mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-11 19:33:33 +08:00
1413 lines
44 KiB
C
1413 lines
44 KiB
C
/* frv exception and interrupt support
|
|
Copyright (C) 1999-2014 Free Software Foundation, Inc.
|
|
Contributed by Red Hat.
|
|
|
|
This file is part of the GNU simulators.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#define WANT_CPU frvbf
|
|
#define WANT_CPU_FRVBF
|
|
|
|
#include "sim-main.h"
|
|
#include "bfd.h"
|
|
|
|
/* FR-V Interrupt table.
|
|
Describes the interrupts supported by the FR-V.
|
|
This table *must* be maintained in order of interrupt priority as defined by
|
|
frv_interrupt_kind. */
|
|
#define DEFERRED 1
|
|
#define PRECISE 1
|
|
#define ITABLE_ENTRY(name, class, deferral, precision, offset) \
|
|
{FRV_##name, FRV_EC_##name, class, deferral, precision, offset}
|
|
|
|
struct frv_interrupt frv_interrupt_table[NUM_FRV_INTERRUPT_KINDS] =
|
|
{
|
|
/* External interrupts */
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_1, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x21),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_2, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x22),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_3, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x23),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_4, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x24),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_5, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x25),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_6, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x26),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_7, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x27),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_8, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x28),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_9, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x29),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_10, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2a),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_11, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2b),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_12, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2c),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_13, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2d),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_14, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2e),
|
|
ITABLE_ENTRY(INTERRUPT_LEVEL_15, FRV_EXTERNAL_INTERRUPT, !DEFERRED, !PRECISE, 0x2f),
|
|
/* Software interrupt */
|
|
ITABLE_ENTRY(TRAP_INSTRUCTION, FRV_SOFTWARE_INTERRUPT, !DEFERRED, !PRECISE, 0x80),
|
|
/* Program interrupts */
|
|
ITABLE_ENTRY(COMMIT_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x19),
|
|
ITABLE_ENTRY(DIVISION_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x17),
|
|
ITABLE_ENTRY(DATA_STORE_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x14),
|
|
ITABLE_ENTRY(DATA_ACCESS_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x13),
|
|
ITABLE_ENTRY(DATA_ACCESS_MMU_MISS, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x12),
|
|
ITABLE_ENTRY(DATA_ACCESS_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x11),
|
|
ITABLE_ENTRY(MP_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x0e),
|
|
ITABLE_ENTRY(FP_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x0d),
|
|
ITABLE_ENTRY(MEM_ADDRESS_NOT_ALIGNED, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x10),
|
|
ITABLE_ENTRY(REGISTER_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x08),
|
|
ITABLE_ENTRY(MP_DISABLED, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x0b),
|
|
ITABLE_ENTRY(FP_DISABLED, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x0a),
|
|
ITABLE_ENTRY(PRIVILEGED_INSTRUCTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x06),
|
|
ITABLE_ENTRY(ILLEGAL_INSTRUCTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x07),
|
|
ITABLE_ENTRY(INSTRUCTION_ACCESS_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x03),
|
|
ITABLE_ENTRY(INSTRUCTION_ACCESS_ERROR, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x02),
|
|
ITABLE_ENTRY(INSTRUCTION_ACCESS_MMU_MISS, FRV_PROGRAM_INTERRUPT, !DEFERRED, PRECISE, 0x01),
|
|
ITABLE_ENTRY(COMPOUND_EXCEPTION, FRV_PROGRAM_INTERRUPT, !DEFERRED, !PRECISE, 0x20),
|
|
/* Break interrupt */
|
|
ITABLE_ENTRY(BREAK_EXCEPTION, FRV_BREAK_INTERRUPT, !DEFERRED, !PRECISE, 0xff),
|
|
/* Reset interrupt */
|
|
ITABLE_ENTRY(RESET, FRV_RESET_INTERRUPT, !DEFERRED, !PRECISE, 0x00)
|
|
};
|
|
|
|
/* The current interrupt state. */
|
|
struct frv_interrupt_state frv_interrupt_state;
|
|
|
|
/* maintain the address of the start of the previous VLIW insn sequence. */
|
|
IADDR previous_vliw_pc;
|
|
|
|
/* Add a break interrupt to the interrupt queue. */
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_break_interrupt (SIM_CPU *current_cpu)
|
|
{
|
|
return frv_queue_interrupt (current_cpu, FRV_BREAK_EXCEPTION);
|
|
}
|
|
|
|
/* Add a software interrupt to the interrupt queue. */
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_software_interrupt (SIM_CPU *current_cpu, SI offset)
|
|
{
|
|
struct frv_interrupt_queue_element *new_element
|
|
= frv_queue_interrupt (current_cpu, FRV_TRAP_INSTRUCTION);
|
|
|
|
struct frv_interrupt *interrupt = & frv_interrupt_table[new_element->kind];
|
|
interrupt->handler_offset = offset;
|
|
|
|
return new_element;
|
|
}
|
|
|
|
/* Add a program interrupt to the interrupt queue. */
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_program_interrupt (
|
|
SIM_CPU *current_cpu, enum frv_interrupt_kind kind
|
|
)
|
|
{
|
|
return frv_queue_interrupt (current_cpu, kind);
|
|
}
|
|
|
|
/* Add an external interrupt to the interrupt queue. */
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_external_interrupt (
|
|
SIM_CPU *current_cpu, enum frv_interrupt_kind kind
|
|
)
|
|
{
|
|
if (! GET_H_PSR_ET ()
|
|
