mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-24 10:35:12 +08:00
810fbe39b2
Now that gdb_indent.sh has been removed, I think it makes sense to also remove the directives intended for GNU indent.
3224 lines
100 KiB
C
3224 lines
100 KiB
C
/* PPC GNU/Linux native support.
|
|
|
|
Copyright (C) 1988-2023 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "gdbthread.h"
|
|
#include "gdbcore.h"
|
|
#include "regcache.h"
|
|
#include "regset.h"
|
|
#include "target.h"
|
|
#include "linux-nat.h"
|
|
#include <sys/types.h>
|
|
#include <signal.h>
|
|
#include <sys/user.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/uio.h>
|
|
#include "gdbsupport/gdb_wait.h"
|
|
#include <fcntl.h>
|
|
#include <sys/procfs.h>
|
|
#include "nat/gdb_ptrace.h"
|
|
#include "nat/linux-ptrace.h"
|
|
#include "inf-ptrace.h"
|
|
#include <algorithm>
|
|
#include <unordered_map>
|
|
#include <list>
|
|
|
|
/* Prototypes for supply_gregset etc. */
|
|
#include "gregset.h"
|
|
#include "ppc-tdep.h"
|
|
#include "ppc-linux-tdep.h"
|
|
|
|
/* Required when using the AUXV. */
|
|
#include "elf/common.h"
|
|
#include "auxv.h"
|
|
|
|
#include "arch/ppc-linux-common.h"
|
|
#include "arch/ppc-linux-tdesc.h"
|
|
#include "nat/ppc-linux.h"
|
|
#include "linux-tdep.h"
|
|
#include "expop.h"
|
|
|
|
/* Similarly for the hardware watchpoint support. These requests are used
|
|
when the PowerPC HWDEBUG ptrace interface is not available. */
|
|
#ifndef PTRACE_GET_DEBUGREG
|
|
#define PTRACE_GET_DEBUGREG 25
|
|
#endif
|
|
#ifndef PTRACE_SET_DEBUGREG
|
|
#define PTRACE_SET_DEBUGREG 26
|
|
#endif
|
|
#ifndef PTRACE_GETSIGINFO
|
|
#define PTRACE_GETSIGINFO 0x4202
|
|
#endif
|
|
|
|
/* These requests are used when the PowerPC HWDEBUG ptrace interface is
|
|
available. It exposes the debug facilities of PowerPC processors, as well
|
|
as additional features of BookE processors, such as ranged breakpoints and
|
|
watchpoints and hardware-accelerated condition evaluation. */
|
|
#ifndef PPC_PTRACE_GETHWDBGINFO
|
|
|
|
/* Not having PPC_PTRACE_GETHWDBGINFO defined means that the PowerPC HWDEBUG
|
|
ptrace interface is not present in ptrace.h, so we'll have to pretty much
|
|
include it all here so that the code at least compiles on older systems. */
|
|
#define PPC_PTRACE_GETHWDBGINFO 0x89
|
|
#define PPC_PTRACE_SETHWDEBUG 0x88
|
|
#define PPC_PTRACE_DELHWDEBUG 0x87
|
|
|
|
struct ppc_debug_info
|
|
{
|
|
uint32_t version; /* Only version 1 exists to date. */
|
|
uint32_t num_instruction_bps;
|
|
uint32_t num_data_bps;
|
|
uint32_t num_condition_regs;
|
|
uint32_t data_bp_alignment;
|
|
uint32_t sizeof_condition; /* size of the DVC register. */
|
|
uint64_t features;
|
|
};
|
|
|
|
/* Features will have bits indicating whether there is support for: */
|
|
#define PPC_DEBUG_FEATURE_INSN_BP_RANGE 0x1
|
|
#define PPC_DEBUG_FEATURE_INSN_BP_MASK 0x2
|
|
#define PPC_DEBUG_FEATURE_DATA_BP_RANGE 0x4
|
|
#define PPC_DEBUG_FEATURE_DATA_BP_MASK 0x8
|
|
|
|
struct ppc_hw_breakpoint
|
|
{
|
|
uint32_t version; /* currently, version must be 1 */
|
|
uint32_t trigger_type; /* only some combinations allowed */
|
|
uint32_t addr_mode; /* address match mode */
|
|
uint32_t condition_mode; /* break/watchpoint condition flags */
|
|
uint64_t addr; /* break/watchpoint address */
|
|
uint64_t addr2; /* range end or mask */
|
|
uint64_t condition_value; /* contents of the DVC register */
|
|
};
|
|
|
|
/* Trigger type. */
|
|
#define PPC_BREAKPOINT_TRIGGER_EXECUTE 0x1
|
|
#define PPC_BREAKPOINT_TRIGGER_READ 0x2
|
|
#define PPC_BREAKPOINT_TRIGGER_WRITE 0x4
|
|
#define PPC_BREAKPOINT_TRIGGER_RW 0x6
|
|
|
|
/* Address mode. */
|
|
#define PPC_BREAKPOINT_MODE_EXACT 0x0
|
|
#define PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE 0x1
|
|
#define PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE 0x2
|
|
#define PPC_BREAKPOINT_MODE_MASK 0x3
|
|
|
|
/* Condition mode. */
|
|
#define PPC_BREAKPOINT_CONDITION_NONE 0x0
|
|
#define PPC_BREAKPOINT_CONDITION_AND 0x1
|
|
#define PPC_BREAKPOINT_CONDITION_EXACT 0x1
|
|
#define PPC_BREAKPOINT_CONDITION_OR 0x2
|
|
#define PPC_BREAKPOINT_CONDITION_AND_OR 0x3
|
|
#define PPC_BREAKPOINT_CONDITION_BE_ALL 0x00ff0000
|
|
#define PPC_BREAKPOINT_CONDITION_BE_SHIFT 16
|
|
#define PPC_BREAKPOINT_CONDITION_BE(n) \
|
|
(1<<((n)+PPC_BREAKPOINT_CONDITION_BE_SHIFT))
|
|
#endif /* PPC_PTRACE_GETHWDBGINFO */
|
|
|
|
/* Feature defined on Linux kernel v3.9: DAWR interface, that enables wider
|
|
watchpoint (up to 512 bytes). */
|
|
#ifndef PPC_DEBUG_FEATURE_DATA_BP_DAWR
|
|
#define PPC_DEBUG_FEATURE_DATA_BP_DAWR 0x10
|
|
#endif /* PPC_DEBUG_FEATURE_DATA_BP_DAWR */
|
|
|
|
/* Feature defined on Linux kernel v5.1: Second watchpoint support. */
|
|
#ifndef PPC_DEBUG_FEATURE_DATA_BP_ARCH_31
|
|
#define PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 0x20
|
|
#endif /* PPC_DEBUG_FEATURE_DATA_BP_ARCH_31 */
|
|
|
|
/* The version of the PowerPC HWDEBUG kernel interface that we will use, if
|
|
available. */
|
|
#define PPC_DEBUG_CURRENT_VERSION 1
|
|
|
|
/* Similarly for the general-purpose (gp0 -- gp31)
|
|
and floating-point registers (fp0 -- fp31). */
|
|
#ifndef PTRACE_GETREGS
|
|
#define PTRACE_GETREGS 12
|
|
#endif
|
|
#ifndef PTRACE_SETREGS
|
|
#define PTRACE_SETREGS 13
|
|
#endif
|
|
#ifndef PTRACE_GETFPREGS
|
|
#define PTRACE_GETFPREGS 14
|
|
#endif
|
|
#ifndef PTRACE_SETFPREGS
|
|
#define PTRACE_SETFPREGS 15
|
|
#endif
|
|
|
|
/* This oddity is because the Linux kernel defines elf_vrregset_t as
|
|
an array of 33 16 bytes long elements. I.e. it leaves out vrsave.
|
|
However the PTRACE_GETVRREGS and PTRACE_SETVRREGS requests return
|
|
the vrsave as an extra 4 bytes at the end. I opted for creating a
|
|
flat array of chars, so that it is easier to manipulate for gdb.
|
|
|
|
There are 32 vector registers 16 bytes longs, plus a VSCR register
|
|
which is only 4 bytes long, but is fetched as a 16 bytes
|
|
quantity. Up to here we have the elf_vrregset_t structure.
|
|
Appended to this there is space for the VRSAVE register: 4 bytes.
|
|
Even though this vrsave register is not included in the regset
|
|
typedef, it is handled by the ptrace requests.
|
|
|
|
The layout is like this (where x is the actual value of the vscr reg): */
|
|
|
|
/*
|
|
Big-Endian:
|
|
|.|.|.|.|.....|.|.|.|.||.|.|.|x||.|
|
|
<-------> <-------><-------><->
|
|
VR0 VR31 VSCR VRSAVE
|
|
Little-Endian:
|
|
|.|.|.|.|.....|.|.|.|.||X|.|.|.||.|
|
|
<-------> <-------><-------><->
|
|
VR0 VR31 VSCR VRSAVE
|
|
*/
|
|
|
|
typedef char gdb_vrregset_t[PPC_LINUX_SIZEOF_VRREGSET];
|
|
|
|
/* This is the layout of the POWER7 VSX registers and the way they overlap
|
|
with the existing FPR and VMX registers.
|
|
|
|
VSR doubleword 0 VSR doubleword 1
|
|
----------------------------------------------------------------
|
|
VSR[0] | FPR[0] | |
|
|
----------------------------------------------------------------
|
|
VSR[1] | FPR[1] | |
|
|
----------------------------------------------------------------
|
|
| ... | |
|
|
| ... | |
|
|
----------------------------------------------------------------
|
|
VSR[30] | FPR[30] | |
|
|
----------------------------------------------------------------
|
|
VSR[31] | FPR[31] | |
|
|
----------------------------------------------------------------
|
|
VSR[32] | VR[0] |
|
|
----------------------------------------------------------------
|
|
VSR[33] | VR[1] |
|
|
----------------------------------------------------------------
|
|
| ... |
|
|
| ... |
|
|
----------------------------------------------------------------
|
|
VSR[62] | VR[30] |
|
|
----------------------------------------------------------------
|
|
VSR[63] | VR[31] |
|
|
----------------------------------------------------------------
|
|
|
|
VSX has 64 128bit registers. The first 32 registers overlap with
|
|
the FP registers (doubleword 0) and hence extend them with additional
|
|
64 bits (doubleword 1). The other 32 regs overlap with the VMX
|
|
registers. */
|
|
typedef char gdb_vsxregset_t[PPC_LINUX_SIZEOF_VSXREGSET];
|
|
|
|
/* On PPC processors that support the Signal Processing Extension
|
|
(SPE) APU, the general-purpose registers are 64 bits long.
|
|
However, the ordinary Linux kernel PTRACE_PEEKUSER / PTRACE_POKEUSER
|
|
ptrace calls only access the lower half of each register, to allow
|
|
them to behave the same way they do on non-SPE systems. There's a
|
|
separate pair of calls, PTRACE_GETEVRREGS / PTRACE_SETEVRREGS, that
|
|
read and write the top halves of all the general-purpose registers
|
|
at once, along with some SPE-specific registers.
|
|
|
|
GDB itself continues to claim the general-purpose registers are 32
|
|
bits long. It has unnamed raw registers that hold the upper halves
|
|
of the gprs, and the full 64-bit SIMD views of the registers,
|
|
'ev0' -- 'ev31', are pseudo-registers that splice the top and
|
|
bottom halves together.
|
|
|
|
This is the structure filled in by PTRACE_GETEVRREGS and written to
|
|
the inferior's registers by PTRACE_SETEVRREGS. */
|
|
struct gdb_evrregset_t
|
|
{
|
|
unsigned long evr[32];
|
|
unsigned long long acc;
|
|
unsigned long spefscr;
|
|
};
|
|
|
|
/* Non-zero if our kernel may support the PTRACE_GETVSXREGS and
|
|
PTRACE_SETVSXREGS requests, for reading and writing the VSX
|
|
POWER7 registers 0 through 31. Zero if we've tried one of them and
|
|
gotten an error. Note that VSX registers 32 through 63 overlap
|
|
with VR registers 0 through 31. */
|
|
int have_ptrace_getsetvsxregs = 1;
|
|
|
|
/* Non-zero if our kernel may support the PTRACE_GETVRREGS and
|
|
PTRACE_SETVRREGS requests, for reading and writing the Altivec
|
|
registers. Zero if we've tried one of them and gotten an
|
|
error. */
|
|
int have_ptrace_getvrregs = 1;
|
|
|
|
/* Non-zero if our kernel may support the PTRACE_GETEVRREGS and
|
|
PTRACE_SETEVRREGS requests, for reading and writing the SPE
|
|
registers. Zero if we've tried one of them and gotten an
|
|
error. */
|
|
int have_ptrace_getsetevrregs = 1;
|
|
|
|
/* Non-zero if our kernel may support the PTRACE_GETREGS and
|
|
PTRACE_SETREGS requests, for reading and writing the
|
|
general-purpose registers. Zero if we've tried one of
|
|
them and gotten an error. */
|
|
int have_ptrace_getsetregs = 1;
|
|
|
|
/* Non-zero if our kernel may support the PTRACE_GETFPREGS and
|
|
PTRACE_SETFPREGS requests, for reading and writing the
|
|
floating-pointers registers. Zero if we've tried one of
|
|
them and gotten an error. */
|
|
int have_ptrace_getsetfpregs = 1;
|
|
|
|
/* Private arch info associated with each thread lwp_info object, used
|
|
for debug register handling. */
|
|
|
|
struct arch_lwp_info
|
|
{
|
|
/* When true, indicates that the debug registers installed in the
|
|
thread no longer correspond to the watchpoints and breakpoints
|
|
requested by GDB. */
|
|
bool debug_regs_stale;
|
|
|
|
/* We need a back-reference to the PTID of the thread so that we can
|
|
cleanup the debug register state of the thread in
|
|
low_delete_thread. */
|
|
ptid_t lwp_ptid;
|
|
};
|
|
|
|
/* Class used to detect which set of ptrace requests that
|
|
ppc_linux_nat_target will use to install and remove hardware
|
|
breakpoints and watchpoints.
|
|
|
|
The interface is only detected once, testing the ptrace calls. The
|
|
result can indicate that no interface is available.
|
|
|
|
The Linux kernel provides two different sets of ptrace requests to
|
|
handle hardware watchpoints and breakpoints for Power:
|
|
|
|
- PPC_PTRACE_GETHWDBGINFO, PPC_PTRACE_SETHWDEBUG, and
|
|
PPC_PTRACE_DELHWDEBUG.
|
|
|
|
Or
|
|
|
|
- PTRACE_SET_DEBUGREG and PTRACE_GET_DEBUGREG
|
|
|
|
The first set is the more flexible one and allows setting watchpoints
|
|
with a variable watched region length and, for BookE processors,
|
|
multiple types of debug registers (e.g. hardware breakpoints and
|
|
hardware-assisted conditions for watchpoints). The second one only
|
|
allows setting one debug register, a watchpoint, so we only use it if
|
|
the first one is not available. */
|
|
|
|
class ppc_linux_dreg_interface
|
|
{
|
|
public:
|
|
|
|
ppc_linux_dreg_interface ()
|
|
: m_interface (), m_hwdebug_info ()
|
|
{
|
|
};
|
|
|
|
DISABLE_COPY_AND_ASSIGN (ppc_linux_dreg_interface);
|
|
|
|
/* One and only one of these three functions returns true, indicating
|
|
whether the corresponding interface is the one we detected. The
|
|
interface must already have been detected as a precontidion. */
|
|
|
|
bool hwdebug_p ()
|
|
{
|
|
gdb_assert (detected_p ());
|
|
return *m_interface == HWDEBUG;
|
|
}
|
|
|
|
bool debugreg_p ()
|
|
{
|
|
gdb_assert (detected_p ());
|
|
return *m_interface == DEBUGREG;
|
|
}
|
|
|
|
bool unavailable_p ()
|
|
{
|
|
gdb_assert (detected_p ());
|
|
return *m_interface == UNAVAILABLE;
|
|
}
|
|
|
|
/* Returns the debug register capabilities of the target. Should only
|
|
be called if the interface is HWDEBUG. */
|
|
const struct ppc_debug_info &hwdebug_info ()
|
|
{
|
|
gdb_assert (hwdebug_p ());
|
|
|
|
return m_hwdebug_info;
|
|
}
|
|
|
|
/* Returns true if the interface has already been detected. This is
|
|
useful for cases when we know there is no work to be done if the
|
|
interface hasn't been detected yet. */
|
|
bool detected_p ()
|
|
{
|
|
return m_interface.has_value ();
|
|
}
|
|
|
|
/* Detect the available interface, if any, if it hasn't been detected
|
|
before, using PTID for the necessary ptrace calls. */
|
|
|
|
void detect (const ptid_t &ptid)
|
|
{
|
|
if (m_interface.has_value ())
|
|
return;
|
|
|
|
gdb_assert (ptid.lwp_p ());
|
|
|
|
bool no_features = false;
|
|
|
|
if (ptrace (PPC_PTRACE_GETHWDBGINFO, ptid.lwp (), 0, &m_hwdebug_info)
|
|
>= 0)
|
|
{
|
|
/* If there are no advertised features, we don't use the
|
|
HWDEBUG interface and try the DEBUGREG interface instead.
