mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-25 09:24:00 +08:00
ec25d19bd6
* remote-hms.c: whitespace * h8300-tdep.c: (h8300_skip_prologue, examine_prologue): understand new stack layout. (print_register_hook): print ccr register in a fancy way.
441 lines
11 KiB
C
441 lines
11 KiB
C
/* Target-machine dependent code for Hitachi H8/300, for GDB.
|
|
Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
/*
|
|
Contributed by Steve Chamberlain
|
|
sac@cygnus.com
|
|
*/
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "obstack.h"
|
|
#include "symtab.h"
|
|
#define UNSIGNED_SHORT(X) ((X) & 0xffff)
|
|
|
|
/* an easy to debug H8 stack frame looks like:
|
|
0x6df6 push r6
|
|
0x0d76 mov.w r7,r6
|
|
0x6dfn push reg
|
|
0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
|
|
0x1957 sub.w r5,sp
|
|
|
|
*/
|
|
|
|
#define IS_PUSH(x) ((x & 0xff00)==0x6d00)
|
|
#define IS_PUSH_FP(x) (x == 0x6df6)
|
|
#define IS_MOVE_FP(x) (x == 0x0d76)
|
|
#define IS_MOV_SP_FP(x) (x == 0x0d76)
|
|
#define IS_SUB2_SP(x) (x==0x1b87)
|
|
#define IS_MOVK_R5(x) (x==0x7905)
|
|
#define IS_SUB_R5SP(x) (x==0x1957)
|
|
CORE_ADDR examine_prologue ();
|
|
|
|
void frame_find_saved_regs ();
|
|
CORE_ADDR
|
|
h8300_skip_prologue (start_pc)
|
|
CORE_ADDR start_pc;
|
|
|
|
{
|
|
short int w;
|
|
|
|
w = read_memory_short (start_pc);
|
|
/* Skip past all push insns */
|
|
while (IS_PUSH_FP (w))
|
|
{
|
|
start_pc += 2;
|
|
w = read_memory_short (start_pc);
|
|
}
|
|
|
|
/* Skip past a move to FP */
|
|
if (IS_MOVE_FP (w))
|
|
{
|
|
start_pc += 2;
|
|
w = read_memory_short (start_pc);
|
|
}
|
|
|
|
/* Skip the stack adjust */
|
|
|
|
if (IS_MOVK_R5 (w))
|
|
{
|
|
start_pc += 2;
|
|
w = read_memory_short (start_pc);
|
|
}
|
|
if (IS_SUB_R5SP (w))
|
|
{
|
|
start_pc += 2;
|
|
w = read_memory_short (start_pc);
|
|
}
|
|
while (IS_SUB2_SP (w))
|
|
{
|
|
start_pc += 2;
|
|
w = read_memory_short (start_pc);
|
|
}
|
|
|
|
return start_pc;
|
|
|
|
}
|
|
|
|
int
|
|
print_insn (memaddr, stream)
|
|
CORE_ADDR memaddr;
|
|
FILE *stream;
|
|
{
|
|
/* Nothing is bigger than 8 bytes */
|
|
char data[8];
|
|
|
|
read_memory (memaddr, data, sizeof (data));
|
|
return print_insn_h8300 (memaddr, data, stream);
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's frame.
|
|
This will be used to create a new GDB frame struct, and then
|
|
INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
|
|
|
|
For us, the frame address is its stack pointer value, so we look up
|
|
the function prologue to determine the caller's sp value, and return it. */
|
|
|
|
FRAME_ADDR
|
|
FRAME_CHAIN (thisframe)
|
|
FRAME thisframe;
|
|
{
|
|
|
|
frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
|
|
return thisframe->fsr->regs[SP_REGNUM];
|
|
}
|
|
|
|
/* Put here the code to store, into a struct frame_saved_regs,
|
|
the addresses of the saved registers of frame described by FRAME_INFO.
|
|
This includes special registers such as pc and fp saved in special
|
|
ways in the stack frame. sp is even more special:
|
|
the address we return for it IS the sp for the next frame.
