mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 12:03:41 +08:00
3978 lines
121 KiB
C
3978 lines
121 KiB
C
/* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
|
|
Copyright 1988-1999, Free Software Foundation, Inc.
|
|
Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
|
|
and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "gdb_string.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "symtab.h"
|
|
#include "value.h"
|
|
#include "gdbcmd.h"
|
|
#include "language.h"
|
|
#include "gdbcore.h"
|
|
#include "symfile.h"
|
|
#include "objfiles.h"
|
|
#include "gdbtypes.h"
|
|
#include "target.h"
|
|
|
|
#include "opcode/mips.h"
|
|
#include "elf/mips.h"
|
|
#include "elf-bfd.h"
|
|
|
|
|
|
struct frame_extra_info
|
|
{
|
|
mips_extra_func_info_t proc_desc;
|
|
int num_args;
|
|
};
|
|
|
|
/* Some MIPS boards don't support floating point while others only
|
|
support single-precision floating-point operations. See also
|
|
FP_REGISTER_DOUBLE. */
|
|
|
|
enum mips_fpu_type
|
|
{
|
|
MIPS_FPU_DOUBLE, /* Full double precision floating point. */
|
|
MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
|
|
MIPS_FPU_NONE /* No floating point. */
|
|
};
|
|
|
|
#ifndef MIPS_DEFAULT_FPU_TYPE
|
|
#define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
|
|
#endif
|
|
static int mips_fpu_type_auto = 1;
|
|
static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
|
|
#define MIPS_FPU_TYPE mips_fpu_type
|
|
|
|
#ifndef MIPS_SAVED_REGSIZE
|
|
#define MIPS_SAVED_REGSIZE MIPS_REGSIZE
|
|
#endif
|
|
|
|
/* Do not use "TARGET_IS_MIPS64" to test the size of floating point registers */
|
|
#ifndef FP_REGISTER_DOUBLE
|
|
#define FP_REGISTER_DOUBLE (REGISTER_VIRTUAL_SIZE(FP0_REGNUM) == 8)
|
|
#endif
|
|
|
|
|
|
/* MIPS specific per-architecture information */
|
|
struct gdbarch_tdep
|
|
{
|
|
/* from the elf header */
|
|
int elf_flags;
|
|
/* mips options */
|
|
int mips_eabi;
|
|
enum mips_fpu_type mips_fpu_type;
|
|
int mips_last_arg_regnum;
|
|
int mips_last_fp_arg_regnum;
|
|
int mips_saved_regsize;
|
|
int mips_fp_register_double;
|
|
};
|
|
|
|
#if GDB_MULTI_ARCH
|
|
#undef MIPS_EABI
|
|
#define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_eabi)
|
|
#endif
|
|
|
|
#if GDB_MULTI_ARCH
|
|
#undef MIPS_LAST_FP_ARG_REGNUM
|
|
#define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
|
|
#endif
|
|
|
|
#if GDB_MULTI_ARCH
|
|
#undef MIPS_LAST_ARG_REGNUM
|
|
#define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
|
|
#endif
|
|
|
|
#if GDB_MULTI_ARCH
|
|
#undef MIPS_FPU_TYPE
|
|
#define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
|
|
#endif
|
|
|
|
#if GDB_MULTI_ARCH
|
|
#undef MIPS_SAVED_REGSIZE
|
|
#define MIPS_SAVED_REGSIZE (gdbarch_tdep (current_gdbarch)->mips_saved_regsize)
|
|
#endif
|
|
|
|
/* Indicate that the ABI makes use of double-precision registers
|
|
provided by the FPU (rather than combining pairs of registers to
|
|
form double-precision values). Do not use "TARGET_IS_MIPS64" to
|
|
determine if the ABI is using double-precision registers. See also
|
|
MIPS_FPU_TYPE. */
|
|
#if GDB_MULTI_ARCH
|
|
#undef FP_REGISTER_DOUBLE
|
|
#define FP_REGISTER_DOUBLE (gdbarch_tdep (current_gdbarch)->mips_fp_register_double)
|
|
#endif
|
|
|
|
|
|
#define VM_MIN_ADDRESS (CORE_ADDR)0x400000
|
|
|
|
#if 0
|
|
static int mips_in_lenient_prologue PARAMS ((CORE_ADDR, CORE_ADDR));
|
|
#endif
|
|
|
|
int gdb_print_insn_mips PARAMS ((bfd_vma, disassemble_info *));
|
|
|
|
static void mips_print_register PARAMS ((int, int));
|
|
|
|
static mips_extra_func_info_t
|
|
heuristic_proc_desc PARAMS ((CORE_ADDR, CORE_ADDR, struct frame_info *));
|
|
|
|
static CORE_ADDR heuristic_proc_start PARAMS ((CORE_ADDR));
|
|
|
|
static CORE_ADDR read_next_frame_reg PARAMS ((struct frame_info *, int));
|
|
|
|
int mips_set_processor_type PARAMS ((char *));
|
|
|
|
static void mips_show_processor_type_command PARAMS ((char *, int));
|
|
|
|
static void reinit_frame_cache_sfunc PARAMS ((char *, int,
|
|
struct cmd_list_element *));
|
|
|
|
static mips_extra_func_info_t
|
|
find_proc_desc PARAMS ((CORE_ADDR pc, struct frame_info * next_frame));
|
|
|
|
static CORE_ADDR after_prologue PARAMS ((CORE_ADDR pc,
|
|
mips_extra_func_info_t proc_desc));
|
|
|
|
/* This value is the model of MIPS in use. It is derived from the value
|
|
of the PrID register. */
|
|
|
|
char *mips_processor_type;
|
|
|
|
char *tmp_mips_processor_type;
|
|
|
|
/* A set of original names, to be used when restoring back to generic
|
|
registers from a specific set. */
|
|
|
|
char *mips_generic_reg_names[] = MIPS_REGISTER_NAMES;
|
|
char **mips_processor_reg_names = mips_generic_reg_names;
|
|
|
|
char *
|
|
mips_register_name (i)
|
|
int i;
|
|
{
|
|
return mips_processor_reg_names[i];
|
|
}
|
|
/* *INDENT-OFF* */
|
|
/* Names of IDT R3041 registers. */
|
|
|
|
char *mips_r3041_reg_names[] = {
|
|
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
|
|
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
|
|
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
|
|
"sr", "lo", "hi", "bad", "cause","pc",
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
|
"fsr", "fir", "fp", "",
|
|
"", "", "bus", "ccfg", "", "", "", "",
|
|
"", "", "port", "cmp", "", "", "epc", "prid",
|
|
};
|
|
|
|
/* Names of IDT R3051 registers. */
|
|
|
|
char *mips_r3051_reg_names[] = {
|
|
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
|
|
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
|
|
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
|
|