|
|
It shouldn't be necessary to do this, however, when the
|
|
kernel is configured without CONFIG_HW_BREAKPOINTS (selected
|
|
by CONFIG_PERF_EVENTS), there is a bug that causes
|
|
watchpoints installed with the HWDEBUG interface not to
|
|
trigger. When this is the case, features will be zero,
|
|
which we use as an indicator to fall back to the DEBUGREG
|
|
interface. */
|
|
if (m_hwdebug_info.features != 0)
|
|
{
|
|
m_interface.emplace (HWDEBUG);
|
|
return;
|
|
}
|
|
else
|
|
no_features = true;
|
|
}
|
|
|
|
/* EIO indicates that the request is invalid, so we try DEBUGREG
|
|
next. Technically, it can also indicate other failures, but we
|
|
can't differentiate those.
|
|
|
|
Other errors could happen for various reasons. We could get an
|
|
ESRCH if the traced thread was killed by a signal. Trying to
|
|
detect the interface with another thread in the future would be
|
|
complicated, as callers would have to handle an "unknown
|
|
interface" case. It's also unclear if raising an exception
|
|
here would be safe.
|
|
|
|
Other errors, such as ENODEV, could be more permanent and cause
|
|
a failure for any thread.
|
|
|
|
For simplicity, with all errors other than EIO, we set the
|
|
interface to UNAVAILABLE and don't try DEBUGREG. If DEBUGREG
|
|
fails too, we'll also set the interface to UNAVAILABLE. It's
|
|
unlikely that trying the DEBUGREG interface with this same thread
|
|
would work, for errors other than EIO. This means that these
|
|
errors will cause hardware watchpoints and breakpoints to become
|
|
unavailable throughout a GDB session. */
|
|
|
|
if (no_features || errno == EIO)
|
|
{
|
|
unsigned long wp;
|
|
|
|
if (ptrace (PTRACE_GET_DEBUGREG, ptid.lwp (), 0, &wp) >= 0)
|
|
{
|
|
m_interface.emplace (DEBUGREG);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (errno != EIO)
|
|
warning (_("Error when detecting the debug register interface. "
|
|
"Debug registers will be unavailable."));
|
|
|
|
m_interface.emplace (UNAVAILABLE);
|
|
return;
|
|
}
|
|
|
|
private:
|
|
|
|
/* HWDEBUG represents the set of calls PPC_PTRACE_GETHWDBGINFO,
|
|
PPC_PTRACE_SETHWDEBUG and PPC_PTRACE_DELHWDEBUG.
|
|
|
|
DEBUGREG represents the set of calls PTRACE_SET_DEBUGREG and
|
|
PTRACE_GET_DEBUGREG.
|
|
|
|
UNAVAILABLE can indicate that the kernel doesn't support any of the
|
|
two sets of requests or that there was an error when we tried to
|
|
detect wich interface is available. */
|
|
|
|
enum debug_reg_interface
|
|
{
|
|
UNAVAILABLE,
|
|
HWDEBUG,
|
|
DEBUGREG
|
|
};
|
|
|
|
/* The interface option. Initialized if has_value () returns true. */
|
|
gdb::optional<enum debug_reg_interface> m_interface;
|
|
|
|
/* The info returned by the kernel with PPC_PTRACE_GETHWDBGINFO. Only
|
|
valid if we determined that the interface is HWDEBUG. */
|
|
struct ppc_debug_info m_hwdebug_info;
|
|
};
|
|
|
|
/* Per-process information. This includes the hardware watchpoints and
|
|
breakpoints that GDB requested to this target. */
|
|
|
|
struct ppc_linux_process_info
|
|
{
|
|
/* The list of hardware watchpoints and breakpoints that GDB requested
|
|
for this process.
|
|
|
|
Only used when the interface is HWDEBUG. */
|
|
std::list<struct ppc_hw_breakpoint> requested_hw_bps;
|
|
|
|
/* The watchpoint value that GDB requested for this process.
|
|
|
|
Only used when the interface is DEBUGREG. */
|
|
gdb::optional<long> requested_wp_val;
|
|
};
|
|
|
|
struct ppc_linux_nat_target final : public linux_nat_target
|
|
{
|
|
/* Add our register access methods. */
|
|
void fetch_registers (struct regcache *, int) override;
|
|
void store_registers (struct regcache *, int) override;
|
|
|
|
/* Add our breakpoint/watchpoint methods. */
|
|
int can_use_hw_breakpoint (enum bptype, int, int) override;
|
|
|
|
int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
|
|
override;
|
|
|
|
int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *)
|
|
override;
|
|
|
|
int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
|
|
|
|
int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
|
|
struct expression *) override;
|
|
|
|
int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
|
|
struct expression *) override;
|
|
|
|
int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
|
|
override;
|
|
|
|
int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR, enum target_hw_bp_type)
|
|
override;
|
|
|
|
bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
|
|
|
|
bool can_accel_watchpoint_condition (CORE_ADDR, int, int, struct expression *)
|
|
override;
|
|
|
|
int masked_watch_num_registers (CORE_ADDR, CORE_ADDR) override;
|
|
|
|
int ranged_break_num_registers () override;
|
|
|
|
const struct target_desc *read_description () override;
|
|
|
|
int auxv_parse (const gdb_byte **readptr,
|
|
const gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
|
|
override;
|
|
|
|
/* Override linux_nat_target low methods. */
|
|
bool low_stopped_by_watchpoint () override;
|
|
|
|
bool low_stopped_data_address (CORE_ADDR *) override;
|
|
|
|
void low_new_thread (struct lwp_info *lp) override;
|
|
|
|
void low_delete_thread (arch_lwp_info *) override;
|
|
|
|
void low_new_fork (struct lwp_info *, pid_t) override;
|
|
|
|
void low_new_clone (struct lwp_info *, pid_t) override;
|
|
|
|
void low_forget_process (pid_t pid) override;
|
|
|
|
void low_prepare_to_resume (struct lwp_info *) override;
|
|
|
|
private:
|
|
|
|
void copy_thread_dreg_state (const ptid_t &parent_ptid,
|
|
const ptid_t &child_ptid);
|
|
|
|
void mark_thread_stale (struct lwp_info *lp);
|
|
|
|
void mark_debug_registers_changed (pid_t pid);
|
|
|
|
void register_hw_breakpoint (pid_t pid,
|
|
const struct ppc_hw_breakpoint &bp);
|
|
|
|
void clear_hw_breakpoint (pid_t pid,
|
|
const struct ppc_hw_breakpoint &a);
|
|
|
|
void register_wp (pid_t pid, long wp_value);
|
|
|
|
void clear_wp (pid_t pid);
|
|
|
|
bool can_use_watchpoint_cond_accel (void);
|
|
|
|
void calculate_dvc (CORE_ADDR addr, int len,
|
|
CORE_ADDR data_value,
|
|
uint32_t *condition_mode,
|
|
uint64_t *condition_value);
|
|
|
|
int check_condition (CORE_ADDR watch_addr,
|
|
struct expression *cond,
|
|
CORE_ADDR *data_value, int *len);
|
|
|
|
int num_memory_accesses (const std::vector<value_ref_ptr> &chain);
|
|
|
|
int get_trigger_type (enum target_hw_bp_type type);
|
|
|
|
void create_watchpoint_request (struct ppc_hw_breakpoint *p,
|
|
CORE_ADDR addr,
|
|
int len,
|
|
enum target_hw_bp_type type,
|
|
struct expression *cond,
|
|
int insert);
|
|
|
|
bool hwdebug_point_cmp (const struct ppc_hw_breakpoint &a,
|
|
const struct ppc_hw_breakpoint &b);
|
|
|
|
void init_arch_lwp_info (struct lwp_info *lp);
|
|
|
|
arch_lwp_info *get_arch_lwp_info (struct lwp_info *lp);
|
|
|
|
/* The ptrace interface we'll use to install hardware watchpoints and
|
|
breakpoints (debug registers). */
|
|
ppc_linux_dreg_interface m_dreg_interface;
|
|
|
|
/* A map from pids to structs containing info specific to each
|
|
process. */
|
|
std::unordered_map<pid_t, ppc_linux_process_info> m_process_info;
|
|
|
|
/* Callable object to hash ptids by their lwp number. */
|
|
struct ptid_hash
|
|
{
|
|
std::size_t operator() (const ptid_t &ptid) const
|
|
{
|
|
return std::hash<long>{} (ptid.lwp ());
|
|
}
|
|
};
|
|
|
|
/* A map from ptid_t objects to a list of pairs of slots and hardware
|
|
breakpoint objects. This keeps track of which hardware breakpoints
|
|
and watchpoints were last installed in each slot of each thread.
|
|
|
|
Only used when the interface is HWDEBUG. */
|
|
std::unordered_map <ptid_t,
|
|
std::list<std::pair<long, ppc_hw_breakpoint>>,
|
|
ptid_hash> m_installed_hw_bps;
|
|
};
|
|
|
|
static ppc_linux_nat_target the_ppc_linux_nat_target;
|
|
|
|
/* registers layout, as presented by the ptrace interface:
|
|
PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5, PT_R6, PT_R7,
|
|
PT_R8, PT_R9, PT_R10, PT_R11, PT_R12, PT_R13, PT_R14, PT_R15,
|
|
PT_R16, PT_R17, PT_R18, PT_R19, PT_R20, PT_R21, PT_R22, PT_R23,
|
|
PT_R24, PT_R25, PT_R26, PT_R27, PT_R28, PT_R29, PT_R30, PT_R31,
|
|
PT_FPR0, PT_FPR0 + 2, PT_FPR0 + 4, PT_FPR0 + 6,
|
|
PT_FPR0 + 8, PT_FPR0 + 10, PT_FPR0 + 12, PT_FPR0 + 14,
|
|
PT_FPR0 + 16, PT_FPR0 + 18, PT_FPR0 + 20, PT_FPR0 + 22,
|
|
PT_FPR0 + 24, PT_FPR0 + 26, PT_FPR0 + 28, PT_FPR0 + 30,
|
|
PT_FPR0 + 32, PT_FPR0 + 34, PT_FPR0 + 36, PT_FPR0 + 38,
|
|
PT_FPR0 + 40, PT_FPR0 + 42, PT_FPR0 + 44, PT_FPR0 + 46,
|
|
PT_FPR0 + 48, PT_FPR0 + 50, PT_FPR0 + 52, PT_FPR0 + 54,
|
|
PT_FPR0 + 56, PT_FPR0 + 58, PT_FPR0 + 60, PT_FPR0 + 62,
|
|
PT_NIP, PT_MSR, PT_CCR, PT_LNK, PT_CTR, PT_XER, PT_MQ */
|
|
|
|
static int
|
|
ppc_register_u_addr (struct gdbarch *gdbarch, int regno)
|
|
{
|
|
int u_addr = -1;
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
/* NOTE: cagney/2003-11-25: This is the word size used by the ptrace
|
|
interface, and not the wordsize of the program's ABI. */
|
|
int wordsize = sizeof (long);
|
|
|
|
/* General purpose registers occupy 1 slot each in the buffer. */
|
|
if (regno >= tdep->ppc_gp0_regnum
|
|
&& regno < tdep->ppc_gp0_regnum + ppc_num_gprs)
|
|
u_addr = ((regno - tdep->ppc_gp0_regnum + PT_R0) * wordsize);
|
|
|
|
/* Floating point regs: eight bytes each in both 32- and 64-bit
|
|
ptrace interfaces. Thus, two slots each in 32-bit interface, one
|
|
slot each in 64-bit interface. */
|
|
if (tdep->ppc_fp0_regnum >= 0
|
|
&& regno >= tdep->ppc_fp0_regnum
|
|
&& regno < tdep->ppc_fp0_regnum + ppc_num_fprs)
|
|
u_addr = (PT_FPR0 * wordsize) + ((regno - tdep->ppc_fp0_regnum) * 8);
|
|
|
|
/* UISA special purpose registers: 1 slot each. */
|
|
if (regno == gdbarch_pc_regnum (gdbarch))
|
|
u_addr = PT_NIP * wordsize;
|
|
if (regno == tdep->ppc_lr_regnum)
|
|
u_addr = PT_LNK * wordsize;
|
|
if (regno == tdep->ppc_cr_regnum)
|
|
u_addr = PT_CCR * wordsize;
|
|
if (regno == tdep->ppc_xer_regnum)
|
|
u_addr = PT_XER * wordsize;
|
|
if (regno == tdep->ppc_ctr_regnum)
|
|
u_addr = PT_CTR * wordsize;
|
|
#ifdef PT_MQ
|
|
if (regno == tdep->ppc_mq_regnum)
|
|
u_addr = PT_MQ * wordsize;
|
|
#endif
|
|
if (regno == tdep->ppc_ps_regnum)
|
|
u_addr = PT_MSR * wordsize;
|
|
if (regno == PPC_ORIG_R3_REGNUM)
|
|
u_addr = PT_ORIG_R3 * wordsize;
|
|
if (regno == PPC_TRAP_REGNUM)
|
|
u_addr = PT_TRAP * wordsize;
|
|
if (tdep->ppc_fpscr_regnum >= 0
|
|
&& regno == tdep->ppc_fpscr_regnum)
|
|
{
|
|
/* NOTE: cagney/2005-02-08: On some 64-bit GNU/Linux systems the
|
|
kernel headers incorrectly contained the 32-bit definition of
|
|
PT_FPSCR. For the 32-bit definition, floating-point
|
|
registers occupy two 32-bit "slots", and the FPSCR lives in
|
|
the second half of such a slot-pair (hence +1). For 64-bit,
|
|
the FPSCR instead occupies the full 64-bit 2-word-slot and
|
|
hence no adjustment is necessary. Hack around this. */
|
|
if (wordsize == 8 && PT_FPSCR == (48 + 32 + 1))
|
|
u_addr = (48 + 32) * wordsize;
|
|
/* If the FPSCR is 64-bit wide, we need to fetch the whole 64-bit
|
|
slot and not just its second word. The PT_FPSCR supplied when
|
|
GDB is compiled as a 32-bit app doesn't reflect this. */
|
|
else if (wordsize == 4 && register_size (gdbarch, regno) == 8
|
|
&& PT_FPSCR == (48 + 2*32 + 1))
|
|
u_addr = (48 + 2*32) * wordsize;
|
|
else
|
|
u_addr = PT_FPSCR * wordsize;
|
|
}
|
|
return u_addr;
|
|
}
|
|
|
|
/* The Linux kernel ptrace interface for POWER7 VSX registers uses the
|
|
registers set mechanism, as opposed to the interface for all the
|
|
other registers, that stores/fetches each register individually. */
|
|
static void
|
|
fetch_vsx_registers (struct regcache *regcache, int tid, int regno)
|
|
{
|
|
int ret;
|
|
gdb_vsxregset_t regs;
|
|
const struct regset *vsxregset = ppc_linux_vsxregset ();
|
|
|
|
ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetvsxregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Unable to fetch VSX registers"));
|
|
}
|
|
|
|
vsxregset->supply_regset (vsxregset, regcache, regno, ®s,
|
|
PPC_LINUX_SIZEOF_VSXREGSET);
|
|
}
|
|
|
|
/* The Linux kernel ptrace interface for AltiVec registers uses the
|
|
registers set mechanism, as opposed to the interface for all the
|
|
other registers, that stores/fetches each register individually. */
|
|
static void
|
|
fetch_altivec_registers (struct regcache *regcache, int tid,
|
|
int regno)
|
|
{
|
|
int ret;
|
|
gdb_vrregset_t regs;
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
|
|
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getvrregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Unable to fetch AltiVec registers"));
|
|
}
|
|
|
|
vrregset->supply_regset (vrregset, regcache, regno, ®s,
|
|
PPC_LINUX_SIZEOF_VRREGSET);
|
|
}
|
|
|
|
/* Fetch the top 32 bits of TID's general-purpose registers and the
|
|
SPE-specific registers, and place the results in EVRREGSET. If we
|
|
don't support PTRACE_GETEVRREGS, then just fill EVRREGSET with
|
|
zeros.