|
|
|
|
We cache the result of doing this in the frame_cache_obstack, since
|
|
it is fairly expensive. */
|
|
|
|
void
|
|
frame_find_saved_regs (fi, fsr)
|
|
struct frame_info *fi;
|
|
struct frame_saved_regs *fsr;
|
|
{
|
|
register CORE_ADDR next_addr;
|
|
register CORE_ADDR *saved_regs;
|
|
register int regnum;
|
|
register struct frame_saved_regs *cache_fsr;
|
|
extern struct obstack frame_cache_obstack;
|
|
CORE_ADDR ip;
|
|
struct symtab_and_line sal;
|
|
CORE_ADDR limit;
|
|
|
|
if (!fi->fsr)
|
|
{
|
|
cache_fsr = (struct frame_saved_regs *)
|
|
obstack_alloc (&frame_cache_obstack,
|
|
sizeof (struct frame_saved_regs));
|
|
bzero (cache_fsr, sizeof (struct frame_saved_regs));
|
|
|
|
fi->fsr = cache_fsr;
|
|
|
|
/* Find the start and end of the function prologue. If the PC
|
|
is in the function prologue, we only consider the part that
|
|
has executed already. */
|
|
|
|
ip = get_pc_function_start (fi->pc);
|
|
sal = find_pc_line (ip, 0);
|
|
limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
|
|
|
|
/* This will fill in fields in *fi as well as in cache_fsr. */
|
|
examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
|
|
}
|
|
|
|
if (fsr)
|
|
*fsr = *fi->fsr;
|
|
}
|
|
|
|
/* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
|
|
is not the address of a valid instruction, the address of the next
|
|
instruction beyond ADDR otherwise. *PWORD1 receives the first word
|
|
of the instruction.*/
|
|
|
|
CORE_ADDR
|
|
NEXT_PROLOGUE_INSN (addr, lim, pword1)
|
|
CORE_ADDR addr;
|
|
CORE_ADDR lim;
|
|
short *pword1;
|
|
{
|
|
if (addr < lim + 8)
|
|
{
|
|
read_memory (addr, pword1, sizeof (*pword1));
|
|
SWAP_TARGET_AND_HOST (pword1, sizeof (short));
|
|
|
|
return addr + 2;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Examine the prologue of a function. `ip' points to the first instruction.
|
|
`limit' is the limit of the prologue (e.g. the addr of the first
|
|
linenumber, or perhaps the program counter if we're stepping through).
|
|
`frame_sp' is the stack pointer value in use in this frame.
|
|
`fsr' is a pointer to a frame_saved_regs structure into which we put
|
|
info about the registers saved by this frame.
|
|
`fi' is a struct frame_info pointer; we fill in various fields in it
|
|
to reflect the offsets of the arg pointer and the locals pointer. */
|
|
|
|
static CORE_ADDR
|
|
examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
|
|
register CORE_ADDR ip;
|
|
register CORE_ADDR limit;
|
|
FRAME_ADDR after_prolog_fp;
|
|
struct frame_saved_regs *fsr;
|
|
struct frame_info *fi;
|
|
{
|
|
register CORE_ADDR next_ip;
|
|
int r;
|
|
int i;
|
|
int have_fp = 0;
|
|
|
|
register int src;
|
|
register struct pic_prologue_code *pcode;
|
|
INSN_WORD insn_word;
|
|
int size, offset;
|
|
unsigned int reg_save_depth = 2; /* Number of things pushed onto
|
|
stack, starts at 2, 'cause the
|
|
PC is already there */
|
|
|
|
unsigned int auto_depth = 0; /* Number of bytes of autos */
|
|
|
|
char in_frame[NUM_REGS]; /* One for each reg */
|
|
|
|
memset (in_frame, 1, NUM_REGS);
|
|
for (r = 0; r < NUM_REGS; r++)
|
|
{
|
|
fsr->regs[r] = 0;
|
|
}
|
|
if (after_prolog_fp == 0)
|
|
{
|
|
after_prolog_fp = read_register (SP_REGNUM);
|
|
}
|
|
if (ip == 0 || ip & ~0xffff)
|
|
return 0;
|
|
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
|
|
/* Skip over any fp push instructions */
|
|
fsr->regs[6] = after_prolog_fp;
|
|
while (next_ip && IS_PUSH_FP (insn_word))
|
|
{
|
|
ip = next_ip;
|
|
|
|
in_frame[insn_word & 0x7] = reg_save_depth;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
reg_save_depth += 2;
|
|
}
|
|
|
|
/* Is this a move into the fp */
|
|
if (next_ip && IS_MOV_SP_FP (insn_word))
|
|
{
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
have_fp = 1;
|
|
}
|
|
|
|
/* Skip over any stack adjustment, happens either with a number of
|
|
sub#2,sp or a mov #x,r5 sub r5,sp */
|
|
|
|
if (next_ip && IS_SUB2_SP (insn_word))
|
|
{
|
|
while (next_ip && IS_SUB2_SP (insn_word))
|
|
{
|
|
auto_depth += 2;
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (next_ip && IS_MOVK_R5 (insn_word))
|
|
{
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
auto_depth += insn_word;
|
|
|
|
next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
|
|
auto_depth += insn_word;
|
|
|
|
}
|
|
}
|
|
/* Work out which regs are stored where */
|
|
while (next_ip && IS_PUSH (insn_word))
|
|
{
|
|
ip = next_ip;
|
|
next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
|
|
fsr->regs[r] = after_prolog_fp + auto_depth;
|
|
auto_depth += 2;
|
|
}
|
|
|
|
/* The args are always reffed based from the stack pointer */
|
|
fi->args_pointer = after_prolog_fp;
|
|
/* Locals are always reffed based from the fp */
|
|
fi->locals_pointer = after_prolog_fp;
|
|
/* The PC is at a known place */
|
|
fi->from_pc = read_memory_short (after_prolog_fp + 2);
|
|
|
|
/* Rememeber any others too */
|
|
in_frame[PC_REGNUM] = 0;
|
|
|
|
if (have_fp)
|
|
/* We keep the old FP in the SP spot */
|
|
fsr->regs[SP_REGNUM] = (read_memory_short (fsr->regs[6]));
|
|
else
|
|
fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
|
|
|
|
return (ip);
|
|
}
|
|
|
|
void
|
|
init_extra_frame_info (fromleaf, fi)
|
|
int fromleaf;
|
|
struct frame_info *fi;
|
|
{
|
|
fi->fsr = 0; /* Not yet allocated */
|
|
fi->args_pointer = 0; /* Unknown */
|
|
fi->locals_pointer = 0; /* Unknown */
|
|
fi->from_pc = 0;
|
|
|
|
}
|
|
|
|
/* Return the saved PC from this frame.
