mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-22 16:53:31 +08:00
721d14ba74
Suggested by Till Straumann <strauman@slac.stanford.edu>: * rs6000-tdep.c (skip_prologue): Update check for later mtlr instructions. Handle PIC bcl.
3555 lines
114 KiB
C
3555 lines
114 KiB
C
/* Target-dependent code for GDB, the GNU debugger.
|
||
|
||
Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
|
||
1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street, Fifth Floor,
|
||
Boston, MA 02110-1301, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "symtab.h"
|
||
#include "target.h"
|
||
#include "gdbcore.h"
|
||
#include "gdbcmd.h"
|
||
#include "objfiles.h"
|
||
#include "arch-utils.h"
|
||
#include "regcache.h"
|
||
#include "regset.h"
|
||
#include "doublest.h"
|
||
#include "value.h"
|
||
#include "parser-defs.h"
|
||
#include "osabi.h"
|
||
#include "infcall.h"
|
||
#include "sim-regno.h"
|
||
#include "gdb/sim-ppc.h"
|
||
#include "reggroups.h"
|
||
|
||
#include "libbfd.h" /* for bfd_default_set_arch_mach */
|
||
#include "coff/internal.h" /* for libcoff.h */
|
||
#include "libcoff.h" /* for xcoff_data */
|
||
#include "coff/xcoff.h"
|
||
#include "libxcoff.h"
|
||
|
||
#include "elf-bfd.h"
|
||
|
||
#include "solib-svr4.h"
|
||
#include "ppc-tdep.h"
|
||
|
||
#include "gdb_assert.h"
|
||
#include "dis-asm.h"
|
||
|
||
#include "trad-frame.h"
|
||
#include "frame-unwind.h"
|
||
#include "frame-base.h"
|
||
|
||
#include "reggroups.h"
|
||
|
||
/* If the kernel has to deliver a signal, it pushes a sigcontext
|
||
structure on the stack and then calls the signal handler, passing
|
||
the address of the sigcontext in an argument register. Usually
|
||
the signal handler doesn't save this register, so we have to
|
||
access the sigcontext structure via an offset from the signal handler
|
||
frame.
|
||
The following constants were determined by experimentation on AIX 3.2. */
|
||
#define SIG_FRAME_PC_OFFSET 96
|
||
#define SIG_FRAME_LR_OFFSET 108
|
||
#define SIG_FRAME_FP_OFFSET 284
|
||
|
||
/* To be used by skip_prologue. */
|
||
|
||
struct rs6000_framedata
|
||
{
|
||
int offset; /* total size of frame --- the distance
|
||
by which we decrement sp to allocate
|
||
the frame */
|
||
int saved_gpr; /* smallest # of saved gpr */
|
||
int saved_fpr; /* smallest # of saved fpr */
|
||
int saved_vr; /* smallest # of saved vr */
|
||
int saved_ev; /* smallest # of saved ev */
|
||
int alloca_reg; /* alloca register number (frame ptr) */
|
||
char frameless; /* true if frameless functions. */
|
||
char nosavedpc; /* true if pc not saved. */
|
||
int gpr_offset; /* offset of saved gprs from prev sp */
|
||
int fpr_offset; /* offset of saved fprs from prev sp */
|
||
int vr_offset; /* offset of saved vrs from prev sp */
|
||
int ev_offset; /* offset of saved evs from prev sp */
|
||
int lr_offset; /* offset of saved lr */
|
||
int cr_offset; /* offset of saved cr */
|
||
int vrsave_offset; /* offset of saved vrsave register */
|
||
};
|
||
|
||
/* Description of a single register. */
|
||
|
||
struct reg
|
||
{
|
||
char *name; /* name of register */
|
||
unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
|
||
unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
|
||
unsigned char fpr; /* whether register is floating-point */
|
||
unsigned char pseudo; /* whether register is pseudo */
|
||
int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
|
||
This is an ISA SPR number, not a GDB
|
||
register number. */
|
||
};
|
||
|
||
/* Breakpoint shadows for the single step instructions will be kept here. */
|
||
|
||
static struct sstep_breaks
|
||
{
|
||
/* Address, or 0 if this is not in use. */
|
||
CORE_ADDR address;
|
||
/* Shadow contents. */
|
||
gdb_byte data[4];
|
||
}
|
||
stepBreaks[2];
|
||
|
||
/* Hook for determining the TOC address when calling functions in the
|
||
inferior under AIX. The initialization code in rs6000-nat.c sets
|
||
this hook to point to find_toc_address. */
|
||
|
||
CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
|
||
|
||
/* Hook to set the current architecture when starting a child process.
|
||
rs6000-nat.c sets this. */
|
||
|
||
void (*rs6000_set_host_arch_hook) (int) = NULL;
|
||
|
||
/* Static function prototypes */
|
||
|
||
static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
|
||
CORE_ADDR safety);
|
||
static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
|
||
struct rs6000_framedata *);
|
||
|
||
/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
|
||
int
|
||
altivec_register_p (int regno)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
|
||
return 0;
|
||
else
|
||
return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
|
||
}
|
||
|
||
|
||
/* Return true if REGNO is an SPE register, false otherwise. */
|
||
int
|
||
spe_register_p (int regno)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
/* Is it a reference to EV0 -- EV31, and do we have those? */
|
||
if (tdep->ppc_ev0_regnum >= 0
|
||
&& tdep->ppc_ev31_regnum >= 0
|
||
&& tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
|
||
return 1;
|
||
|
||
/* Is it a reference to one of the raw upper GPR halves? */
|
||
if (tdep->ppc_ev0_upper_regnum >= 0
|
||
&& tdep->ppc_ev0_upper_regnum <= regno
|
||
&& regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
|
||
return 1;
|
||
|
||
/* Is it a reference to the 64-bit accumulator, and do we have that? */
|
||
if (tdep->ppc_acc_regnum >= 0
|
||
&& tdep->ppc_acc_regnum == regno)
|
||
return 1;
|
||
|
||
/* Is it a reference to the SPE floating-point status and control register,
|
||
and do we have that? */
|
||
if (tdep->ppc_spefscr_regnum >= 0
|
||
&& tdep->ppc_spefscr_regnum == regno)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Return non-zero if the architecture described by GDBARCH has
|
||
floating-point registers (f0 --- f31 and fpscr). */
|
||
int
|
||
ppc_floating_point_unit_p (struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
return (tdep->ppc_fp0_regnum >= 0
|
||
&& tdep->ppc_fpscr_regnum >= 0);
|
||
}
|
||
|
||
|
||
/* Check that TABLE[GDB_REGNO] is not already initialized, and then
|
||
set it to SIM_REGNO.
|
||
|
||
This is a helper function for init_sim_regno_table, constructing
|
||
the table mapping GDB register numbers to sim register numbers; we
|
||
initialize every element in that table to -1 before we start
|
||
filling it in. */
|
||
static void
|
||
set_sim_regno (int *table, int gdb_regno, int sim_regno)
|
||
{
|
||
/* Make sure we don't try to assign any given GDB register a sim
|
||
register number more than once. */
|
||
gdb_assert (table[gdb_regno] == -1);
|
||
table[gdb_regno] = sim_regno;
|
||
}
|
||
|
||
|
||
/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
|
||
numbers to simulator register numbers, based on the values placed
|
||
in the ARCH->tdep->ppc_foo_regnum members. */
|
||
static void
|
||
init_sim_regno_table (struct gdbarch *arch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
||
int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
|
||
const struct reg *regs = tdep->regs;
|
||
int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
|
||
int i;
|
||
|
||
/* Presume that all registers not explicitly mentioned below are
|
||
unavailable from the sim. */
|
||
for (i = 0; i < total_regs; i++)
|
||
sim_regno[i] = -1;
|
||
|
||
/* General-purpose registers. */
|
||
for (i = 0; i < ppc_num_gprs; i++)
|
||
set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
|
||
|
||
/* Floating-point registers. */
|
||
if (tdep->ppc_fp0_regnum >= 0)
|
||
for (i = 0; i < ppc_num_fprs; i++)
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_fp0_regnum + i,
|
||
sim_ppc_f0_regnum + i);
|
||
if (tdep->ppc_fpscr_regnum >= 0)
|
||
set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
|
||
|
||
set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
|
||
set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
|
||
set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
|
||
|
||
/* Segment registers. */
|
||
if (tdep->ppc_sr0_regnum >= 0)
|
||
for (i = 0; i < ppc_num_srs; i++)
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_sr0_regnum + i,
|
||
sim_ppc_sr0_regnum + i);
|
||
|
||
/* Altivec registers. */
|
||
if (tdep->ppc_vr0_regnum >= 0)
|
||
{
|
||
for (i = 0; i < ppc_num_vrs; i++)
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_vr0_regnum + i,
|
||
sim_ppc_vr0_regnum + i);
|
||
|
||
/* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
|
||
we can treat this more like the other cases. */
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_vr0_regnum + ppc_num_vrs,
|
||
sim_ppc_vscr_regnum);
|
||
}
|
||
/* vsave is a special-purpose register, so the code below handles it. */
|
||
|
||
/* SPE APU (E500) registers. */
|
||
if (tdep->ppc_ev0_regnum >= 0)
|
||
for (i = 0; i < ppc_num_gprs; i++)
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_ev0_regnum + i,
|
||
sim_ppc_ev0_regnum + i);
|
||
if (tdep->ppc_ev0_upper_regnum >= 0)
|
||
for (i = 0; i < ppc_num_gprs; i++)
|
||
set_sim_regno (sim_regno,
|
||
tdep->ppc_ev0_upper_regnum + i,
|
||
sim_ppc_rh0_regnum + i);
|
||
if (tdep->ppc_acc_regnum >= 0)
|
||
set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
|
||
/* spefscr is a special-purpose register, so the code below handles it. */
|
||
|
||
/* Now handle all special-purpose registers. Verify that they
|
||
haven't mistakenly been assigned numbers by any of the above
|
||
code). */
|
||
for (i = 0; i < total_regs; i++)
|
||
if (regs[i].spr_num >= 0)
|
||
set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
|
||
|
||
/* Drop the initialized array into place. */
|
||
tdep->sim_regno = sim_regno;
|
||
}
|
||
|
||
|
||
/* Given a GDB register number REG, return the corresponding SIM
|
||
register number. */
|
||
static int
|
||
rs6000_register_sim_regno (int reg)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
int sim_regno;
|
||
|
||
gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
|
||
sim_regno = tdep->sim_regno[reg];
|
||
|
||
if (sim_regno >= 0)
|
||
return sim_regno;
|
||
else
|
||
return LEGACY_SIM_REGNO_IGNORE;
|
||
}
|
||
|
||
|
||
|
||
/* Register set support functions. */
|
||
|
||
static void
|
||
ppc_supply_reg (struct regcache *regcache, int regnum,
|
||
const gdb_byte *regs, size_t offset)
|
||
{
|
||
if (regnum != -1 && offset != -1)
|
||
regcache_raw_supply (regcache, regnum, regs + offset);
|
||
}
|
||
|
||
static void
|
||
ppc_collect_reg (const struct regcache *regcache, int regnum,
|
||
gdb_byte *regs, size_t offset)
|
||
{
|
||
if (regnum != -1 && offset != -1)
|
||
regcache_raw_collect (regcache, regnum, regs + offset);
|
||
}
|
||
|
||
/* Supply register REGNUM in the general-purpose register set REGSET
|
||
from the buffer specified by GREGS and LEN to register cache
|
||
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
void
|
||
ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *gregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
const struct ppc_reg_offsets *offsets = regset->descr;
|
||
size_t offset;
|
||
int i;
|
||
|
||
for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
|
||
i < tdep->ppc_gp0_regnum + ppc_num_gprs;
|
||
i++, offset += 4)
|
||
{
|
||
if (regnum == -1 || regnum == i)
|
||
ppc_supply_reg (regcache, i, gregs, offset);
|
||
}
|
||
|
||
if (regnum == -1 || regnum == PC_REGNUM)
|
||
ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
|
||
if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
|
||
ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
|
||
gregs, offsets->ps_offset);
|
||
if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
|
||
ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
|
||
gregs, offsets->cr_offset);
|
||
if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
|
||
ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
|
||
gregs, offsets->lr_offset);
|
||
if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
|
||
ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
|
||
gregs, offsets->ctr_offset);
|
||
if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
|
||
ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
|
||
gregs, offsets->cr_offset);
|
||
if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
|
||
ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
|
||
}
|
||
|
||
/* Supply register REGNUM in the floating-point register set REGSET
|
||
from the buffer specified by FPREGS and LEN to register cache
|
||
REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
|
||
|
||
void
|
||
ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *fpregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
const struct ppc_reg_offsets *offsets = regset->descr;
|
||
size_t offset;
|
||
int i;
|
||
|
||
gdb_assert (ppc_floating_point_unit_p (gdbarch));
|
||
|
||
offset = offsets->f0_offset;
|
||
for (i = tdep->ppc_fp0_regnum;
|
||
i < tdep->ppc_fp0_regnum + ppc_num_fprs;
|
||
i++, offset += 8)
|
||
{
|
||
if (regnum == -1 || regnum == i)
|
||
ppc_supply_reg (regcache, i, fpregs, offset);
|
||
}
|
||
|
||
if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
|
||
ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
|
||
fpregs, offsets->fpscr_offset);
|
||
}
|
||
|
||
/* Collect register REGNUM in the general-purpose register set
|
||
REGSET. from register cache REGCACHE into the buffer specified by
|
||
GREGS and LEN. If REGNUM is -1, do this for all registers in
|
||
REGSET. */
|
||
|
||
void
|
||
ppc_collect_gregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *gregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
const struct ppc_reg_offsets *offsets = regset->descr;
|
||
size_t offset;
|
||
int i;
|
||
|
||
offset = offsets->r0_offset;
|
||
for (i = tdep->ppc_gp0_regnum;
|
||
i < tdep->ppc_gp0_regnum + ppc_num_gprs;
|
||
i++, offset += 4)
|
||
{
|
||
if (regnum == -1 || regnum == i)
|
||
ppc_collect_reg (regcache, i, gregs, offset);
|
||
}
|
||
|
||
if (regnum == -1 || regnum == PC_REGNUM)
|
||
ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
|
||
if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
|
||
ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
|
||
gregs, offsets->ps_offset);
|
||
if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
|
||
ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
|
||
gregs, offsets->cr_offset);
|
||
if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
|
||
ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
|
||
gregs, offsets->lr_offset);
|
||
if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
|
||
ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
|
||
gregs, offsets->ctr_offset);
|
||
if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
|
||
ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
|
||
gregs, offsets->xer_offset);
|
||
if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
|
||
ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
|
||
gregs, offsets->mq_offset);
|
||
}
|
||
|
||
/* Collect register REGNUM in the floating-point register set
|
||
REGSET. from register cache REGCACHE into the buffer specified by
|
||
FPREGS and LEN. If REGNUM is -1, do this for all registers in
|
||
REGSET. */
|
||
|
||
void
|
||
ppc_collect_fpregset (const struct regset *regset,
|
||
const struct regcache *regcache,
|
||
int regnum, void *fpregs, size_t len)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
const struct ppc_reg_offsets *offsets = regset->descr;
|
||
size_t offset;
|
||
int i;
|
||
|
||
gdb_assert (ppc_floating_point_unit_p (gdbarch));
|
||
|
||
offset = offsets->f0_offset;
|
||
for (i = tdep->ppc_fp0_regnum;
|
||
i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
|
||
i++, offset += 8)
|
||
{
|
||
if (regnum == -1 || regnum == i)
|
||
ppc_collect_reg (regcache, i, fpregs, offset);
|
||
}
|
||
|
||
if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
|
||
ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
|
||
fpregs, offsets->fpscr_offset);
|
||
}
|
||
|
||
|
||
/* Read a LEN-byte address from debugged memory address MEMADDR. */
|
||
|
||
static CORE_ADDR
|
||
read_memory_addr (CORE_ADDR memaddr, int len)
|
||
{
|
||
return read_memory_unsigned_integer (memaddr, len);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
rs6000_skip_prologue (CORE_ADDR pc)
|
||
{
|
||
struct rs6000_framedata frame;
|
||
pc = skip_prologue (pc, 0, &frame);
|
||
return pc;
|
||
}
|
||
|
||
static int
|
||
insn_changes_sp_or_jumps (unsigned long insn)
|
||
{
|
||
int opcode = (insn >> 26) & 0x03f;
|
||
int sd = (insn >> 21) & 0x01f;
|
||
int a = (insn >> 16) & 0x01f;
|
||
int subcode = (insn >> 1) & 0x3ff;
|
||
|
||
/* Changes the stack pointer. */
|
||
|
||
/* NOTE: There are many ways to change the value of a given register.