"sr", "lo", "hi", "bad", "cause","pc",
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
|
"fsr", "fir", "fp", "",
|
|
"inx", "rand", "elo", "", "ctxt", "", "", "",
|
|
"", "", "ehi", "", "", "", "epc", "prid",
|
|
};
|
|
|
|
/* Names of IDT R3081 registers. */
|
|
|
|
char *mips_r3081_reg_names[] = {
|
|
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
|
|
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
|
|
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
|
|
"sr", "lo", "hi", "bad", "cause","pc",
|
|
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
|
|
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
|
|
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
|
|
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
|
|
"fsr", "fir", "fp", "",
|
|
"inx", "rand", "elo", "cfg", "ctxt", "", "", "",
|
|
"", "", "ehi", "", "", "", "epc", "prid",
|
|
};
|
|
|
|
/* Names of LSI 33k registers. */
|
|
|
|
char *mips_lsi33k_reg_names[] = {
|
|
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
|
|
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
|
|
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
|
|
"t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
|
|
"epc", "hi", "lo", "sr", "cause","badvaddr",
|
|
"dcic", "bpc", "bda", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
"", "", "", "", "", "", "", "",
|
|
};
|
|
|
|
struct {
|
|
char *name;
|
|
char **regnames;
|
|
} mips_processor_type_table[] = {
|
|
{ "generic", mips_generic_reg_names },
|
|
{ "r3041", mips_r3041_reg_names },
|
|
{ "r3051", mips_r3051_reg_names },
|
|
{ "r3071", mips_r3081_reg_names },
|
|
{ "r3081", mips_r3081_reg_names },
|
|
{ "lsi33k", mips_lsi33k_reg_names },
|
|
{ NULL, NULL }
|
|
};
|
|
/* *INDENT-ON* */
|
|
|
|
|
|
|
|
|
|
/* Table to translate MIPS16 register field to actual register number. */
|
|
static int mips16_to_32_reg[8] =
|
|
{16, 17, 2, 3, 4, 5, 6, 7};
|
|
|
|
/* Heuristic_proc_start may hunt through the text section for a long
|
|
time across a 2400 baud serial line. Allows the user to limit this
|
|
search. */
|
|
|
|
static unsigned int heuristic_fence_post = 0;
|
|
|
|
#define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
|
|
#define PROC_HIGH_ADDR(proc) ((proc)->high_addr) /* upper address bound */
|
|
#define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
|
|
#define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
|
|
#define PROC_FRAME_ADJUST(proc) ((proc)->frame_adjust)
|
|
#define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
|
|
#define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
|
|
#define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
|
|
#define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
|
|
#define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
|
|
#define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
|
|
#define _PROC_MAGIC_ 0x0F0F0F0F
|
|
#define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
|
|
#define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
|
|
|
|
struct linked_proc_info
|
|
{
|
|
struct mips_extra_func_info info;
|
|
struct linked_proc_info *next;
|
|
}
|
|
*linked_proc_desc_table = NULL;
|
|
|
|
void
|
|
mips_print_extra_frame_info (fi)
|
|
struct frame_info *fi;
|
|
{
|
|
if (fi
|
|
&& fi->extra_info
|
|
&& fi->extra_info->proc_desc
|
|
&& fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
|
|
printf_filtered (" frame pointer is at %s+%s\n",
|
|
REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
|
|
paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
|
|
}
|
|
|
|
/* Convert between RAW and VIRTUAL registers. The RAW register size
|
|
defines the remote-gdb packet. */
|
|
|
|
static int mips64_transfers_32bit_regs_p = 0;
|
|
|
|
int
|
|
mips_register_raw_size (reg_nr)
|
|
int reg_nr;
|
|
{
|
|
if (mips64_transfers_32bit_regs_p)
|
|
return REGISTER_VIRTUAL_SIZE (reg_nr);
|
|
else
|
|
return MIPS_REGSIZE;
|
|
}
|
|
|
|
int
|
|
mips_register_convertible (reg_nr)
|
|
int reg_nr;
|
|
{
|
|
if (mips64_transfers_32bit_regs_p)
|
|
return 0;
|
|
else
|
|
return (REGISTER_RAW_SIZE (reg_nr) > REGISTER_VIRTUAL_SIZE (reg_nr));
|
|
}
|
|
|
|
void
|
|
mips_register_convert_to_virtual (n, virtual_type, raw_buf, virt_buf)
|
|
int n;
|
|
struct type *virtual_type;
|
|
char *raw_buf;
|
|
char *virt_buf;
|
|
{
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
memcpy (virt_buf,
|
|
raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
|
|
TYPE_LENGTH (virtual_type));
|
|
else
|
|
memcpy (virt_buf,
|
|
raw_buf,
|
|
TYPE_LENGTH (virtual_type));
|
|
}
|
|
|
|
void
|
|
mips_register_convert_to_raw (virtual_type, n, virt_buf, raw_buf)
|
|
struct type *virtual_type;
|
|
int n;
|
|
char *virt_buf;
|
|
char *raw_buf;
|
|
{
|
|
memset (raw_buf, 0, REGISTER_RAW_SIZE (n));
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
memcpy (raw_buf + (REGISTER_RAW_SIZE (n) - TYPE_LENGTH (virtual_type)),
|
|
virt_buf,
|
|
TYPE_LENGTH (virtual_type));
|
|
else
|
|
memcpy (raw_buf,
|
|
virt_buf,
|
|
TYPE_LENGTH (virtual_type));
|
|
}
|
|
|
|
/* Should the upper word of 64-bit addresses be zeroed? */
|
|
static int mask_address_p = 1;
|
|
|
|
/* Should call_function allocate stack space for a struct return? */
|
|
int
|
|
mips_use_struct_convention (gcc_p, type)
|
|
int gcc_p;
|
|
struct type *type;
|
|
{
|
|
if (MIPS_EABI)
|
|
return (TYPE_LENGTH (type) > 2 * MIPS_SAVED_REGSIZE);
|
|
else
|
|
return 1; /* Structures are returned by ref in extra arg0 */
|
|
}
|
|
|
|
/* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
