binutils-gdb/gdb/stabsread.h
Tom Tromey 891813beaa Introduce partial_symtab::read_symtab method
This introduces a new partial_symtab::read_symtab method, and updates
the symbol readers to subclass partial_symtab and implement this
method.  The old read_symtab and read_symtab_private members are
removed.

In practice, only DWARF and CTF are truly updated to take advantage of
the new setup.  The other symbol readers are less actively maintained,
and so this patch also introduces a "legacy_psymtab", which
essentially works the same way as the old partial_symtab.

(Note that, without more knowledge of the interaction between these
symbol readers, fixing this to remove the new (small) overhead is not
trivial, because these readers copy the read_symtab pointer between
partial symtabs.)

gdb/ChangeLog
2020-01-26  Tom Tromey  <tom@tromey.com>

	* xcoffread.c (this_symtab_psymtab, read_xcoff_symtab)
	(xcoff_psymtab_to_symtab_1, xcoff_read_symtab)
	(xcoff_start_psymtab, xcoff_end_psymtab, scan_xcoff_symtab): Use
	legacy_symtab.
	* stabsread.h (dbx_end_psymtab): Use legacy_symtab.
	* psymtab.c (psymtab_to_symtab): Call method.
	(dump_psymtab): Update.
	* psympriv.h (struct partial_symtab): Add virtual destructor.
	<read_symtab>: New method.
	(struct legacy_symtab): New.
	* mdebugread.c (mdebug_read_symtab): Use legacy_psymtab.
	(struct pst_map) <pst>: Now a legacy_psymtab.
	(parse_procedure, parse_partial_symbols, psymtab_to_symtab_1)
	(new_psymtab): Use legacy_psymtab.
	* dwarf2read.h (struct dwarf2_psymtab): New.
	(struct dwarf2_per_cu_data) <psymtab>: Use it.
	* dwarf2read.c (dwarf2_create_include_psymtab)
	(dwarf2_build_include_psymtabs, create_type_unit_group)
	(create_partial_symtab, process_psymtab_comp_unit_reader)
	(build_type_psymtabs_reader, build_type_psymtab_dependencies)
	(set_partial_user): Use dwarf2_psymtab.
	(dwarf2_psymtab::read_symtab): Rename from dwarf2_read_symtab.
	(psymtab_to_symtab_1, process_full_comp_unit)
	(process_full_type_unit, dwarf2_ranges_read)
	(dwarf2_get_pc_bounds, psymtab_include_file_name)
	(dwarf_decode_lines): Use dwarf2_psymtab.
	* dwarf-index-write.c (psym_index_map): Use dwarf2_psymtab.
	(add_address_entry_worker, write_one_signatured_type)
	(recursively_count_psymbols, recursively_write_psymbols)
	(write_one_signatured_type, psyms_seen_size, write_gdbindex)
	(write_debug_names): Likewise.
	* dbxread.c (struct header_file_location): Take a legacy_psymtab.
	<pst>: Now a legacy_psymtab.
	(find_corresponding_bincl_psymtab): Return a legacy_psymtab.
	(read_dbx_symtab, start_psymtab, dbx_end_psymtab)
	(dbx_psymtab_to_symtab_1, read_ofile_symtab): Use legacy_psymtab.
	* ctfread.c (struct ctf_psymtab): New.
	(ctf_start_symtab, ctf_end_symtab, psymtab_to_symtab): Take a
	ctf_psymtab.
	(ctf_psymtab::read_symtab): Rename from ctf_read_symtab.
	(create_partial_symtab): Return a ctf_psymtab.
	(scan_partial_symbols): Update.