|
||
The ways below are those used when the register is R1, the SP,
|
||
in a funtion's epilogue. */
|
||
|
||
if (opcode == 31 && subcode == 444 && a == 1)
|
||
return 1; /* mr R1,Rn */
|
||
if (opcode == 14 && sd == 1)
|
||
return 1; /* addi R1,Rn,simm */
|
||
if (opcode == 58 && sd == 1)
|
||
return 1; /* ld R1,ds(Rn) */
|
||
|
||
/* Transfers control. */
|
||
|
||
if (opcode == 18)
|
||
return 1; /* b */
|
||
if (opcode == 16)
|
||
return 1; /* bc */
|
||
if (opcode == 19 && subcode == 16)
|
||
return 1; /* bclr */
|
||
if (opcode == 19 && subcode == 528)
|
||
return 1; /* bcctr */
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if we are in the function's epilogue, i.e. after the
|
||
instruction that destroyed the function's stack frame.
|
||
|
||
1) scan forward from the point of execution:
|
||
a) If you find an instruction that modifies the stack pointer
|
||
or transfers control (except a return), execution is not in
|
||
an epilogue, return.
|
||
b) Stop scanning if you find a return instruction or reach the
|
||
end of the function or reach the hard limit for the size of
|
||
an epilogue.
|
||
2) scan backward from the point of execution:
|
||
a) If you find an instruction that modifies the stack pointer,
|
||
execution *is* in an epilogue, return.
|
||
b) Stop scanning if you reach an instruction that transfers
|
||
control or the beginning of the function or reach the hard
|
||
limit for the size of an epilogue. */
|
||
|
||
static int
|
||
rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
|
||
{
|
||
bfd_byte insn_buf[PPC_INSN_SIZE];
|
||
CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
|
||
unsigned long insn;
|
||
struct frame_info *curfrm;
|
||
|
||
/* Find the search limits based on function boundaries and hard limit. */
|
||
|
||
if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
|
||
return 0;
|
||
|
||
epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
|
||
if (epilogue_start < func_start) epilogue_start = func_start;
|
||
|
||
epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
|
||
if (epilogue_end > func_end) epilogue_end = func_end;
|
||
|
||
curfrm = get_current_frame ();
|
||
|
||
/* Scan forward until next 'blr'. */
|
||
|
||
for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
|
||
{
|
||
if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
|
||
return 0;
|
||
insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
|
||
if (insn == 0x4e800020)
|
||
break;
|
||
if (insn_changes_sp_or_jumps (insn))
|
||
return 0;
|
||
}
|
||
|
||
/* Scan backward until adjustment to stack pointer (R1). */
|
||
|
||
for (scan_pc = pc - PPC_INSN_SIZE;
|
||
scan_pc >= epilogue_start;
|
||
scan_pc -= PPC_INSN_SIZE)
|
||
{
|
||
if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
|
||
return 0;
|
||
insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
|
||
if (insn_changes_sp_or_jumps (insn))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Fill in fi->saved_regs */
|
||
|
||
struct frame_extra_info
|
||
{
|
||
/* Functions calling alloca() change the value of the stack
|
||
pointer. We need to use initial stack pointer (which is saved in
|
||
r31 by gcc) in such cases. If a compiler emits traceback table,
|
||
then we should use the alloca register specified in traceback
|
||
table. FIXME. */
|
||
CORE_ADDR initial_sp; /* initial stack pointer. */
|
||
};
|
||
|
||
/* Get the ith function argument for the current function. */
|
||
static CORE_ADDR
|
||
rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
|
||
struct type *type)
|
||
{
|
||
return get_frame_register_unsigned (frame, 3 + argi);
|
||
}
|
||
|
||
/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
|
||
|
||
static CORE_ADDR
|
||
branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
|
||
{
|
||
CORE_ADDR dest;
|
||
int immediate;
|
||
int absolute;
|
||
int ext_op;
|
||
|
||
absolute = (int) ((instr >> 1) & 1);
|
||
|
||
switch (opcode)
|
||
{
|
||
case 18:
|
||
immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
|
||
if (absolute)
|
||
dest = immediate;
|
||
else
|
||
dest = pc + immediate;
|
||
break;
|
||
|
||
case 16:
|
||
immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
|
||
if (absolute)
|
||
dest = immediate;
|
||
else
|
||
dest = pc + immediate;
|
||
break;
|
||
|
||
case 19:
|
||
ext_op = (instr >> 1) & 0x3ff;
|
||
|
||
if (ext_op == 16) /* br conditional register */
|
||
{
|
||
dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
|
||
|
||
/* If we are about to return from a signal handler, dest is
|
||
something like 0x3c90. The current frame is a signal handler
|
||
caller frame, upon completion of the sigreturn system call
|
||
execution will return to the saved PC in the frame. */
|
||
if (dest < TEXT_SEGMENT_BASE)
|
||
{
|
||
struct frame_info *fi;
|
||
|
||
fi = get_current_frame ();
|
||
if (fi != NULL)
|
||
dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
|
||
gdbarch_tdep (current_gdbarch)->wordsize);
|
||
}
|
||
}
|
||
|
||
else if (ext_op == 528) /* br cond to count reg */
|
||
{
|
||
dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
|
||
|
||
/* If we are about to execute a system call, dest is something
|
||
like 0x22fc or 0x3b00. Upon completion the system call
|
||
will return to the address in the link register. */
|
||
if (dest < TEXT_SEGMENT_BASE)
|
||
dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
|
||
}
|
||
else
|
||
return -1;
|
||
break;
|
||
|
||
default:
|
||
return -1;
|
||
}
|
||
return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
|
||
}
|
||
|
||
|
||
/* Sequence of bytes for breakpoint instruction. */
|
||
|
||
const static unsigned char *
|
||
rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
|
||
{
|
||
static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
|
||
static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
|
||
*bp_size = 4;
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
return big_breakpoint;
|
||
else
|
||
return little_breakpoint;
|
||
}
|
||
|
||
|
||
/* AIX does not support PT_STEP. Simulate it. */
|
||
|
||
void
|
||
rs6000_software_single_step (enum target_signal signal,
|
||
int insert_breakpoints_p)
|
||
{
|
||
CORE_ADDR dummy;
|
||
int breakp_sz;
|
||
const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
|
||
int ii, insn;
|
||
CORE_ADDR loc;
|
||
CORE_ADDR breaks[2];
|
||
int opcode;
|
||
|
||
if (insert_breakpoints_p)
|
||
{
|
||
|
||
loc = read_pc ();
|
||
|
||
insn = read_memory_integer (loc, 4);
|
||
|
||
breaks[0] = loc + breakp_sz;
|
||
opcode = insn >> 26;
|
||
breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
|
||
|
||
/* Don't put two breakpoints on the same address. */
|
||
if (breaks[1] == breaks[0])
|
||
breaks[1] = -1;
|
||
|
||
stepBreaks[1].address = 0;
|
||
|
||
for (ii = 0; ii < 2; ++ii)
|
||
{
|
||
|
||
/* ignore invalid breakpoint. */
|
||
if (breaks[ii] == -1)
|
||
continue;
|
||
target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
|
||
stepBreaks[ii].address = breaks[ii];
|
||
}
|
||
|
||
}
|
||
else
|
||
{
|
||
|
||
/* remove step breakpoints. */
|
||
for (ii = 0; ii < 2; ++ii)
|
||
if (stepBreaks[ii].address != 0)
|
||
target_remove_breakpoint (stepBreaks[ii].address,
|
||
stepBreaks[ii].data);
|
||
}
|
||
errno = 0; /* FIXME, don't ignore errors! */
|
||
/* What errors? {read,write}_memory call error(). */
|
||
}
|
||
|
||
|
||
/* return pc value after skipping a function prologue and also return
|
||
information about a function frame.
|
||
|
||
in struct rs6000_framedata fdata:
|
||
- frameless is TRUE, if function does not have a frame.
|
||
- nosavedpc is TRUE, if function does not save %pc value in its frame.
|
||
- offset is the initial size of this stack frame --- the amount by
|
||
which we decrement the sp to allocate the frame.
|
||
- saved_gpr is the number of the first saved gpr.
|
||
- saved_fpr is the number of the first saved fpr.
|
||
- saved_vr is the number of the first saved vr.
|
||
- saved_ev is the number of the first saved ev.
|
||
- alloca_reg is the number of the register used for alloca() handling.
|
||
Otherwise -1.
|
||
- gpr_offset is the offset of the first saved gpr from the previous frame.
|
||
- fpr_offset is the offset of the first saved fpr from the previous frame.
|
||
- vr_offset is the offset of the first saved vr from the previous frame.
|
||
- ev_offset is the offset of the first saved ev from the previous frame.
|
||
- lr_offset is the offset of the saved lr
|
||
- cr_offset is the offset of the saved cr
|
||
- vrsave_offset is the offset of the saved vrsave register
|
||
*/
|
||
|
||
#define SIGNED_SHORT(x) \
|
||
((sizeof (short) == 2) \
|
||
? ((int)(short)(x)) \
|
||
: ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
|
||
|
||
#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
|
||
|
||
/* Limit the number of skipped non-prologue instructions, as the examining
|
||
of the prologue is expensive. */
|
||
static int max_skip_non_prologue_insns = 10;
|
||
|
||
/* Given PC representing the starting address of a function, and
|
||
LIM_PC which is the (sloppy) limit to which to scan when looking
|
||
for a prologue, attempt to further refine this limit by using
|
||
the line data in the symbol table. If successful, a better guess
|
||
on where the prologue ends is returned, otherwise the previous
|
||
value of lim_pc is returned. */
|
||
|
||
/* FIXME: cagney/2004-02-14: This function and logic have largely been
|
||
superseded by skip_prologue_using_sal. */
|
||
|
||
static CORE_ADDR
|
||
refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
|
||
{
|
||
struct symtab_and_line prologue_sal;
|
||
|
||
prologue_sal = find_pc_line (pc, 0);
|
||
if (prologue_sal.line != 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR addr = prologue_sal.end;
|
||
|
||
/* Handle the case in which compiler's optimizer/scheduler
|
||
has moved instructions into the prologue. We scan ahead
|
||
in the function looking for address ranges whose corresponding
|
||
line number is less than or equal to the first one that we
|
||
found for the function. (It can be less than when the
|
||
scheduler puts a body instruction before the first prologue
|
||
instruction.) */
|
||
for (i = 2 * max_skip_non_prologue_insns;
|
||
i > 0 && (lim_pc == 0 || addr < lim_pc);
|
||
i--)
|
||
{
|
||
struct symtab_and_line sal;
|
||
|
||
sal = find_pc_line (addr, 0);
|
||
if (sal.line == 0)
|
||
break;
|
||
if (sal.line <= prologue_sal.line
|
||
&& sal.symtab == prologue_sal.symtab)
|
||
{
|
||
prologue_sal = sal;
|
||
}
|
||
addr = sal.end;
|
||
}
|
||
|
||
if (lim_pc == 0 || prologue_sal.end < lim_pc)
|
||
lim_pc = prologue_sal.end;
|
||
}
|
||
return lim_pc;
|
||
}
|
||
|
||
/* Return nonzero if the given instruction OP can be part of the prologue
|
||
of a function and saves a parameter on the stack. FRAMEP should be
|
||
set if one of the previous instructions in the function has set the
|
||
Frame Pointer. */
|
||
|
||
static int
|
||
store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
|
||
{
|
||
/* Move parameters from argument registers to temporary register. */
|
||
if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
|
||
{
|
||
/* Rx must be scratch register r0. */
|
||
const int rx_regno = (op >> 16) & 31;
|
||
/* Ry: Only r3 - r10 are used for parameter passing. */
|
||
const int ry_regno = GET_SRC_REG (op);
|
||
|
||
if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
|
||
{
|
||
*r0_contains_arg = 1;
|
||
return 1;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Save a General Purpose Register on stack. */
|
||
|
||
if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
|
||
(op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
|
||
{
|
||
/* Rx: Only r3 - r10 are used for parameter passing. */
|
||
const int rx_regno = GET_SRC_REG (op);
|
||
|
||
return (rx_regno >= 3 && rx_regno <= 10);
|
||
}
|
||
|
||
/* Save a General Purpose Register on stack via the Frame Pointer. */
|
||
|
||
if (framep &&
|
||
((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
|
||
(op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
|
||
(op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
|
||
{
|
||
/* Rx: Usually, only r3 - r10 are used for parameter passing.