|
|
|
|
static int
|
|
pc_is_mips16 (bfd_vma memaddr)
|
|
{
|
|
struct minimal_symbol *sym;
|
|
|
|
/* If bit 0 of the address is set, assume this is a MIPS16 address. */
|
|
if (IS_MIPS16_ADDR (memaddr))
|
|
return 1;
|
|
|
|
/* A flag indicating that this is a MIPS16 function is stored by elfread.c in
|
|
the high bit of the info field. Use this to decide if the function is
|
|
MIPS16 or normal MIPS. */
|
|
sym = lookup_minimal_symbol_by_pc (memaddr);
|
|
if (sym)
|
|
return MSYMBOL_IS_SPECIAL (sym);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* This returns the PC of the first inst after the prologue. If we can't
|
|
find the prologue, then return 0. */
|
|
|
|
static CORE_ADDR
|
|
after_prologue (pc, proc_desc)
|
|
CORE_ADDR pc;
|
|
mips_extra_func_info_t proc_desc;
|
|
{
|
|
struct symtab_and_line sal;
|
|
CORE_ADDR func_addr, func_end;
|
|
|
|
if (!proc_desc)
|
|
proc_desc = find_proc_desc (pc, NULL);
|
|
|
|
if (proc_desc)
|
|
{
|
|
/* If function is frameless, then we need to do it the hard way. I
|
|
strongly suspect that frameless always means prologueless... */
|
|
if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
|
|
&& PROC_FRAME_OFFSET (proc_desc) == 0)
|
|
return 0;
|
|
}
|
|
|
|
if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
|
|
return 0; /* Unknown */
|
|
|
|
sal = find_pc_line (func_addr, 0);
|
|
|
|
if (sal.end < func_end)
|
|
return sal.end;
|
|
|
|
/* The line after the prologue is after the end of the function. In this
|
|
case, tell the caller to find the prologue the hard way. */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Decode a MIPS32 instruction that saves a register in the stack, and
|
|
set the appropriate bit in the general register mask or float register mask
|
|
to indicate which register is saved. This is a helper function
|
|
for mips_find_saved_regs. */
|
|
|
|
static void
|
|
mips32_decode_reg_save (inst, gen_mask, float_mask)
|
|
t_inst inst;
|
|
unsigned long *gen_mask;
|
|
unsigned long *float_mask;
|
|
{
|
|
int reg;
|
|
|
|
if ((inst & 0xffe00000) == 0xafa00000 /* sw reg,n($sp) */
|
|
|| (inst & 0xffe00000) == 0xafc00000 /* sw reg,n($r30) */
|
|
|| (inst & 0xffe00000) == 0xffa00000) /* sd reg,n($sp) */
|
|
{
|
|
/* It might be possible to use the instruction to
|
|
find the offset, rather than the code below which
|
|
is based on things being in a certain order in the
|
|
frame, but figuring out what the instruction's offset
|
|
is relative to might be a little tricky. */
|
|
reg = (inst & 0x001f0000) >> 16;
|
|
*gen_mask |= (1 << reg);
|
|
}
|
|
else if ((inst & 0xffe00000) == 0xe7a00000 /* swc1 freg,n($sp) */
|
|
|| (inst & 0xffe00000) == 0xe7c00000 /* swc1 freg,n($r30) */
|
|
|| (inst & 0xffe00000) == 0xf7a00000) /* sdc1 freg,n($sp) */
|
|
|
|
{
|
|
reg = ((inst & 0x001f0000) >> 16);
|
|
*float_mask |= (1 << reg);
|
|
}
|
|
}
|
|
|
|
/* Decode a MIPS16 instruction that saves a register in the stack, and
|
|
set the appropriate bit in the general register or float register mask
|
|
to indicate which register is saved. This is a helper function
|
|
for mips_find_saved_regs. */
|
|
|
|
static void
|
|
mips16_decode_reg_save (inst, gen_mask)
|
|
t_inst inst;
|
|
unsigned long *gen_mask;
|
|
{
|
|
if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
|
|
{
|
|
int reg = mips16_to_32_reg[(inst & 0x700) >> 8];
|
|
*gen_mask |= (1 << reg);
|
|
}
|
|
else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
|
|
{
|
|
int reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
|
|
*gen_mask |= (1 << reg);
|
|
}
|
|
else if ((inst & 0xff00) == 0x6200 /* sw $ra,n($sp) */
|
|
|| (inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
|
|
*gen_mask |= (1 << RA_REGNUM);
|
|
}
|
|
|
|
|
|
/* Fetch and return instruction from the specified location. If the PC
|
|
is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
|
|
|
|
static t_inst
|
|
mips_fetch_instruction (addr)
|
|
CORE_ADDR addr;
|
|
{
|
|
char buf[MIPS_INSTLEN];
|
|
int instlen;
|
|
int status;
|
|
|
|
if (pc_is_mips16 (addr))
|
|
{
|
|
instlen = MIPS16_INSTLEN;
|
|
addr = UNMAKE_MIPS16_ADDR (addr);
|
|
}
|
|
else
|
|
instlen = MIPS_INSTLEN;
|
|
status = read_memory_nobpt (addr, buf, instlen);
|
|
if (status)
|
|
memory_error (status, addr);
|
|
return extract_unsigned_integer (buf, instlen);
|
|
}
|
|
|
|
|
|
/* These the fields of 32 bit mips instructions */
|
|
#define mips32_op(x) (x >> 25)
|
|
#define itype_op(x) (x >> 25)
|
|
#define itype_rs(x) ((x >> 21)& 0x1f)
|
|
#define itype_rt(x) ((x >> 16) & 0x1f)
|
|
#define itype_immediate(x) ( x & 0xffff)
|
|
|
|
#define jtype_op(x) (x >> 25)
|
|
#define jtype_target(x) ( x & 0x03fffff)
|
|
|
|
#define rtype_op(x) (x >>25)
|
|
#define rtype_rs(x) ((x>>21) & 0x1f)
|
|
#define rtype_rt(x) ((x>>16) & 0x1f)
|
|
#define rtype_rd(x) ((x>>11) & 0x1f)
|
|
#define rtype_shamt(x) ((x>>6) & 0x1f)
|
|
#define rtype_funct(x) (x & 0x3f )
|
|
|
|
static CORE_ADDR
|
|
mips32_relative_offset (unsigned long inst)
|
|
{
|
|
long x;
|
|
x = itype_immediate (inst);
|
|
if (x & 0x8000) /* sign bit set */
|
|
{
|
|
x |= 0xffff0000; /* sign extension */
|
|
}
|
|
x = x << 2;
|
|
return x;
|
|
}
|
|
|
|
/* Determine whate to set a single step breakpoint while considering
|
|
branch prediction */
|
|
CORE_ADDR
|
|
mips32_next_pc (CORE_ADDR pc)
|
|
{
|
|
unsigned long inst;
|
|
int op;
|
|
inst = mips_fetch_instruction (pc);
|
|
if ((inst & 0xe0000000) != 0) /* Not a special, junp or branch instruction */
|
|
{
|
|
if ((inst >> 27) == 5) /* BEQL BNEZ BLEZL BGTZE , bits 0101xx */