Change-Id: Ia57a828786867d6ad03200af8f996f48ed15285e
2020-01-26 16:40:21 -07:00

216 lines
6.7 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Include file for stabs debugging format support functions.
Copyright (C) 1986-2020 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#ifndef STABSREAD_H
#define STABSREAD_H
struct objfile;
struct legacy_psymtab;
enum language;
/* Definitions, prototypes, etc for stabs debugging format support
functions. */
#define HASHSIZE 127 /* Size of things hashed via
hashname(). */
/* Compute a small integer hash code for the given name. */
extern int hashname (const char *name);
/* Count symbols as they are processed, for error messages. */
extern unsigned int symnum;
#define next_symbol_text(objfile) (*next_symbol_text_func)(objfile)
/* Function to invoke get the next symbol. Return the symbol name. */
extern const char *(*next_symbol_text_func) (struct objfile *);
/* Global variable which, when set, indicates that we are processing a
.o file compiled with gcc */
extern unsigned char processing_gcc_compilation;
/* Nonzero if within a function (so symbols should be local, if
nothing says specifically). */
extern int within_function;
/* Hash table of global symbols whose values are not known yet.
They are chained thru the SYMBOL_VALUE_CHAIN, since we don't
have the correct data for that slot yet.
The use of the LOC_BLOCK code in this chain is nonstandard--
it refers to a FORTRAN common block rather than the usual meaning, and
the such LOC_BLOCK symbols use their fields in nonstandard ways. */
extern struct symbol *global_sym_chain[HASHSIZE];
extern void common_block_start (const char *, struct objfile *);
extern void common_block_end (struct objfile *);
/* Kludge for xcoffread.c */
struct pending_stabs
{
int count;
int length;
char *stab[1];
};
extern struct pending_stabs *global_stabs;
/* The type code that process_one_symbol saw on its previous invocation.
Used to detect pairs of N_SO symbols. */
extern int previous_stab_code;
/* Support for Sun changes to dbx symbol format. */
/* For each identified header file, we have a table of types defined
in that header file.
header_files maps header file names to their type tables.
It is a vector of n_header_files elements.
Each element describes one header file.
It contains a vector of types.
Sometimes it can happen that the same header file produces
different results when included in different places.
This can result from conditionals or from different
things done before including the file.
When this happens, there are multiple entries for the file in this table,
one entry for each distinct set of results.
The entries are distinguished by the INSTANCE field.
The INSTANCE field appears in the N_BINCL and N_EXCL symbol table and is
used to match header-file references to their corresponding data. */
struct header_file
{
/* Name of header file */
char *name;
/* Numeric code distinguishing instances of one header file that
produced different results when included. It comes from the
N_BINCL or N_EXCL. */
int instance;
/* Pointer to vector of types */
struct type **vector;
/* Allocated length (# elts) of that vector */
int length;
};
/* The table of header_files of this OBJFILE. */
#define HEADER_FILES(OBJFILE) (DBX_SYMFILE_INFO (OBJFILE)->header_files)
/* The actual length of HEADER_FILES. */
#define N_HEADER_FILES(OBJFILE) (DBX_SYMFILE_INFO (OBJFILE)->n_header_files)
/* The allocated lengh of HEADER_FILES. */
#define N_ALLOCATED_HEADER_FILES(OBJFILE) \
(DBX_SYMFILE_INFO (OBJFILE)->n_allocated_header_files)
/* Within each object file, various header files are assigned numbers.
A type is defined or referred to with a pair of numbers
(FILENUM,TYPENUM) where FILENUM is the number of the header file
and TYPENUM is the number within that header file.
TYPENUM is the index within the vector of types for that header file.
FILENUM == 0 is special; it refers to the main source of the object file,
and not to any header file. FILENUM != 1 is interpreted by looking it up
in the following table, which contains indices in header_files. */
extern int *this_object_header_files;
extern int n_this_object_header_files;
extern int n_allocated_this_object_header_files;
extern void cleanup_undefined_stabs_types (struct objfile *);
extern long read_number (char **, int);
extern struct symbol *define_symbol (CORE_ADDR, const char *, int, int,
struct objfile *);
extern void stabsread_init (void);
extern void stabsread_new_init (void);
extern void start_stabs (void);
extern void end_stabs (void);
extern void finish_global_stabs (struct objfile *objfile);
/* Functions exported by dbxread.c. These are not in stabsread.c because
they are only used by some stabs readers. */
extern legacy_psymtab *dbx_end_psymtab
(struct objfile *objfile, legacy_psymtab *pst,
const char **include_list, int num_includes,
int capping_symbol_offset, CORE_ADDR capping_text,
legacy_psymtab **dependency_list, int number_dependencies,
int textlow_not_set);
extern void process_one_symbol (int, int, CORE_ADDR, const char *,
const section_offsets &,
struct objfile *, enum language);
extern void elfstab_build_psymtabs (struct objfile *objfile,
asection *stabsect,
file_ptr stabstroffset,
unsigned int stabstrsize);
extern void coffstab_build_psymtabs
(struct objfile *objfile,
CORE_ADDR textaddr, unsigned int textsize,
const std::vector<asection *> &stabs,
file_ptr stabstroffset, unsigned int stabstrsize);
extern void stabsect_build_psymtabs (struct objfile *objfile, char *stab_name,
char *stabstr_name, char *text_name);
extern int symbol_reference_defined (const char **);
extern void ref_add (int, struct symbol *, const char *, CORE_ADDR);
extern struct symbol *ref_search (int);
extern void free_header_files (void);
extern void init_header_files (void);
/* Scan through all of the global symbols defined in the object file,
assigning values to the debugging symbols that need to be assigned
to. Get these symbols from the minimal symbol table. */
extern void scan_file_globals (struct objfile *objfile);
#endif /* STABSREAD_H */