|| (kind != FRV_INTERRUPT_LEVEL_15 && kind < GET_H_PSR_PIL ()))
|
|
return NULL; /* Leave it for later. */
|
|
|
|
return frv_queue_interrupt (current_cpu, kind);
|
|
}
|
|
|
|
/* Add any interrupt to the interrupt queue. It will be added in reverse
|
|
priority order. This makes it easy to find the highest priority interrupt
|
|
at the end of the queue and to remove it after processing. */
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_interrupt (SIM_CPU *current_cpu, enum frv_interrupt_kind kind)
|
|
{
|
|
int i;
|
|
int j;
|
|
int limit = frv_interrupt_state.queue_index;
|
|
struct frv_interrupt_queue_element *new_element;
|
|
enum frv_interrupt_class iclass;
|
|
|
|
if (limit >= FRV_INTERRUPT_QUEUE_SIZE)
|
|
abort (); /* TODO: Make the queue dynamic */
|
|
|
|
/* Find the right place in the queue. */
|
|
for (i = 0; i < limit; ++i)
|
|
{
|
|
if (frv_interrupt_state.queue[i].kind >= kind)
|
|
break;
|
|
}
|
|
|
|
/* Don't queue two external interrupts of the same priority. */
|
|
iclass = frv_interrupt_table[kind].iclass;
|
|
if (i < limit && iclass == FRV_EXTERNAL_INTERRUPT)
|
|
{
|
|
if (frv_interrupt_state.queue[i].kind == kind)
|
|
return & frv_interrupt_state.queue[i];
|
|
}
|
|
|
|
/* Make room for the new interrupt in this spot. */
|
|
for (j = limit - 1; j >= i; --j)
|
|
frv_interrupt_state.queue[j + 1] = frv_interrupt_state.queue[j];
|
|
|
|
/* Add the new interrupt. */
|
|
frv_interrupt_state.queue_index++;
|
|
new_element = & frv_interrupt_state.queue[i];
|
|
new_element->kind = kind;
|
|
new_element->vpc = CPU_PC_GET (current_cpu);
|
|
new_element->u.data_written.length = 0;
|
|
frv_set_interrupt_queue_slot (current_cpu, new_element);
|
|
|
|
return new_element;
|
|
}
|
|
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_register_exception_interrupt (SIM_CPU *current_cpu, enum frv_rec rec)
|
|
{
|
|
struct frv_interrupt_queue_element *new_element =
|
|
frv_queue_program_interrupt (current_cpu, FRV_REGISTER_EXCEPTION);
|
|
|
|
new_element->u.rec = rec;
|
|
|
|
return new_element;
|
|
}
|
|
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_mem_address_not_aligned_interrupt (SIM_CPU *current_cpu, USI addr)
|
|
{
|
|
struct frv_interrupt_queue_element *new_element;
|
|
USI isr = GET_ISR ();
|
|
|
|
/* Make sure that this exception is not masked. */
|
|
if (GET_ISR_EMAM (isr))
|
|
return NULL;
|
|
|
|
/* Queue the interrupt. */
|
|
new_element = frv_queue_program_interrupt (current_cpu,
|
|
FRV_MEM_ADDRESS_NOT_ALIGNED);
|
|
new_element->eaddress = addr;
|
|
new_element->u.data_written = frv_interrupt_state.data_written;
|
|
frv_interrupt_state.data_written.length = 0;
|
|
|
|
return new_element;
|
|
}
|
|
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_data_access_error_interrupt (SIM_CPU *current_cpu, USI addr)
|
|
{
|
|
struct frv_interrupt_queue_element *new_element;
|
|
new_element = frv_queue_program_interrupt (current_cpu,
|
|
FRV_DATA_ACCESS_ERROR);
|
|
new_element->eaddress = addr;
|
|
return new_element;
|
|
}
|
|
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_data_access_exception_interrupt (SIM_CPU *current_cpu)
|
|
{
|
|
return frv_queue_program_interrupt (current_cpu, FRV_DATA_ACCESS_EXCEPTION);
|
|
}
|
|
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_instruction_access_error_interrupt (SIM_CPU *current_cpu)
|
|
{
|
|
return frv_queue_program_interrupt (current_cpu, FRV_INSTRUCTION_ACCESS_ERROR);
|
|
}
|
|
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_instruction_access_exception_interrupt (SIM_CPU *current_cpu)
|
|
{
|
|
return frv_queue_program_interrupt (current_cpu, FRV_INSTRUCTION_ACCESS_EXCEPTION);
|
|
}
|
|
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_illegal_instruction_interrupt (
|
|
SIM_CPU *current_cpu, const CGEN_INSN *insn
|
|
)
|
|
{
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
switch (STATE_ARCHITECTURE (sd)->mach)
|
|
{
|
|
case bfd_mach_fr400:
|
|
case bfd_mach_fr450:
|
|
case bfd_mach_fr550:
|
|
break;
|
|
default:
|
|
/* Some machines generate fp_exception for this case. */
|
|
if (frv_is_float_insn (insn) || frv_is_media_insn (insn))
|
|
{
|
|
struct frv_fp_exception_info fp_info = {
|
|
FSR_NO_EXCEPTION, FTT_SEQUENCE_ERROR
|
|
};
|
|
return frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
|
}
|
|
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_privileged_instruction_interrupt (SIM_CPU *current_cpu, const CGEN_INSN *insn)
|
|
{
|
|
/* The fr550 has no privileged instruction interrupt. It uses
|
|
illegal_instruction. */
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
|
return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
|
|
|
return frv_queue_program_interrupt (current_cpu, FRV_PRIVILEGED_INSTRUCTION);
|
|
}
|
|
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_float_disabled_interrupt (SIM_CPU *current_cpu)
|
|
{
|
|
/* The fr550 has no fp_disabled interrupt. It uses illegal_instruction. */
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
|
return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
|
|
|
return frv_queue_program_interrupt (current_cpu, FRV_FP_DISABLED);
|
|
}
|
|
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_media_disabled_interrupt (SIM_CPU *current_cpu)
|
|
{
|
|
/* The fr550 has no mp_disabled interrupt. It uses illegal_instruction. */
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
|
return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
|
|
|
return frv_queue_program_interrupt (current_cpu, FRV_MP_DISABLED);
|
|
}
|
|
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_non_implemented_instruction_interrupt (
|
|
SIM_CPU *current_cpu, const CGEN_INSN *insn
|
|
)
|
|
{
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
switch (STATE_ARCHITECTURE (sd)->mach)
|
|
{
|
|
case bfd_mach_fr400:
|
|
case bfd_mach_fr450:
|
|
case bfd_mach_fr550:
|
|
break;
|
|
default:
|
|
/* Some machines generate fp_exception or mp_exception for this case. */
|
|
if (frv_is_float_insn (insn))
|
|
{
|
|
struct frv_fp_exception_info fp_info = {