|
|
{
|
|
op = ((inst >> 25) & 0x03);
|
|
switch (op)
|
|
{
|
|
case 0:
|
|
goto equal_branch; /* BEQL */
|
|
case 1:
|
|
goto neq_branch; /* BNEZ */
|
|
case 2:
|
|
goto less_branch; /* BLEZ */
|
|
case 3:
|
|
goto greater_branch; /* BGTZ */
|
|
default:
|
|
pc += 4;
|
|
}
|
|
}
|
|
else
|
|
pc += 4; /* Not a branch, next instruction is easy */
|
|
}
|
|
else
|
|
{ /* This gets way messy */
|
|
|
|
/* Further subdivide into SPECIAL, REGIMM and other */
|
|
switch (op = ((inst >> 26) & 0x07)) /* extract bits 28,27,26 */
|
|
{
|
|
case 0: /* SPECIAL */
|
|
op = rtype_funct (inst);
|
|
switch (op)
|
|
{
|
|
case 8: /* JR */
|
|
case 9: /* JALR */
|
|
pc = read_register (rtype_rs (inst)); /* Set PC to that address */
|
|
break;
|
|
default:
|
|
pc += 4;
|
|
}
|
|
|
|
break; /* end special */
|
|
case 1: /* REGIMM */
|
|
{
|
|
op = jtype_op (inst); /* branch condition */
|
|
switch (jtype_op (inst))
|
|
{
|
|
case 0: /* BLTZ */
|
|
case 2: /* BLTXL */
|
|
case 16: /* BLTZALL */
|
|
case 18: /* BLTZALL */
|
|
less_branch:
|
|
if (read_register (itype_rs (inst)) < 0)
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8; /* after the delay slot */
|
|
break;
|
|
case 1: /* GEZ */
|
|
case 3: /* BGEZL */
|
|
case 17: /* BGEZAL */
|
|
case 19: /* BGEZALL */
|
|
greater_equal_branch:
|
|
if (read_register (itype_rs (inst)) >= 0)
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8; /* after the delay slot */
|
|
break;
|
|
/* All of the other intructions in the REGIMM catagory */
|
|
default:
|
|
pc += 4;
|
|
}
|
|
}
|
|
break; /* end REGIMM */
|
|
case 2: /* J */
|
|
case 3: /* JAL */
|
|
{
|
|
unsigned long reg;
|
|
reg = jtype_target (inst) << 2;
|
|
pc = reg + ((pc + 4) & 0xf0000000);
|
|
/* Whats this mysterious 0xf000000 adjustment ??? */
|
|
}
|
|
break;
|
|
/* FIXME case JALX : */
|
|
{
|
|
unsigned long reg;
|
|
reg = jtype_target (inst) << 2;
|
|
pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
|
|
/* Add 1 to indicate 16 bit mode - Invert ISA mode */
|
|
}
|
|
break; /* The new PC will be alternate mode */
|
|
case 4: /* BEQ , BEQL */
|
|
equal_branch:
|
|
if (read_register (itype_rs (inst)) ==
|
|
read_register (itype_rt (inst)))
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
break;
|
|
case 5: /* BNE , BNEL */
|
|
neq_branch:
|
|
if (read_register (itype_rs (inst)) !=
|
|
read_register (itype_rs (inst)))
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
break;
|
|
case 6: /* BLEZ , BLEZL */
|
|
less_zero_branch:
|
|
if (read_register (itype_rs (inst) <= 0))
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
break;
|
|
case 7:
|
|
greater_branch: /* BGTZ BGTZL */
|
|
if (read_register (itype_rs (inst) > 0))
|
|
pc += mips32_relative_offset (inst) + 4;
|
|
else
|
|
pc += 8;
|
|
break;
|
|
default:
|
|
pc += 8;
|
|
} /* switch */
|
|
} /* else */
|
|
return pc;
|
|
} /* mips32_next_pc */
|
|
|
|
/* Decoding the next place to set a breakpoint is irregular for the
|
|
mips 16 variant, but fortunatly, there fewer instructions. We have to cope
|
|
ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
|
|
We dont want to set a single step instruction on the extend instruction
|
|
either.
|
|
*/
|
|
|
|
/* Lots of mips16 instruction formats */
|
|
/* Predicting jumps requires itype,ritype,i8type
|
|
and their extensions extItype,extritype,extI8type
|
|
*/
|
|
enum mips16_inst_fmts
|
|
{
|
|
itype, /* 0 immediate 5,10 */
|
|
ritype, /* 1 5,3,8 */
|
|
rrtype, /* 2 5,3,3,5 */
|
|
rritype, /* 3 5,3,3,5 */
|
|
rrrtype, /* 4 5,3,3,3,2 */
|
|
rriatype, /* 5 5,3,3,1,4 */
|
|
shifttype, /* 6 5,3,3,3,2 */
|
|
i8type, /* 7 5,3,8 */
|
|
i8movtype, /* 8 5,3,3,5 */
|
|
i8mov32rtype, /* 9 5,3,5,3 */
|
|
i64type, /* 10 5,3,8 */
|
|
ri64type, /* 11 5,3,3,5 */
|
|
jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
|
|
exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
|
|
extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
|
|
extRRItype, /* 15 5,5,5,5,3,3,5 */
|
|
extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
|
|
EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
|
|
extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
|
|
extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
|
|
extRi64type, /* 20 5,6,5,5,3,3,5 */
|
|
extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
|
|
};
|
|
/* I am heaping all the fields of the formats into one structure and then,
|
|
only the fields which are involved in instruction extension */
|
|
struct upk_mips16
|
|
{
|
|
unsigned short inst;
|
|
enum mips16_inst_fmts fmt;
|
|
unsigned long offset;
|
|
unsigned int regx; /* Function in i8 type */
|
|
unsigned int regy;
|
|
};
|
|
|
|
|
|
|
|
static void
|
|
print_unpack (char *comment,
|
|
struct upk_mips16 *u)
|
|
{
|
|
printf ("%s %04x ,f(%d) off(%s) (x(%x) y(%x)\n",
|
|
comment, u->inst, u->fmt, paddr (u->offset), u->regx, u->regy);
|
|
}
|
|
|
|
/* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same
|
|
format for the bits which make up the immediatate extension.
|
|
*/
|
|
static unsigned long
|
|
extended_offset (unsigned long extension)
|
|
{
|
|
unsigned long value;
|
|
value = (extension >> 21) & 0x3f; /* * extract 15:11 */
|
|
value = value << 6;
|
|
value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
|
|
value = value << 5;
|
|
value |= extension & 0x01f; /* extract 4:0 */
|
|
return value;
|
|
}
|
|
|
|
/* Only call this function if you know that this is an extendable
|
|
instruction, It wont malfunction, but why make excess remote memory references?
