memory. To simplify the logic here we always pass
|
||
arguments in memory, an %o register, and a floating-point
|
||
register if appropriate. This should be no problem since the
|
||
contents of any unused memory or registers in the "parameter
|
||
array" are undefined. */
|
||
|
||
if (struct_return)
|
||
{
|
||
regcache_cooked_write_unsigned (regcache, SPARC_O0_REGNUM, struct_addr);
|
||
element++;
|
||
}
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
char *valbuf = VALUE_CONTENTS (args[i]);
|
||
struct type *type = VALUE_TYPE (args[i]);
|
||
int len = TYPE_LENGTH (type);
|
||
int regnum = -1;
|
||
char buf[16];
|
||
|
||
if (sparc64_structure_or_union_p (type))
|
||
{
|
||
/* Structure or Union arguments. */
|
||
gdb_assert (len <= 16);
|
||
memset (buf, 0, sizeof (buf));
|
||
valbuf = memcpy (buf, valbuf, len);
|
||
|
||
if (element % 2 && sparc64_16_byte_align_p (type))
|
||
element++;
|
||
|
||
if (element < 6)
|
||
{
|
||
regnum = SPARC_O0_REGNUM + element;
|
||
if (len > 8 && element < 5)
|
||
regcache_cooked_write (regcache, regnum + 1, valbuf + 8);
|
||
}
|
||
|
||
if (element < 16)
|
||
sparc64_store_floating_fields (regcache, type, valbuf, element, 0);
|
||
}
|
||
else if (sparc64_floating_p (type))
|
||
{
|
||
/* Floating arguments. */
|
||
if (len == 16)
|
||
{
|
||
if (element % 2)
|
||
element++;
|
||
if (element < 16)
|
||
regnum = SPARC64_Q0_REGNUM + element / 2;
|
||
}
|
||
else if (len == 8)
|
||
{
|
||
if (element < 16)
|
||
regnum = SPARC64_D0_REGNUM + element;
|
||
}
|
||
else
|
||
{
|
||
/* The psABI says "Each single-precision parameter value
|
||
will be assigned to one extended word in the
|
||
parameter array, and right-justified within that
|
||
word; the left half (even floatregister) is
|
||
undefined." Even though the psABI says that "the
|
||
left half is undefined", set it to zero here. */
|
||
memset (buf, 0, 4);
|
||
valbuf = memcpy (buf + 4, valbuf, 4);
|
||
len = 8;
|
||
if (element < 16)
|
||
regnum = SPARC64_D0_REGNUM;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Integral and pointer arguments. */
|
||
gdb_assert (len == 8);
|
||
if (element < 6)
|
||
regnum = SPARC_O0_REGNUM + element;
|
||
}
|
||
|
||
if (regnum != -1)
|
||
{
|
||
regcache_cooked_write (regcache, regnum, valbuf);
|
||
|
||
/* If we're storing the value in a floating-point register,
|
||
also store it in the corresponding %0 register(s). */
|
||
if (regnum >= SPARC64_D0_REGNUM && regnum <= SPARC64_D10_REGNUM)
|
||
{
|
||
gdb_assert (element < 6);
|
||
regnum = SPARC_O0_REGNUM + element;
|
||
regcache_cooked_write (regcache, regnum, valbuf);
|
||
}
|
||
else if (regnum >= SPARC64_Q0_REGNUM && regnum <= SPARC64_Q8_REGNUM)
|
||
{
|
||
gdb_assert (element < 6);
|
||
regnum = SPARC_O0_REGNUM + element;
|
||
regcache_cooked_write (regcache, regnum, valbuf);
|
||
regcache_cooked_write (regcache, regnum + 1, valbuf);
|
||
}
|
||
}
|
||
|
||
/* Always store the argument in memeory. */
|
||
write_memory (sp + element * 8, valbuf, len);
|
||
element += ((len + 7) / 8);
|
||
}
|
||
|
||
gdb_assert (element == num_elements);
|
||
|
||
/* Take BIAS into account. */