|
|
FSR_NO_EXCEPTION, FTT_UNIMPLEMENTED_FPOP
|
|
};
|
|
return frv_queue_fp_exception_interrupt (current_cpu, & fp_info);
|
|
}
|
|
if (frv_is_media_insn (insn))
|
|
{
|
|
frv_set_mp_exception_registers (current_cpu, MTT_UNIMPLEMENTED_MPOP,
|
|
0);
|
|
return NULL; /* no interrupt queued at this time. */
|
|
}
|
|
break;
|
|
}
|
|
|
|
return frv_queue_program_interrupt (current_cpu, FRV_ILLEGAL_INSTRUCTION);
|
|
}
|
|
|
|
/* Queue the given fp_exception interrupt. Also update fp_info by removing
|
|
masked interrupts and updating the 'slot' flield. */
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_fp_exception_interrupt (
|
|
SIM_CPU *current_cpu, struct frv_fp_exception_info *fp_info
|
|
)
|
|
{
|
|
SI fsr0 = GET_FSR (0);
|
|
int tem = GET_FSR_TEM (fsr0);
|
|
int aexc = GET_FSR_AEXC (fsr0);
|
|
struct frv_interrupt_queue_element *new_element = NULL;
|
|
|
|
/* Update AEXC with the interrupts that are masked. */
|
|
aexc |= fp_info->fsr_mask & ~tem;
|
|
SET_FSR_AEXC (fsr0, aexc);
|
|
SET_FSR (0, fsr0);
|
|
|
|
/* update fsr_mask with the exceptions that are enabled. */
|
|
fp_info->fsr_mask &= tem;
|
|
|
|
/* If there is an unmasked interrupt then queue it, unless
|
|
this was a non-excepting insn, in which case simply set the NE
|
|
status registers. */
|
|
if (frv_interrupt_state.ne_index != NE_NOFLAG
|
|
&& fp_info->fsr_mask != FSR_NO_EXCEPTION)
|
|
{
|
|
SET_NE_FLAG (frv_interrupt_state.f_ne_flags,
|
|
frv_interrupt_state.ne_index);
|
|
/* TODO -- Set NESR for chips which support it. */
|
|
new_element = NULL;
|
|
}
|
|
else if (fp_info->fsr_mask != FSR_NO_EXCEPTION
|
|
|| fp_info->ftt == FTT_UNIMPLEMENTED_FPOP
|
|
|| fp_info->ftt == FTT_SEQUENCE_ERROR
|
|
|| fp_info->ftt == FTT_INVALID_FR)
|
|
{
|
|
new_element = frv_queue_program_interrupt (current_cpu, FRV_FP_EXCEPTION);
|
|
new_element->u.fp_info = *fp_info;
|
|
}
|
|
|
|
return new_element;
|
|
}
|
|
|
|
struct frv_interrupt_queue_element *
|
|
frv_queue_division_exception_interrupt (SIM_CPU *current_cpu, enum frv_dtt dtt)
|
|
{
|
|
struct frv_interrupt_queue_element *new_element =
|
|
frv_queue_program_interrupt (current_cpu, FRV_DIVISION_EXCEPTION);
|
|
|
|
new_element->u.dtt = dtt;
|
|
|
|
return new_element;
|
|
}
|
|
|
|
/* Check for interrupts caused by illegal insn access. These conditions are
|
|
checked in the order specified by the fr400 and fr500 LSI specs. */
|
|
void
|
|
frv_detect_insn_access_interrupts (SIM_CPU *current_cpu, SCACHE *sc)
|
|
{
|
|
|
|
const CGEN_INSN *insn = sc->argbuf.idesc->idata;
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
FRV_VLIW *vliw = CPU_VLIW (current_cpu);
|
|
|
|
/* Check for vliw constraints. */
|
|
if (vliw->constraint_violation)
|
|
frv_queue_illegal_instruction_interrupt (current_cpu, insn);
|
|
/* Check for non-excepting insns. */
|
|
else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_NON_EXCEPTING)
|
|
&& ! GET_H_PSR_NEM ())
|
|
frv_queue_non_implemented_instruction_interrupt (current_cpu, insn);
|
|
/* Check for conditional insns. */
|
|
else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_CONDITIONAL)
|
|
&& ! GET_H_PSR_CM ())
|
|
frv_queue_non_implemented_instruction_interrupt (current_cpu, insn);
|
|
/* Make sure floating point support is enabled. */
|
|
else if (! GET_H_PSR_EF ())
|
|
{
|
|
/* Generate fp_disabled if it is a floating point insn or if PSR.EM is
|
|
off and the insns accesses a fp register. */
|
|
if (frv_is_float_insn (insn)
|
|
|| (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_FR_ACCESS)
|
|
&& ! GET_H_PSR_EM ()))
|
|
frv_queue_float_disabled_interrupt (current_cpu);
|
|
}
|
|
/* Make sure media support is enabled. */
|
|
else if (! GET_H_PSR_EM ())
|
|
{
|
|
/* Generate mp_disabled if it is a media insn. */
|
|
if (frv_is_media_insn (insn) || CGEN_INSN_NUM (insn) == FRV_INSN_MTRAP)
|
|
frv_queue_media_disabled_interrupt (current_cpu);
|
|
}
|
|
/* Check for privileged insns. */
|
|
else if (CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_PRIVILEGED) &&
|
|
! GET_H_PSR_S ())
|
|
frv_queue_privileged_instruction_interrupt (current_cpu, insn);
|
|
#if 0 /* disable for now until we find out how FSR0.QNE gets reset. */
|
|
else
|
|
{
|
|
/* Enter the halt state if FSR0.QNE is set and we are executing a
|
|
floating point insn, a media insn or an insn which access a FR
|
|
register. */
|
|
SI fsr0 = GET_FSR (0);
|
|
if (GET_FSR_QNE (fsr0)
|
|
&& (frv_is_float_insn (insn) || frv_is_media_insn (insn)
|
|
|| CGEN_INSN_ATTR_VALUE (insn, CGEN_INSN_FR_ACCESS)))
|
|
{
|
|
sim_engine_halt (sd, current_cpu, NULL, GET_H_PC (), sim_stopped,
|
|
SIM_SIGINT);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Record the current VLIW slot in the given interrupt queue element. */
|
|
void
|
|
frv_set_interrupt_queue_slot (
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
|
)
|
|
{
|
|
FRV_VLIW *vliw = CPU_VLIW (current_cpu);
|
|
int slot = vliw->next_slot - 1;
|
|
item->slot = (*vliw->current_vliw)[slot];
|
|
}
|
|
|
|
/* Handle an individual interrupt. */
|
|
static void
|
|
handle_interrupt (SIM_CPU *current_cpu, IADDR pc)
|
|
{
|
|
struct frv_interrupt *interrupt;
|
|
int writeback_done = 0;
|
|
while (1)
|
|
{
|
|
/* Interrupts are queued in priority order with the highest priority
|
|
last. */
|
|
int index = frv_interrupt_state.queue_index - 1;
|
|
struct frv_interrupt_queue_element *item
|
|
= & frv_interrupt_state.queue[index];
|
|
interrupt = & frv_interrupt_table[item->kind];
|
|
|
|
switch (interrupt->iclass)
|
|
{
|
|
case FRV_EXTERNAL_INTERRUPT:
|
|
/* Perform writeback first. This may cause a higher priority
|
|
interrupt. */
|
|
if (! writeback_done)
|
|
{
|
|
frvbf_perform_writeback (current_cpu);
|
|
writeback_done = 1;
|
|
continue;
|
|
}
|
|
frv_external_interrupt (current_cpu, item, pc);
|
|
return;
|
|
case FRV_SOFTWARE_INTERRUPT:
|
|
frv_interrupt_state.queue_index = index;
|
|
frv_software_interrupt (current_cpu, item, pc);
|
|
return;
|
|
case FRV_PROGRAM_INTERRUPT:
|
|