|
||
However, the compiler sometimes uses r0 to hold an argument. */
|
||
const int rx_regno = GET_SRC_REG (op);
|
||
|
||
return ((rx_regno >= 3 && rx_regno <= 10)
|
||
|| (rx_regno == 0 && *r0_contains_arg));
|
||
}
|
||
|
||
if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
|
||
{
|
||
/* Only f2 - f8 are used for parameter passing. */
|
||
const int src_regno = GET_SRC_REG (op);
|
||
|
||
return (src_regno >= 2 && src_regno <= 8);
|
||
}
|
||
|
||
if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
|
||
{
|
||
/* Only f2 - f8 are used for parameter passing. */
|
||
const int src_regno = GET_SRC_REG (op);
|
||
|
||
return (src_regno >= 2 && src_regno <= 8);
|
||
}
|
||
|
||
/* Not an insn that saves a parameter on stack. */
|
||
return 0;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
|
||
{
|
||
CORE_ADDR orig_pc = pc;
|
||
CORE_ADDR last_prologue_pc = pc;
|
||
CORE_ADDR li_found_pc = 0;
|
||
gdb_byte buf[4];
|
||
unsigned long op;
|
||
long offset = 0;
|
||
long vr_saved_offset = 0;
|
||
int lr_reg = -1;
|
||
int cr_reg = -1;
|
||
int vr_reg = -1;
|
||
int ev_reg = -1;
|
||
long ev_offset = 0;
|
||
int vrsave_reg = -1;
|
||
int reg;
|
||
int framep = 0;
|
||
int minimal_toc_loaded = 0;
|
||
int prev_insn_was_prologue_insn = 1;
|
||
int num_skip_non_prologue_insns = 0;
|
||
int r0_contains_arg = 0;
|
||
const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
/* Attempt to find the end of the prologue when no limit is specified.
|
||
Note that refine_prologue_limit() has been written so that it may
|
||
be used to "refine" the limits of non-zero PC values too, but this
|
||
is only safe if we 1) trust the line information provided by the
|
||
compiler and 2) iterate enough to actually find the end of the
|
||
prologue.
|
||
|
||
It may become a good idea at some point (for both performance and
|
||
accuracy) to unconditionally call refine_prologue_limit(). But,
|
||
until we can make a clear determination that this is beneficial,
|
||
we'll play it safe and only use it to obtain a limit when none
|
||
has been specified. */
|
||
if (lim_pc == 0)
|
||
lim_pc = refine_prologue_limit (pc, lim_pc);
|
||
|
||
memset (fdata, 0, sizeof (struct rs6000_framedata));
|
||
fdata->saved_gpr = -1;
|
||
fdata->saved_fpr = -1;
|
||
fdata->saved_vr = -1;
|
||
fdata->saved_ev = -1;
|
||
fdata->alloca_reg = -1;
|
||
fdata->frameless = 1;
|
||
fdata->nosavedpc = 1;
|
||
|
||
for (;; pc += 4)
|
||
{
|
||
/* Sometimes it isn't clear if an instruction is a prologue
|
||
instruction or not. When we encounter one of these ambiguous
|
||
cases, we'll set prev_insn_was_prologue_insn to 0 (false).
|
||
Otherwise, we'll assume that it really is a prologue instruction. */
|
||
if (prev_insn_was_prologue_insn)
|
||
last_prologue_pc = pc;
|
||
|
||
/* Stop scanning if we've hit the limit. */
|
||
if (lim_pc != 0 && pc >= lim_pc)
|
||
break;
|
||
|
||
prev_insn_was_prologue_insn = 1;
|
||
|
||
/* Fetch the instruction and convert it to an integer. */
|
||
if (target_read_memory (pc, buf, 4))
|
||
break;
|
||
op = extract_signed_integer (buf, 4);
|
||
|
||
if ((op & 0xfc1fffff) == 0x7c0802a6)
|
||
{ /* mflr Rx */
|
||
/* Since shared library / PIC code, which needs to get its
|
||
address at runtime, can appear to save more than one link
|
||
register vis:
|
||
|
||
*INDENT-OFF*
|
||
stwu r1,-304(r1)
|
||
mflr r3
|
||
bl 0xff570d0 (blrl)
|
||
stw r30,296(r1)
|
||
mflr r30
|
||
stw r31,300(r1)
|
||
stw r3,308(r1);
|
||
...
|
||
*INDENT-ON*
|
||
|
||
remember just the first one, but skip over additional
|
||
ones. */
|
||
if (lr_reg == -1)
|
||
lr_reg = (op & 0x03e00000);
|
||
if (lr_reg == 0)
|
||
r0_contains_arg = 0;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x7c000026)
|
||
{ /* mfcr Rx */
|
||
cr_reg = (op & 0x03e00000);
|
||
if (cr_reg == 0)
|
||
r0_contains_arg = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc1f0000) == 0xd8010000)
|
||
{ /* stfd Rx,NUM(r1) */
|
||
reg = GET_SRC_REG (op);
|
||
if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
|
||
{
|
||
fdata->saved_fpr = reg;
|
||
fdata->fpr_offset = SIGNED_SHORT (op) + offset;
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
|
||
(((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
|
||
(op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
|
||
(op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
|
||
{
|
||
|
||
reg = GET_SRC_REG (op);
|
||
if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
|
||
{
|
||
fdata->saved_gpr = reg;
|
||
if ((op & 0xfc1f0003) == 0xf8010000)
|
||
op &= ~3UL;
|
||
fdata->gpr_offset = SIGNED_SHORT (op) + offset;
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x60000000)
|
||
{
|
||
/* nop */
|
||
/* Allow nops in the prologue, but do not consider them to
|
||
be part of the prologue unless followed by other prologue
|
||
instructions. */
|
||
prev_insn_was_prologue_insn = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x3c000000)
|
||
{ /* addis 0,0,NUM, used
|
||
for >= 32k frames */
|
||
fdata->offset = (op & 0x0000ffff) << 16;
|
||
fdata->frameless = 0;
|
||
r0_contains_arg = 0;
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x60000000)
|
||
{ /* ori 0,0,NUM, 2nd ha
|
||
lf of >= 32k frames */
|
||
fdata->offset |= (op & 0x0000ffff);
|
||
fdata->frameless = 0;
|
||
r0_contains_arg = 0;
|
||
continue;
|
||
|
||
}
|
||
else if (lr_reg >= 0 &&
|
||
/* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
|
||
(((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
|
||
/* stw Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
|
||
/* stwu Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (lr_reg | 0x94010000))))
|
||
{ /* where Rx == lr */
|
||
fdata->lr_offset = offset;
|
||
fdata->nosavedpc = 0;
|
||
/* Invalidate lr_reg, but don't set it to -1.
|
||
That would mean that it had never been set. */
|
||
lr_reg = -2;
|
||
if ((op & 0xfc000003) == 0xf8000000 || /* std */
|
||
(op & 0xfc000000) == 0x90000000) /* stw */
|
||
{
|
||
/* Does not update r1, so add displacement to lr_offset. */
|
||
fdata->lr_offset += SIGNED_SHORT (op);
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if (cr_reg >= 0 &&
|
||
/* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
|
||
(((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
|
||
/* stw Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
|
||
/* stwu Rx, NUM(r1) */
|
||
((op & 0xffff0000) == (cr_reg | 0x94010000))))
|
||
{ /* where Rx == cr */
|
||
fdata->cr_offset = offset;
|
||
/* Invalidate cr_reg, but don't set it to -1.
|
||
That would mean that it had never been set. */
|
||
cr_reg = -2;
|
||
if ((op & 0xfc000003) == 0xf8000000 ||
|
||
(op & 0xfc000000) == 0x90000000)
|
||
{
|
||
/* Does not update r1, so add displacement to cr_offset. */
|
||
fdata->cr_offset += SIGNED_SHORT (op);
|
||
}
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
|
||
{
|
||
/* bcl 20,xx,.+4 is used to get the current PC, with or without
|
||
prediction bits. If the LR has already been saved, we can
|
||
skip it. */
|
||
continue;
|
||
}
|
||
else if (op == 0x48000005)
|
||
{ /* bl .+4 used in
|
||
-mrelocatable */
|
||
continue;
|
||
|
||
}
|
||
else if (op == 0x48000004)
|
||
{ /* b .+4 (xlc) */
|
||
break;
|
||
|
||
}
|
||
else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
|
||
in V.4 -mminimal-toc */
|
||
(op & 0xffff0000) == 0x3bde0000)
|
||
{ /* addi 30,30,foo@l */
|
||
continue;
|
||
|
||
}
|
||
else if ((op & 0xfc000001) == 0x48000001)
|
||
{ /* bl foo,
|
||
to save fprs??? */
|
||
|
||
fdata->frameless = 0;
|
||
/* Don't skip over the subroutine call if it is not within
|
||
the first three instructions of the prologue and either
|
||
we have no line table information or the line info tells
|
||
us that the subroutine call is not part of the line
|
||
associated with the prologue. */
|
||
if ((pc - orig_pc) > 8)
|
||
{
|
||
struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
|
||
struct symtab_and_line this_sal = find_pc_line (pc, 0);
|
||
|
||
if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
|
||
break;
|
||
}
|
||
|
||
op = read_memory_integer (pc + 4, 4);
|
||
|
||
/* At this point, make sure this is not a trampoline
|
||
function (a function that simply calls another functions,
|
||
and nothing else). If the next is not a nop, this branch
|
||
was part of the function prologue. */
|
||
|
||
if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
|
||
break; /* don't skip over
|
||
this branch */
|
||
continue;
|
||
|
||
}
|
||
/* update stack pointer */
|
||
else if ((op & 0xfc1f0000) == 0x94010000)
|
||
{ /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
|
||
fdata->frameless = 0;
|
||
fdata->offset = SIGNED_SHORT (op);
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1f016a) == 0x7c01016e)
|
||
{ /* stwux rX,r1,rY */
|
||
/* no way to figure out what r1 is going to be */
|
||
fdata->frameless = 0;
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1f0003) == 0xf8010001)
|
||
{ /* stdu rX,NUM(r1) */
|
||
fdata->frameless = 0;
|
||
fdata->offset = SIGNED_SHORT (op & ~3UL);
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1f016a) == 0x7c01016a)
|
||
{ /* stdux rX,r1,rY */
|
||
/* no way to figure out what r1 is going to be */
|
||
fdata->frameless = 0;
|
||
offset = fdata->offset;
|
||
continue;
|
||
}
|
||
/* Load up minimal toc pointer */
|
||
else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
|
||
(op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
|
||
&& !minimal_toc_loaded)
|
||
{
|
||
minimal_toc_loaded = 1;
|
||
continue;
|
||
|
||
/* move parameters from argument registers to local variable
|
||
registers */
|
||
}
|
||
else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
|
||
(((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
|
||
(((op >> 21) & 31) <= 10) &&
|
||
((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
|
||
{
|
||
continue;
|
||
|
||
/* store parameters in stack */
|
||
}
|
||
/* Move parameters from argument registers to temporary register. */
|
||
else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
|
||
{
|
||
continue;
|
||
|
||
/* Set up frame pointer */
|
||
}
|
||
else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
|
||
|| op == 0x7c3f0b78)
|
||
{ /* mr r31, r1 */
|
||
fdata->frameless = 0;
|
||
framep = 1;
|
||
fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
|
||
continue;
|
||
|
||
/* Another way to set up the frame pointer. */
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x38010000)
|
||
{ /* addi rX, r1, 0x0 */
|
||
fdata->frameless = 0;
|
||
framep = 1;
|
||
fdata->alloca_reg = (tdep->ppc_gp0_regnum
|
||
+ ((op & ~0x38010000) >> 21));
|
||
continue;
|
||
}
|
||
/* AltiVec related instructions. */
|
||
/* Store the vrsave register (spr 256) in another register for
|
||
later manipulation, or load a register into the vrsave
|
||
register. 2 instructions are used: mfvrsave and
|
||
mtvrsave. They are shorthand notation for mfspr Rn, SPR256
|
||
and mtspr SPR256, Rn. */
|
||
/* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
|
||
mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
|
||
else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
|
||
{
|
||
vrsave_reg = GET_SRC_REG (op);
|
||
continue;
|
||
}
|
||
else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
|
||
{
|
||
continue;
|
||
}
|
||
/* Store the register where vrsave was saved to onto the stack:
|
||
rS is the register where vrsave was stored in a previous
|
||
instruction. */
|
||
/* 100100 sssss 00001 dddddddd dddddddd */
|
||
else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
|
||
{
|
||
if (vrsave_reg == GET_SRC_REG (op))
|
||
{
|
||
fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
|
||
vrsave_reg = -1;
|
||
}
|
||
continue;
|
||
}
|
||
/* Compute the new value of vrsave, by modifying the register
|
||
where vrsave was saved to. */
|
||
else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
|
||
|| ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
|
||
{
|
||
continue;
|
||
}
|
||
/* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
|
||
in a pair of insns to save the vector registers on the
|
||
stack. */
|
||
/* 001110 00000 00000 iiii iiii iiii iiii */
|
||
/* 001110 01110 00000 iiii iiii iiii iiii */
|
||
else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
|
||
|| (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
|
||
{
|
||
if ((op & 0xffff0000) == 0x38000000)
|
||
r0_contains_arg = 0;
|
||
li_found_pc = pc;
|
||
vr_saved_offset = SIGNED_SHORT (op);
|
||
|
||
/* This insn by itself is not part of the prologue, unless
|
||
if part of the pair of insns mentioned above. So do not
|
||
record this insn as part of the prologue yet. */
|
||
prev_insn_was_prologue_insn = 0;
|
||
}
|
||
/* Store vector register S at (r31+r0) aligned to 16 bytes. */
|
||
/* 011111 sssss 11111 00000 00111001110 */
|
||
else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
|
||
{
|
||
if (pc == (li_found_pc + 4))
|
||
{
|
||
vr_reg = GET_SRC_REG (op);
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
|
||
{
|
||
fdata->saved_vr = vr_reg;
|
||
fdata->vr_offset = vr_saved_offset + offset;
|
||
}
|
||
vr_saved_offset = -1;
|
||
vr_reg = -1;
|
||
li_found_pc = 0;
|
||
}
|
||
}
|
||
/* End AltiVec related instructions. */
|
||
|
||
/* Start BookE related instructions. */
|
||
/* Store gen register S at (r31+uimm).