|
||
sp -= BIAS;
|
||
return sp;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
sparc64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
|
||
struct regcache *regcache, CORE_ADDR bp_addr,
|
||
int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
/* Set return address. */
|
||
regcache_cooked_write_unsigned (regcache, SPARC_O7_REGNUM, bp_addr - 8);
|
||
|
||
/* Set up function arguments. */
|
||
sp = sparc64_store_arguments (regcache, nargs, args, sp,
|
||
struct_return, struct_addr);
|
||
|
||
/* Allocate the register save area. */
|
||
sp -= 16 * 8;
|
||
|
||
/* Stack should be 16-byte aligned at this point. */
|
||
gdb_assert ((sp + BIAS) % 16 == 0);
|
||
|
||
/* Finally, update the stack pointer. */
|
||
regcache_cooked_write_unsigned (regcache, SPARC_SP_REGNUM, sp);
|
||
|
||
return sp;
|
||
}
|
||
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state, a
|
||
function return value of TYPE, and copy that into VALBUF. */
|
||
|
||
static void
|
||
sparc64_extract_return_value (struct type *type, struct regcache *regcache,
|
||
void *valbuf)
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
char buf[32];
|
||
int i;
|
||
|
||
if (sparc64_structure_or_union_p (type))
|
||
{
|
||
/* Structure or Union return values. */
|
||
gdb_assert (len <= 32);
|
||
|
||
for (i = 0; i < ((len + 7) / 8); i++)
|
||
regcache_cooked_read (regcache, SPARC_O0_REGNUM + i, buf + i * 8);
|
||
if (TYPE_CODE (type) != TYPE_CODE_UNION)
|
||
sparc64_extract_floating_fields (regcache, type, buf, 0);
|
||
memcpy (valbuf, buf, len);
|
||
}
|
||
else if (sparc64_floating_p (type))
|
||
{
|
||
/* Floating return values. */
|
||
for (i = 0; i < len / 4; i++)
|
||
regcache_cooked_read (regcache, SPARC_F0_REGNUM + i, buf + i * 4);
|
||
memcpy (valbuf, buf, len);
|
||
}
|
||
else
|
||
{
|
||
/* Integral and pointer return values. */
|
||
gdb_assert (sparc64_integral_or_pointer_p (type));
|
||
|
||
/* Just stripping off any unused bytes should preserve the
|
||
signed-ness just fine. */
|
||
regcache_cooked_read (regcache, SPARC_O0_REGNUM, buf);
|
||
memcpy (valbuf, buf + 8 - len, len);
|
||
}
|
||
}
|
||
|
||
/* Write into the appropriate registers a function return value stored
|
||
in VALBUF of type TYPE. */
|
||
|
||
static void
|
||
sparc64_store_return_value (struct type *type, struct regcache *regcache,
|
||
const void *valbuf)
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
char buf[16];
|
||
int i;
|
||
|
||
if (sparc64_structure_or_union_p (type))
|
||
{
|
||
/* Structure or Union return values. */
|
||
gdb_assert (len <= 32);
|
||
|
||
/* Simplify matters by storing the complete value (including
|
||
floating members) into %o0 and %o1. Floating members are
|
||
also store in the appropriate floating-point registers. */
|
||
memset (buf, 0, sizeof (buf));
|
||
memcpy (buf, valbuf, len);
|
||
for (i = 0; i < ((len + 7) / 8); i++)
|
||
regcache_cooked_write (regcache, SPARC_O0_REGNUM + i, buf + i * 4);
|
||
if (TYPE_CODE (type) != TYPE_CODE_UNION)
|
||
sparc64_store_floating_fields (regcache, type, buf, 0, 0);
|
||
}
|
||
else if (sparc64_floating_p (type))
|
||
{
|
||