/* If the program interrupt is not strict (imprecise), then perform
|
|
writeback first. This may, in turn, cause a higher priority
|
|
interrupt. */
|
|
if (! interrupt->precise && ! writeback_done)
|
|
{
|
|
frv_interrupt_state.imprecise_interrupt = item;
|
|
frvbf_perform_writeback (current_cpu);
|
|
writeback_done = 1;
|
|
continue;
|
|
}
|
|
frv_interrupt_state.queue_index = index;
|
|
frv_program_interrupt (current_cpu, item, pc);
|
|
return;
|
|
case FRV_BREAK_INTERRUPT:
|
|
frv_interrupt_state.queue_index = index;
|
|
frv_break_interrupt (current_cpu, interrupt, pc);
|
|
return;
|
|
case FRV_RESET_INTERRUPT:
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
frv_interrupt_state.queue_index = index;
|
|
break; /* out of loop. */
|
|
}
|
|
|
|
/* We should never get here. */
|
|
{
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt class not supported %d\n",
|
|
interrupt->iclass);
|
|
}
|
|
}
|
|
|
|
/* Check to see the if the RSTR.HR or RSTR.SR bits have been set. If so, handle
|
|
the appropriate reset interrupt. */
|
|
static int
|
|
check_reset (SIM_CPU *current_cpu, IADDR pc)
|
|
{
|
|
int hsr0;
|
|
int hr;
|
|
int sr;
|
|
SI rstr;
|
|
FRV_CACHE *cache = CPU_DATA_CACHE (current_cpu);
|
|
IADDR address = RSTR_ADDRESS;
|
|
|
|
/* We don't want this to show up in the cache statistics, so read the
|
|
cache passively. */
|
|
if (! frv_cache_read_passive_SI (cache, address, & rstr))
|
|
rstr = sim_core_read_unaligned_4 (current_cpu, pc, read_map, address);
|
|
|
|
hr = GET_RSTR_HR (rstr);
|
|
sr = GET_RSTR_SR (rstr);
|
|
|
|
if (! hr && ! sr)
|
|
return 0; /* no reset. */
|
|
|
|
/* Reinitialize the machine state. */
|
|
if (hr)
|
|
frv_hardware_reset (current_cpu);
|
|
else
|
|
frv_software_reset (current_cpu);
|
|
|
|
/* Branch to the reset address. */
|
|
hsr0 = GET_HSR0 ();
|
|
if (GET_HSR0_SA (hsr0))
|
|
SET_H_PC (0xff000000);
|
|
else
|
|
SET_H_PC (0);
|
|
|
|
return 1; /* reset */
|
|
}
|
|
|
|
/* Process any pending interrupt(s) after a group of parallel insns. */
|
|
void
|
|
frv_process_interrupts (SIM_CPU *current_cpu)
|
|
{
|
|
SI NE_flags[2];
|
|
/* Need to save the pc here because writeback may change it (due to a
|
|
branch). */
|
|
IADDR pc = CPU_PC_GET (current_cpu);
|
|
|
|
/* Check for a reset before anything else. */
|
|
if (check_reset (current_cpu, pc))
|
|
return;
|
|
|
|
/* First queue the writes for any accumulated NE flags. */
|
|
if (frv_interrupt_state.f_ne_flags[0] != 0
|
|
|| frv_interrupt_state.f_ne_flags[1] != 0)
|
|
{
|
|
GET_NE_FLAGS (NE_flags, H_SPR_FNER0);
|
|
NE_flags[0] |= frv_interrupt_state.f_ne_flags[0];
|
|
NE_flags[1] |= frv_interrupt_state.f_ne_flags[1];
|
|
SET_NE_FLAGS (H_SPR_FNER0, NE_flags);
|
|
}
|
|
|
|
/* If there is no interrupt pending, then perform parallel writeback. This
|
|
may cause an interrupt. */
|
|
if (frv_interrupt_state.queue_index <= 0)
|
|
frvbf_perform_writeback (current_cpu);
|
|
|
|
/* If there is an interrupt pending, then process it. */
|
|
if (frv_interrupt_state.queue_index > 0)
|
|
handle_interrupt (current_cpu, pc);
|
|
}
|
|
|
|
/* Find the next available ESR and return its index */
|
|
static int
|
|
esr_for_data_access_exception (
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
|
)
|
|
{
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
|
return 8; /* Use ESR8, EPCR8. */
|
|
|
|
if (item->slot == UNIT_I0)
|
|
return 8; /* Use ESR8, EPCR8, EAR8, EDR8. */
|
|
|
|
return 9; /* Use ESR9, EPCR9, EAR9. */
|
|
}
|
|
|
|
/* Set the next available EDR register with the data which was to be stored
|
|
and return the index of the register. */
|
|
static int
|
|
set_edr_register (
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, int edr_index
|
|
)
|
|
{
|
|
/* EDR0, EDR4 and EDR8 are available as blocks of 4.
|
|
SI data uses EDR3, EDR7 and EDR11
|
|
DI data uses EDR2, EDR6 and EDR10
|
|
XI data uses EDR0, EDR4 and EDR8. */
|
|
int i;
|
|
edr_index += 4 - item->u.data_written.length;
|
|
for (i = 0; i < item->u.data_written.length; ++i)
|
|
SET_EDR (edr_index + i, item->u.data_written.words[i]);
|
|
|
|
return edr_index;
|
|
};
|
|
|
|
/* Clear ESFR0, EPCRx, ESRx, EARx and EDRx. */
|
|
static void
|
|
clear_exception_status_registers (SIM_CPU *current_cpu)
|
|
{
|
|
int i;
|
|
/* It is only necessary to clear the flag bits indicating which registers
|
|
are valid. */
|
|
SET_ESFR (0, 0);
|
|
SET_ESFR (1, 0);
|
|
|
|
for (i = 0; i <= 2; ++i)
|
|
{
|
|
SI esr = GET_ESR (i);
|
|
CLEAR_ESR_VALID (esr);
|
|
SET_ESR (i, esr);
|
|
}
|
|
for (i = 8; i <= 15; ++i)
|
|
{
|
|
SI esr = GET_ESR (i);
|
|
CLEAR_ESR_VALID (esr);
|
|
SET_ESR (i, esr);
|
|
}
|
|
}
|
|
|
|
/* Record state for media exception. */
|
|
void
|
|
frv_set_mp_exception_registers (
|
|
SIM_CPU *current_cpu, enum frv_msr_mtt mtt, int sie
|
|
)
|
|
{
|
|
/* Record the interrupt factor in MSR0. */
|
|
SI msr0 = GET_MSR (0);
|
|
if (GET_MSR_MTT (msr0) == MTT_NONE)
|
|
SET_MSR_MTT (msr0, mtt);
|
|
|
|
/* Also set the OVF bit in the appropriate MSR as well as MSR0.AOVF. */
|
|
if (mtt == MTT_OVERFLOW)
|
|
{
|
|
FRV_VLIW *vliw = CPU_VLIW (current_cpu);
|
|
int slot = vliw->next_slot - 1;
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
|
|
/* If this insn is in the M2 slot, then set MSR1.OVF and MSR1.SIE,
|
|
otherwise set MSR0.OVF and MSR0.SIE. */
|
|
if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550 && (*vliw->current_vliw)[slot] == UNIT_FM1)
|
|
{
|
|
SI msr = GET_MSR (1);
|
|
OR_MSR_SIE (msr, sie);
|
|
SET_MSR_OVF (msr);
|
|
SET_MSR (1, msr);
|
|
}
|
|
else
|
|
{
|
|
OR_MSR_SIE (msr0, sie);
|
|
SET_MSR_OVF (msr0);
|
|
}
|
|
|
|
/* Generate the interrupt now if MSR0.MPEM is set on fr550 */
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550 && GET_MSR_MPEM (msr0))
|
|
frv_queue_program_interrupt (current_cpu, FRV_MP_EXCEPTION);
|
|
else
|
|
{
|
|
/* Regardless of the slot, set MSR0.AOVF. */
|
|
SET_MSR_AOVF (msr0);
|
|
}
|
|
}
|
|
|
|
SET_MSR (0, msr0);
|
|
}
|
|
|
|
/* Determine the correct FQ register to use for the given exception.