|
|
If the immediate operands get sign extended or somthing, do it after
|
|
the extension is performed.
|
|
*/
|
|
/* FIXME: Every one of these cases needs to worry about sign extension
|
|
when the offset is to be used in relative addressing */
|
|
|
|
|
|
static unsigned short
|
|
fetch_mips_16 (CORE_ADDR pc)
|
|
{
|
|
char buf[8];
|
|
pc &= 0xfffffffe; /* clear the low order bit */
|
|
target_read_memory (pc, buf, 2);
|
|
return extract_unsigned_integer (buf, 2);
|
|
}
|
|
|
|
static void
|
|
unpack_mips16 (CORE_ADDR pc,
|
|
struct upk_mips16 *upk)
|
|
{
|
|
CORE_ADDR extpc;
|
|
unsigned long extension;
|
|
int extended;
|
|
extpc = (pc - 4) & ~0x01; /* Extensions are 32 bit instructions */
|
|
/* Decrement to previous address and loose the 16bit mode flag */
|
|
/* return if the instruction was extendable, but not actually extended */
|
|
extended = ((mips32_op (extension) == 30) ? 1 : 0);
|
|
if (extended)
|
|
{
|
|
extension = mips_fetch_instruction (extpc);
|
|
}
|
|
switch (upk->fmt)
|
|
{
|
|
case itype:
|
|
{
|
|
unsigned long value;
|
|
if (extended)
|
|
{
|
|
value = extended_offset (extension);
|
|
value = value << 11; /* rom for the original value */
|
|
value |= upk->inst & 0x7ff; /* eleven bits from instruction */
|
|
}
|
|
else
|
|
{
|
|
value = upk->inst & 0x7ff;
|
|
/* FIXME : Consider sign extension */
|
|
}
|
|
upk->offset = value;
|
|
}
|
|
break;
|
|
case ritype:
|
|
case i8type:
|
|
{ /* A register identifier and an offset */
|
|
/* Most of the fields are the same as I type but the
|
|
immediate value is of a different length */
|
|
unsigned long value;
|
|
if (extended)
|
|
{
|
|
value = extended_offset (extension);
|
|
value = value << 8; /* from the original instruction */
|
|
value |= upk->inst & 0xff; /* eleven bits from instruction */
|
|
upk->regx = (extension >> 8) & 0x07; /* or i8 funct */
|
|
if (value & 0x4000) /* test the sign bit , bit 26 */
|
|
{
|
|
value &= ~0x3fff; /* remove the sign bit */
|
|
value = -value;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
value = upk->inst & 0xff; /* 8 bits */
|
|
upk->regx = (upk->inst >> 8) & 0x07; /* or i8 funct */
|
|
/* FIXME: Do sign extension , this format needs it */
|
|
if (value & 0x80) /* THIS CONFUSES ME */
|
|
{
|
|
value &= 0xef; /* remove the sign bit */
|
|
value = -value;
|
|
}
|
|
|
|
}
|
|
upk->offset = value;
|
|
break;
|
|
}
|
|
case jalxtype:
|
|
{
|
|
unsigned long value;
|
|
unsigned short nexthalf;
|
|
value = ((upk->inst & 0x1f) << 5) | ((upk->inst >> 5) & 0x1f);
|
|
value = value << 16;
|
|
nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
|
|
value |= nexthalf;
|
|
upk->offset = value;
|
|
break;
|
|
}
|
|
default:
|
|
printf_filtered ("Decoding unimplemented instruction format type\n");
|
|
break;
|
|
}
|
|
/* print_unpack("UPK",upk) ; */
|
|
}
|
|
|
|
|
|
#define mips16_op(x) (x >> 11)
|
|
|
|
/* This is a map of the opcodes which ae known to perform branches */
|
|
static unsigned char map16[32] =
|
|
{0, 0, 1, 1, 1, 1, 0, 0,
|
|
0, 0, 0, 0, 1, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 0, 0, 0,
|
|
0, 0, 0, 0, 0, 1, 1, 0
|
|
};
|
|
|
|
static CORE_ADDR
|
|
add_offset_16 (CORE_ADDR pc, int offset)
|
|
{
|
|
return ((offset << 2) | ((pc + 2) & (0xf0000000)));
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct upk_mips16 upk;
|
|
|
|
CORE_ADDR
|
|
mips16_next_pc (CORE_ADDR pc)
|
|
{
|
|
int op;
|
|
t_inst inst;
|
|
/* inst = mips_fetch_instruction(pc) ; - This doesnt always work */
|
|
inst = fetch_mips_16 (pc);
|
|
upk.inst = inst;
|
|
op = mips16_op (upk.inst);
|
|
if (map16[op])
|
|
{
|
|
int reg;
|
|
switch (op)
|
|
{
|
|
case 2: /* Branch */
|
|
upk.fmt = itype;
|
|
unpack_mips16 (pc, &upk);
|
|
{
|
|
long offset;
|
|
offset = upk.offset;
|
|
if (offset & 0x800)
|
|
{
|
|
offset &= 0xeff;
|
|
offset = -offset;
|
|
}
|
|
pc += (offset << 1) + 2;
|
|
}
|
|
break;
|
|
case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
|
|
upk.fmt = jalxtype;
|
|
unpack_mips16 (pc, &upk);
|
|
pc = add_offset_16 (pc, upk.offset);
|
|
if ((upk.inst >> 10) & 0x01) /* Exchange mode */
|
|
pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
|
|
else
|
|
pc |= 0x01;
|
|
break;
|
|
case 4: /* beqz */
|
|
upk.fmt = ritype;
|
|
unpack_mips16 (pc, &upk);
|
|
reg = read_register (upk.regx);
|
|
if (reg == 0)
|
|
pc += (upk.offset << 1) + 2;
|
|
else
|
|
pc += 2;
|
|
break;
|
|
case 5: /* bnez */
|
|
upk.fmt = ritype;
|
|
unpack_mips16 (pc, &upk);
|
|
reg = read_register (upk.regx);
|
|
if (reg != 0)
|
|
pc += (upk.offset << 1) + 2;
|
|
else
|
|
pc += 2;
|
|
break;
|
|
case 12: /* I8 Formats btez btnez */
|
|
upk.fmt = i8type;
|
|
unpack_mips16 (pc, &upk);
|
|
/* upk.regx contains the opcode */
|
|
reg = read_register (24); /* Test register is 24 */
|
|
if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
|
|
|| ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
|
|
/* pc = add_offset_16(pc,upk.offset) ; */
|
|
pc += (upk.offset << 1) + 2;
|
|
else
|
|
pc += 2;
|
|
break;
|
|
case 29: /* RR Formats JR, JALR, JALR-RA */
|
|
upk.fmt = rrtype;
|
|
op = upk.inst & 0x1f;
|
|
if (op == 0)
|
|
{
|
|
upk.regx = (upk.inst >> 8) & 0x07;
|
|
upk.regy = (upk.inst >> 5) & 0x07;
|
|
switch (upk.regy)
|
|
{
|
|
case 0:
|
|
reg = upk.regx;
|
|
break;
|
|
case 1:
|
|
reg = 31;
|
|
break; /* Function return instruction */
|
|
case 2:
|
|
reg = upk.regx;
|
|
break;
|
|
default:
|
|
reg = 31;
|
|
break; /* BOGUS Guess */
|
|
}
|
|
pc = read_register (reg);
|
|
}
|
|
else
|
|
pc += 2;
|
|
break;
|
|
case 30: /* This is an extend instruction */
|
|
pc += 4; /* Dont be setting breakpints on the second half */
|
|
break;
|
|
default:
|
|
printf ("Filtered - next PC probably incorrrect due to jump inst\n");
|
|
pc += 2;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
pc += 2; /* just a good old instruction */
|
|
/* See if we CAN actually break on the next instruction */
|
|
/* printf("NXTm16PC %08x\n",(unsigned long)pc) ; */
|
|
return pc;
|
|
} /* mips16_next_pc */
|
|
|
|
/* The mips_next_pc function supports single_tep when the remote target monitor or
|
|
stub is not developed enough to so a single_step.