/* Floating return values. */
|
||
memcpy (buf, valbuf, len);
|
||
for (i = 0; i < len / 4; i++)
|
||
regcache_cooked_write (regcache, SPARC_F0_REGNUM + i, buf + i * 4);
|
||
}
|
||
else
|
||
{
|
||
/* Integral and pointer return values. */
|
||
gdb_assert (sparc64_integral_or_pointer_p (type));
|
||
|
||
/* ??? Do we need to do any sign-extension here? */
|
||
memset (buf, 0, 8);
|
||
memcpy (buf + 8 - len, valbuf, len);
|
||
regcache_cooked_write (regcache, SPARC_O0_REGNUM, buf);
|
||
}
|
||
}
|
||
|
||
/* Extract from REGCACHE, which contains the (raw) register state, the
|
||
address in which a function should return its structure value, as a
|
||
CORE_ADDR. */
|
||
|
||
static CORE_ADDR
|
||
sparc_extract_struct_value_address (struct regcache *regcache)
|
||
{
|
||
ULONGEST addr;
|
||
|
||
regcache_cooked_read_unsigned (regcache, SPARC_O0_REGNUM, &addr);
|
||
return addr;
|
||
}
|
||
|
||
static int
|
||
sparc64_use_struct_convention (int gcc_p, struct type *type)
|
||
{
|
||
/* Structure and union types up to 32 bytes in size are returned in
|
||
registers. */
|
||
return (TYPE_LENGTH (type) > 32);
|
||
}
|
||
|
||
|
||
/* The SPARC Architecture doesn't have hardware single-step support,
|
||
and most operating systems don't implement it either, so we provide
|
||
software single-step mechanism. */
|
||
|
||
static CORE_ADDR
|
||
sparc_analyze_control_transfer (CORE_ADDR pc, CORE_ADDR *npc)
|
||
{
|
||
unsigned long insn = sparc_fetch_instruction (pc);
|
||
int conditional_p = X_COND (insn) & 0x7;
|
||
int branch_p = 0;
|
||
long offset = 0; /* Must be signed for sign-extend. */
|
||
|
||
if (X_OP (insn) == 0 && X_OP2 (insn) == 3 && (insn & 0x1000000) == 0)
|
||
{
|
||
/* Branch on Integer Register with Prediction (BPr). */
|
||
branch_p = 1;
|
||
conditional_p = 1;
|
||
}
|
||
else if (X_OP (insn) == 0 && X_OP2 (insn) == 6)
|
||
{
|
||
/* Branch on Floating-Point Condition Codes (FBfcc). */
|
||
branch_p = 1;
|
||
offset = 4 * X_DISP22 (insn);
|
||
}
|
||
else if (X_OP (insn) == 0 && X_OP2 (insn) == 5)
|
||
{
|
||
/* Branch on Floating-Point Condition Codes with Prediction
|
||
(FBPfcc). */
|
||
branch_p = 1;
|
||
offset = 4 * X_DISP19 (insn);
|
||
}
|
||
else if (X_OP (insn) == 0 && X_OP2 (insn) == 2)
|
||
{
|
||
/* Branch on Integer Condition Codes (Bicc). */
|
||
branch_p = 1;
|
||
offset = 4 * X_DISP22 (insn);
|
||
}
|
||
else if (X_OP (insn) == 0 && X_OP2 (insn) == 1)
|
||
{
|
||
/* Branch on Integer Condition Codes with Prediction (BPcc). */
|
||
branch_p = 1;
|
||
offset = 4 * X_DISP19 (insn);
|
||
}
|
||
|
||
/* FIXME: Handle DONE and RETRY instructions. */
|
||
|
||
/* FIXME: Handle the Trap instruction. */
|
||
|
||
if (branch_p)
|
||
{
|
||
if (conditional_p)
|
||
{
|
||
/* For conditional branches, return nPC + 4 iff the annul
|
||
bit is 1. */
|
||
return (X_A (insn) ? *npc + 4 : 0);
|
||
}
|
||
else
|
||
{
|
||
/* For unconditional branches, return the target if its
|
||
specified condition is "always" and return nPC + 4 if the
|
||
condition is "never". If the annul bit is 1, set *NPC to
|
||
zero. */
|
||
if (X_COND (insn) == 0x0)
|
||