|
|
Return -1 if a register is not available. */
|
|
static int
|
|
fq_for_exception (
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
|
)
|
|
{
|
|
SI fq;
|
|
struct frv_fp_exception_info *fp_info = & item->u.fp_info;
|
|
|
|
/* For fp_exception overflow, underflow or inexact, use FQ0 or FQ1. */
|
|
if (fp_info->ftt == FTT_IEEE_754_EXCEPTION
|
|
&& (fp_info->fsr_mask & (FSR_OVERFLOW | FSR_UNDERFLOW | FSR_INEXACT)))
|
|
{
|
|
fq = GET_FQ (0);
|
|
if (! GET_FQ_VALID (fq))
|
|
return 0; /* FQ0 is available. */
|
|
fq = GET_FQ (1);
|
|
if (! GET_FQ_VALID (fq))
|
|
return 1; /* FQ1 is available. */
|
|
|
|
/* No FQ register is available */
|
|
{
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
IADDR pc = CPU_PC_GET (current_cpu);
|
|
sim_engine_abort (sd, current_cpu, pc, "No FQ register available\n");
|
|
}
|
|
return -1;
|
|
}
|
|
/* For other exceptions, use FQ2 if the insn was in slot F0/I0 and FQ3
|
|
otherwise. */
|
|
if (item->slot == UNIT_FM0 || item->slot == UNIT_I0)
|
|
return 2;
|
|
|
|
return 3;
|
|
}
|
|
|
|
/* Set FSR0, FQ0-FQ9, depending on the interrupt. */
|
|
static void
|
|
set_fp_exception_registers (
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
|
)
|
|
{
|
|
int fq_index;
|
|
SI fq;
|
|
SI insn;
|
|
SI fsr0;
|
|
IADDR pc;
|
|
struct frv_fp_exception_info *fp_info;
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
|
|
/* No FQ registers on fr550 */
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
|
{
|
|
/* Update the fsr. */
|
|
fp_info = & item->u.fp_info;
|
|
fsr0 = GET_FSR (0);
|
|
SET_FSR_FTT (fsr0, fp_info->ftt);
|
|
SET_FSR (0, fsr0);
|
|
return;
|
|
}
|
|
|
|
/* Select an FQ and update it with the exception information. */
|
|
fq_index = fq_for_exception (current_cpu, item);
|
|
if (fq_index == -1)
|
|
return;
|
|
|
|
fp_info = & item->u.fp_info;
|
|
fq = GET_FQ (fq_index);
|
|
SET_FQ_MIV (fq, MIV_FLOAT);
|
|
SET_FQ_SIE (fq, SIE_NIL);
|
|
SET_FQ_FTT (fq, fp_info->ftt);
|
|
SET_FQ_CEXC (fq, fp_info->fsr_mask);
|
|
SET_FQ_VALID (fq);
|
|
SET_FQ (fq_index, fq);
|
|
|
|
/* Write the failing insn into FQx.OPC. */
|
|
pc = item->vpc;
|
|
insn = GETMEMSI (current_cpu, pc, pc);
|
|
SET_FQ_OPC (fq_index, insn);
|
|
|
|
/* Update the fsr. */
|
|
fsr0 = GET_FSR (0);
|
|
SET_FSR_QNE (fsr0); /* FQ not empty */
|
|
SET_FSR_FTT (fsr0, fp_info->ftt);
|
|
SET_FSR (0, fsr0);
|
|
}
|
|
|
|
/* Record the state of a division exception in the ISR. */
|
|
static void
|
|
set_isr_exception_fields (
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
|
)
|
|
{
|
|
USI isr = GET_ISR ();
|
|
int dtt = GET_ISR_DTT (isr);
|
|
dtt |= item->u.dtt;
|
|
SET_ISR_DTT (isr, dtt);
|
|
SET_ISR (isr);
|
|
}
|
|
|
|
/* Set ESFR0, EPCRx, ESRx, EARx and EDRx, according to the given program
|
|
interrupt. */
|
|
static void
|
|
set_exception_status_registers (
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
|
)
|
|
{
|
|
struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind];
|
|
int slot = (item->vpc - previous_vliw_pc) / 4;
|
|
int reg_index = -1;
|
|
int set_ear = 0;
|
|
int set_edr = 0;
|
|
int set_daec = 0;
|
|
int set_epcr = 0;
|
|
SI esr = 0;
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
|
|
/* If the interrupt is strict (precise) or the interrupt is on the insns
|
|
in the I0 pipe, then set the 0 registers. */
|
|
if (interrupt->precise)
|
|
{
|
|
reg_index = 0;
|
|
if (interrupt->kind == FRV_REGISTER_EXCEPTION)
|
|
SET_ESR_REC (esr, item->u.rec);
|
|
else if (interrupt->kind == FRV_INSTRUCTION_ACCESS_EXCEPTION)
|
|
SET_ESR_IAEC (esr, item->u.iaec);
|
|
/* For fr550, don't set epcr for precise interrupts. */
|
|
if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
|
|
set_epcr = 1;
|
|
}
|
|
else
|
|
{
|
|
switch (interrupt->kind)
|
|
{
|
|
case FRV_DIVISION_EXCEPTION:
|
|
set_isr_exception_fields (current_cpu, item);
|
|
/* fall thru to set reg_index. */
|
|
case FRV_COMMIT_EXCEPTION:
|
|
/* For fr550, always use ESR0. */
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
|
reg_index = 0;
|
|
else if (item->slot == UNIT_I0)
|
|
reg_index = 0;
|
|
else if (item->slot == UNIT_I1)
|
|
reg_index = 1;
|
|
set_epcr = 1;
|
|
break;
|
|
case FRV_DATA_STORE_ERROR:
|
|
reg_index = 14; /* Use ESR14. */
|
|
break;
|
|
case FRV_DATA_ACCESS_ERROR:
|
|
reg_index = 15; /* Use ESR15, EPCR15. */
|
|
set_ear = 1;
|
|
break;
|
|
case FRV_DATA_ACCESS_EXCEPTION:
|
|
set_daec = 1;
|
|
/* fall through */
|
|
case FRV_DATA_ACCESS_MMU_MISS:
|
|
case FRV_MEM_ADDRESS_NOT_ALIGNED:
|
|
/* Get the appropriate ESR, EPCR, EAR and EDR.
