binutils-gdb/sim/aarch64/decode.h
Joel Brobecker 61baf725ec update copyright year range in GDB files
This applies the second part of GDB's End of Year Procedure, which
updates the copyright year range in all of GDB's files.

gdb/ChangeLog:

        Update copyright year range in all GDB files.
2017-01-01 10:52:34 +04:00

375 lines
9.5 KiB
C

/* decode.h -- Prototypes for AArch64 simulator decoder functions.
Copyright (C) 2015-2017 Free Software Foundation, Inc.
Contributed by Red Hat.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef _DECODE_H
#define _DECODE_H
#include <sys/types.h>
#include "cpustate.h"
/* Codes used in conditional instructions
These are passed to conditional operations to identify which
condition to test for. */
typedef enum CondCode
{
EQ = 0x0, /* meaning Z == 1 */
NE = 0x1, /* meaning Z == 0 */
HS = 0x2, /* meaning C == 1 */
CS = HS,
LO = 0x3, /* meaning C == 0 */
CC = LO,
MI = 0x4, /* meaning N == 1 */
PL = 0x5, /* meaning N == 0 */
VS = 0x6, /* meaning V == 1 */
VC = 0x7, /* meaning V == 0 */
HI = 0x8, /* meaning C == 1 && Z == 0 */
LS = 0x9, /* meaning !(C == 1 && Z == 0) */
GE = 0xa, /* meaning N == V */
LT = 0xb, /* meaning N != V */
GT = 0xc, /* meaning Z == 0 && N == V */
LE = 0xd, /* meaning !(Z == 0 && N == V) */
AL = 0xe, /* meaning ANY */
NV = 0xf /* ditto */
} CondCode;
/* Certain addressing modes for load require pre or post writeback of
the computed address to a base register. */
typedef enum WriteBack
{
Post = 0,
Pre = 1,
NoWriteBack = -1
} WriteBack;
/* Certain addressing modes for load require an offset to
be optionally scaled so the decode needs to pass that
through to the execute routine. */
typedef enum Scaling
{
Unscaled = 0,
Scaled = 1,
NoScaling = -1
} Scaling;
/* When we do have to scale we do so by shifting using
log(bytes in data element - 1) as the shift count.
so we don't have to scale offsets when loading
bytes. */
typedef enum ScaleShift
{
ScaleShift16 = 1,
ScaleShift32 = 2,
ScaleShift64 = 3,
ScaleShift128 = 4
} ScaleShift;
/* One of the addressing modes for load requires a 32-bit register
value to be either zero- or sign-extended for these instructions
UXTW or SXTW should be passed.
Arithmetic register data processing operations can optionally
extend a portion of the second register value for these
instructions the value supplied must identify the portion of the
register which is to be zero- or sign-exended. */
typedef enum Extension
{
UXTB = 0,
UXTH = 1,
UXTW = 2,
UXTX = 3,
SXTB = 4,
SXTH = 5,
SXTW = 6,
SXTX = 7,
NoExtension = -1
} Extension;
/* Arithmetic and logical register data processing operations
optionally perform a shift on the second register value. */
typedef enum Shift
{
LSL = 0,
LSR = 1,
ASR = 2,
ROR = 3
} Shift;
/* Bit twiddling helpers for instruction decode. */
/* 32 bit mask with bits [hi,...,lo] set. */
static inline uint32_t
mask32 (int hi, int lo)
{
int nbits = (hi + 1) - lo;
return ((1 << nbits) - 1) << lo;
}
/* 64 bit mask with bits [hi,...,lo] set. */
static inline uint64_t
mask64 (int hi, int lo)
{
int nbits = (hi + 1) - lo;
return ((1L << nbits) - 1) << lo;
}
/* Pick bits [hi,...,lo] from val. */
static inline uint32_t
pick32 (uint32_t val, int hi, int lo)
{
return val & mask32 (hi, lo);
}
/* Pick bits [hi,...,lo] from val. */
static inline uint64_t
pick64 (uint64_t val, int hi, int lo)
{
return val & mask64 (hi, lo);
}
/* Pick bits [hi,...,lo] from val and shift to [(hi-(newlo - lo)),newlo]. */
static inline uint32_t
pickshift32 (uint32_t val, int hi, int lo, int newlo)
{
uint32_t bits = pick32 (val, hi, lo);
if (lo < newlo)
return bits << (newlo - lo);
return bits >> (lo - newlo);
}
/* Mask [hi,lo] and shift down to start at bit 0. */
static inline uint32_t
pickbits32 (uint32_t val, int hi, int lo)
{
return pick32 (val, hi, lo) >> lo;
}
/* Mask [hi,lo] and shift down to start at bit 0. */
static inline uint64_t
pickbits64 (uint64_t val, int hi, int lo)
{
return pick64 (val, hi, lo) >> lo;
}
static inline uint32_t
uimm (uint32_t val, int hi, int lo)
{
return pickbits32 (val, hi, lo);
}
static inline int32_t
simm32 (uint32_t val, int hi, int lo)
{
union
{
uint32_t u;
int32_t n;
} x;
x.u = val << (31 - hi);
return x.n >> (31 - hi + lo);
}
static inline int64_t
simm64 (uint64_t val, int hi, int lo)
{
union
{
uint64_t u;
int64_t n;
} x;
x.u = val << (63 - hi);
return x.n >> (63 - hi + lo);
}
/* Operation decode.
Bits [28,24] are the primary dispatch vector. */