|
|
It works by decoding the current instruction and predicting where a branch
|
|
will go. This isnt hard because all the data is available.
|
|
The MIPS32 and MIPS16 variants are quite different
|
|
*/
|
|
CORE_ADDR
|
|
mips_next_pc (CORE_ADDR pc)
|
|
{
|
|
t_inst inst;
|
|
/* inst = mips_fetch_instruction(pc) ; */
|
|
/* if (pc_is_mips16) <----- This is failing */
|
|
if (pc & 0x01)
|
|
return mips16_next_pc (pc);
|
|
else
|
|
return mips32_next_pc (pc);
|
|
} /* mips_next_pc */
|
|
|
|
/* Guaranteed to set fci->saved_regs to some values (it never leaves it
|
|
NULL). */
|
|
|
|
void
|
|
mips_find_saved_regs (fci)
|
|
struct frame_info *fci;
|
|
{
|
|
int ireg;
|
|
CORE_ADDR reg_position;
|
|
/* r0 bit means kernel trap */
|
|
int kernel_trap;
|
|
/* What registers have been saved? Bitmasks. */
|
|
unsigned long gen_mask, float_mask;
|
|
mips_extra_func_info_t proc_desc;
|
|
t_inst inst;
|
|
|
|
frame_saved_regs_zalloc (fci);
|
|
|
|
/* If it is the frame for sigtramp, the saved registers are located
|
|
in a sigcontext structure somewhere on the stack.
|
|
If the stack layout for sigtramp changes we might have to change these
|
|
constants and the companion fixup_sigtramp in mdebugread.c */
|
|
#ifndef SIGFRAME_BASE
|
|
/* To satisfy alignment restrictions, sigcontext is located 4 bytes
|
|
above the sigtramp frame. */
|
|
#define SIGFRAME_BASE MIPS_REGSIZE
|
|
/* FIXME! Are these correct?? */
|
|
#define SIGFRAME_PC_OFF (SIGFRAME_BASE + 2 * MIPS_REGSIZE)
|
|
#define SIGFRAME_REGSAVE_OFF (SIGFRAME_BASE + 3 * MIPS_REGSIZE)
|
|
#define SIGFRAME_FPREGSAVE_OFF \
|
|
(SIGFRAME_REGSAVE_OFF + MIPS_NUMREGS * MIPS_REGSIZE + 3 * MIPS_REGSIZE)
|
|
#endif
|
|
#ifndef SIGFRAME_REG_SIZE
|
|
/* FIXME! Is this correct?? */
|
|
#define SIGFRAME_REG_SIZE MIPS_REGSIZE
|
|
#endif
|
|
if (fci->signal_handler_caller)
|
|
{
|
|
for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
|
|
{
|
|
reg_position = fci->frame + SIGFRAME_REGSAVE_OFF
|
|
+ ireg * SIGFRAME_REG_SIZE;
|
|
fci->saved_regs[ireg] = reg_position;
|
|
}
|
|
for (ireg = 0; ireg < MIPS_NUMREGS; ireg++)
|
|
{
|
|
reg_position = fci->frame + SIGFRAME_FPREGSAVE_OFF
|
|
+ ireg * SIGFRAME_REG_SIZE;
|
|
fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
|
|
}
|
|
fci->saved_regs[PC_REGNUM] = fci->frame + SIGFRAME_PC_OFF;
|
|
return;
|
|
}
|
|
|
|
proc_desc = fci->extra_info->proc_desc;
|
|
if (proc_desc == NULL)
|
|
/* I'm not sure how/whether this can happen. Normally when we can't
|
|
find a proc_desc, we "synthesize" one using heuristic_proc_desc
|
|
and set the saved_regs right away. */
|
|
return;
|
|
|
|
kernel_trap = PROC_REG_MASK (proc_desc) & 1;
|
|
gen_mask = kernel_trap ? 0xFFFFFFFF : PROC_REG_MASK (proc_desc);
|
|
float_mask = kernel_trap ? 0xFFFFFFFF : PROC_FREG_MASK (proc_desc);
|
|
|
|
if ( /* In any frame other than the innermost or a frame interrupted by
|
|
a signal, we assume that all registers have been saved.