|
|
|
|
All the logic to deal with whether or not the PTRACE_GETEVRREGS and
|
|
PTRACE_SETEVRREGS requests are supported is isolated here, and in
|
|
set_spe_registers. */
|
|
static void
|
|
get_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
|
|
{
|
|
if (have_ptrace_getsetevrregs)
|
|
{
|
|
if (ptrace (PTRACE_GETEVRREGS, tid, 0, evrregset) >= 0)
|
|
return;
|
|
else
|
|
{
|
|
/* EIO means that the PTRACE_GETEVRREGS request isn't supported;
|
|
we just return zeros. */
|
|
if (errno == EIO)
|
|
have_ptrace_getsetevrregs = 0;
|
|
else
|
|
/* Anything else needs to be reported. */
|
|
perror_with_name (_("Unable to fetch SPE registers"));
|
|
}
|
|
}
|
|
|
|
memset (evrregset, 0, sizeof (*evrregset));
|
|
}
|
|
|
|
/* Supply values from TID for SPE-specific raw registers: the upper
|
|
halves of the GPRs, the accumulator, and the spefscr. REGNO must
|
|
be the number of an upper half register, acc, spefscr, or -1 to
|
|
supply the values of all registers. */
|
|
static void
|
|
fetch_spe_register (struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
struct gdb_evrregset_t evrregs;
|
|
|
|
gdb_assert (sizeof (evrregs.evr[0])
|
|
== register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
|
|
gdb_assert (sizeof (evrregs.acc)
|
|
== register_size (gdbarch, tdep->ppc_acc_regnum));
|
|
gdb_assert (sizeof (evrregs.spefscr)
|
|
== register_size (gdbarch, tdep->ppc_spefscr_regnum));
|
|
|
|
get_spe_registers (tid, &evrregs);
|
|
|
|
if (regno == -1)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
|
regcache->raw_supply (tdep->ppc_ev0_upper_regnum + i, &evrregs.evr[i]);
|
|
}
|
|
else if (tdep->ppc_ev0_upper_regnum <= regno
|
|
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
|
regcache->raw_supply (regno,
|
|
&evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
|
|
|
|
if (regno == -1
|
|
|| regno == tdep->ppc_acc_regnum)
|
|
regcache->raw_supply (tdep->ppc_acc_regnum, &evrregs.acc);
|
|
|
|
if (regno == -1
|
|
|| regno == tdep->ppc_spefscr_regnum)
|
|
regcache->raw_supply (tdep->ppc_spefscr_regnum, &evrregs.spefscr);
|
|
}
|
|
|
|
/* Use ptrace to fetch all registers from the register set with note
|
|
type REGSET_ID, size REGSIZE, and layout described by REGSET, from
|
|
process/thread TID and supply their values to REGCACHE. If ptrace
|
|
returns ENODATA to indicate the regset is unavailable, mark the
|
|
registers as unavailable in REGCACHE. */
|
|
|
|
static void
|
|
fetch_regset (struct regcache *regcache, int tid,
|
|
int regset_id, int regsetsize, const struct regset *regset)
|
|
{
|
|
void *buf = alloca (regsetsize);
|
|
struct iovec iov;
|
|
|
|
iov.iov_base = buf;
|
|
iov.iov_len = regsetsize;
|
|
|
|
if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
|
|
{
|
|
if (errno == ENODATA)
|
|
regset->supply_regset (regset, regcache, -1, NULL, regsetsize);
|
|
else
|
|
perror_with_name (_("Couldn't get register set"));
|
|
}
|
|
else
|
|
regset->supply_regset (regset, regcache, -1, buf, regsetsize);
|
|
}
|
|
|
|
/* Use ptrace to store register REGNUM of the regset with note type
|
|
REGSET_ID, size REGSETSIZE, and layout described by REGSET, from
|
|
REGCACHE back to process/thread TID. If REGNUM is -1 all registers
|
|
in the set are collected and stored. */
|
|
|
|
static void
|
|
store_regset (const struct regcache *regcache, int tid, int regnum,
|
|
int regset_id, int regsetsize, const struct regset *regset)
|
|
{
|
|
void *buf = alloca (regsetsize);
|
|
struct iovec iov;
|
|
|
|
iov.iov_base = buf;
|
|
iov.iov_len = regsetsize;
|
|
|
|
/* Make sure that the buffer that will be stored has up to date values
|
|
for the registers that won't be collected. */
|
|
if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) < 0)
|
|
perror_with_name (_("Couldn't get register set"));
|
|
|
|
regset->collect_regset (regset, regcache, regnum, buf, regsetsize);
|
|
|
|
if (ptrace (PTRACE_SETREGSET, tid, regset_id, &iov) < 0)
|
|
perror_with_name (_("Couldn't set register set"));
|
|
}
|
|
|
|
/* Check whether the kernel provides a register set with number
|
|
REGSET_ID of size REGSETSIZE for process/thread TID. */
|
|
|
|
static bool
|
|
check_regset (int tid, int regset_id, int regsetsize)
|
|
{
|
|
void *buf = alloca (regsetsize);
|
|
struct iovec iov;
|
|
|
|
iov.iov_base = buf;
|
|
iov.iov_len = regsetsize;
|
|
|
|
if (ptrace (PTRACE_GETREGSET, tid, regset_id, &iov) >= 0
|
|
|| errno == ENODATA)
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
static void
|
|
fetch_register (struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
/* This isn't really an address. But ptrace thinks of it as one. */
|
|
CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
|
|
int bytes_transferred;
|
|
gdb_byte buf[PPC_MAX_REGISTER_SIZE];
|
|
|
|
if (altivec_register_p (gdbarch, regno))
|
|
{
|
|
/* If this is the first time through, or if it is not the first
|
|
time through, and we have confirmed that there is kernel
|
|
support for such a ptrace request, then go and fetch the
|
|
register. */
|
|
if (have_ptrace_getvrregs)
|
|
{
|
|
fetch_altivec_registers (regcache, tid, regno);
|
|
return;
|
|
}
|
|
/* If we have discovered that there is no ptrace support for
|
|
AltiVec registers, fall through and return zeroes, because
|
|
regaddr will be -1 in this case. */
|
|
}
|
|
else if (vsx_register_p (gdbarch, regno))
|
|
{
|
|
if (have_ptrace_getsetvsxregs)
|
|
{
|
|
fetch_vsx_registers (regcache, tid, regno);
|
|
return;
|
|
}
|
|
}
|
|
else if (spe_register_p (gdbarch, regno))
|
|
{
|
|
fetch_spe_register (regcache, tid, regno);
|
|
return;
|
|
}
|
|
else if (regno == PPC_DSCR_REGNUM)
|
|
{
|
|
gdb_assert (tdep->ppc_dscr_regnum != -1);
|
|
|
|
fetch_regset (regcache, tid, NT_PPC_DSCR,
|
|
PPC_LINUX_SIZEOF_DSCRREGSET,
|
|
&ppc32_linux_dscrregset);
|
|
return;
|
|
}
|
|
else if (regno == PPC_PPR_REGNUM)
|
|
{
|
|
gdb_assert (tdep->ppc_ppr_regnum != -1);
|
|
|
|
fetch_regset (regcache, tid, NT_PPC_PPR,
|
|
PPC_LINUX_SIZEOF_PPRREGSET,
|
|
&ppc32_linux_pprregset);
|
|
return;
|
|
}
|
|
else if (regno == PPC_TAR_REGNUM)
|
|
{
|
|
gdb_assert (tdep->ppc_tar_regnum != -1);
|
|
|
|
fetch_regset (regcache, tid, NT_PPC_TAR,
|
|
PPC_LINUX_SIZEOF_TARREGSET,
|
|
&ppc32_linux_tarregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_EBB_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->have_ebb);
|
|
|
|
fetch_regset (regcache, tid, NT_PPC_EBB,
|
|
PPC_LINUX_SIZEOF_EBBREGSET,
|
|
&ppc32_linux_ebbregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_PMU_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->ppc_mmcr0_regnum != -1);
|
|
|
|
fetch_regset (regcache, tid, NT_PPC_PMU,
|
|
PPC_LINUX_SIZEOF_PMUREGSET,
|
|
&ppc32_linux_pmuregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_TMSPR_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->have_htm_spr);
|
|
|
|
fetch_regset (regcache, tid, NT_PPC_TM_SPR,
|
|
PPC_LINUX_SIZEOF_TM_SPRREGSET,
|
|
&ppc32_linux_tm_sprregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_CKPTGP_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->have_htm_core);
|
|
|
|
const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CGPR,
|
|
(tdep->wordsize == 4?
|
|
PPC32_LINUX_SIZEOF_CGPRREGSET
|
|
: PPC64_LINUX_SIZEOF_CGPRREGSET),
|
|
cgprregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_CKPTFP_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->have_htm_fpu);
|
|
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CFPR,
|
|
PPC_LINUX_SIZEOF_CFPRREGSET,
|
|
&ppc32_linux_cfprregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_CKPTVMX_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->have_htm_altivec);
|
|
|
|
const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CVMX,
|
|
PPC_LINUX_SIZEOF_CVMXREGSET,
|
|
cvmxregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_CKPTVSX_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->have_htm_vsx);
|
|
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CVSX,
|
|
PPC_LINUX_SIZEOF_CVSXREGSET,
|
|
&ppc32_linux_cvsxregset);
|
|
return;
|
|
}
|
|
else if (regno == PPC_CPPR_REGNUM)
|
|
{
|
|
gdb_assert (tdep->ppc_cppr_regnum != -1);
|
|
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CPPR,
|
|
PPC_LINUX_SIZEOF_CPPRREGSET,
|
|
&ppc32_linux_cpprregset);
|
|
return;
|
|
}
|
|
else if (regno == PPC_CDSCR_REGNUM)
|
|
{
|
|
gdb_assert (tdep->ppc_cdscr_regnum != -1);
|
|
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CDSCR,
|
|
PPC_LINUX_SIZEOF_CDSCRREGSET,
|
|
&ppc32_linux_cdscrregset);
|
|
return;
|
|
}
|
|
else if (regno == PPC_CTAR_REGNUM)
|
|
{
|
|
gdb_assert (tdep->ppc_ctar_regnum != -1);
|
|
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CTAR,
|
|
PPC_LINUX_SIZEOF_CTARREGSET,
|
|
&ppc32_linux_ctarregset);
|
|
return;
|
|
}
|
|
|
|
if (regaddr == -1)
|
|
{
|
|
memset (buf, '\0', register_size (gdbarch, regno)); /* Supply zeroes */
|
|
regcache->raw_supply (regno, buf);
|
|
return;
|
|
}
|
|
|
|
/* Read the raw register using sizeof(long) sized chunks. On a
|
|
32-bit platform, 64-bit floating-point registers will require two
|
|
transfers. */
|
|
for (bytes_transferred = 0;
|
|
bytes_transferred < register_size (gdbarch, regno);
|
|
bytes_transferred += sizeof (long))
|
|
{
|
|
long l;
|
|
|
|
errno = 0;
|
|
l = ptrace (PTRACE_PEEKUSER, tid, (PTRACE_TYPE_ARG3) regaddr, 0);
|
|
regaddr += sizeof (long);
|
|
if (errno != 0)
|
|
{
|
|
char message[128];
|
|
xsnprintf (message, sizeof (message), "reading register %s (#%d)",
|
|
gdbarch_register_name (gdbarch, regno), regno);
|
|
perror_with_name (message);
|
|
}
|
|
memcpy (&buf[bytes_transferred], &l, sizeof (l));
|
|
}
|
|
|
|
/* Now supply the register. Keep in mind that the regcache's idea
|
|
of the register's size may not be a multiple of sizeof
|
|
(long). */
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
|
{
|
|
/* Little-endian values are always found at the left end of the
|
|
bytes transferred. */
|
|
regcache->raw_supply (regno, buf);
|
|
}
|
|
else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
/* Big-endian values are found at the right end of the bytes
|
|
transferred. */
|
|
size_t padding = (bytes_transferred - register_size (gdbarch, regno));
|
|
regcache->raw_supply (regno, buf + padding);
|
|
}
|
|
else
|
|
internal_error (_("fetch_register: unexpected byte order: %d"),
|
|
gdbarch_byte_order (gdbarch));
|
|
}
|
|
|
|
/* This function actually issues the request to ptrace, telling
|
|
it to get all general-purpose registers and put them into the
|
|
specified regset.
|
|
|
|
If the ptrace request does not exist, this function returns 0
|
|
and properly sets the have_ptrace_* flag. If the request fails,
|
|
this function calls perror_with_name. Otherwise, if the request
|
|
succeeds, then the regcache gets filled and 1 is returned. */
|
|
static int
|
|
fetch_all_gp_regs (struct regcache *regcache, int tid)
|
|
{
|
|
gdb_gregset_t gregset;
|
|
|
|
if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetregs = 0;
|
|
return 0;
|
|
}
|
|
perror_with_name (_("Couldn't get general-purpose registers"));
|
|
}
|
|
|
|
supply_gregset (regcache, (const gdb_gregset_t *) &gregset);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This is a wrapper for the fetch_all_gp_regs function. It is
|
|
responsible for verifying if this target has the ptrace request
|
|
that can be used to fetch all general-purpose registers at one
|
|
shot. If it doesn't, then we should fetch them using the
|
|
old-fashioned way, which is to iterate over the registers and
|
|
request them one by one. */
|
|
static void
|
|
fetch_gp_regs (struct regcache *regcache, int tid)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
int i;
|
|
|
|
if (have_ptrace_getsetregs)
|
|
if (fetch_all_gp_regs (regcache, tid))
|
|
return;
|
|
|
|
/* If we've hit this point, it doesn't really matter which
|
|
architecture we are using. We just need to read the
|
|
registers in the "old-fashioned way". */
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
|
fetch_register (regcache, tid, tdep->ppc_gp0_regnum + i);
|
|
}
|
|
|
|
/* This function actually issues the request to ptrace, telling
|
|
it to get all floating-point registers and put them into the
|
|
specified regset.