|
|
EAR will be set. EDR will not be set if this is a store insn. */
|
|
set_ear = 1;
|
|
/* For fr550, never use EDRx. */
|
|
if (STATE_ARCHITECTURE (sd)->mach != bfd_mach_fr550)
|
|
if (item->u.data_written.length != 0)
|
|
set_edr = 1;
|
|
reg_index = esr_for_data_access_exception (current_cpu, item);
|
|
set_epcr = 1;
|
|
break;
|
|
case FRV_MP_EXCEPTION:
|
|
/* For fr550, use EPCR2 and ESR2. */
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
|
{
|
|
reg_index = 2;
|
|
set_epcr = 1;
|
|
}
|
|
break; /* MSR0-1, FQ0-9 are already set. */
|
|
case FRV_FP_EXCEPTION:
|
|
set_fp_exception_registers (current_cpu, item);
|
|
/* For fr550, use EPCR2 and ESR2. */
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr550)
|
|
{
|
|
reg_index = 2;
|
|
set_epcr = 1;
|
|
}
|
|
break;
|
|
default:
|
|
{
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
IADDR pc = CPU_PC_GET (current_cpu);
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"invalid non-strict program interrupt kind: %d\n",
|
|
interrupt->kind);
|
|
break;
|
|
}
|
|
}
|
|
} /* non-strict (imprecise) interrupt */
|
|
|
|
/* Now fill in the selected exception status registers. */
|
|
if (reg_index != -1)
|
|
{
|
|
/* Now set the exception status registers. */
|
|
SET_ESFR_FLAG (reg_index);
|
|
SET_ESR_EC (esr, interrupt->ec);
|
|
|
|
if (set_epcr)
|
|
{
|
|
if (STATE_ARCHITECTURE (sd)->mach == bfd_mach_fr400)
|
|
SET_EPCR (reg_index, previous_vliw_pc);
|
|
else
|
|
SET_EPCR (reg_index, item->vpc);
|
|
}
|
|
|
|
if (set_ear)
|
|
{
|
|
SET_EAR (reg_index, item->eaddress);
|
|
SET_ESR_EAV (esr);
|
|
}
|
|
else
|
|
CLEAR_ESR_EAV (esr);
|
|
|
|
if (set_edr)
|
|
{
|
|
int edn = set_edr_register (current_cpu, item, 0/* EDR0-3 */);
|
|
SET_ESR_EDN (esr, edn);
|
|
SET_ESR_EDV (esr);
|
|
}
|
|
else
|
|
CLEAR_ESR_EDV (esr);
|
|
|
|
if (set_daec)
|
|
SET_ESR_DAEC (esr, item->u.daec);
|
|
|
|
SET_ESR_VALID (esr);
|
|
SET_ESR (reg_index, esr);
|
|
}
|
|
}
|
|
|
|
/* Check for compound interrupts.
|
|
Returns NULL if no interrupt is to be processed. */
|
|
static struct frv_interrupt *
|
|
check_for_compound_interrupt (
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item
|
|
)
|
|
{
|
|
struct frv_interrupt *interrupt;
|
|
|
|
/* Set the exception status registers for the original interrupt. */
|
|
set_exception_status_registers (current_cpu, item);
|
|
interrupt = & frv_interrupt_table[item->kind];
|
|
|
|
if (! interrupt->precise)
|
|
{
|
|
IADDR vpc = 0;
|
|
int mask = 0;
|
|
|
|
vpc = item->vpc;
|
|
mask = (1 << item->kind);
|
|
|
|
/* Look for more queued program interrupts which are non-deferred
|
|
(pending inhibit), imprecise (non-strict) different than an interrupt
|
|
already found and caused by a different insn. A bit mask is used
|
|
to keep track of interrupts which have already been detected. */
|
|
while (item != frv_interrupt_state.queue)
|
|
{
|
|
enum frv_interrupt_kind kind;
|
|
struct frv_interrupt *next_interrupt;
|
|
--item;
|
|
kind = item->kind;
|
|
next_interrupt = & frv_interrupt_table[kind];
|
|
|
|
if (next_interrupt->iclass != FRV_PROGRAM_INTERRUPT)
|
|
break; /* no program interrupts left. */
|
|
|
|
if (item->vpc == vpc)
|
|
continue; /* caused by the same insn. */
|
|
|
|
vpc = item->vpc;
|
|
if (! next_interrupt->precise && ! next_interrupt->deferred)
|
|
{
|
|
if (! (mask & (1 << kind)))
|
|
{
|
|
/* Set the exception status registers for the additional
|
|
interrupt. */
|
|
set_exception_status_registers (current_cpu, item);
|
|
mask |= (1 << kind);
|
|
interrupt = & frv_interrupt_table[FRV_COMPOUND_EXCEPTION];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return with either the original interrupt, a compound_exception,
|
|
or no exception. */
|
|
return interrupt;
|
|
}
|
|
|
|
/* Handle a program interrupt. */
|
|
void
|
|
frv_program_interrupt (
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc
|
|
)
|
|
{
|
|
struct frv_interrupt *interrupt;
|
|
|
|
clear_exception_status_registers (current_cpu);
|
|
/* If two or more non-deferred imprecise (non-strict) interrupts occur
|
|
on two or more insns, then generate a compound_exception. */
|
|
interrupt = check_for_compound_interrupt (current_cpu, item);
|
|
if (interrupt != NULL)
|
|
{
|
|
frv_program_or_software_interrupt (current_cpu, interrupt, pc);
|
|
frv_clear_interrupt_classes (FRV_SOFTWARE_INTERRUPT,
|
|
FRV_PROGRAM_INTERRUPT);
|
|
}
|
|
}
|
|
|
|
/* Handle a software interrupt. */
|
|
void
|
|
frv_software_interrupt (
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc
|
|
)
|
|
{
|
|
struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind];
|
|
frv_program_or_software_interrupt (current_cpu, interrupt, pc);
|
|
}
|
|
|
|
/* Handle a program interrupt or a software interrupt in non-operating mode. */
|
|
void
|
|
frv_non_operating_interrupt (
|
|
SIM_CPU *current_cpu, enum frv_interrupt_kind kind, IADDR pc
|
|
)
|
|
{
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
switch (kind)
|
|
{
|
|
case FRV_INTERRUPT_LEVEL_1:
|
|
case FRV_INTERRUPT_LEVEL_2:
|
|
case FRV_INTERRUPT_LEVEL_3:
|
|
case FRV_INTERRUPT_LEVEL_4:
|
|
case FRV_INTERRUPT_LEVEL_5:
|
|
case FRV_INTERRUPT_LEVEL_6:
|
|
case FRV_INTERRUPT_LEVEL_7:
|
|
case FRV_INTERRUPT_LEVEL_8:
|
|
case FRV_INTERRUPT_LEVEL_9:
|
|
case FRV_INTERRUPT_LEVEL_10:
|
|
case FRV_INTERRUPT_LEVEL_11:
|
|