|
|
This assumes that all register saves in a function happen before
|
|
the first function call. */
|
|
(fci->next == NULL || fci->next->signal_handler_caller)
|
|
|
|
/* In a dummy frame we know exactly where things are saved. */
|
|
&& !PROC_DESC_IS_DUMMY (proc_desc)
|
|
|
|
/* Don't bother unless we are inside a function prologue. Outside the
|
|
prologue, we know where everything is. */
|
|
|
|
&& in_prologue (fci->pc, PROC_LOW_ADDR (proc_desc))
|
|
|
|
/* Not sure exactly what kernel_trap means, but if it means
|
|
the kernel saves the registers without a prologue doing it,
|
|
we better not examine the prologue to see whether registers
|
|
have been saved yet. */
|
|
&& !kernel_trap)
|
|
{
|
|
/* We need to figure out whether the registers that the proc_desc
|
|
claims are saved have been saved yet. */
|
|
|
|
CORE_ADDR addr;
|
|
|
|
/* Bitmasks; set if we have found a save for the register. */
|
|
unsigned long gen_save_found = 0;
|
|
unsigned long float_save_found = 0;
|
|
int instlen;
|
|
|
|
/* If the address is odd, assume this is MIPS16 code. */
|
|
addr = PROC_LOW_ADDR (proc_desc);
|
|
instlen = pc_is_mips16 (addr) ? MIPS16_INSTLEN : MIPS_INSTLEN;
|
|
|
|
/* Scan through this function's instructions preceding the current
|
|
PC, and look for those that save registers. */
|
|
while (addr < fci->pc)
|
|
{
|
|
inst = mips_fetch_instruction (addr);
|
|
if (pc_is_mips16 (addr))
|
|
mips16_decode_reg_save (inst, &gen_save_found);
|
|
else
|
|
mips32_decode_reg_save (inst, &gen_save_found, &float_save_found);
|
|
addr += instlen;
|
|
}
|
|
gen_mask = gen_save_found;
|
|
float_mask = float_save_found;
|
|
}
|
|
|
|
/* Fill in the offsets for the registers which gen_mask says
|
|
were saved. */
|
|
reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
|
|
for (ireg = MIPS_NUMREGS - 1; gen_mask; --ireg, gen_mask <<= 1)
|
|
if (gen_mask & 0x80000000)
|
|
{
|
|
fci->saved_regs[ireg] = reg_position;
|
|
reg_position -= MIPS_SAVED_REGSIZE;
|
|
}
|
|
|
|
/* The MIPS16 entry instruction saves $s0 and $s1 in the reverse order
|
|
of that normally used by gcc. Therefore, we have to fetch the first
|
|
instruction of the function, and if it's an entry instruction that
|
|
saves $s0 or $s1, correct their saved addresses. */
|
|
if (pc_is_mips16 (PROC_LOW_ADDR (proc_desc)))
|
|
{
|
|
inst = mips_fetch_instruction (PROC_LOW_ADDR (proc_desc));
|
|
if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
|
|
{
|
|
int reg;
|
|
int sreg_count = (inst >> 6) & 3;
|
|
|
|
/* Check if the ra register was pushed on the stack. */
|
|
reg_position = fci->frame + PROC_REG_OFFSET (proc_desc);
|
|
if (inst & 0x20)
|
|
reg_position -= MIPS_SAVED_REGSIZE;
|
|
|
|
/* Check if the s0 and s1 registers were pushed on the stack. */
|
|
for (reg = 16; reg < sreg_count + 16; reg++)
|
|
{
|
|
fci->saved_regs[reg] = reg_position;
|
|
reg_position -= MIPS_SAVED_REGSIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Fill in the offsets for the registers which float_mask says
|
|
were saved. */
|
|
reg_position = fci->frame + PROC_FREG_OFFSET (proc_desc);
|
|
|
|
/* The freg_offset points to where the first *double* register
|
|
is saved. So skip to the high-order word. */
|
|
if (!GDB_TARGET_IS_MIPS64)
|
|
reg_position += MIPS_SAVED_REGSIZE;
|
|
|
|
/* Fill in the offsets for the float registers which float_mask says
|
|
were saved. */
|
|
for (ireg = MIPS_NUMREGS - 1; float_mask; --ireg, float_mask <<= 1)
|
|
if (float_mask & 0x80000000)
|
|
{
|
|
fci->saved_regs[FP0_REGNUM + ireg] = reg_position;
|
|
reg_position -= MIPS_SAVED_REGSIZE;
|
|
}
|
|
|
|
fci->saved_regs[PC_REGNUM] = fci->saved_regs[RA_REGNUM];
|
|
}
|
|
|
|
static CORE_ADDR
|
|
read_next_frame_reg (fi, regno)
|
|
struct frame_info *fi;
|
|
int regno;
|
|
{
|
|
for (; fi; fi = fi->next)
|
|
{
|
|
/* We have to get the saved sp from the sigcontext
|
|
if it is a signal handler frame. */
|
|
if (regno == SP_REGNUM && !fi->signal_handler_caller)
|
|
return fi->frame;
|
|
else
|
|
{
|
|
if (fi->saved_regs == NULL)
|
|
mips_find_saved_regs (fi);
|
|
if (fi->saved_regs[regno])
|
|
return read_memory_integer (ADDR_BITS_REMOVE (fi->saved_regs[regno]), MIPS_SAVED_REGSIZE);
|
|
}
|
|
}
|
|
return read_register (regno);
|
|
}
|
|
|
|
/* mips_addr_bits_remove - remove useless address bits */
|
|
|
|
CORE_ADDR
|
|
mips_addr_bits_remove (addr)
|
|
CORE_ADDR addr;
|
|
{
|
|
#if GDB_TARGET_IS_MIPS64
|
|
if (mask_address_p && (addr >> 32 == (CORE_ADDR) 0xffffffff))
|
|
{
|
|
/* This hack is a work-around for existing boards using PMON,
|
|
the simulator, and any other 64-bit targets that doesn't have
|
|
true 64-bit addressing. On these targets, the upper 32 bits
|
|
of addresses are ignored by the hardware. Thus, the PC or SP
|
|
are likely to have been sign extended to all 1s by instruction
|
|
sequences that load 32-bit addresses. For example, a typical
|
|
piece of code that loads an address is this:
|
|
lui $r2, <upper 16 bits>
|
|
ori $r2, <lower 16 bits>
|
|
But the lui sign-extends the value such that the upper 32 bits
|
|
may be all 1s. The workaround is simply to mask off these bits.
|
|
In the future, gcc may be changed to support true 64-bit
|
|
addressing, and this masking will have to be disabled. */
|
|
addr &= (CORE_ADDR) 0xffffffff;
|
|
}
|
|
#else
|
|
/* Even when GDB is configured for some 32-bit targets (e.g. mips-elf),
|
|
BFD is configured to handle 64-bit targets, so CORE_ADDR is 64 bits.