|
|
|
|
If the ptrace request does not exist, this function returns 0
|
|
and properly sets the have_ptrace_* flag. If the request fails,
|
|
this function calls perror_with_name. Otherwise, if the request
|
|
succeeds, then the regcache gets filled and 1 is returned. */
|
|
static int
|
|
fetch_all_fp_regs (struct regcache *regcache, int tid)
|
|
{
|
|
gdb_fpregset_t fpregs;
|
|
|
|
if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetfpregs = 0;
|
|
return 0;
|
|
}
|
|
perror_with_name (_("Couldn't get floating-point registers"));
|
|
}
|
|
|
|
supply_fpregset (regcache, (const gdb_fpregset_t *) &fpregs);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This is a wrapper for the fetch_all_fp_regs function. It is
|
|
responsible for verifying if this target has the ptrace request
|
|
that can be used to fetch all floating-point registers at one
|
|
shot. If it doesn't, then we should fetch them using the
|
|
old-fashioned way, which is to iterate over the registers and
|
|
request them one by one. */
|
|
static void
|
|
fetch_fp_regs (struct regcache *regcache, int tid)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
int i;
|
|
|
|
if (have_ptrace_getsetfpregs)
|
|
if (fetch_all_fp_regs (regcache, tid))
|
|
return;
|
|
|
|
/* If we've hit this point, it doesn't really matter which
|
|
architecture we are using. We just need to read the
|
|
registers in the "old-fashioned way". */
|
|
for (i = 0; i < ppc_num_fprs; i++)
|
|
fetch_register (regcache, tid, tdep->ppc_fp0_regnum + i);
|
|
}
|
|
|
|
static void
|
|
fetch_ppc_registers (struct regcache *regcache, int tid)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
|
|
fetch_gp_regs (regcache, tid);
|
|
if (tdep->ppc_fp0_regnum >= 0)
|
|
fetch_fp_regs (regcache, tid);
|
|
fetch_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
|
|
if (tdep->ppc_ps_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_ps_regnum);
|
|
if (tdep->ppc_cr_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_cr_regnum);
|
|
if (tdep->ppc_lr_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_lr_regnum);
|
|
if (tdep->ppc_ctr_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_ctr_regnum);
|
|
if (tdep->ppc_xer_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_xer_regnum);
|
|
if (tdep->ppc_mq_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_mq_regnum);
|
|
if (ppc_linux_trap_reg_p (gdbarch))
|
|
{
|
|
fetch_register (regcache, tid, PPC_ORIG_R3_REGNUM);
|
|
fetch_register (regcache, tid, PPC_TRAP_REGNUM);
|
|
}
|
|
if (tdep->ppc_fpscr_regnum != -1)
|
|
fetch_register (regcache, tid, tdep->ppc_fpscr_regnum);
|
|
if (have_ptrace_getvrregs)
|
|
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
|
fetch_altivec_registers (regcache, tid, -1);
|
|
if (have_ptrace_getsetvsxregs)
|
|
if (tdep->ppc_vsr0_upper_regnum != -1)
|
|
fetch_vsx_registers (regcache, tid, -1);
|
|
if (tdep->ppc_ev0_upper_regnum >= 0)
|
|
fetch_spe_register (regcache, tid, -1);
|
|
if (tdep->ppc_ppr_regnum != -1)
|
|
fetch_regset (regcache, tid, NT_PPC_PPR,
|
|
PPC_LINUX_SIZEOF_PPRREGSET,
|
|
&ppc32_linux_pprregset);
|
|
if (tdep->ppc_dscr_regnum != -1)
|
|
fetch_regset (regcache, tid, NT_PPC_DSCR,
|
|
PPC_LINUX_SIZEOF_DSCRREGSET,
|
|
&ppc32_linux_dscrregset);
|
|
if (tdep->ppc_tar_regnum != -1)
|
|
fetch_regset (regcache, tid, NT_PPC_TAR,
|
|
PPC_LINUX_SIZEOF_TARREGSET,
|
|
&ppc32_linux_tarregset);
|
|
if (tdep->have_ebb)
|
|
fetch_regset (regcache, tid, NT_PPC_EBB,
|
|
PPC_LINUX_SIZEOF_EBBREGSET,
|
|
&ppc32_linux_ebbregset);
|
|
if (tdep->ppc_mmcr0_regnum != -1)
|
|
fetch_regset (regcache, tid, NT_PPC_PMU,
|
|
PPC_LINUX_SIZEOF_PMUREGSET,
|
|
&ppc32_linux_pmuregset);
|
|
if (tdep->have_htm_spr)
|
|
fetch_regset (regcache, tid, NT_PPC_TM_SPR,
|
|
PPC_LINUX_SIZEOF_TM_SPRREGSET,
|
|
&ppc32_linux_tm_sprregset);
|
|
if (tdep->have_htm_core)
|
|
{
|
|
const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CGPR,
|
|
(tdep->wordsize == 4?
|
|
PPC32_LINUX_SIZEOF_CGPRREGSET
|
|
: PPC64_LINUX_SIZEOF_CGPRREGSET),
|
|
cgprregset);
|
|
}
|
|
if (tdep->have_htm_fpu)
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CFPR,
|
|
PPC_LINUX_SIZEOF_CFPRREGSET,
|
|
&ppc32_linux_cfprregset);
|
|
if (tdep->have_htm_altivec)
|
|
{
|
|
const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CVMX,
|
|
PPC_LINUX_SIZEOF_CVMXREGSET,
|
|
cvmxregset);
|
|
}
|
|
if (tdep->have_htm_vsx)
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CVSX,
|
|
PPC_LINUX_SIZEOF_CVSXREGSET,
|
|
&ppc32_linux_cvsxregset);
|
|
if (tdep->ppc_cppr_regnum != -1)
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CPPR,
|
|
PPC_LINUX_SIZEOF_CPPRREGSET,
|
|
&ppc32_linux_cpprregset);
|
|
if (tdep->ppc_cdscr_regnum != -1)
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CDSCR,
|
|
PPC_LINUX_SIZEOF_CDSCRREGSET,
|
|
&ppc32_linux_cdscrregset);
|
|
if (tdep->ppc_ctar_regnum != -1)
|
|
fetch_regset (regcache, tid, NT_PPC_TM_CTAR,
|
|
PPC_LINUX_SIZEOF_CTARREGSET,
|
|
&ppc32_linux_ctarregset);
|
|
}
|
|
|
|
/* Fetch registers from the child process. Fetch all registers if
|
|
regno == -1, otherwise fetch all general registers or all floating
|
|
point registers depending upon the value of regno. */
|
|
void
|
|
ppc_linux_nat_target::fetch_registers (struct regcache *regcache, int regno)
|
|
{
|
|
pid_t tid = get_ptrace_pid (regcache->ptid ());
|
|
|
|
if (regno == -1)
|
|
fetch_ppc_registers (regcache, tid);
|
|
else
|
|
fetch_register (regcache, tid, regno);
|
|
}
|
|
|
|
static void
|
|
store_vsx_registers (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
int ret;
|
|
gdb_vsxregset_t regs;
|
|
const struct regset *vsxregset = ppc_linux_vsxregset ();
|
|
|
|
ret = ptrace (PTRACE_GETVSXREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetvsxregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Unable to fetch VSX registers"));
|
|
}
|
|
|
|
vsxregset->collect_regset (vsxregset, regcache, regno, ®s,
|
|
PPC_LINUX_SIZEOF_VSXREGSET);
|
|
|
|
ret = ptrace (PTRACE_SETVSXREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
perror_with_name (_("Unable to store VSX registers"));
|
|
}
|
|
|
|
static void
|
|
store_altivec_registers (const struct regcache *regcache, int tid,
|
|
int regno)
|
|
{
|
|
int ret;
|
|
gdb_vrregset_t regs;
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
const struct regset *vrregset = ppc_linux_vrregset (gdbarch);
|
|
|
|
ret = ptrace (PTRACE_GETVRREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getvrregs = 0;
|
|
return;
|
|
}
|
|
perror_with_name (_("Unable to fetch AltiVec registers"));
|
|
}
|
|
|
|
vrregset->collect_regset (vrregset, regcache, regno, ®s,
|
|
PPC_LINUX_SIZEOF_VRREGSET);
|
|
|
|
ret = ptrace (PTRACE_SETVRREGS, tid, 0, ®s);
|
|
if (ret < 0)
|
|
perror_with_name (_("Unable to store AltiVec registers"));
|
|
}
|
|
|
|
/* Assuming TID refers to an SPE process, set the top halves of TID's
|
|
general-purpose registers and its SPE-specific registers to the
|
|
values in EVRREGSET. If we don't support PTRACE_SETEVRREGS, do
|
|
nothing.
|
|
|
|
All the logic to deal with whether or not the PTRACE_GETEVRREGS and
|
|
PTRACE_SETEVRREGS requests are supported is isolated here, and in
|
|
get_spe_registers. */
|
|
static void
|
|
set_spe_registers (int tid, struct gdb_evrregset_t *evrregset)
|
|
{
|
|
if (have_ptrace_getsetevrregs)
|
|
{
|
|
if (ptrace (PTRACE_SETEVRREGS, tid, 0, evrregset) >= 0)
|
|
return;
|
|
else
|
|
{
|
|
/* EIO means that the PTRACE_SETEVRREGS request isn't
|
|
supported; we fail silently, and don't try the call
|
|
again. */
|
|
if (errno == EIO)
|
|
have_ptrace_getsetevrregs = 0;
|
|
else
|
|
/* Anything else needs to be reported. */
|
|
perror_with_name (_("Unable to set SPE registers"));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Write GDB's value for the SPE-specific raw register REGNO to TID.
|
|
If REGNO is -1, write the values of all the SPE-specific
|
|
registers. */
|
|
static void
|
|
store_spe_register (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
struct gdb_evrregset_t evrregs;
|
|
|
|
gdb_assert (sizeof (evrregs.evr[0])
|
|
== register_size (gdbarch, tdep->ppc_ev0_upper_regnum));
|
|
gdb_assert (sizeof (evrregs.acc)
|
|
== register_size (gdbarch, tdep->ppc_acc_regnum));
|
|
gdb_assert (sizeof (evrregs.spefscr)
|
|
== register_size (gdbarch, tdep->ppc_spefscr_regnum));
|
|
|
|
if (regno == -1)
|
|
/* Since we're going to write out every register, the code below
|
|
should store to every field of evrregs; if that doesn't happen,
|
|
make it obvious by initializing it with suspicious values. */
|
|
memset (&evrregs, 42, sizeof (evrregs));
|
|
else
|
|
/* We can only read and write the entire EVR register set at a
|
|
time, so to write just a single register, we do a
|
|
read-modify-write maneuver. */
|
|
get_spe_registers (tid, &evrregs);
|
|
|
|
if (regno == -1)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
|
regcache->raw_collect (tdep->ppc_ev0_upper_regnum + i,
|
|
&evrregs.evr[i]);
|
|
}
|
|
else if (tdep->ppc_ev0_upper_regnum <= regno
|
|
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
|
regcache->raw_collect (regno,
|
|
&evrregs.evr[regno - tdep->ppc_ev0_upper_regnum]);
|
|
|
|
if (regno == -1
|
|
|| regno == tdep->ppc_acc_regnum)
|
|
regcache->raw_collect (tdep->ppc_acc_regnum,
|
|
&evrregs.acc);
|
|
|
|
if (regno == -1
|
|
|| regno == tdep->ppc_spefscr_regnum)
|
|
regcache->raw_collect (tdep->ppc_spefscr_regnum,
|
|
&evrregs.spefscr);
|
|
|
|
/* Write back the modified register set. */
|
|
set_spe_registers (tid, &evrregs);
|
|
}
|
|
|
|
static void
|
|
store_register (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
/* This isn't really an address. But ptrace thinks of it as one. */
|
|
CORE_ADDR regaddr = ppc_register_u_addr (gdbarch, regno);
|
|
int i;
|
|
size_t bytes_to_transfer;
|
|
gdb_byte buf[PPC_MAX_REGISTER_SIZE];
|
|
|
|
if (altivec_register_p (gdbarch, regno))
|
|
{
|
|
store_altivec_registers (regcache, tid, regno);
|
|
return;
|
|
}
|
|
else if (vsx_register_p (gdbarch, regno))
|
|
{
|
|
store_vsx_registers (regcache, tid, regno);
|
|
return;
|
|
}
|
|
else if (spe_register_p (gdbarch, regno))
|
|
{
|
|
store_spe_register (regcache, tid, regno);
|
|
return;
|
|
}
|
|
else if (regno == PPC_DSCR_REGNUM)
|
|
{
|
|
gdb_assert (tdep->ppc_dscr_regnum != -1);
|
|
|
|
store_regset (regcache, tid, regno, NT_PPC_DSCR,
|
|
PPC_LINUX_SIZEOF_DSCRREGSET,
|
|
&ppc32_linux_dscrregset);
|
|
return;
|
|
}
|
|
else if (regno == PPC_PPR_REGNUM)
|
|
{
|
|
gdb_assert (tdep->ppc_ppr_regnum != -1);
|
|
|
|
store_regset (regcache, tid, regno, NT_PPC_PPR,
|
|
PPC_LINUX_SIZEOF_PPRREGSET,
|
|
&ppc32_linux_pprregset);
|
|
return;
|
|
}
|
|
else if (regno == PPC_TAR_REGNUM)
|
|
{
|
|
gdb_assert (tdep->ppc_tar_regnum != -1);
|
|
|
|
store_regset (regcache, tid, regno, NT_PPC_TAR,
|
|
PPC_LINUX_SIZEOF_TARREGSET,
|
|
&ppc32_linux_tarregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_EBB_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->have_ebb);
|
|
|
|
store_regset (regcache, tid, regno, NT_PPC_EBB,
|
|
PPC_LINUX_SIZEOF_EBBREGSET,
|
|
&ppc32_linux_ebbregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_PMU_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->ppc_mmcr0_regnum != -1);
|
|
|
|
store_regset (regcache, tid, regno, NT_PPC_PMU,
|
|
PPC_LINUX_SIZEOF_PMUREGSET,
|
|
&ppc32_linux_pmuregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_TMSPR_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->have_htm_spr);
|
|
|
|
store_regset (regcache, tid, regno, NT_PPC_TM_SPR,
|
|
PPC_LINUX_SIZEOF_TM_SPRREGSET,
|
|
&ppc32_linux_tm_sprregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_CKPTGP_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->have_htm_core);
|
|
|
|
const struct regset *cgprregset = ppc_linux_cgprregset (gdbarch);
|
|
store_regset (regcache, tid, regno, NT_PPC_TM_CGPR,
|
|
(tdep->wordsize == 4?