static inline uint32_t
dispatchGroup (uint32_t val)
{
return pickshift32 (val, 28, 25, 0);
}
/* The 16 possible values for bits [28,25] identified by tags which
map them to the 5 main instruction groups LDST, DPREG, ADVSIMD,
BREXSYS and DPIMM.
An extra group PSEUDO is included in one of the unallocated ranges
for simulator-specific pseudo-instructions. */
enum DispatchGroup
{
GROUP_PSEUDO_0000,
GROUP_UNALLOC_0001,
GROUP_UNALLOC_0010,
GROUP_UNALLOC_0011,
GROUP_LDST_0100,
GROUP_DPREG_0101,
GROUP_LDST_0110,
GROUP_ADVSIMD_0111,
GROUP_DPIMM_1000,
GROUP_DPIMM_1001,
GROUP_BREXSYS_1010,
GROUP_BREXSYS_1011,
GROUP_LDST_1100,
GROUP_DPREG_1101,
GROUP_LDST_1110,
GROUP_ADVSIMD_1111
};
/* Bits [31, 29] of a Pseudo are the secondary dispatch vector. */
static inline uint32_t
dispatchPseudo (uint32_t val)
{
return pickshift32 (val, 31, 29, 0);
}
/* The 8 possible values for bits [31,29] in a Pseudo Instruction.
Bits [28,25] are always 0000. */
enum DispatchPseudo
{
PSEUDO_UNALLOC_000, /* Unallocated. */
PSEUDO_UNALLOC_001, /* Ditto. */
PSEUDO_UNALLOC_010, /* Ditto. */
PSEUDO_UNALLOC_011, /* Ditto. */
PSEUDO_UNALLOC_100, /* Ditto. */
PSEUDO_UNALLOC_101, /* Ditto. */
PSEUDO_CALLOUT_110, /* CALLOUT -- bits [24,0] identify call/ret sig. */
PSEUDO_HALT_111 /* HALT -- bits [24, 0] identify halt code. */
};
/* Bits [25, 23] of a DPImm are the secondary dispatch vector. */
static inline uint32_t
dispatchDPImm (uint32_t instr)
{
return pickshift32 (instr, 25, 23, 0);
}
/* The 8 possible values for bits [25,23] in a Data Processing Immediate
Instruction. Bits [28,25] are always 100_. */
enum DispatchDPImm
{
DPIMM_PCADR_000, /* PC-rel-addressing. */
DPIMM_PCADR_001, /* Ditto. */
DPIMM_ADDSUB_010, /* Add/Subtract (immediate). */
DPIMM_ADDSUB_011, /* Ditto. */
DPIMM_LOG_100, /* Logical (immediate). */
DPIMM_MOV_101, /* Move Wide (immediate). */
DPIMM_BITF_110, /* Bitfield. */
DPIMM_EXTR_111 /* Extract. */
};
/* Bits [29,28:26] of a LS are the secondary dispatch vector. */
static inline uint32_t
dispatchLS (uint32_t instr)
{
return ( pickshift32 (instr, 29, 28, 1)
| pickshift32 (instr, 26, 26, 0));
}
/* The 8 possible values for bits [29,28:26] in a Load/Store
Instruction. Bits [28,25] are always _1_0. */
enum DispatchLS
{
LS_EXCL_000, /* Load/store exclusive (includes some unallocated). */
LS_ADVSIMD_001, /* AdvSIMD load/store (various -- includes some unallocated). */
LS_LIT_010, /* Load register literal (includes some unallocated). */
LS_LIT_011, /* Ditto. */
LS_PAIR_100, /* Load/store register pair (various). */
LS_PAIR_101, /* Ditto. */
LS_OTHER_110, /* Other load/store formats. */
LS_OTHER_111 /* Ditto. */
};
/* Bits [28:24:21] of a DPReg are the secondary dispatch vector. */
static inline uint32_t
dispatchDPReg (uint32_t instr)
{
return ( pickshift32 (instr, 28, 28, 2)
| pickshift32 (instr, 24, 24, 1)
| pickshift32 (instr, 21, 21, 0));
}
/* The 8 possible values for bits [28:24:21] in a Data Processing
Register Instruction. Bits [28,25] are always _101. */
enum DispatchDPReg
{
DPREG_LOG_000, /* Logical (shifted register). */
DPREG_LOG_001, /* Ditto. */
DPREG_ADDSHF_010, /* Add/subtract (shifted register). */
DPREG_ADDEXT_011, /* Add/subtract (extended register). */
DPREG_ADDCOND_100, /* Add/subtract (with carry) AND
Cond compare/select AND
Data Processing (1/2 source). */
DPREG_UNALLOC_101, /* Unallocated. */
DPREG_3SRC_110, /* Data Processing (3 source). */
DPREG_3SRC_111 /* Data Processing (3 source). */
};
/* bits [31,29] of a BrExSys are the secondary dispatch vector. */
static inline uint32_t
dispatchBrExSys (uint32_t instr)
{
return pickbits32 (instr, 31, 29);
}
/* The 8 possible values for bits [31,29] in a Branch/Exception/System
Instruction. Bits [28,25] are always 101_. */
enum DispatchBr
{
BR_IMM_000, /* Unconditional branch (immediate). */
BR_IMMCMP_001, /* Compare & branch (immediate) AND
Test & branch (immediate). */
BR_IMMCOND_010, /* Conditional branch (immediate) AND Unallocated. */
BR_UNALLOC_011, /* Unallocated. */
BR_IMM_100, /* Unconditional branch (immediate). */
BR_IMMCMP_101, /* Compare & branch (immediate) AND
Test & branch (immediate). */
BR_REG_110, /* Unconditional branch (register) AND System AND
Excn gen AND Unallocated. */
BR_UNALLOC_111 /* Unallocated. */
};
/* TODO still need to provide secondary decode and dispatch for
AdvSIMD Insructions with instr[28,25] = 0111 or 1111. */
#endif /* _DECODE_H */