|
|
|
|
If the frame has a memory copy of SRP_REGNUM, use that. If not,
|
|
just use the register SRP_REGNUM itself. */
|
|
|
|
CORE_ADDR
|
|
frame_saved_pc (frame)
|
|
FRAME frame;
|
|
|
|
{
|
|
return frame->from_pc;
|
|
}
|
|
|
|
CORE_ADDR
|
|
frame_locals_address (fi)
|
|
struct frame_info *fi;
|
|
{
|
|
if (!fi->locals_pointer)
|
|
{
|
|
struct frame_saved_regs ignore;
|
|
|
|
get_frame_saved_regs (fi, &ignore);
|
|
|
|
}
|
|
return fi->locals_pointer;
|
|
}
|
|
|
|
/* Return the address of the argument block for the frame
|
|
described by FI. Returns 0 if the address is unknown. */
|
|
|
|
CORE_ADDR
|
|
frame_args_address (fi)
|
|
struct frame_info *fi;
|
|
{
|
|
if (!fi->args_pointer)
|
|
{
|
|
struct frame_saved_regs ignore;
|
|
|
|
get_frame_saved_regs (fi, &ignore);
|
|
|
|
}
|
|
|
|
return fi->args_pointer;
|
|
}
|
|
|
|
void
|
|
h8300_pop_frame ()
|
|
{
|
|
unsigned regnum;
|
|
struct frame_saved_regs fsr;
|
|
struct frame_info *fi;
|
|
|
|
FRAME frame = get_current_frame ();
|
|
|
|
fi = get_frame_info (frame);
|
|
get_frame_saved_regs (fi, &fsr);
|
|
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|
{
|
|
if (fsr.regs[regnum])
|
|
{
|
|
write_register (regnum, read_memory_short (fsr.regs[regnum]));
|
|
}
|
|
|
|
flush_cached_frames ();
|
|
set_current_frame (create_new_frame (read_register (FP_REGNUM),
|
|
read_pc ()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
void
|
|
print_register_hook (regno)
|
|
{
|
|
if (regno == 8)
|
|
{
|
|
/* CCR register */
|
|
|
|
int C, Z, N, V;
|
|
unsigned char b[2];
|
|
unsigned char l;
|
|
|
|
read_relative_register_raw_bytes (regno, b);
|
|
l = b[1];
|
|
printf ("\t");
|
|
printf ("I-%d - ", (l & 0x80) != 0);
|
|
printf ("H-%d - ", (l & 0x20) != 0);
|
|
N = (l & 0x8) != 0;
|
|
Z = (l & 0x4) != 0;
|
|
V = (l & 0x2) != 0;
|
|
C = (l & 0x1) != 0;
|
|
printf ("N-%d ", N);
|
|
printf ("Z-%d ", Z);
|
|
printf ("V-%d ", V);
|
|
printf ("C-%d ", C);
|
|
if ((C | Z) == 0)
|
|
printf ("u> ");
|
|
if ((C | Z) == 1)
|
|
printf ("u<= ");
|
|
if ((C == 0))
|
|
printf ("u>= ");
|
|
if (C == 1)
|
|
printf ("u< ");
|
|
if (Z == 0)
|
|
printf ("!= ");
|
|
if (Z == 1)
|
|
printf ("== ");
|
|
if ((N ^ V) == 0)
|
|
printf (">= ");
|
|
if ((N ^ V) == 1)
|
|
printf ("< ");
|
|
if ((Z | (N ^ V)) == 0)
|
|
printf ("> ");
|
|
if ((Z | (N ^ V)) == 1)
|
|
printf ("<= ");
|
|
}
|
|
}
|