|
|
PPC32_LINUX_SIZEOF_CGPRREGSET
|
|
: PPC64_LINUX_SIZEOF_CGPRREGSET),
|
|
cgprregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_CKPTFP_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->have_htm_fpu);
|
|
|
|
store_regset (regcache, tid, regno, NT_PPC_TM_CFPR,
|
|
PPC_LINUX_SIZEOF_CFPRREGSET,
|
|
&ppc32_linux_cfprregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_CKPTVMX_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->have_htm_altivec);
|
|
|
|
const struct regset *cvmxregset = ppc_linux_cvmxregset (gdbarch);
|
|
store_regset (regcache, tid, regno, NT_PPC_TM_CVMX,
|
|
PPC_LINUX_SIZEOF_CVMXREGSET,
|
|
cvmxregset);
|
|
return;
|
|
}
|
|
else if (PPC_IS_CKPTVSX_REGNUM (regno))
|
|
{
|
|
gdb_assert (tdep->have_htm_vsx);
|
|
|
|
store_regset (regcache, tid, regno, NT_PPC_TM_CVSX,
|
|
PPC_LINUX_SIZEOF_CVSXREGSET,
|
|
&ppc32_linux_cvsxregset);
|
|
return;
|
|
}
|
|
else if (regno == PPC_CPPR_REGNUM)
|
|
{
|
|
gdb_assert (tdep->ppc_cppr_regnum != -1);
|
|
|
|
store_regset (regcache, tid, regno, NT_PPC_TM_CPPR,
|
|
PPC_LINUX_SIZEOF_CPPRREGSET,
|
|
&ppc32_linux_cpprregset);
|
|
return;
|
|
}
|
|
else if (regno == PPC_CDSCR_REGNUM)
|
|
{
|
|
gdb_assert (tdep->ppc_cdscr_regnum != -1);
|
|
|
|
store_regset (regcache, tid, regno, NT_PPC_TM_CDSCR,
|
|
PPC_LINUX_SIZEOF_CDSCRREGSET,
|
|
&ppc32_linux_cdscrregset);
|
|
return;
|
|
}
|
|
else if (regno == PPC_CTAR_REGNUM)
|
|
{
|
|
gdb_assert (tdep->ppc_ctar_regnum != -1);
|
|
|
|
store_regset (regcache, tid, regno, NT_PPC_TM_CTAR,
|
|
PPC_LINUX_SIZEOF_CTARREGSET,
|
|
&ppc32_linux_ctarregset);
|
|
return;
|
|
}
|
|
|
|
if (regaddr == -1)
|
|
return;
|
|
|
|
/* First collect the register. Keep in mind that the regcache's
|
|
idea of the register's size may not be a multiple of sizeof
|
|
(long). */
|
|
memset (buf, 0, sizeof buf);
|
|
bytes_to_transfer = align_up (register_size (gdbarch, regno), sizeof (long));
|
|
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
|
|
{
|
|
/* Little-endian values always sit at the left end of the buffer. */
|
|
regcache->raw_collect (regno, buf);
|
|
}
|
|
else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
|
{
|
|
/* Big-endian values sit at the right end of the buffer. */
|
|
size_t padding = (bytes_to_transfer - register_size (gdbarch, regno));
|
|
regcache->raw_collect (regno, buf + padding);
|
|
}
|
|
|
|
for (i = 0; i < bytes_to_transfer; i += sizeof (long))
|
|
{
|
|
long l;
|
|
|
|
memcpy (&l, &buf[i], sizeof (l));
|
|
errno = 0;
|
|
ptrace (PTRACE_POKEUSER, tid, (PTRACE_TYPE_ARG3) regaddr, l);
|
|
regaddr += sizeof (long);
|
|
|
|
if (errno == EIO
|
|
&& (regno == tdep->ppc_fpscr_regnum
|
|
|| regno == PPC_ORIG_R3_REGNUM
|
|
|| regno == PPC_TRAP_REGNUM))
|
|
{
|
|
/* Some older kernel versions don't allow fpscr, orig_r3
|
|
or trap to be written. */
|
|
continue;
|
|
}
|
|
|
|
if (errno != 0)
|
|
{
|
|
char message[128];
|
|
xsnprintf (message, sizeof (message), "writing register %s (#%d)",
|
|
gdbarch_register_name (gdbarch, regno), regno);
|
|
perror_with_name (message);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This function actually issues the request to ptrace, telling
|
|
it to store all general-purpose registers present in the specified
|
|
regset.
|
|
|
|
If the ptrace request does not exist, this function returns 0
|
|
and properly sets the have_ptrace_* flag. If the request fails,
|
|
this function calls perror_with_name. Otherwise, if the request
|
|
succeeds, then the regcache is stored and 1 is returned. */
|
|
static int
|
|
store_all_gp_regs (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
gdb_gregset_t gregset;
|
|
|
|
if (ptrace (PTRACE_GETREGS, tid, 0, (void *) &gregset) < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetregs = 0;
|
|
return 0;
|
|
}
|
|
perror_with_name (_("Couldn't get general-purpose registers"));
|
|
}
|
|
|
|
fill_gregset (regcache, &gregset, regno);
|
|
|
|
if (ptrace (PTRACE_SETREGS, tid, 0, (void *) &gregset) < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetregs = 0;
|
|
return 0;
|
|
}
|
|
perror_with_name (_("Couldn't set general-purpose registers"));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This is a wrapper for the store_all_gp_regs function. It is
|
|
responsible for verifying if this target has the ptrace request
|
|
that can be used to store all general-purpose registers at one
|
|
shot. If it doesn't, then we should store them using the
|
|
old-fashioned way, which is to iterate over the registers and
|
|
store them one by one. */
|
|
static void
|
|
store_gp_regs (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
int i;
|
|
|
|
if (have_ptrace_getsetregs)
|
|
if (store_all_gp_regs (regcache, tid, regno))
|
|
return;
|
|
|
|
/* If we hit this point, it doesn't really matter which
|
|
architecture we are using. We just need to store the
|
|
registers in the "old-fashioned way". */
|
|
for (i = 0; i < ppc_num_gprs; i++)
|
|
store_register (regcache, tid, tdep->ppc_gp0_regnum + i);
|
|
}
|
|
|
|
/* This function actually issues the request to ptrace, telling
|
|
it to store all floating-point registers present in the specified
|
|
regset.
|
|
|
|
If the ptrace request does not exist, this function returns 0
|
|
and properly sets the have_ptrace_* flag. If the request fails,
|
|
this function calls perror_with_name. Otherwise, if the request
|
|
succeeds, then the regcache is stored and 1 is returned. */
|
|
static int
|
|
store_all_fp_regs (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
gdb_fpregset_t fpregs;
|
|
|
|
if (ptrace (PTRACE_GETFPREGS, tid, 0, (void *) &fpregs) < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetfpregs = 0;
|
|
return 0;
|
|
}
|
|
perror_with_name (_("Couldn't get floating-point registers"));
|
|
}
|
|
|
|
fill_fpregset (regcache, &fpregs, regno);
|
|
|
|
if (ptrace (PTRACE_SETFPREGS, tid, 0, (void *) &fpregs) < 0)
|
|
{
|
|
if (errno == EIO)
|
|
{
|
|
have_ptrace_getsetfpregs = 0;
|
|
return 0;
|
|
}
|
|
perror_with_name (_("Couldn't set floating-point registers"));
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This is a wrapper for the store_all_fp_regs function. It is
|
|
responsible for verifying if this target has the ptrace request
|
|
that can be used to store all floating-point registers at one
|
|
shot. If it doesn't, then we should store them using the
|
|
old-fashioned way, which is to iterate over the registers and
|
|
store them one by one. */
|
|
static void
|
|
store_fp_regs (const struct regcache *regcache, int tid, int regno)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
int i;
|
|
|
|
if (have_ptrace_getsetfpregs)
|
|
if (store_all_fp_regs (regcache, tid, regno))
|
|
return;
|
|
|
|
/* If we hit this point, it doesn't really matter which
|
|
architecture we are using. We just need to store the
|
|
registers in the "old-fashioned way". */
|
|
for (i = 0; i < ppc_num_fprs; i++)
|
|
store_register (regcache, tid, tdep->ppc_fp0_regnum + i);
|
|
}
|
|
|
|
static void
|
|
store_ppc_registers (const struct regcache *regcache, int tid)
|
|
{
|
|
struct gdbarch *gdbarch = regcache->arch ();
|
|
ppc_gdbarch_tdep *tdep = gdbarch_tdep<ppc_gdbarch_tdep> (gdbarch);
|
|
|
|
store_gp_regs (regcache, tid, -1);
|
|
if (tdep->ppc_fp0_regnum >= 0)
|
|
store_fp_regs (regcache, tid, -1);
|
|
store_register (regcache, tid, gdbarch_pc_regnum (gdbarch));
|
|
if (tdep->ppc_ps_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_ps_regnum);
|
|
if (tdep->ppc_cr_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_cr_regnum);
|
|
if (tdep->ppc_lr_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_lr_regnum);
|
|
if (tdep->ppc_ctr_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_ctr_regnum);
|
|
if (tdep->ppc_xer_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_xer_regnum);
|
|
if (tdep->ppc_mq_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_mq_regnum);
|
|
if (tdep->ppc_fpscr_regnum != -1)
|
|
store_register (regcache, tid, tdep->ppc_fpscr_regnum);
|
|
if (ppc_linux_trap_reg_p (gdbarch))
|
|
{
|
|
store_register (regcache, tid, PPC_ORIG_R3_REGNUM);
|
|
store_register (regcache, tid, PPC_TRAP_REGNUM);
|
|
}
|
|
if (have_ptrace_getvrregs)
|
|
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
|
store_altivec_registers (regcache, tid, -1);
|
|
if (have_ptrace_getsetvsxregs)
|
|
if (tdep->ppc_vsr0_upper_regnum != -1)
|
|
store_vsx_registers (regcache, tid, -1);
|
|
if (tdep->ppc_ev0_upper_regnum >= 0)
|
|
store_spe_register (regcache, tid, -1);
|
|
if (tdep->ppc_ppr_regnum != -1)
|
|
store_regset (regcache, tid, -1, NT_PPC_PPR,
|
|
PPC_LINUX_SIZEOF_PPRREGSET,
|
|
&ppc32_linux_pprregset);
|
|
if (tdep->ppc_dscr_regnum != -1)
|
|
store_regset (regcache, tid, -1, NT_PPC_DSCR,
|
|
PPC_LINUX_SIZEOF_DSCRREGSET,
|
|
&ppc32_linux_dscrregset);
|
|
if (tdep->ppc_tar_regnum != -1)
|
|
store_regset (regcache, tid, -1, NT_PPC_TAR,
|
|
PPC_LINUX_SIZEOF_TARREGSET,
|
|
&ppc32_linux_tarregset);
|
|
|
|
if (tdep->ppc_mmcr0_regnum != -1)
|
|
store_regset (regcache, tid, -1, NT_PPC_PMU,
|
|
PPC_LINUX_SIZEOF_PMUREGSET,
|
|
&ppc32_linux_pmuregset);
|
|
|
|
if (tdep->have_htm_spr)
|
|
store_regset (regcache, tid, -1, NT_PPC_TM_SPR,
|
|
PPC_LINUX_SIZEOF_TM_SPRREGSET,
|
|
&ppc32_linux_tm_sprregset);
|
|
|
|
/* Because the EBB and checkpointed HTM registers can be
|
|
unavailable, attempts to store them here would cause this
|
|
function to fail most of the time, so we ignore them. */
|
|
}
|
|
|
|
void
|
|
ppc_linux_nat_target::store_registers (struct regcache *regcache, int regno)
|
|
{
|
|
pid_t tid = get_ptrace_pid (regcache->ptid ());
|
|
|
|
if (regno >= 0)
|
|
store_register (regcache, tid, regno);
|
|
else
|
|
store_ppc_registers (regcache, tid);
|
|
}
|
|
|
|
/* Functions for transferring registers between a gregset_t or fpregset_t
|
|
(see sys/ucontext.h) and gdb's regcache. The word size is that used
|
|
by the ptrace interface, not the current program's ABI. Eg. if a
|
|
powerpc64-linux gdb is being used to debug a powerpc32-linux app, we
|
|
read or write 64-bit gregsets. This is to suit the host libthread_db. */
|
|
|
|
void
|
|
supply_gregset (struct regcache *regcache, const gdb_gregset_t *gregsetp)
|
|
{
|
|
const struct regset *regset = ppc_linux_gregset (sizeof (long));
|
|
|
|
ppc_supply_gregset (regset, regcache, -1, gregsetp, sizeof (*gregsetp));
|
|
}
|
|
|
|
void
|
|
fill_gregset (const struct regcache *regcache,
|
|
gdb_gregset_t *gregsetp, int regno)
|
|
{
|
|
const struct regset *regset = ppc_linux_gregset (sizeof (long));
|
|
|
|
if (regno == -1)
|
|
memset (gregsetp, 0, sizeof (*gregsetp));
|
|
ppc_collect_gregset (regset, regcache, regno, gregsetp, sizeof (*gregsetp));
|
|
}
|
|
|
|
void
|
|
supply_fpregset (struct regcache *regcache, const gdb_fpregset_t * fpregsetp)
|
|
{
|
|
const struct regset *regset = ppc_linux_fpregset ();
|
|
|
|
ppc_supply_fpregset (regset, regcache, -1,
|
|
fpregsetp, sizeof (*fpregsetp));
|
|
}
|
|
|
|
void
|
|
fill_fpregset (const struct regcache *regcache,
|
|
gdb_fpregset_t *fpregsetp, int regno)
|
|
{
|
|
const struct regset *regset = ppc_linux_fpregset ();
|
|
|
|
ppc_collect_fpregset (regset, regcache, regno,
|
|
fpregsetp, sizeof (*fpregsetp));
|
|
}
|
|
|
|
int
|
|
ppc_linux_nat_target::auxv_parse (const gdb_byte **readptr,
|
|
const gdb_byte *endptr, CORE_ADDR *typep,
|
|
CORE_ADDR *valp)
|
|
{
|
|
int tid = inferior_ptid.lwp ();
|
|
if (tid == 0)
|
|
tid = inferior_ptid.pid ();
|
|
|
|
int sizeof_auxv_field = ppc_linux_target_wordsize (tid);
|
|
|
|
enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
|
|
const gdb_byte *ptr = *readptr;
|
|
|
|
if (endptr == ptr)
|
|
return 0;
|
|
|
|
if (endptr - ptr < sizeof_auxv_field * 2)
|
|
return -1;
|
|
|
|
*typep = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
|
|
ptr += sizeof_auxv_field;
|
|
*valp = extract_unsigned_integer (ptr, sizeof_auxv_field, byte_order);
|
|
ptr += sizeof_auxv_field;
|
|
|
|
*readptr = ptr;
|
|
return 1;
|
|
}
|
|
|
|
const struct target_desc *
|
|
ppc_linux_nat_target::read_description ()
|
|
{
|
|
int tid = inferior_ptid.pid ();
|
|
|
|
if (have_ptrace_getsetevrregs)
|
|
{
|
|
struct gdb_evrregset_t evrregset;
|
|
|
|
if (ptrace (PTRACE_GETEVRREGS, tid, 0, &evrregset) >= 0)
|
|
return tdesc_powerpc_e500l;
|
|
|
|
/* EIO means that the PTRACE_GETEVRREGS request isn't supported.
|
|
Anything else needs to be reported. */
|
|
else if (errno != EIO)
|
|
perror_with_name (_("Unable to fetch SPE registers"));
|
|
}
|
|
|
|
struct ppc_linux_features features = ppc_linux_no_features;
|
|
|
|
features.wordsize = ppc_linux_target_wordsize (tid);
|
|
|
|
CORE_ADDR hwcap = linux_get_hwcap ();
|
|
CORE_ADDR hwcap2 = linux_get_hwcap2 ();
|
|
|
|
if (have_ptrace_getsetvsxregs
|
|
&& (hwcap & PPC_FEATURE_HAS_VSX))
|
|
{
|
|
gdb_vsxregset_t vsxregset;
|
|
|
|
if (ptrace (PTRACE_GETVSXREGS, tid, 0, &vsxregset) >= 0)
|
|
features.vsx = true;
|
|
|
|
/* EIO means that the PTRACE_GETVSXREGS request isn't supported.
|
|
Anything else needs to be reported. */
|
|
else if (errno != EIO)
|
|
perror_with_name (_("Unable to fetch VSX registers"));
|
|
}
|
|
|
|
if (have_ptrace_getvrregs
|
|
&& (hwcap & PPC_FEATURE_HAS_ALTIVEC))
|
|
{
|
|
gdb_vrregset_t vrregset;
|
|
|
|
if (ptrace (PTRACE_GETVRREGS, tid, 0, &vrregset) >= 0)
|
|
features.altivec = true;
|
|
|
|
/* EIO means that the PTRACE_GETVRREGS request isn't supported.