|
||
Any register less than r13 is volatile, so we don't care. */
|
||
/* 000100 sssss 11111 iiiii 01100100001 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
|
||
{
|
||
if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
|
||
{
|
||
unsigned int imm;
|
||
ev_reg = GET_SRC_REG (op);
|
||
imm = (op >> 11) & 0x1f;
|
||
ev_offset = imm * 8;
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = ev_offset + offset;
|
||
}
|
||
}
|
||
continue;
|
||
}
|
||
/* Store gen register rS at (r1+rB). */
|
||
/* 000100 sssss 00001 bbbbb 01100100000 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
|
||
{
|
||
if (pc == (li_found_pc + 4))
|
||
{
|
||
ev_reg = GET_SRC_REG (op);
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
/* We know the contents of rB from the previous instruction. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = vr_saved_offset + offset;
|
||
}
|
||
vr_saved_offset = -1;
|
||
ev_reg = -1;
|
||
li_found_pc = 0;
|
||
}
|
||
continue;
|
||
}
|
||
/* Store gen register r31 at (rA+uimm). */
|
||
/* 000100 11111 aaaaa iiiii 01100100001 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
|
||
{
|
||
/* Wwe know that the source register is 31 already, but
|
||
it can't hurt to compute it. */
|
||
ev_reg = GET_SRC_REG (op);
|
||
ev_offset = ((op >> 11) & 0x1f) * 8;
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = ev_offset + offset;
|
||
}
|
||
|
||
continue;
|
||
}
|
||
/* Store gen register S at (r31+r0).
|
||
Store param on stack when offset from SP bigger than 4 bytes. */
|
||
/* 000100 sssss 11111 00000 01100100000 */
|
||
else if (arch_info->mach == bfd_mach_ppc_e500
|
||
&& (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
|
||
{
|
||
if (pc == (li_found_pc + 4))
|
||
{
|
||
if ((op & 0x03e00000) >= 0x01a00000)
|
||
{
|
||
ev_reg = GET_SRC_REG (op);
|
||
/* If this is the first vector reg to be saved, or if
|
||
it has a lower number than others previously seen,
|
||
reupdate the frame info. */
|
||
/* We know the contents of r0 from the previous
|
||
instruction. */
|
||
if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
|
||
{
|
||
fdata->saved_ev = ev_reg;
|
||
fdata->ev_offset = vr_saved_offset + offset;
|
||
}
|
||
ev_reg = -1;
|
||
}
|
||
vr_saved_offset = -1;
|
||
li_found_pc = 0;
|
||
continue;
|
||
}
|
||
}
|
||
/* End BookE related instructions. */
|
||
|
||
else
|
||
{
|
||
/* Not a recognized prologue instruction.
|
||
Handle optimizer code motions into the prologue by continuing
|
||
the search if we have no valid frame yet or if the return
|
||
address is not yet saved in the frame. */
|
||
if (fdata->frameless == 0
|
||
&& (lr_reg == -1 || fdata->nosavedpc == 0))
|
||
break;
|
||
|
||
if (op == 0x4e800020 /* blr */
|
||
|| op == 0x4e800420) /* bctr */
|
||
/* Do not scan past epilogue in frameless functions or
|
||
trampolines. */
|
||
break;
|
||
if ((op & 0xf4000000) == 0x40000000) /* bxx */
|
||
/* Never skip branches. */
|
||
break;
|
||
|
||
if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
|
||
/* Do not scan too many insns, scanning insns is expensive with
|
||
remote targets. */
|
||
break;
|
||
|
||
/* Continue scanning. */
|
||
prev_insn_was_prologue_insn = 0;
|
||
continue;
|
||
}
|
||
}
|
||
|
||
#if 0
|
||
/* I have problems with skipping over __main() that I need to address
|
||
* sometime. Previously, I used to use misc_function_vector which
|
||
* didn't work as well as I wanted to be. -MGO */
|
||
|
||
/* If the first thing after skipping a prolog is a branch to a function,
|
||
this might be a call to an initializer in main(), introduced by gcc2.
|
||
We'd like to skip over it as well. Fortunately, xlc does some extra
|
||
work before calling a function right after a prologue, thus we can
|
||
single out such gcc2 behaviour. */
|
||
|
||
|
||
if ((op & 0xfc000001) == 0x48000001)
|
||
{ /* bl foo, an initializer function? */
|
||
op = read_memory_integer (pc + 4, 4);
|
||
|
||
if (op == 0x4def7b82)
|
||
{ /* cror 0xf, 0xf, 0xf (nop) */
|
||
|
||
/* Check and see if we are in main. If so, skip over this
|
||
initializer function as well. */
|
||
|
||
tmp = find_pc_misc_function (pc);
|
||
if (tmp >= 0
|
||
&& strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
|
||
return pc + 8;
|
||
}
|
||
}
|
||
#endif /* 0 */
|
||
|
||
fdata->offset = -fdata->offset;
|
||
return last_prologue_pc;
|
||
}
|
||
|
||
|
||
/*************************************************************************
|
||
Support for creating pushing a dummy frame into the stack, and popping
|
||
frames, etc.
|
||
*************************************************************************/
|
||
|
||
|
||
/* All the ABI's require 16 byte alignment. */
|
||
static CORE_ADDR
|
||
rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
|
||
{
|
||
return (addr & -16);
|
||
}
|
||
|
||
/* Pass the arguments in either registers, or in the stack. In RS/6000,
|
||
the first eight words of the argument list (that might be less than
|
||
eight parameters if some parameters occupy more than one word) are
|
||
passed in r3..r10 registers. float and double parameters are
|
||
passed in fpr's, in addition to that. Rest of the parameters if any
|
||
are passed in user stack. There might be cases in which half of the
|
||
parameter is copied into registers, the other half is pushed into
|
||
stack.
|
||
|
||
Stack must be aligned on 64-bit boundaries when synthesizing
|
||
function calls.
|
||
|
||
If the function is returning a structure, then the return address is passed
|
||
in r3, then the first 7 words of the parameters can be passed in registers,
|
||
starting from r4. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
||
struct regcache *regcache, CORE_ADDR bp_addr,
|
||
int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
int ii;
|
||
int len = 0;
|
||
int argno; /* current argument number */
|
||
int argbytes; /* current argument byte */
|
||
gdb_byte tmp_buffer[50];
|
||
int f_argno = 0; /* current floating point argno */
|
||
int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
|
||
CORE_ADDR func_addr = find_function_addr (function, NULL);
|
||
|
||
struct value *arg = 0;
|
||
struct type *type;
|
||
|
||
CORE_ADDR saved_sp;
|
||
|
||
/* The calling convention this function implements assumes the
|
||
processor has floating-point registers. We shouldn't be using it
|
||
on PPC variants that lack them. */
|
||
gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
|
||
|
||
/* The first eight words of ther arguments are passed in registers.
|
||
Copy them appropriately. */
|
||
ii = 0;
|
||
|
||
/* If the function is returning a `struct', then the first word
|
||
(which will be passed in r3) is used for struct return address.
|
||
In that case we should advance one word and start from r4
|
||
register to copy parameters. */
|
||
if (struct_return)
|
||
{
|
||
regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
|
||
struct_addr);
|
||
ii++;
|
||
}
|
||
|
||
/*
|
||
effectively indirect call... gcc does...
|
||
|
||
return_val example( float, int);
|
||
|
||
eabi:
|
||
float in fp0, int in r3
|
||
offset of stack on overflow 8/16
|
||
for varargs, must go by type.
|
||
power open:
|
||
float in r3&r4, int in r5
|
||
offset of stack on overflow different
|
||
both:
|
||
return in r3 or f0. If no float, must study how gcc emulates floats;
|
||
pay attention to arg promotion.
|
||
User may have to cast\args to handle promotion correctly
|
||
since gdb won't know if prototype supplied or not.
|
||
*/
|
||
|
||
for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
|
||
{
|
||
int reg_size = register_size (current_gdbarch, ii + 3);
|
||
|
||
arg = args[argno];
|
||
type = check_typedef (value_type (arg));
|
||
len = TYPE_LENGTH (type);
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
{
|
||
|
||
/* Floating point arguments are passed in fpr's, as well as gpr's.
|
||
There are 13 fpr's reserved for passing parameters. At this point
|
||
there is no way we would run out of them. */
|
||
|
||
gdb_assert (len <= 8);
|
||
|
||
regcache_cooked_write (regcache,
|
||
tdep->ppc_fp0_regnum + 1 + f_argno,
|
||
value_contents (arg));
|
||
++f_argno;
|
||
}
|
||
|
||
if (len > reg_size)
|
||
{
|
||
|
||
/* Argument takes more than one register. */
|
||
while (argbytes < len)
|
||
{
|
||
gdb_byte word[MAX_REGISTER_SIZE];
|
||
memset (word, 0, reg_size);
|
||
memcpy (word,
|
||
((char *) value_contents (arg)) + argbytes,
|
||
(len - argbytes) > reg_size
|
||
? reg_size : len - argbytes);
|
||
regcache_cooked_write (regcache,
|
||
tdep->ppc_gp0_regnum + 3 + ii,
|
||
word);
|
||
++ii, argbytes += reg_size;
|
||
|
||
if (ii >= 8)
|
||
goto ran_out_of_registers_for_arguments;
|
||
}
|
||
argbytes = 0;
|
||
--ii;
|
||
}
|
||
else
|
||
{
|
||
/* Argument can fit in one register. No problem. */
|
||
int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
|
||
gdb_byte word[MAX_REGISTER_SIZE];
|
||
|
||
memset (word, 0, reg_size);
|
||
memcpy (word, value_contents (arg), len);
|
||
regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
|
||
}
|
||
++argno;
|
||
}
|
||
|
||
ran_out_of_registers_for_arguments:
|
||
|
||
saved_sp = read_sp ();
|
||
|
||
/* Location for 8 parameters are always reserved. */
|
||
sp -= wordsize * 8;
|
||
|
||
/* Another six words for back chain, TOC register, link register, etc. */
|
||
sp -= wordsize * 6;
|
||
|
||
/* Stack pointer must be quadword aligned. */
|
||
sp &= -16;
|
||
|
||
/* If there are more arguments, allocate space for them in
|
||
the stack, then push them starting from the ninth one. */
|
||
|
||
if ((argno < nargs) || argbytes)
|
||
{
|
||
int space = 0, jj;
|
||
|
||
if (argbytes)
|
||
{
|
||
space += ((len - argbytes + 3) & -4);
|
||
jj = argno + 1;
|
||
}
|
||
else
|
||
jj = argno;
|
||
|
||
for (; jj < nargs; ++jj)
|
||
{
|
||
struct value *val = args[jj];
|
||
space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
|
||
}
|
||
|
||
/* Add location required for the rest of the parameters. */
|
||
space = (space + 15) & -16;
|
||
sp -= space;
|
||
|
||
/* This is another instance we need to be concerned about
|
||
securing our stack space. If we write anything underneath %sp
|
||
(r1), we might conflict with the kernel who thinks he is free
|
||
to use this area. So, update %sp first before doing anything
|
||
else. */
|
||
|
||
regcache_raw_write_signed (regcache, SP_REGNUM, sp);
|
||
|
||
/* If the last argument copied into the registers didn't fit there
|
||
completely, push the rest of it into stack. */
|
||
|
||
if (argbytes)
|
||
{
|
||
write_memory (sp + 24 + (ii * 4),
|
||
value_contents (arg) + argbytes,
|
||
len - argbytes);
|
||
++argno;
|
||
ii += ((len - argbytes + 3) & -4) / 4;
|
||
}
|
||
|
||
/* Push the rest of the arguments into stack. */
|
||
for (; argno < nargs; ++argno)
|
||
{
|
||
|
||
arg = args[argno];
|
||
type = check_typedef (value_type (arg));
|
||
len = TYPE_LENGTH (type);
|
||
|
||
|
||
/* Float types should be passed in fpr's, as well as in the
|
||
stack. */
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
|
||
{
|
||
|
||
gdb_assert (len <= 8);
|
||
|
||
regcache_cooked_write (regcache,
|
||
tdep->ppc_fp0_regnum + 1 + f_argno,
|
||
value_contents (arg));
|
||
++f_argno;
|
||
}
|
||
|
||
write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
|
||
ii += ((len + 3) & -4) / 4;
|
||
}
|
||
}
|
||
|
||
/* Set the stack pointer. According to the ABI, the SP is meant to
|
||
be set _before_ the corresponding stack space is used. On AIX,
|
||
this even applies when the target has been completely stopped!