pc = *npc, offset = 4;
|
||
if (X_A (insn))
|
||
*npc = 0;
|
||
|
||
gdb_assert (offset != 0);
|
||
return pc + offset;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
sparc_software_single_step (enum target_signal sig, int insert_breakpoints_p)
|
||
{
|
||
static CORE_ADDR npc, nnpc;
|
||
static char npc_save[4], nnpc_save[4];
|
||
|
||
if (insert_breakpoints_p)
|
||
{
|
||
CORE_ADDR pc;
|
||
|
||
pc = sparc_address_from_register (SPARC64_PC_REGNUM);
|
||
npc = sparc_address_from_register (SPARC64_NPC_REGNUM);
|
||
|
||
/* Analyze the instruction at PC. */
|
||
nnpc = sparc_analyze_control_transfer (pc, &npc);
|
||
if (npc != 0)
|
||
target_insert_breakpoint (npc, npc_save);
|
||
if (nnpc != 0)
|
||
target_insert_breakpoint (nnpc, nnpc_save);
|
||
|
||
/* Assert that we have set at least one breakpoint. */
|
||
gdb_assert (npc != 0 || nnpc != 0);
|
||
}
|
||
else
|
||
{
|
||
if (npc != 0)
|
||
target_remove_breakpoint (npc, npc_save);
|
||
if (nnpc != 0)
|
||
target_remove_breakpoint (nnpc, nnpc_save);
|
||
|
||
npc = 0;
|
||
nnpc = 0;
|
||
}
|
||
}
|
||
|
||
|
||
static struct gdbarch *
|
||
sparc64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch_tdep *tdep;
|
||
struct gdbarch *gdbarch;
|
||
|
||
/* If there is already a candidate, use it. */
|
||
arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
if (arches != NULL)
|
||
return arches->gdbarch;
|
||
|
||
/* Allocate space for the new architecture. */
|
||
tdep = XMALLOC (struct gdbarch_tdep);
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
|
||
set_gdbarch_long_bit (gdbarch, 64);
|
||
set_gdbarch_long_long_bit (gdbarch, 64);
|
||
set_gdbarch_ptr_bit (gdbarch, 64);
|
||
set_gdbarch_long_double_bit (gdbarch, 128);
|
||
|
||
set_gdbarch_num_regs (gdbarch, SPARC64_NUM_REGS);
|
||
set_gdbarch_register_name (gdbarch, sparc64_register_name);
|
||
set_gdbarch_register_type (gdbarch, sparc64_register_type);
|
||
set_gdbarch_num_pseudo_regs (gdbarch, SPARC64_NUM_PSEUDO_REGS);
|
||
set_gdbarch_pseudo_register_read (gdbarch, sparc64_pseudo_register_read);
|
||
set_gdbarch_pseudo_register_write (gdbarch, sparc64_pseudo_register_write);
|
||
|
||
/* Register numbers of various important registers. */
|
||
set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM); /* %sp */
|
||
set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM); /* %pc */
|
||
set_gdbarch_deprecated_npc_regnum (gdbarch, SPARC64_NPC_REGNUM);
|
||
set_gdbarch_fp0_regnum (gdbarch, SPARC_F0_REGNUM); /* %f0 */
|
||
|
||
/* Call dummy code. */
|
||
set_gdbarch_push_dummy_call (gdbarch, sparc64_push_dummy_call);
|
||
|
||
set_gdbarch_extract_return_value (gdbarch, sparc64_extract_return_value);
|
||
set_gdbarch_store_return_value (gdbarch, sparc64_store_return_value);
|
||
set_gdbarch_extract_struct_value_address
|
||
(gdbarch, sparc_extract_struct_value_address);
|
||
set_gdbarch_use_struct_convention (gdbarch, sparc64_use_struct_convention);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, sparc64_skip_prologue);
|
||
|
||
/* Stack grows downward. */
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, sparc_breakpoint_from_pc);
|
||