|
|
Anything else needs to be reported. */
|
|
else if (errno != EIO)
|
|
perror_with_name (_("Unable to fetch AltiVec registers"));
|
|
}
|
|
|
|
features.isa205 = ppc_linux_has_isa205 (hwcap);
|
|
|
|
if ((hwcap2 & PPC_FEATURE2_DSCR)
|
|
&& check_regset (tid, NT_PPC_PPR, PPC_LINUX_SIZEOF_PPRREGSET)
|
|
&& check_regset (tid, NT_PPC_DSCR, PPC_LINUX_SIZEOF_DSCRREGSET))
|
|
{
|
|
features.ppr_dscr = true;
|
|
if ((hwcap2 & PPC_FEATURE2_ARCH_2_07)
|
|
&& (hwcap2 & PPC_FEATURE2_TAR)
|
|
&& (hwcap2 & PPC_FEATURE2_EBB)
|
|
&& check_regset (tid, NT_PPC_TAR, PPC_LINUX_SIZEOF_TARREGSET)
|
|
&& check_regset (tid, NT_PPC_EBB, PPC_LINUX_SIZEOF_EBBREGSET)
|
|
&& check_regset (tid, NT_PPC_PMU, PPC_LINUX_SIZEOF_PMUREGSET))
|
|
{
|
|
features.isa207 = true;
|
|
if ((hwcap2 & PPC_FEATURE2_HTM)
|
|
&& check_regset (tid, NT_PPC_TM_SPR,
|
|
PPC_LINUX_SIZEOF_TM_SPRREGSET))
|
|
features.htm = true;
|
|
}
|
|
}
|
|
|
|
return ppc_linux_match_description (features);
|
|
}
|
|
|
|
/* Routines for installing hardware watchpoints and breakpoints. When
|
|
GDB requests a hardware watchpoint or breakpoint to be installed, we
|
|
register the request for the pid of inferior_ptid in a map with one
|
|
entry per process. We then issue a stop request to all the threads of
|
|
this process, and mark a per-thread flag indicating that their debug
|
|
registers should be updated. Right before they are next resumed, we
|
|
remove all previously installed debug registers and install all the
|
|
ones GDB requested. We then update a map with one entry per thread
|
|
that keeps track of what debug registers were last installed in each
|
|
thread.
|
|
|
|
We use this second map to remove installed registers before installing
|
|
the ones requested by GDB, and to copy the debug register state after
|
|
a thread clones or forks, since depending on the kernel configuration,
|
|
debug registers can be inherited. */
|
|
|
|
/* Check if we support and have enough resources to install a hardware
|
|
watchpoint or breakpoint. See the description in target.h. */
|
|
|
|
int
|
|
ppc_linux_nat_target::can_use_hw_breakpoint (enum bptype type, int cnt,
|
|
int ot)
|
|
{
|
|
int total_hw_wp, total_hw_bp;
|
|
|
|
m_dreg_interface.detect (inferior_ptid);
|
|
|
|
if (m_dreg_interface.unavailable_p ())
|
|
return 0;
|
|
|
|
if (m_dreg_interface.hwdebug_p ())
|
|
{
|
|
/* When PowerPC HWDEBUG ptrace interface is available, the number of
|
|
available hardware watchpoints and breakpoints is stored at the
|
|
hwdebug_info struct. */
|
|
total_hw_bp = m_dreg_interface.hwdebug_info ().num_instruction_bps;
|
|
total_hw_wp = m_dreg_interface.hwdebug_info ().num_data_bps;
|
|
}
|
|
else
|
|
{
|
|
gdb_assert (m_dreg_interface.debugreg_p ());
|
|
|
|
/* With the DEBUGREG ptrace interface, we should consider having 1
|
|
hardware watchpoint and no hardware breakpoints. */
|
|
total_hw_bp = 0;
|
|
total_hw_wp = 1;
|
|
}
|
|
|
|
if (type == bp_hardware_watchpoint || type == bp_read_watchpoint
|
|
|| type == bp_access_watchpoint || type == bp_watchpoint)
|
|
{
|
|
if (total_hw_wp == 0)
|
|
return 0;
|
|
else if (cnt + ot > total_hw_wp)
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
else if (type == bp_hardware_breakpoint)
|
|
{
|
|
if (total_hw_bp == 0)
|
|
return 0;
|
|
else if (cnt > total_hw_bp)
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Returns 1 if we can watch LEN bytes at address ADDR, 0 otherwise. */
|
|
|
|
int
|
|
ppc_linux_nat_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
|
|
{
|
|
/* Handle sub-8-byte quantities. */
|
|
if (len <= 0)
|
|
return 0;
|
|
|
|
m_dreg_interface.detect (inferior_ptid);
|
|
|
|
if (m_dreg_interface.unavailable_p ())
|
|
return 0;
|
|
|
|
/* The PowerPC HWDEBUG ptrace interface tells if there are alignment
|
|
restrictions for watchpoints in the processors. In that case, we use that
|
|
information to determine the hardcoded watchable region for
|
|
watchpoints. */
|
|
if (m_dreg_interface.hwdebug_p ())
|
|
{
|
|
const struct ppc_debug_info &hwdebug_info = (m_dreg_interface
|
|
.hwdebug_info ());
|
|
int region_size = hwdebug_info.data_bp_alignment;
|
|
int region_align = region_size;
|
|
|
|
/* Embedded DAC-based processors, like the PowerPC 440 have ranged
|
|
watchpoints and can watch any access within an arbitrary memory
|
|
region. This is useful to watch arrays and structs, for instance. It
|
|
takes two hardware watchpoints though. */
|
|
if (len > 1
|
|
&& hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE
|
|
&& (linux_get_hwcap () & PPC_FEATURE_BOOKE))
|
|
return 2;
|
|
/* Check if the processor provides DAWR interface. */
|
|
if (hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_DAWR)
|
|
{
|
|
/* DAWR interface allows to watch up to 512 byte wide ranges. */
|
|
region_size = 512;
|
|
/* DAWR interface allows to watch up to 512 byte wide ranges which
|
|
can't cross a 512 byte bondary on machines that doesn't have a
|
|
second DAWR (P9 or less). */
|
|
if (!(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_ARCH_31))
|
|
region_align = 512;
|
|
}
|
|
/* Server processors provide one hardware watchpoint and addr+len should
|
|
fall in the watchable region provided by the ptrace interface. */
|
|
if (region_align
|
|
&& (addr + len > (addr & ~(region_align - 1)) + region_size))
|
|
return 0;
|
|
}
|
|
/* addr+len must fall in the 8 byte watchable region for DABR-based
|
|
processors (i.e., server processors). Without the new PowerPC HWDEBUG
|
|
ptrace interface, DAC-based processors (i.e., embedded processors) will
|
|
use addresses aligned to 4-bytes due to the way the read/write flags are
|
|
passed in the old ptrace interface. */
|
|
else
|
|
{
|
|
gdb_assert (m_dreg_interface.debugreg_p ());
|
|
|
|
if (((linux_get_hwcap () & PPC_FEATURE_BOOKE)
|
|
&& (addr + len) > (addr & ~3) + 4)
|
|
|| (addr + len) > (addr & ~7) + 8)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* This function compares two ppc_hw_breakpoint structs
|
|
field-by-field. */
|
|
|
|
bool
|
|
ppc_linux_nat_target::hwdebug_point_cmp (const struct ppc_hw_breakpoint &a,
|
|
const struct ppc_hw_breakpoint &b)
|
|
{
|
|
return (a.trigger_type == b.trigger_type
|
|
&& a.addr_mode == b.addr_mode
|
|
&& a.condition_mode == b.condition_mode
|
|
&& a.addr == b.addr
|
|
&& a.addr2 == b.addr2
|
|
&& a.condition_value == b.condition_value);
|
|
}
|
|
|
|
/* Return the number of registers needed for a ranged breakpoint. */
|
|
|
|
int
|
|
ppc_linux_nat_target::ranged_break_num_registers ()
|
|
{
|
|
m_dreg_interface.detect (inferior_ptid);
|
|
|
|
return ((m_dreg_interface.hwdebug_p ()
|
|
&& (m_dreg_interface.hwdebug_info ().features
|
|
& PPC_DEBUG_FEATURE_INSN_BP_RANGE))?
|
|
2 : -1);
|
|
}
|
|
|
|
/* Register the hardware breakpoint described by BP_TGT, to be inserted
|
|
when the threads of inferior_ptid are resumed. Returns 0 for success,
|
|
or -1 if the HWDEBUG interface that we need for hardware breakpoints
|
|
is not available. */
|
|
|
|
int
|
|
ppc_linux_nat_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
|
|
struct bp_target_info *bp_tgt)
|
|
{
|
|
struct ppc_hw_breakpoint p;
|
|
|
|
m_dreg_interface.detect (inferior_ptid);
|
|
|
|
if (!m_dreg_interface.hwdebug_p ())
|
|
return -1;
|
|
|
|
p.version = PPC_DEBUG_CURRENT_VERSION;
|
|
p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
|
|
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
|
p.addr = (uint64_t) (bp_tgt->placed_address = bp_tgt->reqstd_address);
|
|
p.condition_value = 0;
|
|
|
|
if (bp_tgt->length)
|
|
{
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
|
|
|
|
/* The breakpoint will trigger if the address of the instruction is
|
|
within the defined range, as follows: p.addr <= address < p.addr2. */
|
|
p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
|
|
}
|
|
else
|
|
{
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
|
|
p.addr2 = 0;
|
|
}
|
|
|
|
register_hw_breakpoint (inferior_ptid.pid (), p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Clear a registration for the hardware breakpoint given by type BP_TGT.
|
|
It will be removed from the threads of inferior_ptid when they are
|
|
next resumed. Returns 0 for success, or -1 if the HWDEBUG interface
|
|
that we need for hardware breakpoints is not available. */
|
|
|
|
int
|
|
ppc_linux_nat_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
|
|
struct bp_target_info *bp_tgt)
|
|
{
|
|
struct ppc_hw_breakpoint p;
|
|
|
|
m_dreg_interface.detect (inferior_ptid);
|
|
|
|
if (!m_dreg_interface.hwdebug_p ())
|
|
return -1;
|
|
|
|
p.version = PPC_DEBUG_CURRENT_VERSION;
|
|
p.trigger_type = PPC_BREAKPOINT_TRIGGER_EXECUTE;
|
|
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
|
p.addr = (uint64_t) bp_tgt->placed_address;
|
|
p.condition_value = 0;
|
|
|
|
if (bp_tgt->length)
|
|
{
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
|
|
|
|
/* The breakpoint will trigger if the address of the instruction is within
|
|
the defined range, as follows: p.addr <= address < p.addr2. */
|
|
p.addr2 = (uint64_t) bp_tgt->placed_address + bp_tgt->length;
|
|
}
|
|
else
|
|
{
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_EXACT;
|
|
p.addr2 = 0;
|
|
}
|
|
|
|
clear_hw_breakpoint (inferior_ptid.pid (), p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Return the trigger value to set in a ppc_hw_breakpoint object for a
|
|
given hardware watchpoint TYPE. We assume type is not hw_execute. */
|
|
|
|
int
|
|
ppc_linux_nat_target::get_trigger_type (enum target_hw_bp_type type)
|
|
{
|
|
int t;
|
|
|
|
if (type == hw_read)
|
|
t = PPC_BREAKPOINT_TRIGGER_READ;
|
|
else if (type == hw_write)
|
|
t = PPC_BREAKPOINT_TRIGGER_WRITE;
|
|
else
|
|
t = PPC_BREAKPOINT_TRIGGER_READ | PPC_BREAKPOINT_TRIGGER_WRITE;
|
|
|
|
return t;
|
|
}
|
|
|
|
/* Register a new masked watchpoint at ADDR using the mask MASK, to be
|
|
inserted when the threads of inferior_ptid are resumed. RW may be
|
|
hw_read for a read watchpoint, hw_write for a write watchpoint or
|
|
hw_access for an access watchpoint. */
|
|
|
|
int
|
|
ppc_linux_nat_target::insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
|
|
target_hw_bp_type rw)
|
|
{
|
|
struct ppc_hw_breakpoint p;
|
|
|
|
gdb_assert (m_dreg_interface.hwdebug_p ());
|
|
|
|
p.version = PPC_DEBUG_CURRENT_VERSION;
|
|
p.trigger_type = get_trigger_type (rw);
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
|
|
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
|
p.addr = addr;
|
|
p.addr2 = mask;
|
|
p.condition_value = 0;
|
|
|
|
register_hw_breakpoint (inferior_ptid.pid (), p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Clear a registration for a masked watchpoint at ADDR with the mask
|
|
MASK. It will be removed from the threads of inferior_ptid when they
|
|
are next resumed. RW may be hw_read for a read watchpoint, hw_write
|
|
for a write watchpoint or hw_access for an access watchpoint. */
|
|
|
|
int
|
|
ppc_linux_nat_target::remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
|
|
target_hw_bp_type rw)
|
|
{
|
|
struct ppc_hw_breakpoint p;
|
|
|
|
gdb_assert (m_dreg_interface.hwdebug_p ());
|
|
|
|
p.version = PPC_DEBUG_CURRENT_VERSION;
|
|
p.trigger_type = get_trigger_type (rw);
|
|
p.addr_mode = PPC_BREAKPOINT_MODE_MASK;
|
|
p.condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
|
p.addr = addr;
|
|
p.addr2 = mask;
|
|
p.condition_value = 0;
|
|
|
|
clear_hw_breakpoint (inferior_ptid.pid (), p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Check whether we have at least one free DVC register for the threads
|
|
of the pid of inferior_ptid. */
|
|
|
|
bool
|
|
ppc_linux_nat_target::can_use_watchpoint_cond_accel (void)
|
|
{
|
|
m_dreg_interface.detect (inferior_ptid);
|
|
|
|
if (!m_dreg_interface.hwdebug_p ())
|
|
return false;
|
|
|
|
int cnt = m_dreg_interface.hwdebug_info ().num_condition_regs;
|
|
|
|
if (cnt == 0)
|
|
return false;
|
|
|
|
auto process_it = m_process_info.find (inferior_ptid.pid ());
|
|
|
|
/* No breakpoints or watchpoints have been requested for this process,
|
|
we have at least one free DVC register. */
|
|
if (process_it == m_process_info.end ())
|
|
return true;
|
|
|
|
for (const ppc_hw_breakpoint &bp : process_it->second.requested_hw_bps)
|
|
if (bp.condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
|
|
cnt--;
|
|
|
|
if (cnt <= 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Calculate the enable bits and the contents of the Data Value Compare
|
|
debug register present in BookE processors.
|
|
|
|
ADDR is the address to be watched, LEN is the length of watched data
|
|
and DATA_VALUE is the value which will trigger the watchpoint.
|
|
On exit, CONDITION_MODE will hold the enable bits for the DVC, and
|
|
CONDITION_VALUE will hold the value which should be put in the
|
|
DVC register. */
|
|
|
|
void
|
|
ppc_linux_nat_target::calculate_dvc (CORE_ADDR addr, int len,
|
|
CORE_ADDR data_value,
|
|
uint32_t *condition_mode,
|
|
uint64_t *condition_value)
|
|
{
|
|
const struct ppc_debug_info &hwdebug_info = (m_dreg_interface.
|
|
hwdebug_info ());
|
|
|
|
int i, num_byte_enable, align_offset, num_bytes_off_dvc,
|
|
rightmost_enabled_byte;
|
|
CORE_ADDR addr_end_data, addr_end_dvc;
|
|
|
|
/* The DVC register compares bytes within fixed-length windows which
|
|
are word-aligned, with length equal to that of the DVC register.
|
|
We need to calculate where our watch region is relative to that
|
|
window and enable comparison of the bytes which fall within it. */
|
|
|
|
align_offset = addr % hwdebug_info.sizeof_condition;
|
|
addr_end_data = addr + len;
|
|
addr_end_dvc = (addr - align_offset
|
|
+ hwdebug_info.sizeof_condition);
|
|
num_bytes_off_dvc = (addr_end_data > addr_end_dvc)?
|
|
addr_end_data - addr_end_dvc : 0;
|
|
num_byte_enable = len - num_bytes_off_dvc;
|
|
/* Here, bytes are numbered from right to left. */
|
|
rightmost_enabled_byte = (addr_end_data < addr_end_dvc)?