|
||
Not doing this can lead to conflicts with the kernel which thinks
|
||
that it still has control over this not-yet-allocated stack
|
||
region. */
|
||
regcache_raw_write_signed (regcache, SP_REGNUM, sp);
|
||
|
||
/* Set back chain properly. */
|
||
store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
|
||
write_memory (sp, tmp_buffer, wordsize);
|
||
|
||
/* Point the inferior function call's return address at the dummy's
|
||
breakpoint. */
|
||
regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
|
||
|
||
/* Set the TOC register, get the value from the objfile reader
|
||
which, in turn, gets it from the VMAP table. */
|
||
if (rs6000_find_toc_address_hook != NULL)
|
||
{
|
||
CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
|
||
regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
|
||
}
|
||
|
||
target_store_registers (-1);
|
||
return sp;
|
||
}
|
||
|
||
/* PowerOpen always puts structures in memory. Vectors, which were
|
||
added later, do get returned in a register though. */
|
||
|
||
static int
|
||
rs6000_use_struct_convention (int gcc_p, struct type *value_type)
|
||
{
|
||
if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
|
||
&& TYPE_VECTOR (value_type))
|
||
return 0;
|
||
return 1;
|
||
}
|
||
|
||
static void
|
||
rs6000_extract_return_value (struct type *valtype, gdb_byte *regbuf,
|
||
gdb_byte *valbuf)
|
||
{
|
||
int offset = 0;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
/* The calling convention this function implements assumes the
|
||
processor has floating-point registers. We shouldn't be using it
|
||
on PPC variants that lack them. */
|
||
gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
|
||
|
||
if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
|
||
{
|
||
|
||
/* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
|
||
We need to truncate the return value into float size (4 byte) if
|
||
necessary. */
|
||
|
||
convert_typed_floating (®buf[DEPRECATED_REGISTER_BYTE
|
||
(tdep->ppc_fp0_regnum + 1)],
|
||
builtin_type_double,
|
||
valbuf,
|
||
valtype);
|
||
}
|
||
else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
|
||
&& TYPE_LENGTH (valtype) == 16
|
||
&& TYPE_VECTOR (valtype))
|
||
{
|
||
memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
|
||
TYPE_LENGTH (valtype));
|
||
}
|
||
else
|
||
{
|
||
/* return value is copied starting from r3. */
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
|
||
&& TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
|
||
offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
|
||
|
||
memcpy (valbuf,
|
||
regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
|
||
TYPE_LENGTH (valtype));
|
||
}
|
||
}
|
||
|
||
/* Return whether handle_inferior_event() should proceed through code
|
||
starting at PC in function NAME when stepping.
|
||
|
||
The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
|
||
handle memory references that are too distant to fit in instructions
|
||
generated by the compiler. For example, if 'foo' in the following
|
||
instruction:
|
||
|
||
lwz r9,foo(r2)
|
||
|
||
is greater than 32767, the linker might replace the lwz with a branch to
|
||
somewhere in @FIX1 that does the load in 2 instructions and then branches
|
||
back to where execution should continue.
|
||
|
||
GDB should silently step over @FIX code, just like AIX dbx does.
|
||
Unfortunately, the linker uses the "b" instruction for the
|
||
branches, meaning that the link register doesn't get set.
|
||
Therefore, GDB's usual step_over_function () mechanism won't work.
|
||
|
||
Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
|
||
SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
|
||
@FIX code. */
|
||
|
||
int
|
||
rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
|
||
{
|
||
return name && !strncmp (name, "@FIX", 4);
|
||
}
|
||
|
||
/* Skip code that the user doesn't want to see when stepping:
|
||
|
||
1. Indirect function calls use a piece of trampoline code to do context
|
||
switching, i.e. to set the new TOC table. Skip such code if we are on
|
||
its first instruction (as when we have single-stepped to here).
|
||
|
||
2. Skip shared library trampoline code (which is different from
|
||
indirect function call trampolines).
|
||
|
||
3. Skip bigtoc fixup code.
|
||
|
||
Result is desired PC to step until, or NULL if we are not in
|
||
code that should be skipped. */
|
||
|
||
CORE_ADDR
|
||
rs6000_skip_trampoline_code (CORE_ADDR pc)
|
||
{
|
||
unsigned int ii, op;
|
||
int rel;
|
||
CORE_ADDR solib_target_pc;
|
||
struct minimal_symbol *msymbol;
|
||
|
||
static unsigned trampoline_code[] =
|
||
{
|
||
0x800b0000, /* l r0,0x0(r11) */
|
||
0x90410014, /* st r2,0x14(r1) */
|
||
0x7c0903a6, /* mtctr r0 */
|
||
0x804b0004, /* l r2,0x4(r11) */
|
||
0x816b0008, /* l r11,0x8(r11) */
|
||
0x4e800420, /* bctr */
|
||
0x4e800020, /* br */
|
||
0
|
||
};
|
||
|
||
/* Check for bigtoc fixup code. */
|
||
msymbol = lookup_minimal_symbol_by_pc (pc);
|
||
if (msymbol
|
||
&& rs6000_in_solib_return_trampoline (pc,
|
||
DEPRECATED_SYMBOL_NAME (msymbol)))
|
||
{
|
||
/* Double-check that the third instruction from PC is relative "b". */
|
||
op = read_memory_integer (pc + 8, 4);
|
||
if ((op & 0xfc000003) == 0x48000000)
|
||
{
|
||
/* Extract bits 6-29 as a signed 24-bit relative word address and
|
||
add it to the containing PC. */
|
||
rel = ((int)(op << 6) >> 6);
|
||
return pc + 8 + rel;
|
||
}
|
||
}
|
||
|
||
/* If pc is in a shared library trampoline, return its target. */
|
||
solib_target_pc = find_solib_trampoline_target (pc);
|
||
if (solib_target_pc)
|
||
return solib_target_pc;
|
||
|
||
for (ii = 0; trampoline_code[ii]; ++ii)
|
||
{
|
||
op = read_memory_integer (pc + (ii * 4), 4);
|
||
if (op != trampoline_code[ii])
|
||
return 0;
|
||
}
|
||
ii = read_register (11); /* r11 holds destination addr */
|
||
pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
|
||
return pc;
|
||
}
|
||
|
||
/* Return the size of register REG when words are WORDSIZE bytes long. If REG
|
||
isn't available with that word size, return 0. */
|
||
|
||
static int
|
||
regsize (const struct reg *reg, int wordsize)
|
||
{
|
||
return wordsize == 8 ? reg->sz64 : reg->sz32;
|
||
}
|
||
|
||
/* Return the name of register number N, or null if no such register exists
|
||
in the current architecture. */
|
||
|
||
static const char *
|
||
rs6000_register_name (int n)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
const struct reg *reg = tdep->regs + n;
|
||
|
||
if (!regsize (reg, tdep->wordsize))
|
||
return NULL;
|
||
return reg->name;
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type
|
||
of data in register N. */
|
||
|
||
static struct type *
|
||
rs6000_register_type (struct gdbarch *gdbarch, int n)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
const struct reg *reg = tdep->regs + n;
|
||
|
||
if (reg->fpr)
|
||
return builtin_type_double;
|
||
else
|
||
{
|
||
int size = regsize (reg, tdep->wordsize);
|
||
switch (size)
|
||
{
|
||
case 0:
|
||
return builtin_type_int0;
|
||
case 4:
|
||
return builtin_type_uint32;
|
||
case 8:
|
||
if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
|
||
return builtin_type_vec64;
|
||
else
|
||
return builtin_type_uint64;
|
||
break;
|
||
case 16:
|
||
return builtin_type_vec128;
|
||
break;
|
||
default:
|
||
internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
|
||
n, size);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Is REGNUM a member of REGGROUP? */
|
||
static int
|
||
rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
||
struct reggroup *group)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int float_p;
|
||
int vector_p;
|
||
int general_p;
|
||
|
||
if (REGISTER_NAME (regnum) == NULL
|
||
|| *REGISTER_NAME (regnum) == '\0')
|
||
return 0;
|
||
if (group == all_reggroup)
|
||
return 1;
|
||
|
||
float_p = (regnum == tdep->ppc_fpscr_regnum
|
||
|| (regnum >= tdep->ppc_fp0_regnum
|
||
&& regnum < tdep->ppc_fp0_regnum + 32));
|
||
if (group == float_reggroup)
|
||
return float_p;
|
||
|
||
vector_p = ((tdep->ppc_vr0_regnum >= 0
|
||
&& regnum >= tdep->ppc_vr0_regnum
|
||
&& regnum < tdep->ppc_vr0_regnum + 32)
|
||
|| (tdep->ppc_ev0_regnum >= 0
|
||
&& regnum >= tdep->ppc_ev0_regnum
|
||
&& regnum < tdep->ppc_ev0_regnum + 32)
|
||
|| regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
|
||
|| regnum == tdep->ppc_vrsave_regnum
|
||
|| regnum == tdep->ppc_acc_regnum
|
||
|| regnum == tdep->ppc_spefscr_regnum);
|
||
if (group == vector_reggroup)
|
||
return vector_p;
|
||
|
||
/* Note that PS aka MSR isn't included - it's a system register (and
|
||
besides, due to GCC's CFI foobar you do not want to restore
|
||
it). */
|
||
general_p = ((regnum >= tdep->ppc_gp0_regnum
|
||
&& regnum < tdep->ppc_gp0_regnum + 32)
|
||
|| regnum == tdep->ppc_toc_regnum
|
||
|| regnum == tdep->ppc_cr_regnum
|
||
|| regnum == tdep->ppc_lr_regnum
|
||
|| regnum == tdep->ppc_ctr_regnum
|
||
|| regnum == tdep->ppc_xer_regnum
|
||
|| regnum == PC_REGNUM);
|
||
if (group == general_reggroup)
|
||
return general_p;
|
||
|
||
if (group == save_reggroup || group == restore_reggroup)
|
||
return general_p || vector_p || float_p;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* The register format for RS/6000 floating point registers is always
|
||
double, we need a conversion if the memory format is float. */
|
||
|
||
static int
|
||
rs6000_convert_register_p (int regnum, struct type *type)
|
||
{
|
||
const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
|
||
|
||
return (reg->fpr
|
||
&& TYPE_CODE (type) == TYPE_CODE_FLT
|
||
&& TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
|
||
}
|
||
|
||
static void
|
||
rs6000_register_to_value (struct frame_info *frame,
|
||
int regnum,
|
||
struct type *type,
|
||
gdb_byte *to)
|
||
{
|
||
const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
|
||
gdb_byte from[MAX_REGISTER_SIZE];
|
||
|
||
gdb_assert (reg->fpr);
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
||
|
||
get_frame_register (frame, regnum, from);
|
||
convert_typed_floating (from, builtin_type_double, to, type);
|
||
}
|
||
|
||
static void
|
||
rs6000_value_to_register (struct frame_info *frame,
|
||
int regnum,
|
||
struct type *type,
|
||
const gdb_byte *from)
|
||
{
|
||
const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
|
||
gdb_byte to[MAX_REGISTER_SIZE];
|
||
|
||
gdb_assert (reg->fpr);
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
|
||
|
||
convert_typed_floating (from, type, to, builtin_type_double);
|
||
put_frame_register (frame, regnum, to);
|
||
}
|
||
|
||
/* Move SPE vector register values between a 64-bit buffer and the two
|
||
32-bit raw register halves in a regcache. This function handles
|
||
both splitting a 64-bit value into two 32-bit halves, and joining
|
||
two halves into a whole 64-bit value, depending on the function
|
||
passed as the MOVE argument.
|
||
|
||
EV_REG must be the number of an SPE evN vector register --- a
|
||
pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
|
||
64-bit buffer.
|
||
|
||
Call MOVE once for each 32-bit half of that register, passing
|
||
REGCACHE, the number of the raw register corresponding to that
|
||
half, and the address of the appropriate half of BUFFER.
|
||
|
||
For example, passing 'regcache_raw_read' as the MOVE function will
|
||
fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
|
||
'regcache_raw_supply' will supply the contents of BUFFER to the
|
||
appropriate pair of raw registers in REGCACHE.
|
||
|
||
You may need to cast away some 'const' qualifiers when passing
|
||
MOVE, since this function can't tell at compile-time which of
|
||
REGCACHE or BUFFER is acting as the source of the data. If C had
|
||
co-variant type qualifiers, ... */
|
||
static void
|
||
e500_move_ev_register (void (*move) (struct regcache *regcache,
|
||
int regnum, gdb_byte *buf),
|
||
struct regcache *regcache, int ev_reg,
|
||
gdb_byte *buffer)
|
||
{
|
||
struct gdbarch *arch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
|
||
int reg_index;
|
||
gdb_byte *byte_buffer = buffer;
|
||
|
||
gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
|
||
&& ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
|
||
|
||
reg_index = ev_reg - tdep->ppc_ev0_regnum;
|
||
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
{
|
||
move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
|
||
move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
|
||
}
|
||
else
|
||
{
|
||
move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
|
||
move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
|
||
}
|
||
}
|
||
|
||
static void
|
||
e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, gdb_byte *buffer)
|
||
{
|
||
struct gdbarch *regcache_arch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
gdb_assert (regcache_arch == gdbarch);
|
||
|
||
if (tdep->ppc_ev0_regnum <= reg_nr
|
||
&& reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
|
||
e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
_("e500_pseudo_register_read: "
|
||
"called on unexpected register '%s' (%d)"),
|
||
gdbarch_register_name (gdbarch, reg_nr), reg_nr);
|
||
}
|
||
|
||
static void
|
||
e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
|
||
int reg_nr, const gdb_byte *buffer)
|
||
{
|
||
struct gdbarch *regcache_arch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
gdb_assert (regcache_arch == gdbarch);
|
||
|
||
if (tdep->ppc_ev0_regnum <= reg_nr
|
||
&& reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
|
||
e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
|
||
regcache_raw_write,
|
||
regcache, reg_nr, (gdb_byte *) buffer);
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
_("e500_pseudo_register_read: "
|
||
"called on unexpected register '%s' (%d)"),
|
||
gdbarch_register_name (gdbarch, reg_nr), reg_nr);
|
||
}
|
||
|
||
/* The E500 needs a custom reggroup function: it has anonymous raw
|
||
registers, and default_register_reggroup_p assumes that anonymous
|
||
registers are not members of any reggroup. */
|
||
static int
|
||
e500_register_reggroup_p (struct gdbarch *gdbarch,
|
||
int regnum,
|
||
struct reggroup *group)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* The save and restore register groups need to include the
|
||
upper-half registers, even though they're anonymous. */
|
||
if ((group == save_reggroup
|
||
|| group == restore_reggroup)
|
||
&& (tdep->ppc_ev0_upper_regnum <= regnum
|
||
&& regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
|
||
return 1;
|
||
|
||
/* In all other regards, the default reggroup definition is fine. */
|
||
return default_register_reggroup_p (gdbarch, regnum, group);
|
||
}
|
||
|
||
/* Convert a DBX STABS register number to a GDB register number. */
|
||
static int
|
||
rs6000_stab_reg_to_regnum (int num)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (0 <= num && num <= 31)
|
||
return tdep->ppc_gp0_regnum + num;
|
||
else if (32 <= num && num <= 63)
|
||
/* FIXME: jimb/2004-05-05: What should we do when the debug info
|
||
specifies registers the architecture doesn't have? Our
|
||
callers don't check the value we return. */
|
||
return tdep->ppc_fp0_regnum + (num - 32);
|
||
else if (77 <= num && num <= 108)
|
||
return tdep->ppc_vr0_regnum + (num - 77);
|
||
else if (1200 <= num && num < 1200 + 32)
|
||
return tdep->ppc_ev0_regnum + (num - 1200);
|
||
else
|
||
switch (num)
|
||
{
|
||
case 64:
|
||
return tdep->ppc_mq_regnum;
|
||
case 65:
|
||
return tdep->ppc_lr_regnum;
|
||
case 66:
|
||
return tdep->ppc_ctr_regnum;
|
||
case 76:
|
||
return tdep->ppc_xer_regnum;
|
||
case 109:
|
||
return tdep->ppc_vrsave_regnum;
|
||
case 110:
|
||
return tdep->ppc_vrsave_regnum - 1; /* vscr */
|
||
case 111:
|
||
return tdep->ppc_acc_regnum;
|
||
case 112:
|
||
return tdep->ppc_spefscr_regnum;
|
||
default:
|
||
return num;
|
||
}
|
||
}
|
||
|
||
|
||
/* Convert a Dwarf 2 register number to a GDB register number. */
|
||
static int
|
||
rs6000_dwarf2_reg_to_regnum (int num)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (0 <= num && num <= 31)
|
||
return tdep->ppc_gp0_regnum + num;
|
||
else if (32 <= num && num <= 63)
|
||
/* FIXME: jimb/2004-05-05: What should we do when the debug info
|
||
specifies registers the architecture doesn't have? Our
|
||
callers don't check the value we return. */
|
||
return tdep->ppc_fp0_regnum + (num - 32);
|
||
else if (1124 <= num && num < 1124 + 32)
|
||
return tdep->ppc_vr0_regnum + (num - 1124);
|
||
else if (1200 <= num && num < 1200 + 32)
|
||
return tdep->ppc_ev0_regnum + (num - 1200);
|
||
else
|
||
switch (num)
|
||
{
|
||
case 67:
|
||
return tdep->ppc_vrsave_regnum - 1; /* vscr */
|
||
case 99:
|
||
return tdep->ppc_acc_regnum;
|
||
case 100:
|
||
return tdep->ppc_mq_regnum;
|
||
case 101:
|
||
return tdep->ppc_xer_regnum;
|
||
case 108:
|
||
return tdep->ppc_lr_regnum;
|
||
case 109:
|
||
return tdep->ppc_ctr_regnum;
|
||
case 356:
|
||
return tdep->ppc_vrsave_regnum;
|
||
case 612:
|
||
return tdep->ppc_spefscr_regnum;
|
||
default:
|
||
return num;
|
||
}
|
||
}
|
||
|
||
|
||
static void
|
||
rs6000_store_return_value (struct type *type,
|
||
struct regcache *regcache,
|
||
const gdb_byte *valbuf)
|
||
{
|
||
struct gdbarch *gdbarch = get_regcache_arch (regcache);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
int regnum = -1;
|
||
|
||
/* The calling convention this function implements assumes the
|
||
processor has floating-point registers. We shouldn't be using it
|
||
on PPC variants that lack them. */
|
||
gdb_assert (ppc_floating_point_unit_p (gdbarch));
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_FLT)
|
||
/* Floating point values are returned starting from FPR1 and up.