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
||
set_gdbarch_function_start_offset (gdbarch, 0);
|
||
|
||
set_gdbarch_frame_args_skip (gdbarch, 8);
|
||
|
||
set_gdbarch_print_insn (gdbarch, print_insn_sparc);
|
||
|
||
set_gdbarch_software_single_step (gdbarch, sparc_software_single_step);
|
||
|
||
set_gdbarch_unwind_dummy_id (gdbarch, sparc_unwind_dummy_id);
|
||
|
||
set_gdbarch_unwind_pc (gdbarch, sparc64_unwind_pc);
|
||
|
||
frame_base_set_default (gdbarch, &sparc64_frame_base);
|
||
|
||
/* Hook in ABI-specific overrides, if they have been registered. */
|
||
gdbarch_init_osabi (info, gdbarch);
|
||
|
||
frame_unwind_append_sniffer (gdbarch, sparc64_frame_sniffer);
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
/* Helper functions for dealing with register windows. */
|
||
|
||
void
|
||
sparc_supply_rwindow (CORE_ADDR sp, int regnum)
|
||
{
|
||
int offset = 0;
|
||
char buf[8];
|
||
int i;
|
||
|
||
if (sp & 1)
|
||
{
|
||
/* Registers are 64-bit. */
|
||
sp += BIAS;
|
||
|
||
for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
{
|
||
target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
|
||
supply_register (i, buf);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Registers are 32-bit. Toss any sign-extension of the stack
|
||
pointer. */
|
||
sp &= 0xffffffffUL;
|
||
|
||
/* Clear out the top half of the temporary buffer, and put the
|
||
register value in the bottom half if we're in 64-bit mode. */
|
||
if (gdbarch_ptr_bit (current_gdbarch) == 64)
|
||
{
|
||
memset (buf, 0, 4);
|
||
offset = 4;
|
||
}
|
||
|
||
for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
|
||
{
|
||
if (regnum == i || regnum == -1)
|
||
{
|
||
target_read_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
|
||
buf + offset, 4);
|
||
supply_register (i, buf);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
sparc_fill_rwindow (CORE_ADDR sp, int regnum)
|
||
{
|
||
int offset = 0;
|
||
char buf[8];
|
||
int i;
|
||
|
||
if (sp & 1)
|
||
{
|
||
/* Registers are 64-bit. */
|
||
sp += BIAS;
|
||
|
||
for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
|
||
{
|
||
if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
|
||
{
|
||
regcache_collect (i, buf);
|
||
target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 8), buf, 8);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Registers are 32-bit. Toss any sign-extension of the stack
|
||
pointer. */
|
||
sp &= 0xffffffffUL;
|
||
|
||
/* Only use the bottom half if we're in 64-bit mode. */
|
||
if (gdbarch_ptr_bit (current_gdbarch) == 64)
|
||
offset = 4;
|
||
|
||
for (i = SPARC_L0_REGNUM; i <= SPARC_I7_REGNUM; i++)
|
||
{
|
||
if (regnum == -1 || regnum == SPARC_SP_REGNUM || regnum == i)
|
||
{
|
||
regcache_collect (i, buf);
|
||
target_write_memory (sp + ((i - SPARC_L0_REGNUM) * 4),
|
||
buf + offset, 4);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Provide a prototype to silence -Wmissing-prototypes. */
|
||
void _initialize_sparc64_tdep (void);
|
||
|
||
void
|
||
_initialize_sparc64_tdep (void)
|
||
{
|
||
register_gdbarch_init (bfd_arch_sparc, sparc64_gdbarch_init);
|
||
}
|