|
|
addr_end_dvc - addr_end_data : 0;
|
|
|
|
*condition_mode = PPC_BREAKPOINT_CONDITION_AND;
|
|
for (i = 0; i < num_byte_enable; i++)
|
|
*condition_mode
|
|
|= PPC_BREAKPOINT_CONDITION_BE (i + rightmost_enabled_byte);
|
|
|
|
/* Now we need to match the position within the DVC of the comparison
|
|
value with where the watch region is relative to the window
|
|
(i.e., the ALIGN_OFFSET). */
|
|
|
|
*condition_value = ((uint64_t) data_value >> num_bytes_off_dvc * 8
|
|
<< rightmost_enabled_byte * 8);
|
|
}
|
|
|
|
/* Return the number of memory locations that need to be accessed to
|
|
evaluate the expression which generated the given value chain.
|
|
Returns -1 if there's any register access involved, or if there are
|
|
other kinds of values which are not acceptable in a condition
|
|
expression (e.g., lval_computed or lval_internalvar). */
|
|
|
|
int
|
|
ppc_linux_nat_target::num_memory_accesses (const std::vector<value_ref_ptr>
|
|
&chain)
|
|
{
|
|
int found_memory_cnt = 0;
|
|
|
|
/* The idea here is that evaluating an expression generates a series
|
|
of values, one holding the value of every subexpression. (The
|
|
expression a*b+c has five subexpressions: a, b, a*b, c, and
|
|
a*b+c.) GDB's values hold almost enough information to establish
|
|
the criteria given above --- they identify memory lvalues,
|
|
register lvalues, computed values, etcetera. So we can evaluate
|
|
the expression, and then scan the chain of values that leaves
|
|
behind to determine the memory locations involved in the evaluation
|
|
of an expression.
|
|
|
|
However, I don't think that the values returned by inferior
|
|
function calls are special in any way. So this function may not
|
|
notice that an expression contains an inferior function call.
|
|
FIXME. */
|
|
|
|
for (const value_ref_ptr &iter : chain)
|
|
{
|
|
struct value *v = iter.get ();
|
|
|
|
/* Constants and values from the history are fine. */
|
|
if (v->lval () == not_lval || !v->deprecated_modifiable ())
|
|
continue;
|
|
else if (v->lval () == lval_memory)
|
|
{
|
|
/* A lazy memory lvalue is one that GDB never needed to fetch;
|
|
we either just used its address (e.g., `a' in `a.b') or
|
|
we never needed it at all (e.g., `a' in `a,b'). */
|
|
if (!v->lazy ())
|
|
found_memory_cnt++;
|
|
}
|
|
/* Other kinds of values are not fine. */
|
|
else
|
|
return -1;
|
|
}
|
|
|
|
return found_memory_cnt;
|
|
}
|
|
|
|
/* Verifies whether the expression COND can be implemented using the
|
|
DVC (Data Value Compare) register in BookE processors. The expression
|
|
must test the watch value for equality with a constant expression.
|
|
If the function returns 1, DATA_VALUE will contain the constant against
|
|
which the watch value should be compared and LEN will contain the size
|
|
of the constant. */
|
|
|
|
int
|
|
ppc_linux_nat_target::check_condition (CORE_ADDR watch_addr,
|
|
struct expression *cond,
|
|
CORE_ADDR *data_value, int *len)
|
|
{
|
|
int num_accesses_left, num_accesses_right;
|
|
struct value *left_val, *right_val;
|
|
std::vector<value_ref_ptr> left_chain, right_chain;
|
|
|
|
expr::equal_operation *eqop
|
|
= dynamic_cast<expr::equal_operation *> (cond->op.get ());
|
|
if (eqop == nullptr)
|
|
return 0;
|
|
expr::operation *lhs = eqop->get_lhs ();
|
|
expr::operation *rhs = eqop->get_rhs ();
|
|
|
|
fetch_subexp_value (cond, lhs, &left_val, NULL, &left_chain, false);
|
|
num_accesses_left = num_memory_accesses (left_chain);
|
|
|
|
if (left_val == NULL || num_accesses_left < 0)
|
|
return 0;
|
|
|
|
fetch_subexp_value (cond, rhs, &right_val, NULL, &right_chain, false);
|
|
num_accesses_right = num_memory_accesses (right_chain);
|
|
|
|
if (right_val == NULL || num_accesses_right < 0)
|
|
return 0;
|
|
|
|
if (num_accesses_left == 1 && num_accesses_right == 0
|
|
&& left_val->lval () == lval_memory
|
|
&& left_val->address () == watch_addr)
|
|
{
|
|
*data_value = value_as_long (right_val);
|
|
|
|
/* DATA_VALUE is the constant in RIGHT_VAL, but actually has
|
|
the same type as the memory region referenced by LEFT_VAL. */
|
|
*len = check_typedef (left_val->type ())->length ();
|
|
}
|
|
else if (num_accesses_left == 0 && num_accesses_right == 1
|
|
&& right_val->lval () == lval_memory
|
|
&& right_val->address () == watch_addr)
|
|
{
|
|
*data_value = value_as_long (left_val);
|
|
|
|
/* DATA_VALUE is the constant in LEFT_VAL, but actually has
|
|
the same type as the memory region referenced by RIGHT_VAL. */
|
|
*len = check_typedef (right_val->type ())->length ();
|
|
}
|
|
else
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Return true if the target is capable of using hardware to evaluate the
|
|
condition expression, thus only triggering the watchpoint when it is
|
|
true. */
|
|
|
|
bool
|
|
ppc_linux_nat_target::can_accel_watchpoint_condition (CORE_ADDR addr,
|
|
int len, int rw,
|
|
struct expression *cond)
|
|
{
|
|
CORE_ADDR data_value;
|
|
|
|
m_dreg_interface.detect (inferior_ptid);
|
|
|
|
return (m_dreg_interface.hwdebug_p ()
|
|
&& (m_dreg_interface.hwdebug_info ().num_condition_regs > 0)
|
|
&& check_condition (addr, cond, &data_value, &len));
|
|
}
|
|
|
|
/* Set up P with the parameters necessary to request a watchpoint covering
|
|
LEN bytes starting at ADDR and if possible with condition expression COND
|
|
evaluated by hardware. INSERT tells if we are creating a request for
|
|
inserting or removing the watchpoint. */
|
|
|
|
void
|
|
ppc_linux_nat_target::create_watchpoint_request (struct ppc_hw_breakpoint *p,
|
|
CORE_ADDR addr, int len,
|
|
enum target_hw_bp_type type,
|
|
struct expression *cond,
|
|
int insert)
|
|
{
|
|
const struct ppc_debug_info &hwdebug_info = (m_dreg_interface
|
|
.hwdebug_info ());
|
|
|
|
if (len == 1
|
|
|| !(hwdebug_info.features & PPC_DEBUG_FEATURE_DATA_BP_RANGE))
|
|
{
|
|
int use_condition;
|
|
CORE_ADDR data_value;
|
|
|
|
use_condition = (insert? can_use_watchpoint_cond_accel ()
|
|
: hwdebug_info.num_condition_regs > 0);
|
|
if (cond && use_condition && check_condition (addr, cond,
|
|
&data_value, &len))
|
|
calculate_dvc (addr, len, data_value, &p->condition_mode,
|
|
&p->condition_value);
|
|
else
|
|
{
|
|
p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
|
p->condition_value = 0;
|
|
}
|
|
|
|
p->addr_mode = PPC_BREAKPOINT_MODE_EXACT;
|
|
p->addr2 = 0;
|
|
}
|
|
else
|
|
{
|
|
p->addr_mode = PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE;
|
|
p->condition_mode = PPC_BREAKPOINT_CONDITION_NONE;
|
|
p->condition_value = 0;
|
|
|
|
/* The watchpoint will trigger if the address of the memory access is
|
|
within the defined range, as follows: p->addr <= address < p->addr2.
|
|
|
|
Note that the above sentence just documents how ptrace interprets
|
|
its arguments; the watchpoint is set to watch the range defined by
|
|
the user _inclusively_, as specified by the user interface. */
|
|
p->addr2 = (uint64_t) addr + len;
|
|
}
|
|
|
|
p->version = PPC_DEBUG_CURRENT_VERSION;
|
|
p->trigger_type = get_trigger_type (type);
|
|
p->addr = (uint64_t) addr;
|
|
}
|
|
|
|
/* Register a watchpoint, to be inserted when the threads of the group of
|
|
inferior_ptid are next resumed. Returns 0 on success, and -1 if there
|
|
is no ptrace interface available to install the watchpoint. */
|
|
|
|
int
|
|
ppc_linux_nat_target::insert_watchpoint (CORE_ADDR addr, int len,
|
|
enum target_hw_bp_type type,
|
|
struct expression *cond)
|
|
{
|
|
m_dreg_interface.detect (inferior_ptid);
|
|
|
|
if (m_dreg_interface.unavailable_p ())
|
|
return -1;
|
|
|
|
if (m_dreg_interface.hwdebug_p ())
|
|
{
|
|
struct ppc_hw_breakpoint p;
|
|
|
|
create_watchpoint_request (&p, addr, len, type, cond, 1);
|
|
|
|
register_hw_breakpoint (inferior_ptid.pid (), p);
|
|
}
|
|
else
|
|
{
|
|
gdb_assert (m_dreg_interface.debugreg_p ());
|
|
|
|
long wp_value;
|
|
long read_mode, write_mode;
|
|
|
|
if (linux_get_hwcap () & PPC_FEATURE_BOOKE)
|
|
{
|
|
/* PowerPC 440 requires only the read/write flags to be passed
|
|
to the kernel. */
|
|
read_mode = 1;
|
|
write_mode = 2;
|
|
}
|
|
else
|
|
{
|
|
/* PowerPC 970 and other DABR-based processors are required to pass
|
|
the Breakpoint Translation bit together with the flags. */
|
|
read_mode = 5;
|
|
write_mode = 6;
|
|
}
|
|
|
|
wp_value = addr & ~(read_mode | write_mode);
|
|
switch (type)
|
|
{
|
|
case hw_read:
|
|
/* Set read and translate bits. */
|
|
wp_value |= read_mode;
|
|
break;
|
|
case hw_write:
|
|
/* Set write and translate bits. */
|
|
wp_value |= write_mode;
|
|
break;
|
|
case hw_access:
|
|
/* Set read, write and translate bits. */
|
|
wp_value |= read_mode | write_mode;
|
|
break;
|
|
}
|
|
|
|
register_wp (inferior_ptid.pid (), wp_value);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Clear a registration for a hardware watchpoint. It will be removed
|
|
from the threads of the group of inferior_ptid when they are next
|
|
resumed. */
|
|
|
|
int
|
|
ppc_linux_nat_target::remove_watchpoint (CORE_ADDR addr, int len,
|
|
enum target_hw_bp_type type,
|
|
struct expression *cond)
|
|
{
|
|
gdb_assert (!m_dreg_interface.unavailable_p ());
|
|
|
|
if (m_dreg_interface.hwdebug_p ())
|
|
{
|
|
struct ppc_hw_breakpoint p;
|
|
|
|
create_watchpoint_request (&p, addr, len, type, cond, 0);
|
|
|
|
clear_hw_breakpoint (inferior_ptid.pid (), p);
|
|
}
|
|
else
|
|
{
|
|
gdb_assert (m_dreg_interface.debugreg_p ());
|
|
|
|
clear_wp (inferior_ptid.pid ());
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Clean up the per-process info associated with PID. When using the
|
|
HWDEBUG interface, we also erase the per-thread state of installed
|
|
debug registers for all the threads that belong to the group of PID.
|
|
|
|
Usually the thread state is cleaned up by low_delete_thread. We also
|
|
do it here because low_new_thread is not called for the initial LWP,
|
|
so low_delete_thread won't be able to clean up this state. */
|
|
|
|
void
|
|
ppc_linux_nat_target::low_forget_process (pid_t pid)
|
|
{
|
|
if ((!m_dreg_interface.detected_p ())
|
|
|| (m_dreg_interface.unavailable_p ()))
|
|
return;
|
|
|
|
ptid_t pid_ptid (pid, 0, 0);
|
|
|
|
m_process_info.erase (pid);
|
|
|
|
if (m_dreg_interface.hwdebug_p ())
|
|
{
|
|
for (auto it = m_installed_hw_bps.begin ();
|
|
it != m_installed_hw_bps.end ();)
|
|
{
|
|
if (it->first.matches (pid_ptid))
|
|
it = m_installed_hw_bps.erase (it);
|
|
else
|
|
it++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Copy the per-process state associated with the pid of PARENT to the
|
|
sate of CHILD_PID. GDB expects that a forked process will have the
|
|
same hardware breakpoints and watchpoints as the parent.
|
|
|
|
If we're using the HWDEBUG interface, also copy the thread debug
|
|
register state for the ptid of PARENT to the state for CHILD_PID.
|
|
|
|
Like for clone events, we assume the kernel will copy the debug
|
|
registers from the parent thread to the child. The
|
|
low_prepare_to_resume function is made to work even if it doesn't.
|
|
|
|
We copy the thread state here and not in low_new_thread since we don't
|
|
have the pid of the parent in low_new_thread. Even if we did,
|
|
low_new_thread might not be called immediately after the fork event is
|
|
detected. For instance, with the checkpointing system (see
|
|
linux-fork.c), the thread won't be added until GDB decides to switch
|
|
to a new checkpointed process. At that point, the debug register
|
|
state of the parent thread is unlikely to correspond to the state it
|
|
had at the point when it forked. */
|
|
|
|
void
|
|
ppc_linux_nat_target::low_new_fork (struct lwp_info *parent,
|
|
pid_t child_pid)
|
|
{
|
|
if ((!m_dreg_interface.detected_p ())
|
|
|| (m_dreg_interface.unavailable_p ()))
|
|
return;
|
|
|
|
auto process_it = m_process_info.find (parent->ptid.pid ());
|
|
|
|
if (process_it != m_process_info.end ())
|
|
m_process_info[child_pid] = m_process_info[parent->ptid.pid ()];
|
|
|
|
if (m_dreg_interface.hwdebug_p ())
|
|
{
|
|
ptid_t child_ptid (child_pid, child_pid, 0);
|
|
|
|
copy_thread_dreg_state (parent->ptid, child_ptid);
|
|
}
|
|
}
|
|
|
|
/* Copy the thread debug register state from the PARENT thread to the the
|
|
state for CHILD_LWP, if we're using the HWDEBUG interface. We assume
|
|
the kernel copies the debug registers from one thread to another after
|
|
a clone event. The low_prepare_to_resume function is made to work
|
|
even if it doesn't. */
|
|
|
|
void
|
|
ppc_linux_nat_target::low_new_clone (struct lwp_info *parent,
|
|
pid_t child_lwp)
|
|
{
|
|
if ((!m_dreg_interface.detected_p ())
|
|
|| (m_dreg_interface.unavailable_p ()))
|
|
return;
|
|
|
|
if (m_dreg_interface.hwdebug_p ())
|
|
{
|
|
ptid_t child_ptid (parent->ptid.pid (), child_lwp, 0);
|
|
|
|
copy_thread_dreg_state (parent->ptid, child_ptid);
|
|
}
|
|
}
|
|
|
|
/* Initialize the arch-specific thread state for LP so that it contains
|
|
the ptid for lp, so that we can use it in low_delete_thread. Mark the
|
|
new thread LP as stale so that we update its debug registers before
|
|
resuming it. This is not called for the initial thread. */
|
|
|
|
void
|
|
ppc_linux_nat_target::low_new_thread (struct lwp_info *lp)
|
|
{
|
|
init_arch_lwp_info (lp);
|
|
|
|
mark_thread_stale (lp);
|
|
}
|
|
|
|
/* Delete the per-thread debug register stale flag. */
|
|
|
|
void
|
|
ppc_linux_nat_target::low_delete_thread (struct arch_lwp_info
|
|
*lp_arch_info)
|
|
{
|
|
if (lp_arch_info != NULL)
|
|
{
|
|
if (m_dreg_interface.detected_p ()
|
|
&& m_dreg_interface.hwdebug_p ())
|
|
m_installed_hw_bps.erase (lp_arch_info->lwp_ptid);
|
|
|
|
xfree (lp_arch_info);
|
|
}
|
|
}
|
|
|
|
/* Install or delete debug registers in thread LP so that it matches what
|
|
GDB requested before it is resumed. */
|
|
|
|
void
|
|
ppc_linux_nat_target::low_prepare_to_resume (struct lwp_info *lp)
|
|
{
|
|
if ((!m_dreg_interface.detected_p ())
|
|
|| (m_dreg_interface.unavailable_p ()))
|
|
return;
|
|
|
|
/* We have to re-install or clear the debug registers if we set the
|
|
stale flag.