|
||
Say a double_double_double type could be returned in
|
||
FPR1/FPR2/FPR3 triple. */
|
||
regnum = tdep->ppc_fp0_regnum + 1;
|
||
else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
if (TYPE_LENGTH (type) == 16
|
||
&& TYPE_VECTOR (type))
|
||
regnum = tdep->ppc_vr0_regnum + 2;
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
_("rs6000_store_return_value: "
|
||
"unexpected array return type"));
|
||
}
|
||
else
|
||
/* Everything else is returned in GPR3 and up. */
|
||
regnum = tdep->ppc_gp0_regnum + 3;
|
||
|
||
{
|
||
size_t bytes_written = 0;
|
||
|
||
while (bytes_written < TYPE_LENGTH (type))
|
||
{
|
||
/* How much of this value can we write to this register? */
|
||
size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
|
||
register_size (gdbarch, regnum));
|
||
regcache_cooked_write_part (regcache, regnum,
|
||
0, bytes_to_write,
|
||
valbuf + bytes_written);
|
||
regnum++;
|
||
bytes_written += bytes_to_write;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Extract from an array REGBUF containing the (raw) register state
|
||
the address in which a function should return its structure value,
|
||
as a CORE_ADDR (or an expression that can be used as one). */
|
||
|
||
static CORE_ADDR
|
||
rs6000_extract_struct_value_address (struct regcache *regcache)
|
||
{
|
||
/* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
|
||
function call GDB knows the address of the struct return value
|
||
and hence, should not need to call this function. Unfortunately,
|
||
the current call_function_by_hand() code only saves the most
|
||
recent struct address leading to occasional calls. The code
|
||
should instead maintain a stack of such addresses (in the dummy
|
||
frame object). */
|
||
/* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
|
||
really got no idea where the return value is being stored. While
|
||
r3, on function entry, contained the address it will have since
|
||
been reused (scratch) and hence wouldn't be valid */
|
||
return 0;
|
||
}
|
||
|
||
/* Hook called when a new child process is started. */
|
||
|
||
void
|
||
rs6000_create_inferior (int pid)
|
||
{
|
||
if (rs6000_set_host_arch_hook)
|
||
rs6000_set_host_arch_hook (pid);
|
||
}
|
||
|
||
/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
|
||
|
||
Usually a function pointer's representation is simply the address
|
||
of the function. On the RS/6000 however, a function pointer is
|
||
represented by a pointer to an OPD entry. This OPD entry contains
|
||
three words, the first word is the address of the function, the
|
||
second word is the TOC pointer (r2), and the third word is the
|
||
static chain value. Throughout GDB it is currently assumed that a
|
||
function pointer contains the address of the function, which is not
|
||
easy to fix. In addition, the conversion of a function address to
|
||
a function pointer would require allocation of an OPD entry in the
|
||
inferior's memory space, with all its drawbacks. To be able to
|
||
call C++ virtual methods in the inferior (which are called via
|
||
function pointers), find_function_addr uses this function to get the
|
||
function address from a function pointer. */
|
||
|
||
/* Return real function address if ADDR (a function pointer) is in the data
|
||
space and is therefore a special function pointer. */
|
||
|
||
static CORE_ADDR
|
||
rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
|
||
CORE_ADDR addr,
|
||
struct target_ops *targ)
|
||
{
|
||
struct obj_section *s;
|
||
|
||
s = find_pc_section (addr);
|
||
if (s && s->the_bfd_section->flags & SEC_CODE)
|
||
return addr;
|
||
|
||
/* ADDR is in the data space, so it's a special function pointer. */
|
||
return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
|
||
}
|
||
|
||
|
||
/* Handling the various POWER/PowerPC variants. */
|
||
|
||
|
||
/* The arrays here called registers_MUMBLE hold information about available
|
||
registers.
|
||
|
||
For each family of PPC variants, I've tried to isolate out the
|
||
common registers and put them up front, so that as long as you get
|
||
the general family right, GDB will correctly identify the registers
|
||
common to that family. The common register sets are:
|
||
|
||
For the 60x family: hid0 hid1 iabr dabr pir
|
||
|
||
For the 505 and 860 family: eie eid nri
|
||
|
||
For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
|
||
tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
|
||
pbu1 pbl2 pbu2
|
||
|
||
Most of these register groups aren't anything formal. I arrived at
|
||
them by looking at the registers that occurred in more than one
|
||
processor.
|
||
|
||
Note: kevinb/2002-04-30: Support for the fpscr register was added
|
||
during April, 2002. Slot 70 is being used for PowerPC and slot 71
|
||
for Power. For PowerPC, slot 70 was unused and was already in the
|
||
PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
|
||
slot 70 was being used for "mq", so the next available slot (71)
|
||
was chosen. It would have been nice to be able to make the
|
||
register numbers the same across processor cores, but this wasn't
|
||
possible without either 1) renumbering some registers for some
|
||
processors or 2) assigning fpscr to a really high slot that's
|
||
larger than any current register number. Doing (1) is bad because
|
||
existing stubs would break. Doing (2) is undesirable because it
|
||
would introduce a really large gap between fpscr and the rest of
|
||
the registers for most processors. */
|
||
|
||
/* Convenience macros for populating register arrays. */
|
||
|
||
/* Within another macro, convert S to a string. */
|
||
|
||
#define STR(s) #s
|
||
|
||
/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
|
||
and 64 bits on 64-bit systems. */
|
||
#define R(name) { STR(name), 4, 8, 0, 0, -1 }
|
||
|
||
/* Return a struct reg defining register NAME that's 32 bits on all
|
||
systems. */
|
||
#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
|
||
|
||
/* Return a struct reg defining register NAME that's 64 bits on all
|
||
systems. */
|
||
#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
|
||
|
||
/* Return a struct reg defining register NAME that's 128 bits on all
|
||
systems. */
|
||
#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
|
||
|
||
/* Return a struct reg defining floating-point register NAME. */
|
||
#define F(name) { STR(name), 8, 8, 1, 0, -1 }
|
||
|
||
/* Return a struct reg defining a pseudo register NAME that is 64 bits
|
||
long on all systems. */
|
||
#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
|
||
|
||
/* Return a struct reg defining register NAME that's 32 bits on 32-bit
|
||
systems and that doesn't exist on 64-bit systems. */
|
||
#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
|
||
|
||
/* Return a struct reg defining register NAME that's 64 bits on 64-bit
|
||
systems and that doesn't exist on 32-bit systems. */
|
||
#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
|
||
|
||
/* Return a struct reg placeholder for a register that doesn't exist. */
|
||
#define R0 { 0, 0, 0, 0, 0, -1 }
|
||
|
||
/* Return a struct reg defining an anonymous raw register that's 32
|
||
bits on all systems. */
|
||
#define A4 { 0, 4, 4, 0, 0, -1 }
|
||
|
||
/* Return a struct reg defining an SPR named NAME that is 32 bits on
|
||
32-bit systems and 64 bits on 64-bit systems. */
|
||
#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
|
||
|
||
/* Return a struct reg defining an SPR named NAME that is 32 bits on
|
||
all systems. */
|
||
#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
|
||
|
||
/* Return a struct reg defining an SPR named NAME that is 32 bits on
|
||
all systems, and whose SPR number is NUMBER. */
|
||
#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
|
||
|
||
/* Return a struct reg defining an SPR named NAME that's 64 bits on
|
||
64-bit systems and that doesn't exist on 32-bit systems. */
|
||
#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
|
||
|
||
/* UISA registers common across all architectures, including POWER. */
|
||
|
||
#define COMMON_UISA_REGS \
|
||
/* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
|
||
/* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
|
||
/* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
|
||
/* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
|
||
/* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
|
||
/* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
|
||
/* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
|
||
/* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
|
||
/* 64 */ R(pc), R(ps)
|
||
|
||
/* UISA-level SPRs for PowerPC. */
|
||
#define PPC_UISA_SPRS \
|
||
/* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
|
||
|
||
/* UISA-level SPRs for PowerPC without floating point support. */
|
||
#define PPC_UISA_NOFP_SPRS \
|
||
/* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
|
||
|
||
/* Segment registers, for PowerPC. */
|
||
#define PPC_SEGMENT_REGS \
|
||
/* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
|
||
/* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
|
||
/* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
|
||
/* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
|
||
|
||
/* OEA SPRs for PowerPC. */
|
||
#define PPC_OEA_SPRS \
|
||
/* 87 */ S4(pvr), \
|
||
/* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
|
||
/* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
|
||
/* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
|
||
/* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
|
||
/* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
|
||
/* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
|
||
/* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
|
||
/* 116 */ S4(dec), S(dabr), S4(ear)
|
||
|
||
/* AltiVec registers. */
|
||
#define PPC_ALTIVEC_REGS \
|
||
/*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
|
||
/*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
|
||
/*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
|
||
/*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
|
||
/*151*/R4(vscr), R4(vrsave)
|
||
|
||
|
||
/* On machines supporting the SPE APU, the general-purpose registers
|
||
are 64 bits long. There are SIMD vector instructions to treat them
|
||
as pairs of floats, but the rest of the instruction set treats them
|
||
as 32-bit registers, and only operates on their lower halves.
|
||
|
||
In the GDB regcache, we treat their high and low halves as separate
|
||
registers. The low halves we present as the general-purpose
|
||
registers, and then we have pseudo-registers that stitch together
|
||
the upper and lower halves and present them as pseudo-registers. */
|
||
|
||
/* SPE GPR lower halves --- raw registers. */
|
||
#define PPC_SPE_GP_REGS \
|
||
/* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
|
||
/* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
|
||
/* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
|
||
/* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
|
||
|
||
/* SPE GPR upper halves --- anonymous raw registers. */
|
||
#define PPC_SPE_UPPER_GP_REGS \
|
||
/* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
|
||
/* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
|
||
/* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
|
||
/* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
|
||
|
||
/* SPE GPR vector registers --- pseudo registers based on underlying
|
||
gprs and the anonymous upper half raw registers. */
|
||
#define PPC_EV_PSEUDO_REGS \
|
||
/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
|
||
/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
|
||
/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
|
||
/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
|
||
|
||
/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
|
||
user-level SPR's. */
|
||
static const struct reg registers_power[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
/* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
|
||
/* 71 */ R4(fpscr)
|
||
};
|
||
|
||
/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
|
||
view of the PowerPC. */
|
||
static const struct reg registers_powerpc[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_ALTIVEC_REGS
|
||
};
|
||
|
||
/* IBM PowerPC 403.
|
||
|
||
Some notes about the "tcr" special-purpose register:
|
||
- On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
|
||
403's programmable interval timer, fixed interval timer, and
|
||
watchdog timer.
|
||
- On the 602, SPR 984 is named "tcr", and it controls the 602's
|
||
watchdog timer, and nothing else.
|
||
|
||
Some of the fields are similar between the two, but they're not
|
||
compatible with each other. Since the two variants have different
|
||
registers, with different numbers, but the same name, we can't
|
||
splice the register name to get the SPR number. */
|
||
static const struct reg registers_403[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
|
||
/* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
|
||
/* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
|
||
/* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
|
||
/* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
|
||
/* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
|
||
};
|
||
|
||
/* IBM PowerPC 403GC.