case FRV_INTERRUPT_LEVEL_12:
|
|
case FRV_INTERRUPT_LEVEL_13:
|
|
case FRV_INTERRUPT_LEVEL_14:
|
|
case FRV_INTERRUPT_LEVEL_15:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: external %d\n", kind + 1);
|
|
break;
|
|
case FRV_TRAP_INSTRUCTION:
|
|
break; /* handle as in operating mode. */
|
|
case FRV_COMMIT_EXCEPTION:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: commit_exception\n");
|
|
break;
|
|
case FRV_DIVISION_EXCEPTION:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: division_exception\n");
|
|
break;
|
|
case FRV_DATA_STORE_ERROR:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: data_store_error\n");
|
|
break;
|
|
case FRV_DATA_ACCESS_EXCEPTION:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: data_access_exception\n");
|
|
break;
|
|
case FRV_DATA_ACCESS_MMU_MISS:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: data_access_mmu_miss\n");
|
|
break;
|
|
case FRV_DATA_ACCESS_ERROR:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: data_access_error\n");
|
|
break;
|
|
case FRV_MP_EXCEPTION:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: mp_exception\n");
|
|
break;
|
|
case FRV_FP_EXCEPTION:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: fp_exception\n");
|
|
break;
|
|
case FRV_MEM_ADDRESS_NOT_ALIGNED:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: mem_address_not_aligned\n");
|
|
break;
|
|
case FRV_REGISTER_EXCEPTION:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: register_exception\n");
|
|
break;
|
|
case FRV_MP_DISABLED:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: mp_disabled\n");
|
|
break;
|
|
case FRV_FP_DISABLED:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: fp_disabled\n");
|
|
break;
|
|
case FRV_PRIVILEGED_INSTRUCTION:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: privileged_instruction\n");
|
|
break;
|
|
case FRV_ILLEGAL_INSTRUCTION:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: illegal_instruction\n");
|
|
break;
|
|
case FRV_INSTRUCTION_ACCESS_EXCEPTION:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: instruction_access_exception\n");
|
|
break;
|
|
case FRV_INSTRUCTION_ACCESS_MMU_MISS:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: instruction_access_mmu_miss\n");
|
|
break;
|
|
case FRV_INSTRUCTION_ACCESS_ERROR:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: insn_access_error\n");
|
|
break;
|
|
case FRV_COMPOUND_EXCEPTION:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: compound_exception\n");
|
|
break;
|
|
case FRV_BREAK_EXCEPTION:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: break_exception\n");
|
|
break;
|
|
case FRV_RESET:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"interrupt: reset\n");
|
|
break;
|
|
default:
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"unhandled interrupt kind: %d\n", kind);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Handle a break interrupt. */
|
|
void
|
|
frv_break_interrupt (
|
|
SIM_CPU *current_cpu, struct frv_interrupt *interrupt, IADDR current_pc
|
|
)
|
|
{
|
|
IADDR new_pc;
|
|
|
|
/* BPCSR=PC
|
|
BPSR.BS=PSR.S
|
|
BPSR.BET=PSR.ET
|
|
PSR.S=1
|
|
PSR.ET=0
|
|
TBR.TT=0xff
|
|
PC=TBR
|
|
*/
|
|
/* Must set PSR.S first to allow access to supervisor-only spr registers. */
|
|
SET_H_BPSR_BS (GET_H_PSR_S ());
|
|
SET_H_BPSR_BET (GET_H_PSR_ET ());
|
|
SET_H_PSR_S (1);
|
|
SET_H_PSR_ET (0);
|
|
/* Must set PSR.S first to allow access to supervisor-only spr registers. */
|
|
SET_H_SPR (H_SPR_BPCSR, current_pc);
|
|
|
|
/* Set the new PC in the TBR. */
|
|
SET_H_TBR_TT (interrupt->handler_offset);
|
|
new_pc = GET_H_SPR (H_SPR_TBR);
|
|
SET_H_PC (new_pc);
|
|
|
|
CPU_DEBUG_STATE (current_cpu) = 1;
|
|
}
|
|
|
|
/* Handle a program interrupt or a software interrupt. */
|
|
void
|
|
frv_program_or_software_interrupt (
|
|
SIM_CPU *current_cpu, struct frv_interrupt *interrupt, IADDR current_pc
|
|
)
|
|
{
|
|
USI new_pc;
|
|
int original_psr_et;
|
|
|
|
/* PCSR=PC
|
|
PSR.PS=PSR.S
|
|
PSR.ET=0
|
|
PSR.S=1
|
|
if PSR.ESR==1
|
|
SR0 through SR3=GR4 through GR7
|
|
TBR.TT=interrupt handler offset
|
|
PC=TBR
|
|
*/
|
|
original_psr_et = GET_H_PSR_ET ();
|
|
|
|
SET_H_PSR_PS (GET_H_PSR_S ());
|
|
SET_H_PSR_ET (0);
|
|
SET_H_PSR_S (1);
|
|
|
|
/* Must set PSR.S first to allow access to supervisor-only spr registers. */
|
|
/* The PCSR depends on the precision of the interrupt. */
|
|
if (interrupt->precise)
|
|
SET_H_SPR (H_SPR_PCSR, previous_vliw_pc);
|
|
else
|
|
SET_H_SPR (H_SPR_PCSR, current_pc);
|
|
|
|
/* Set the new PC in the TBR. */
|
|
SET_H_TBR_TT (interrupt->handler_offset);
|
|
new_pc = GET_H_SPR (H_SPR_TBR);
|
|
SET_H_PC (new_pc);
|
|
|
|
/* If PSR.ET was not originally set, then enter the stopped state. */
|
|
if (! original_psr_et)
|
|
{
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
frv_non_operating_interrupt (current_cpu, interrupt->kind, current_pc);
|
|
sim_engine_halt (sd, current_cpu, NULL, new_pc, sim_stopped, SIM_SIGINT);
|
|
}
|
|
}
|
|
|
|
/* Handle a program interrupt or a software interrupt. */
|
|
void
|
|
frv_external_interrupt (
|
|
SIM_CPU *current_cpu, struct frv_interrupt_queue_element *item, IADDR pc
|
|
)
|
|
{
|
|
USI new_pc;
|
|
struct frv_interrupt *interrupt = & frv_interrupt_table[item->kind];
|
|
|
|
/* Don't process the interrupt if PSR.ET is not set or if it is masked.