|
|
|
|
In addition, some kernels configurations can disable a hardware
|
|
watchpoint after it is hit. Usually, GDB will remove and re-install
|
|
a hardware watchpoint when the thread stops if "breakpoint
|
|
always-inserted" is off, or to single-step a watchpoint. But so
|
|
that we don't rely on this behavior, if we stop due to a hardware
|
|
breakpoint or watchpoint, we also refresh our debug registers. */
|
|
|
|
arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp);
|
|
|
|
bool stale_dregs = (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
|
|
|| lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
|
|
|| lp_arch_info->debug_regs_stale);
|
|
|
|
if (!stale_dregs)
|
|
return;
|
|
|
|
gdb_assert (lp->ptid.lwp_p ());
|
|
|
|
auto process_it = m_process_info.find (lp->ptid.pid ());
|
|
|
|
if (m_dreg_interface.hwdebug_p ())
|
|
{
|
|
/* First, delete any hardware watchpoint or breakpoint installed in
|
|
the inferior and update the thread state. */
|
|
auto installed_it = m_installed_hw_bps.find (lp->ptid);
|
|
|
|
if (installed_it != m_installed_hw_bps.end ())
|
|
{
|
|
auto &bp_list = installed_it->second;
|
|
|
|
for (auto bp_it = bp_list.begin (); bp_it != bp_list.end ();)
|
|
{
|
|
/* We ignore ENOENT to account for various possible kernel
|
|
behaviors, e.g. the kernel might or might not copy debug
|
|
registers across forks and clones, and we always copy
|
|
the debug register state when fork and clone events are
|
|
detected. */
|
|
if (ptrace (PPC_PTRACE_DELHWDEBUG, lp->ptid.lwp (), 0,
|
|
bp_it->first) < 0)
|
|
if (errno != ENOENT)
|
|
perror_with_name (_("Error deleting hardware "
|
|
"breakpoint or watchpoint"));
|
|
|
|
/* We erase the entries one at a time after successfuly
|
|
removing the corresponding slot form the thread so that
|
|
if we throw an exception above in a future iteration the
|
|
map remains consistent. */
|
|
bp_it = bp_list.erase (bp_it);
|
|
}
|
|
|
|
gdb_assert (bp_list.empty ());
|
|
}
|
|
|
|
/* Now we install all the requested hardware breakpoints and
|
|
watchpoints and update the thread state. */
|
|
|
|
if (process_it != m_process_info.end ())
|
|
{
|
|
auto &bp_list = m_installed_hw_bps[lp->ptid];
|
|
|
|
for (ppc_hw_breakpoint bp
|
|
: process_it->second.requested_hw_bps)
|
|
{
|
|
long slot = ptrace (PPC_PTRACE_SETHWDEBUG, lp->ptid.lwp (),
|
|
0, &bp);
|
|
|
|
if (slot < 0)
|
|
perror_with_name (_("Error setting hardware "
|
|
"breakpoint or watchpoint"));
|
|
|
|
/* Keep track of which slots we installed in this
|
|
thread. */
|
|
bp_list.emplace (bp_list.begin (), slot, bp);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
gdb_assert (m_dreg_interface.debugreg_p ());
|
|
|
|
/* Passing 0 to PTRACE_SET_DEBUGREG will clear the watchpoint. We
|
|
always clear the watchpoint instead of just overwriting it, in
|
|
case there is a request for a new watchpoint, because on some
|
|
older kernel versions and configurations simply overwriting the
|
|
watchpoint after it was hit would not re-enable it. */
|
|
if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, 0) < 0)
|
|
perror_with_name (_("Error clearing hardware watchpoint"));
|
|
|
|
/* GDB requested a watchpoint to be installed. */
|
|
if (process_it != m_process_info.end ()
|
|
&& process_it->second.requested_wp_val.has_value ())
|
|
{
|
|
long wp = *(process_it->second.requested_wp_val);
|
|
|
|
if (ptrace (PTRACE_SET_DEBUGREG, lp->ptid.lwp (), 0, wp) < 0)
|
|
perror_with_name (_("Error setting hardware watchpoint"));
|
|
}
|
|
}
|
|
|
|
lp_arch_info->debug_regs_stale = false;
|
|
}
|
|
|
|
/* Return true if INFERIOR_PTID is known to have been stopped by a
|
|
hardware watchpoint, false otherwise. If true is returned, write the
|
|
address that the kernel reported as causing the SIGTRAP in ADDR_P. */
|
|
|
|
bool
|
|
ppc_linux_nat_target::low_stopped_data_address (CORE_ADDR *addr_p)
|
|
{
|
|
siginfo_t siginfo;
|
|
|
|
if (!linux_nat_get_siginfo (inferior_ptid, &siginfo))
|
|
return false;
|
|
|
|
if (siginfo.si_signo != SIGTRAP
|
|
|| (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
|
|
return false;
|
|
|
|
gdb_assert (!m_dreg_interface.unavailable_p ());
|
|
|
|
/* Check if this signal corresponds to a hardware breakpoint. We only
|
|
need to check this if we're using the HWDEBUG interface, since the
|
|
DEBUGREG interface only allows setting one hardware watchpoint. */
|
|
if (m_dreg_interface.hwdebug_p ())
|
|
{
|
|
/* The index (or slot) of the *point is passed in the si_errno
|
|
field. Currently, this is only the case if the kernel was
|
|
configured with CONFIG_PPC_ADV_DEBUG_REGS. If not, we assume
|
|
the kernel will set si_errno to a value that doesn't correspond
|
|
to any real slot. */
|
|
int slot = siginfo.si_errno;
|
|
|
|
auto installed_it = m_installed_hw_bps.find (inferior_ptid);
|
|
|
|
/* We must have installed slots for the thread if it got a
|
|
TRAP_HWBKPT signal. */
|
|
gdb_assert (installed_it != m_installed_hw_bps.end ());
|
|
|
|
for (const auto & slot_bp_pair : installed_it->second)
|
|
if (slot_bp_pair.first == slot
|
|
&& (slot_bp_pair.second.trigger_type
|
|
== PPC_BREAKPOINT_TRIGGER_EXECUTE))
|
|
return false;
|
|
}
|
|
|
|
*addr_p = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if INFERIOR_PTID is known to have been stopped by a
|
|
hardware watchpoint, false otherwise. */
|
|
|
|
bool
|
|
ppc_linux_nat_target::low_stopped_by_watchpoint ()
|
|
{
|
|
CORE_ADDR addr;
|
|
return low_stopped_data_address (&addr);
|
|
}
|
|
|
|
bool
|
|
ppc_linux_nat_target::watchpoint_addr_within_range (CORE_ADDR addr,
|
|
CORE_ADDR start,
|
|
int length)
|
|
{
|
|
gdb_assert (!m_dreg_interface.unavailable_p ());
|
|
|
|
int mask;
|
|
|
|
if (m_dreg_interface.hwdebug_p ()
|
|
&& (linux_get_hwcap () & PPC_FEATURE_BOOKE))
|
|
return start <= addr && start + length >= addr;
|
|
else if (linux_get_hwcap () & PPC_FEATURE_BOOKE)
|
|
mask = 3;
|
|
else
|
|
mask = 7;
|
|
|
|
addr &= ~mask;
|
|
|
|
/* Check whether [start, start+length-1] intersects [addr, addr+mask]. */
|
|
return start <= addr + mask && start + length - 1 >= addr;
|
|
}
|
|
|
|
/* Return the number of registers needed for a masked hardware watchpoint. */
|
|
|
|
int
|
|
ppc_linux_nat_target::masked_watch_num_registers (CORE_ADDR addr,
|
|
CORE_ADDR mask)
|
|
{
|
|
m_dreg_interface.detect (inferior_ptid);
|
|
|
|
if (!m_dreg_interface.hwdebug_p ()
|
|
|| (m_dreg_interface.hwdebug_info ().features
|
|
& PPC_DEBUG_FEATURE_DATA_BP_MASK) == 0)
|
|
return -1;
|
|
else if ((mask & 0xC0000000) != 0xC0000000)
|
|
{
|
|
warning (_("The given mask covers kernel address space "
|
|
"and cannot be used.\n"));
|
|
|
|
return -2;
|
|
}
|
|
else
|
|
return 2;
|
|
}
|
|
|
|
/* Copy the per-thread debug register state, if any, from thread
|
|
PARENT_PTID to thread CHILD_PTID, if the debug register being used is
|
|
HWDEBUG. */
|
|
|
|
void
|
|
ppc_linux_nat_target::copy_thread_dreg_state (const ptid_t &parent_ptid,
|
|
const ptid_t &child_ptid)
|
|
{
|
|
gdb_assert (m_dreg_interface.hwdebug_p ());
|
|
|
|
auto installed_it = m_installed_hw_bps.find (parent_ptid);
|
|
|
|
if (installed_it != m_installed_hw_bps.end ())
|
|
m_installed_hw_bps[child_ptid] = m_installed_hw_bps[parent_ptid];
|
|
}
|
|
|
|
/* Mark the debug register stale flag for the new thread, if we have
|
|
already detected which debug register interface we use. */
|
|
|
|
void
|
|
ppc_linux_nat_target::mark_thread_stale (struct lwp_info *lp)
|
|
{
|
|
if ((!m_dreg_interface.detected_p ())
|
|
|| (m_dreg_interface.unavailable_p ()))
|
|
return;
|
|
|
|
arch_lwp_info *lp_arch_info = get_arch_lwp_info (lp);
|
|
|
|
lp_arch_info->debug_regs_stale = true;
|
|
}
|
|
|
|
/* Mark all the threads of the group of PID as stale with respect to
|
|
debug registers and issue a stop request to each such thread that
|
|
isn't already stopped. */
|
|
|
|
void
|
|
ppc_linux_nat_target::mark_debug_registers_changed (pid_t pid)
|
|
{
|
|
/* We do this in two passes to make sure all threads are marked even if
|
|
we get an exception when stopping one of them. */
|
|
|
|
iterate_over_lwps (ptid_t (pid),
|
|
[this] (struct lwp_info *lp) -> int {
|
|
this->mark_thread_stale (lp);
|
|
return 0;
|
|
});
|
|
|
|
iterate_over_lwps (ptid_t (pid),
|
|
[] (struct lwp_info *lp) -> int {
|
|
if (!lwp_is_stopped (lp))
|
|
linux_stop_lwp (lp);
|
|
return 0;
|
|
});
|
|
}
|
|
|
|
/* Register a hardware breakpoint or watchpoint BP for the pid PID, then
|
|
mark the stale flag for all threads of the group of PID, and issue a
|
|
stop request for them. The breakpoint or watchpoint will be installed
|
|
the next time each thread is resumed. Should only be used if the
|
|
debug register interface is HWDEBUG. */
|
|
|
|
void
|
|
ppc_linux_nat_target::register_hw_breakpoint (pid_t pid,
|
|
const struct
|
|
ppc_hw_breakpoint &bp)
|
|
{
|
|
gdb_assert (m_dreg_interface.hwdebug_p ());
|
|
|
|
m_process_info[pid].requested_hw_bps.push_back (bp);
|
|
|
|
mark_debug_registers_changed (pid);
|
|
}
|
|
|
|
/* Clear a registration for a hardware breakpoint or watchpoint BP for
|
|
the pid PID, then mark the stale flag for all threads of the group of
|
|
PID, and issue a stop request for them. The breakpoint or watchpoint
|
|
will be removed the next time each thread is resumed. Should only be
|
|
used if the debug register interface is HWDEBUG. */
|
|
|
|
void
|
|
ppc_linux_nat_target::clear_hw_breakpoint (pid_t pid,
|
|
const struct ppc_hw_breakpoint &bp)
|
|
{
|
|
gdb_assert (m_dreg_interface.hwdebug_p ());
|
|
|
|
auto process_it = m_process_info.find (pid);
|
|
|
|
gdb_assert (process_it != m_process_info.end ());
|
|
|
|
auto bp_it = std::find_if (process_it->second.requested_hw_bps.begin (),
|
|
process_it->second.requested_hw_bps.end (),
|
|
[&bp, this]
|
|
(const struct ppc_hw_breakpoint &curr)
|
|
{ return hwdebug_point_cmp (bp, curr); }
|
|
);
|
|
|
|
/* If GDB is removing a watchpoint, it must have been inserted. */
|
|
gdb_assert (bp_it != process_it->second.requested_hw_bps.end ());
|
|
|
|
process_it->second.requested_hw_bps.erase (bp_it);
|
|
|
|
mark_debug_registers_changed (pid);
|
|
}
|
|
|
|
/* Register the hardware watchpoint value WP_VALUE for the pid PID,
|
|
then mark the stale flag for all threads of the group of PID, and
|
|
issue a stop request for them. The breakpoint or watchpoint will be
|
|
installed the next time each thread is resumed. Should only be used
|
|
if the debug register interface is DEBUGREG. */
|
|
|
|
void
|
|
ppc_linux_nat_target::register_wp (pid_t pid, long wp_value)
|
|
{
|
|
gdb_assert (m_dreg_interface.debugreg_p ());
|
|
|
|
/* Our other functions should have told GDB that we only have one
|
|
hardware watchpoint with this interface. */
|
|
gdb_assert (!m_process_info[pid].requested_wp_val.has_value ());
|
|
|
|
m_process_info[pid].requested_wp_val.emplace (wp_value);
|
|
|
|
mark_debug_registers_changed (pid);
|
|
}
|
|
|
|
/* Clear the hardware watchpoint registration for the pid PID, then mark
|
|
the stale flag for all threads of the group of PID, and issue a stop
|
|
request for them. The breakpoint or watchpoint will be installed the
|
|
next time each thread is resumed. Should only be used if the debug
|
|
register interface is DEBUGREG. */
|
|
|
|
void
|
|
ppc_linux_nat_target::clear_wp (pid_t pid)
|
|
{
|
|
gdb_assert (m_dreg_interface.debugreg_p ());
|
|
|
|
auto process_it = m_process_info.find (pid);
|
|
|
|
gdb_assert (process_it != m_process_info.end ());
|
|
gdb_assert (process_it->second.requested_wp_val.has_value ());
|
|
|
|
process_it->second.requested_wp_val.reset ();
|
|
|
|
mark_debug_registers_changed (pid);
|
|
}
|
|
|
|
/* Initialize the arch-specific thread state for LWP, if it not already
|
|
created. */
|
|
|
|
void
|
|
ppc_linux_nat_target::init_arch_lwp_info (struct lwp_info *lp)
|
|
{
|
|
if (lwp_arch_private_info (lp) == NULL)
|
|
{
|
|
lwp_set_arch_private_info (lp, XCNEW (struct arch_lwp_info));
|
|
lwp_arch_private_info (lp)->debug_regs_stale = false;
|
|
lwp_arch_private_info (lp)->lwp_ptid = lp->ptid;
|
|
}
|
|
}
|
|
|
|
/* Get the arch-specific thread state for LWP, creating it if
|
|
necessary. */
|
|
|
|
arch_lwp_info *
|
|
ppc_linux_nat_target::get_arch_lwp_info (struct lwp_info *lp)
|
|
{
|
|
init_arch_lwp_info (lp);
|
|
|
|
return lwp_arch_private_info (lp);
|
|
}
|
|
|
|
void _initialize_ppc_linux_nat ();
|
|
void
|
|
_initialize_ppc_linux_nat ()
|
|
{
|
|
linux_target = &the_ppc_linux_nat_target;
|
|
|
|
/* Register the target. */
|
|
add_inf_child_target (linux_target);
|
|
}
|