|
||
See the comments about 'tcr' for the 403, above. */
|
||
static const struct reg registers_403GC[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
|
||
/* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
|
||
/* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
|
||
/* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
|
||
/* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
|
||
/* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
|
||
/* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
|
||
/* 147 */ S(tbhu), S(tblu)
|
||
};
|
||
|
||
/* Motorola PowerPC 505. */
|
||
static const struct reg registers_505[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ S(eie), S(eid), S(nri)
|
||
};
|
||
|
||
/* Motorola PowerPC 860 or 850. */
|
||
static const struct reg registers_860[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ S(eie), S(eid), S(nri), S(cmpa),
|
||
/* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
|
||
/* 127 */ S(der), S(counta), S(countb), S(cmpe),
|
||
/* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
|
||
/* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
|
||
/* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
|
||
/* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
|
||
/* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
|
||
/* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
|
||
/* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
|
||
/* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
|
||
/* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
|
||
};
|
||
|
||
/* Motorola PowerPC 601. Note that the 601 has different register numbers
|
||
for reading and writing RTCU and RTCL. However, how one reads and writes a
|
||
register is the stub's problem. */
|
||
static const struct reg registers_601[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
|
||
/* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
|
||
};
|
||
|
||
/* Motorola PowerPC 602.
|
||
See the notes under the 403 about 'tcr'. */
|
||
static const struct reg registers_602[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ S(hid0), S(hid1), S(iabr), R0,
|
||
/* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
|
||
/* 127 */ S(sebr), S(ser), S(sp), S(lt)
|
||
};
|
||
|
||
/* Motorola/IBM PowerPC 603 or 603e. */
|
||
static const struct reg registers_603[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ S(hid0), S(hid1), S(iabr), R0,
|
||
/* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
|
||
/* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
|
||
};
|
||
|
||
/* Motorola PowerPC 604 or 604e. */
|
||
static const struct reg registers_604[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
|
||
/* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
|
||
/* 127 */ S(sia), S(sda)
|
||
};
|
||
|
||
/* Motorola/IBM PowerPC 750 or 740. */
|
||
static const struct reg registers_750[] =
|
||
{
|
||
COMMON_UISA_REGS,
|
||
PPC_UISA_SPRS,
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
|
||
/* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
|
||
/* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
|
||
/* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
|
||
/* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
|
||
/* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
|
||
};
|
||
|
||
|
||
/* Motorola PowerPC 7400. */
|
||
static const struct reg registers_7400[] =
|
||
{
|
||
/* gpr0-gpr31, fpr0-fpr31 */
|
||
COMMON_UISA_REGS,
|
||
/* cr, lr, ctr, xer, fpscr */
|
||
PPC_UISA_SPRS,
|
||
/* sr0-sr15 */
|
||
PPC_SEGMENT_REGS,
|
||
PPC_OEA_SPRS,
|
||
/* vr0-vr31, vrsave, vscr */
|
||
PPC_ALTIVEC_REGS
|
||
/* FIXME? Add more registers? */
|
||
};
|
||
|
||
/* Motorola e500. */
|
||
static const struct reg registers_e500[] =
|
||
{
|
||
/* 0 .. 31 */ PPC_SPE_GP_REGS,
|
||
/* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
|
||
/* 64 .. 65 */ R(pc), R(ps),
|
||
/* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
|
||
/* 71 .. 72 */ R8(acc), S4(spefscr),
|
||
/* NOTE: Add new registers here the end of the raw register
|
||
list and just before the first pseudo register. */
|
||
/* 73 .. 104 */ PPC_EV_PSEUDO_REGS
|
||
};
|
||
|
||
/* Information about a particular processor variant. */
|
||
|
||
struct variant
|
||
{
|
||
/* Name of this variant. */
|
||
char *name;
|
||
|
||
/* English description of the variant. */
|
||
char *description;
|
||
|
||
/* bfd_arch_info.arch corresponding to variant. */
|
||
enum bfd_architecture arch;
|
||
|
||
/* bfd_arch_info.mach corresponding to variant. */
|
||
unsigned long mach;
|
||
|
||
/* Number of real registers. */
|
||
int nregs;
|
||
|
||
/* Number of pseudo registers. */
|
||
int npregs;
|
||
|
||
/* Number of total registers (the sum of nregs and npregs). */
|
||
int num_tot_regs;
|
||
|
||
/* Table of register names; registers[R] is the name of the register
|
||
number R. */
|
||
const struct reg *regs;
|
||
};
|
||
|
||
#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
|
||
|
||
static int
|
||
num_registers (const struct reg *reg_list, int num_tot_regs)
|
||
{
|
||
int i;
|
||
int nregs = 0;
|
||
|
||
for (i = 0; i < num_tot_regs; i++)
|
||
if (!reg_list[i].pseudo)
|
||
nregs++;
|
||
|
||
return nregs;
|
||
}
|
||
|
||
static int
|
||
num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
|
||
{
|
||
int i;
|
||
int npregs = 0;
|
||
|
||
for (i = 0; i < num_tot_regs; i++)
|
||
if (reg_list[i].pseudo)
|
||
npregs ++;
|
||
|
||
return npregs;
|
||
}
|
||
|
||
/* Information in this table comes from the following web sites:
|
||
IBM: http://www.chips.ibm.com:80/products/embedded/
|
||
Motorola: http://www.mot.com/SPS/PowerPC/
|
||
|
||
I'm sure I've got some of the variant descriptions not quite right.
|
||
Please report any inaccuracies you find to GDB's maintainer.
|
||
|
||
If you add entries to this table, please be sure to allow the new
|
||
value as an argument to the --with-cpu flag, in configure.in. */
|
||
|
||
static struct variant variants[] =
|
||
{
|
||
|
||
{"powerpc", "PowerPC user-level", bfd_arch_powerpc,
|
||
bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
{"power", "POWER user-level", bfd_arch_rs6000,
|
||
bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
|
||
registers_power},
|
||
{"403", "IBM PowerPC 403", bfd_arch_powerpc,
|
||
bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
|
||
registers_403},
|
||
{"601", "Motorola PowerPC 601", bfd_arch_powerpc,
|
||
bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
|
||
registers_601},
|
||
{"602", "Motorola PowerPC 602", bfd_arch_powerpc,
|
||
bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
|
||
registers_602},
|
||
{"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
|
||
bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
|
||
registers_603},
|
||
{"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
|
||
604, -1, -1, tot_num_registers (registers_604),
|
||
registers_604},
|
||
{"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
|
||
bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
|
||
registers_403GC},
|
||
{"505", "Motorola PowerPC 505", bfd_arch_powerpc,
|
||
bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
|
||
registers_505},
|
||
{"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
|
||
bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
|
||
registers_860},
|
||
{"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
|
||
bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
|
||
registers_750},
|
||
{"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
|
||
bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
|
||
registers_7400},
|
||
{"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
|
||
bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
|
||
registers_e500},
|
||
|
||
/* 64-bit */
|
||
{"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
|
||
bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
{"620", "Motorola PowerPC 620", bfd_arch_powerpc,
|
||
bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
{"630", "Motorola PowerPC 630", bfd_arch_powerpc,
|
||
bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
{"a35", "PowerPC A35", bfd_arch_powerpc,
|
||
bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
{"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
|
||
bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
{"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
|
||
bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
|
||
registers_powerpc},
|
||
|
||
/* FIXME: I haven't checked the register sets of the following. */
|
||
{"rs1", "IBM POWER RS1", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
|
||
registers_power},
|
||
{"rsc", "IBM POWER RSC", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
|
||
registers_power},
|
||
{"rs2", "IBM POWER RS2", bfd_arch_rs6000,
|
||
bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
|
||
registers_power},
|
||
|
||
{0, 0, 0, 0, 0, 0, 0, 0}
|
||
};
|
||
|
||
/* Initialize the number of registers and pseudo registers in each variant. */
|
||
|
||
static void
|
||
init_variants (void)
|
||
{
|
||
struct variant *v;
|
||
|
||
for (v = variants; v->name; v++)
|
||
{
|
||
if (v->nregs == -1)
|
||
v->nregs = num_registers (v->regs, v->num_tot_regs);
|
||
if (v->npregs == -1)
|
||
v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
|
||
}
|
||
}
|
||
|
||
/* Return the variant corresponding to architecture ARCH and machine number
|
||
MACH. If no such variant exists, return null. */
|
||
|
||
static const struct variant *
|
||
find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
|
||
{
|
||
const struct variant *v;
|
||
|
||
for (v = variants; v->name; v++)
|
||
if (arch == v->arch && mach == v->mach)
|
||
return v;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static int
|
||
gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
|
||
{
|
||
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
||
return print_insn_big_powerpc (memaddr, info);
|
||
else
|
||
return print_insn_little_powerpc (memaddr, info);
|
||
}
|
||
|
||
static CORE_ADDR
|
||
rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
|
||
}
|
||
|
||
static struct frame_id
|
||
rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
return frame_id_build (frame_unwind_register_unsigned (next_frame,
|
||
SP_REGNUM),
|
||
frame_pc_unwind (next_frame));
|
||
}
|
||
|
||
struct rs6000_frame_cache
|
||
{
|
||
CORE_ADDR base;
|
||
CORE_ADDR initial_sp;
|
||
struct trad_frame_saved_reg *saved_regs;
|
||
};
|
||
|
||
static struct rs6000_frame_cache *
|
||
rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
|
||
{
|
||
struct rs6000_frame_cache *cache;
|
||
struct gdbarch *gdbarch = get_frame_arch (next_frame);
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
struct rs6000_framedata fdata;
|
||
int wordsize = tdep->wordsize;
|
||
CORE_ADDR func, pc;
|
||
|
||
if ((*this_cache) != NULL)
|
||
return (*this_cache);
|
||
cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
|
||
(*this_cache) = cache;
|
||
cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
||
|
||
func = frame_func_unwind (next_frame);
|
||
pc = frame_pc_unwind (next_frame);
|
||
skip_prologue (func, pc, &fdata);
|
||
|
||
/* Figure out the parent's stack pointer. */
|
||
|
||
/* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
|
||
address of the current frame. Things might be easier if the
|
||
->frame pointed to the outer-most address of the frame. In
|
||
the mean time, the address of the prev frame is used as the
|
||
base address of this frame. */
|
||
cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
|
||
|
||
/* If the function appears to be frameless, check a couple of likely
|
||
indicators that we have simply failed to find the frame setup.
|
||
Two common cases of this are missing symbols (i.e.
|
||
frame_func_unwind returns the wrong address or 0), and assembly
|
||
stubs which have a fast exit path but set up a frame on the slow
|
||
path.
|
||
|
||
If the LR appears to return to this function, then presume that
|
||
we have an ABI compliant frame that we failed to find. */
|
||
if (fdata.frameless && fdata.lr_offset == 0)
|
||
{
|
||
CORE_ADDR saved_lr;
|
||
int make_frame = 0;
|
||
|
||
saved_lr = frame_unwind_register_unsigned (next_frame,
|
||
tdep->ppc_lr_regnum);
|
||
if (func == 0 && saved_lr == pc)
|
||
make_frame = 1;
|
||
else if (func != 0)
|
||
{
|
||
CORE_ADDR saved_func = get_pc_function_start (saved_lr);
|
||
if (func == saved_func)
|
||
make_frame = 1;
|
||
}
|
||
|
||
if (make_frame)
|
||
{
|
||
fdata.frameless = 0;
|
||
fdata.lr_offset = wordsize;
|
||
}
|
||
}
|
||
|
||
if (!fdata.frameless)
|
||
/* Frameless really means stackless. */
|
||
cache->base = read_memory_addr (cache->base, wordsize);
|
||
|
||
trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
|
||
|
||
/* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
|
||
All fpr's from saved_fpr to fp31 are saved. */
|
||
|
||
if (fdata.saved_fpr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
|
||
|
||
/* If skip_prologue says floating-point registers were saved,
|
||
but the current architecture has no floating-point registers,
|
||
then that's strange. But we have no indices to even record
|
||
the addresses under, so we just ignore it. */
|
||
if (ppc_floating_point_unit_p (gdbarch))
|
||
for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
|
||
{
|
||
cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
|
||
fpr_addr += 8;
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
|
||
All gpr's from saved_gpr to gpr31 are saved. */
|
||
|
||
if (fdata.saved_gpr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
|
||
for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
|
||
{
|
||
cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
|
||
gpr_addr += wordsize;
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdata.saved_vr is the smallest number of saved_vr.
|
||
All vr's from saved_vr to vr31 are saved. */
|
||
if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
|
||
{
|
||
if (fdata.saved_vr >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
|
||
for (i = fdata.saved_vr; i < 32; i++)
|
||
{
|
||
cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
|
||
vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* if != -1, fdata.saved_ev is the smallest number of saved_ev.
|
||
All vr's from saved_ev to ev31 are saved. ????? */
|
||
if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
|
||
{
|
||
if (fdata.saved_ev >= 0)
|
||
{
|
||
int i;
|
||
CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
|
||
for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
|
||
{
|
||
cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
|
||
cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
|
||
ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If != 0, fdata.cr_offset is the offset from the frame that
|
||
holds the CR. */
|
||
if (fdata.cr_offset != 0)
|
||
cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
|
||
|
||
/* If != 0, fdata.lr_offset is the offset from the frame that
|
||
holds the LR. */
|
||
if (fdata.lr_offset != 0)
|
||
cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
|
||
/* The PC is found in the link register. */
|
||
cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
|
||
|
||
/* If != 0, fdata.vrsave_offset is the offset from the frame that
|
||
holds the VRSAVE. */
|
||
if (fdata.vrsave_offset != 0)
|
||
cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
|
||
|
||
if (fdata.alloca_reg < 0)
|
||
/* If no alloca register used, then fi->frame is the value of the
|
||
%sp for this frame, and it is good enough. */
|
||
cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
|
||
else
|
||
cache->initial_sp = frame_unwind_register_unsigned (next_frame,
|
||
fdata.alloca_reg);
|
||
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
|
||
this_cache);
|
||
(*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
|
||
}
|
||
|
||
static void
|
||
rs6000_frame_prev_register (struct frame_info *next_frame,
|
||
void **this_cache,
|
||
int regnum, int *optimizedp,
|
||
enum lval_type *lvalp, CORE_ADDR *addrp,
|
||
int *realnump, gdb_byte *valuep)
|
||
{
|
||
struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
|
||
this_cache);
|
||
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
|
||
optimizedp, lvalp, addrp, realnump, valuep);
|
||
}
|
||
|
||
static const struct frame_unwind rs6000_frame_unwind =
|
||
{
|
||
NORMAL_FRAME,
|
||
rs6000_frame_this_id,
|
||
rs6000_frame_prev_register
|
||
};
|
||
|
||
static const struct frame_unwind *
|
||
rs6000_frame_sniffer (struct frame_info *next_frame)
|
||
{
|
||
return &rs6000_frame_unwind;
|
||
}
|
||
|
||
|
||
|
||
static CORE_ADDR
|
||
rs6000_frame_base_address (struct frame_info *next_frame,
|
||
void **this_cache)
|
||
{
|
||
struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
|
||
this_cache);
|
||
return info->initial_sp;
|
||
}
|
||
|
||
static const struct frame_base rs6000_frame_base = {
|
||
&rs6000_frame_unwind,
|
||
rs6000_frame_base_address,
|
||
rs6000_frame_base_address,
|
||
rs6000_frame_base_address
|
||
};
|
||
|
||
static const struct frame_base *
|
||
rs6000_frame_base_sniffer (struct frame_info *next_frame)
|
||
{
|
||
return &rs6000_frame_base;
|
||
}
|
||
|
||
/* Initialize the current architecture based on INFO. If possible, re-use an
|
||
architecture from ARCHES, which is a list of architectures already created
|
||
during this debugging session.