|
|
Interrupt 15 is processed even if it appears to be masked. */
|
|
if (! GET_H_PSR_ET ()
|
|
|| (interrupt->kind != FRV_INTERRUPT_LEVEL_15
|
|
&& interrupt->kind < GET_H_PSR_PIL ()))
|
|
return; /* Leave it for later. */
|
|
|
|
/* Remove the interrupt from the queue. */
|
|
--frv_interrupt_state.queue_index;
|
|
|
|
/* PCSR=PC
|
|
PSR.PS=PSR.S
|
|
PSR.ET=0
|
|
PSR.S=1
|
|
if PSR.ESR==1
|
|
SR0 through SR3=GR4 through GR7
|
|
TBR.TT=interrupt handler offset
|
|
PC=TBR
|
|
*/
|
|
SET_H_PSR_PS (GET_H_PSR_S ());
|
|
SET_H_PSR_ET (0);
|
|
SET_H_PSR_S (1);
|
|
/* Must set PSR.S first to allow access to supervisor-only spr registers. */
|
|
SET_H_SPR (H_SPR_PCSR, GET_H_PC ());
|
|
|
|
/* Set the new PC in the TBR. */
|
|
SET_H_TBR_TT (interrupt->handler_offset);
|
|
new_pc = GET_H_SPR (H_SPR_TBR);
|
|
SET_H_PC (new_pc);
|
|
}
|
|
|
|
/* Clear interrupts which fall within the range of classes given. */
|
|
void
|
|
frv_clear_interrupt_classes (
|
|
enum frv_interrupt_class low_class, enum frv_interrupt_class high_class
|
|
)
|
|
{
|
|
int i;
|
|
int j;
|
|
int limit = frv_interrupt_state.queue_index;
|
|
|
|
/* Find the lowest priority interrupt to be removed. */
|
|
for (i = 0; i < limit; ++i)
|
|
{
|
|
enum frv_interrupt_kind kind = frv_interrupt_state.queue[i].kind;
|
|
struct frv_interrupt* interrupt = & frv_interrupt_table[kind];
|
|
if (interrupt->iclass >= low_class)
|
|
break;
|
|
}
|
|
|
|
/* Find the highest priority interrupt to be removed. */
|
|
for (j = limit - 1; j >= i; --j)
|
|
{
|
|
enum frv_interrupt_kind kind = frv_interrupt_state.queue[j].kind;
|
|
struct frv_interrupt* interrupt = & frv_interrupt_table[kind];
|
|
if (interrupt->iclass <= high_class)
|
|
break;
|
|
}
|
|
|
|
/* Shuffle the remaining high priority interrupts down into the empty space
|
|
left by the deleted interrupts. */
|
|
if (j >= i)
|
|
{
|
|
for (++j; j < limit; ++j)
|
|
frv_interrupt_state.queue[i++] = frv_interrupt_state.queue[j];
|
|
frv_interrupt_state.queue_index -= (j - i);
|
|
}
|
|
}
|
|
|
|
/* Save data written to memory into the interrupt state so that it can be
|
|
copied to the appropriate EDR register, if necessary, in the event of an
|
|
interrupt. */
|
|
void
|
|
frv_save_data_written_for_interrupts (
|
|
SIM_CPU *current_cpu, CGEN_WRITE_QUEUE_ELEMENT *item
|
|
)
|
|
{
|
|
/* Record the slot containing the insn doing the write in the
|
|
interrupt state. */
|
|
frv_interrupt_state.slot = CGEN_WRITE_QUEUE_ELEMENT_PIPE (item);
|
|
|
|
/* Now record any data written to memory in the interrupt state. */
|
|
switch (CGEN_WRITE_QUEUE_ELEMENT_KIND (item))
|
|
{
|
|
case CGEN_BI_WRITE:
|
|
case CGEN_QI_WRITE:
|
|
case CGEN_SI_WRITE:
|
|
case CGEN_SF_WRITE:
|
|
case CGEN_PC_WRITE:
|
|
case CGEN_FN_HI_WRITE:
|
|
case CGEN_FN_SI_WRITE:
|
|
case CGEN_FN_SF_WRITE:
|
|
case CGEN_FN_DI_WRITE:
|
|
case CGEN_FN_DF_WRITE:
|
|
case CGEN_FN_XI_WRITE:
|
|
case CGEN_FN_PC_WRITE:
|
|
break; /* Ignore writes to registers. */
|
|
case CGEN_MEM_QI_WRITE:
|
|
frv_interrupt_state.data_written.length = 1;
|
|
frv_interrupt_state.data_written.words[0]
|
|
= item->kinds.mem_qi_write.value;
|
|
break;
|
|
case CGEN_MEM_HI_WRITE:
|
|
frv_interrupt_state.data_written.length = 1;
|
|
frv_interrupt_state.data_written.words[0]
|
|
= item->kinds.mem_hi_write.value;
|
|
break;
|
|
case CGEN_MEM_SI_WRITE:
|
|
frv_interrupt_state.data_written.length = 1;
|
|
frv_interrupt_state.data_written.words[0]
|
|
= item->kinds.mem_si_write.value;
|
|
break;
|
|
case CGEN_MEM_DI_WRITE:
|
|
frv_interrupt_state.data_written.length = 2;
|
|
frv_interrupt_state.data_written.words[0]
|
|
= item->kinds.mem_di_write.value >> 32;
|
|
frv_interrupt_state.data_written.words[1]
|
|
= item->kinds.mem_di_write.value;
|
|
break;
|
|
case CGEN_MEM_DF_WRITE:
|
|
frv_interrupt_state.data_written.length = 2;
|
|
frv_interrupt_state.data_written.words[0]
|
|
= item->kinds.mem_df_write.value >> 32;
|
|
frv_interrupt_state.data_written.words[1]
|
|
= item->kinds.mem_df_write.value;
|
|
break;
|
|
case CGEN_MEM_XI_WRITE:
|
|
frv_interrupt_state.data_written.length = 4;
|
|
frv_interrupt_state.data_written.words[0]
|
|
= item->kinds.mem_xi_write.value[0];
|
|
frv_interrupt_state.data_written.words[1]
|
|
= item->kinds.mem_xi_write.value[1];
|
|
frv_interrupt_state.data_written.words[2]
|
|
= item->kinds.mem_xi_write.value[2];
|
|
frv_interrupt_state.data_written.words[3]
|
|
= item->kinds.mem_xi_write.value[3];
|
|
break;
|
|
case CGEN_FN_MEM_QI_WRITE:
|
|
frv_interrupt_state.data_written.length = 1;
|
|
frv_interrupt_state.data_written.words[0]
|
|
= item->kinds.fn_mem_qi_write.value;
|
|
break;
|
|
case CGEN_FN_MEM_HI_WRITE:
|
|
frv_interrupt_state.data_written.length = 1;
|
|
frv_interrupt_state.data_written.words[0]
|
|
= item->kinds.fn_mem_hi_write.value;
|
|
break;
|
|
case CGEN_FN_MEM_SI_WRITE:
|
|
frv_interrupt_state.data_written.length = 1;
|
|
frv_interrupt_state.data_written.words[0]
|
|
= item->kinds.fn_mem_si_write.value;
|
|
break;
|
|
case CGEN_FN_MEM_DI_WRITE:
|
|
frv_interrupt_state.data_written.length = 2;
|
|
frv_interrupt_state.data_written.words[0]
|
|
= item->kinds.fn_mem_di_write.value >> 32;
|
|
frv_interrupt_state.data_written.words[1]
|
|
= item->kinds.fn_mem_di_write.value;
|
|
break;
|
|
case CGEN_FN_MEM_DF_WRITE:
|
|
frv_interrupt_state.data_written.length = 2;
|
|
frv_interrupt_state.data_written.words[0]
|
|
= item->kinds.fn_mem_df_write.value >> 32;
|
|
frv_interrupt_state.data_written.words[1]
|
|
= item->kinds.fn_mem_df_write.value;
|
|
break;
|
|
case CGEN_FN_MEM_XI_WRITE:
|
|
frv_interrupt_state.data_written.length = 4;
|
|
frv_interrupt_state.data_written.words[0]
|
|
= item->kinds.fn_mem_xi_write.value[0];
|
|
frv_interrupt_state.data_written.words[1]
|
|
= item->kinds.fn_mem_xi_write.value[1];
|
|
frv_interrupt_state.data_written.words[2]
|
|
= item->kinds.fn_mem_xi_write.value[2];
|
|
frv_interrupt_state.data_written.words[3]
|
|
= item->kinds.fn_mem_xi_write.value[3];
|
|
break;
|
|
default:
|
|
{
|
|
SIM_DESC sd = CPU_STATE (current_cpu);
|
|
IADDR pc = CPU_PC_GET (current_cpu);
|
|
sim_engine_abort (sd, current_cpu, pc,
|
|
"unknown write kind during save for interrupt\n");
|
|
}
|
|
break;
|
|
}
|
|
}
|