|
||
|
||
Called e.g. at program startup, when reading a core file, and when reading
|
||
a binary file. */
|
||
|
||
static struct gdbarch *
|
||
rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
||
{
|
||
struct gdbarch *gdbarch;
|
||
struct gdbarch_tdep *tdep;
|
||
int wordsize, from_xcoff_exec, from_elf_exec, i, off;
|
||
struct reg *regs;
|
||
const struct variant *v;
|
||
enum bfd_architecture arch;
|
||
unsigned long mach;
|
||
bfd abfd;
|
||
int sysv_abi;
|
||
asection *sect;
|
||
|
||
from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
|
||
bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
|
||
|
||
from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
|
||
bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
|
||
|
||
sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
|
||
|
||
/* Check word size. If INFO is from a binary file, infer it from
|
||
that, else choose a likely default. */
|
||
if (from_xcoff_exec)
|
||
{
|
||
if (bfd_xcoff_is_xcoff64 (info.abfd))
|
||
wordsize = 8;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
else if (from_elf_exec)
|
||
{
|
||
if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
|
||
wordsize = 8;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
else
|
||
{
|
||
if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
|
||
wordsize = info.bfd_arch_info->bits_per_word /
|
||
info.bfd_arch_info->bits_per_byte;
|
||
else
|
||
wordsize = 4;
|
||
}
|
||
|
||
/* Find a candidate among extant architectures. */
|
||
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
||
arches != NULL;
|
||
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
||
{
|
||
/* Word size in the various PowerPC bfd_arch_info structs isn't
|
||
meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
|
||
separate word size check. */
|
||
tdep = gdbarch_tdep (arches->gdbarch);
|
||
if (tdep && tdep->wordsize == wordsize)
|
||
return arches->gdbarch;
|
||
}
|
||
|
||
/* None found, create a new architecture from INFO, whose bfd_arch_info
|
||
validity depends on the source:
|
||
- executable useless
|
||
- rs6000_host_arch() good
|
||
- core file good
|
||
- "set arch" trust blindly
|
||
- GDB startup useless but harmless */
|
||
|
||
if (!from_xcoff_exec)
|
||
{
|
||
arch = info.bfd_arch_info->arch;
|
||
mach = info.bfd_arch_info->mach;
|
||
}
|
||
else
|
||
{
|
||
arch = bfd_arch_powerpc;
|
||
bfd_default_set_arch_mach (&abfd, arch, 0);
|
||
info.bfd_arch_info = bfd_get_arch_info (&abfd);
|
||
mach = info.bfd_arch_info->mach;
|
||
}
|
||
tdep = xmalloc (sizeof (struct gdbarch_tdep));
|
||
tdep->wordsize = wordsize;
|
||
|
||
/* For e500 executables, the apuinfo section is of help here. Such
|
||
section contains the identifier and revision number of each
|
||
Application-specific Processing Unit that is present on the
|
||
chip. The content of the section is determined by the assembler
|
||
which looks at each instruction and determines which unit (and
|
||
which version of it) can execute it. In our case we just look for
|
||
the existance of the section. */
|
||
|
||
if (info.abfd)
|
||
{
|
||
sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
|
||
if (sect)
|
||
{
|
||
arch = info.bfd_arch_info->arch;
|
||
mach = bfd_mach_ppc_e500;
|
||
bfd_default_set_arch_mach (&abfd, arch, mach);
|
||
info.bfd_arch_info = bfd_get_arch_info (&abfd);
|
||
}
|
||
}
|
||
|
||
gdbarch = gdbarch_alloc (&info, tdep);
|
||
|
||
/* Initialize the number of real and pseudo registers in each variant. */
|
||
init_variants ();
|
||
|
||
/* Choose variant. */
|
||
v = find_variant_by_arch (arch, mach);
|
||
if (!v)
|
||
return NULL;
|
||
|
||
tdep->regs = v->regs;
|
||
|
||
tdep->ppc_gp0_regnum = 0;
|
||
tdep->ppc_toc_regnum = 2;
|
||
tdep->ppc_ps_regnum = 65;
|
||
tdep->ppc_cr_regnum = 66;
|
||
tdep->ppc_lr_regnum = 67;
|
||
tdep->ppc_ctr_regnum = 68;
|
||
tdep->ppc_xer_regnum = 69;
|
||
if (v->mach == bfd_mach_ppc_601)
|
||
tdep->ppc_mq_regnum = 124;
|
||
else if (arch == bfd_arch_rs6000)
|
||
tdep->ppc_mq_regnum = 70;
|
||
else
|
||
tdep->ppc_mq_regnum = -1;
|
||
tdep->ppc_fp0_regnum = 32;
|
||
tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
|
||
tdep->ppc_sr0_regnum = 71;
|
||
tdep->ppc_vr0_regnum = -1;
|
||
tdep->ppc_vrsave_regnum = -1;
|
||
tdep->ppc_ev0_upper_regnum = -1;
|
||
tdep->ppc_ev0_regnum = -1;
|
||
tdep->ppc_ev31_regnum = -1;
|
||
tdep->ppc_acc_regnum = -1;
|
||
tdep->ppc_spefscr_regnum = -1;
|
||
|
||
set_gdbarch_pc_regnum (gdbarch, 64);
|
||
set_gdbarch_sp_regnum (gdbarch, 1);
|
||
set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
|
||
set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
|
||
if (sysv_abi && wordsize == 8)
|
||
set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
|
||
else if (sysv_abi && wordsize == 4)
|
||
set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
|
||
else
|
||
{
|
||
set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
|
||
set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
|
||
}
|
||
|
||
/* Set lr_frame_offset. */
|
||
if (wordsize == 8)
|
||
tdep->lr_frame_offset = 16;
|
||
else if (sysv_abi)
|
||
tdep->lr_frame_offset = 4;
|
||
else
|
||
tdep->lr_frame_offset = 8;
|
||
|
||
if (v->arch == bfd_arch_rs6000)
|
||
tdep->ppc_sr0_regnum = -1;
|
||
else if (v->arch == bfd_arch_powerpc)
|
||
switch (v->mach)
|
||
{
|
||
case bfd_mach_ppc:
|
||
tdep->ppc_sr0_regnum = -1;
|
||
tdep->ppc_vr0_regnum = 71;
|
||
tdep->ppc_vrsave_regnum = 104;
|
||
break;
|
||
case bfd_mach_ppc_7400:
|
||
tdep->ppc_vr0_regnum = 119;
|
||
tdep->ppc_vrsave_regnum = 152;
|
||
break;
|
||
case bfd_mach_ppc_e500:
|
||
tdep->ppc_toc_regnum = -1;
|
||
tdep->ppc_ev0_upper_regnum = 32;
|
||
tdep->ppc_ev0_regnum = 73;
|
||
tdep->ppc_ev31_regnum = 104;
|
||
tdep->ppc_acc_regnum = 71;
|
||
tdep->ppc_spefscr_regnum = 72;
|
||
tdep->ppc_fp0_regnum = -1;
|
||
tdep->ppc_fpscr_regnum = -1;
|
||
tdep->ppc_sr0_regnum = -1;
|
||
set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
|
||
set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
|
||
set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
|
||
break;
|
||
|
||
case bfd_mach_ppc64:
|
||
case bfd_mach_ppc_620:
|
||
case bfd_mach_ppc_630:
|
||
case bfd_mach_ppc_a35:
|
||
case bfd_mach_ppc_rs64ii:
|
||
case bfd_mach_ppc_rs64iii:
|
||
/* These processor's register sets don't have segment registers. */
|
||
tdep->ppc_sr0_regnum = -1;
|
||
break;
|
||
}
|
||
else
|
||
internal_error (__FILE__, __LINE__,
|
||
_("rs6000_gdbarch_init: "
|
||
"received unexpected BFD 'arch' value"));
|
||
|
||
/* Sanity check on registers. */
|
||
gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
|
||
|
||
/* Select instruction printer. */
|
||
if (arch == bfd_arch_rs6000)
|
||
set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
|
||
else
|
||
set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
|
||
|
||
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
||
|
||
set_gdbarch_num_regs (gdbarch, v->nregs);
|
||
set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
|
||
set_gdbarch_register_name (gdbarch, rs6000_register_name);
|
||
set_gdbarch_register_type (gdbarch, rs6000_register_type);
|
||
set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
|
||
|
||
set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
||
set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
|
||
set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
|
||
set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
|
||
set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
if (sysv_abi)
|
||
set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
|
||
else
|
||
set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
|
||
set_gdbarch_char_signed (gdbarch, 0);
|
||
|
||
set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
|
||
if (sysv_abi && wordsize == 8)
|
||
/* PPC64 SYSV. */
|
||
set_gdbarch_frame_red_zone_size (gdbarch, 288);
|
||
else if (!sysv_abi && wordsize == 4)
|
||
/* PowerOpen / AIX 32 bit. The saved area or red zone consists of
|
||
19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
|
||
Problem is, 220 isn't frame (16 byte) aligned. Round it up to
|
||
224. */
|
||
set_gdbarch_frame_red_zone_size (gdbarch, 224);
|
||
|
||
set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
|
||
set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
|
||
set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
|
||
|
||
set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
|
||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
|
||
/* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
|
||
is correct for the SysV ABI when the wordsize is 8, but I'm also
|
||
fairly certain that ppc_sysv_abi_push_arguments() will give even
|
||
worse results since it only works for 32-bit code. So, for the moment,
|
||
we're better off calling rs6000_push_arguments() since it works for
|
||
64-bit code. At some point in the future, this matter needs to be
|
||
revisited. */
|
||
if (sysv_abi && wordsize == 4)
|
||
set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
|
||
else if (sysv_abi && wordsize == 8)
|
||
set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
|
||
else
|
||
set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
|
||
|
||
set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
|
||
set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
|
||
|
||
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
||
set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
|
||
|
||
/* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
|
||
for the descriptor and ".FN" for the entry-point -- a user
|
||
specifying "break FN" will unexpectedly end up with a breakpoint
|
||
on the descriptor and not the function. This architecture method
|
||
transforms any breakpoints on descriptors into breakpoints on the
|
||
corresponding entry point. */
|
||
if (sysv_abi && wordsize == 8)
|
||
set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
|
||
|
||
/* Not sure on this. FIXMEmgo */
|
||
set_gdbarch_frame_args_skip (gdbarch, 8);
|
||
|
||
if (!sysv_abi)
|
||
set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
|
||
|
||
if (!sysv_abi)
|
||
{
|
||
/* Handle RS/6000 function pointers (which are really function
|
||
descriptors). */
|
||
set_gdbarch_convert_from_func_ptr_addr (gdbarch,
|
||
rs6000_convert_from_func_ptr_addr);
|
||
}
|
||
|
||
/* Helpers for function argument information. */
|
||
set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
|
||
|
||
/* Hook in ABI-specific overrides, if they have been registered. */
|
||
gdbarch_init_osabi (info, gdbarch);
|
||
|
||
switch (info.osabi)
|
||
{
|
||
case GDB_OSABI_LINUX:
|
||
/* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
|
||
have altivec registers. If not, ptrace will fail the first time it's
|
||
called to access one and will not be called again. This wart will
|
||
be removed when Daniel Jacobowitz's proposal for autodetecting target
|
||
registers is implemented. */
|
||
if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
|
||
{
|
||
tdep->ppc_vr0_regnum = 71;
|
||
tdep->ppc_vrsave_regnum = 104;
|
||
}
|
||
/* Fall Thru */
|
||
case GDB_OSABI_NETBSD_AOUT:
|
||
case GDB_OSABI_NETBSD_ELF:
|
||
case GDB_OSABI_UNKNOWN:
|
||
set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
|
||
frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
|
||
set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
|
||
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
|
||
break;
|
||
default:
|
||
set_gdbarch_believe_pcc_promotion (gdbarch, 1);
|
||
|
||
set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
|
||
frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
|
||
set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
|
||
frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
|
||
}
|
||
|
||
if (from_xcoff_exec)
|
||
{
|
||
/* NOTE: jimix/2003-06-09: This test should really check for
|
||
GDB_OSABI_AIX when that is defined and becomes
|
||
available. (Actually, once things are properly split apart,
|
||
the test goes away.) */
|
||
/* RS6000/AIX does not support PT_STEP. Has to be simulated. */
|
||
set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
|
||
}
|
||
|
||
init_sim_regno_table (gdbarch);
|
||
|
||
return gdbarch;
|
||
}
|
||
|
||
static void
|
||
rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
|
||
if (tdep == NULL)
|
||
return;
|
||
|
||
/* FIXME: Dump gdbarch_tdep. */
|
||
}
|
||
|
||
/* Initialization code. */
|
||
|
||
extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
|
||
|
||
void
|
||
_initialize_rs6000_tdep (void)
|
||
{
|
||
gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
|
||
gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
|
||
}
|