|
|
So we still have to mask off useless bits from addresses. */
|
|
addr &= (CORE_ADDR) 0xffffffff;
|
|
#endif
|
|
|
|
return addr;
|
|
}
|
|
|
|
void
|
|
mips_init_frame_pc_first (fromleaf, prev)
|
|
int fromleaf;
|
|
struct frame_info *prev;
|
|
{
|
|
CORE_ADDR pc, tmp;
|
|
|
|
pc = ((fromleaf) ? SAVED_PC_AFTER_CALL (prev->next) :
|
|
prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
|
|
tmp = mips_skip_stub (pc);
|
|
prev->pc = tmp ? tmp : pc;
|
|
}
|
|
|
|
|
|
CORE_ADDR
|
|
mips_frame_saved_pc (frame)
|
|
struct frame_info *frame;
|
|
{
|
|
CORE_ADDR saved_pc;
|
|
mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
|
|
/* We have to get the saved pc from the sigcontext
|
|
if it is a signal handler frame. */
|
|
int pcreg = frame->signal_handler_caller ? PC_REGNUM
|
|
: (proc_desc ? PROC_PC_REG (proc_desc) : RA_REGNUM);
|
|
|
|
if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
|
|
saved_pc = read_memory_integer (frame->frame - MIPS_SAVED_REGSIZE, MIPS_SAVED_REGSIZE);
|
|
else
|
|
saved_pc = read_next_frame_reg (frame, pcreg);
|
|
|
|
return ADDR_BITS_REMOVE (saved_pc);
|
|
}
|
|
|
|
static struct mips_extra_func_info temp_proc_desc;
|
|
static CORE_ADDR temp_saved_regs[NUM_REGS];
|
|
|
|
/* Set a register's saved stack address in temp_saved_regs. If an address
|
|
has already been set for this register, do nothing; this way we will
|
|
only recognize the first save of a given register in a function prologue.
|
|
This is a helper function for mips{16,32}_heuristic_proc_desc. */
|
|
|
|
static void
|
|
set_reg_offset (regno, offset)
|
|
int regno;
|
|
CORE_ADDR offset;
|
|
{
|
|
if (temp_saved_regs[regno] == 0)
|
|
temp_saved_regs[regno] = offset;
|
|
}
|
|
|
|
|
|
/* Test whether the PC points to the return instruction at the
|
|
end of a function. */
|
|
|
|
static int
|
|
mips_about_to_return (pc)
|
|
CORE_ADDR pc;
|
|
{
|
|
if (pc_is_mips16 (pc))
|
|
/* This mips16 case isn't necessarily reliable. Sometimes the compiler
|
|
generates a "jr $ra"; other times it generates code to load
|
|
the return address from the stack to an accessible register (such
|
|
as $a3), then a "jr" using that register. This second case
|
|
is almost impossible to distinguish from an indirect jump
|
|
used for switch statements, so we don't even try. */
|
|
return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
|
|
else
|
|
return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
|
|
}
|
|
|
|
|
|
/* This fencepost looks highly suspicious to me. Removing it also
|
|
seems suspicious as it could affect remote debugging across serial
|
|
lines. */
|
|
|
|
static CORE_ADDR
|
|
heuristic_proc_start (pc)
|
|
CORE_ADDR pc;
|
|
{
|
|
CORE_ADDR start_pc;
|
|
CORE_ADDR fence;
|
|
int instlen;
|
|
int seen_adjsp = 0;
|
|
|
|
pc = ADDR_BITS_REMOVE (pc);
|
|
start_pc = pc;
|
|
fence = start_pc - heuristic_fence_post;
|
|
if (start_pc == 0)
|
|
return 0;
|
|
|
|
if (heuristic_fence_post == UINT_MAX
|
|
|| fence < VM_MIN_ADDRESS)
|
|
fence = VM_MIN_ADDRESS;
|
|
|
|
instlen = pc_is_mips16 (pc) ? MIPS16_INSTLEN : MIPS_INSTLEN;
|
|
|
|
/* search back for previous return */
|
|
for (start_pc -= instlen;; start_pc -= instlen)
|
|
if (start_pc < fence)
|
|
{
|
|
/* It's not clear to me why we reach this point when
|
|
stop_soon_quietly, but with this test, at least we
|
|
don't print out warnings for every child forked (eg, on
|
|
decstation). 22apr93 rich@cygnus.com. */
|
|
if (!stop_soon_quietly)
|
|
{
|
|
static int blurb_printed = 0;
|
|
|
|
warning ("Warning: GDB can't find the start of the function at 0x%s.",
|
|
paddr_nz (pc));
|
|
|
|
if (!blurb_printed)
|
|
{
|
|
/* This actually happens frequently in embedded
|
|
development, when you first connect to a board
|
|
and your stack pointer and pc are nowhere in
|
|
particular. This message needs to give people
|
|
in that situation enough information to
|
|
determine that it's no big deal. */
|
|
printf_filtered ("\n\
|
|
GDB is unable to find the start of the function at 0x%s\n\
|
|
and thus can't determine the size of that function's stack frame.\n\
|
|
This means that GDB may be unable to access that stack frame, or\n\
|
|
the frames below it.\n\
|
|
This problem is most likely caused by an invalid program counter or\n\
|
|
stack pointer.\n\
|
|
However, if you think GDB should simply search farther back\n\
|
|
from 0x%s for code which looks like the beginning of a\n\
|
|
function, you can increase the range of the search using the `set\n\
|
|
heuristic-fence-post' command.\n",
|
|
paddr_nz (pc), paddr_nz (pc));
|
|
blurb_printed = 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
else if (pc_is_mips16 (start_pc))
|
|
{
|
|
unsigned short inst;
|
|
|
|
/* On MIPS16, any one of the following is likely to be the
|
|
start of a function:
|
|
entry
|
|
addiu sp,-n
|
|
daddiu sp,-n
|
|
extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
|
|
inst = mips_fetch_instruction (start_pc);
|
|
if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
|
|
|| (inst & 0xff80) == 0x6380 /* addiu sp,-n */
|
|
|| (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
|
|
|| ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
|
|
break;
|
|
else if ((inst & 0xff00) == 0x6300 /* addiu sp */
|
|
|| (inst & 0xff00) == 0xfb00) /* daddiu sp */
|
|
seen_adjsp = 1;
|
|
else
|
|
seen_adjsp = 0;
|
|
}
|
|
else if (mips_about_to_return (start_pc))
|
|
{
|
|
start_pc += 2 * MIPS_INSTLEN; /* skip return, and its delay slot */
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
/* skip nops (usually 1) 0 - is this */
|
|
while (start_pc < pc && read_memory_integer (start_pc, MIPS_INSTLEN) == 0)
|
|
start_pc += MIPS_INSTLEN;
|
|
#endif
|
|
return start_pc;
|
|
}
|
|
|
|
/* Fetch the immediate value from a MIPS16 instruction.
|
|
If the previous instruction was an EXTEND, use it to extend
|
|
the upper bits of the immediate value. This is a helper function
|
|
for mips16_heuristic_proc_desc. */
|
|
|
|
static int
|
|
mips16_get_imm (prev_inst, inst, nbits, scale, is_signed)
|
|
unsigned short prev_inst; /* previous instruction */
|
|
unsigned short inst; /* current instruction */
|
|
int nbits; /* number of bits in imm field */
|
|
int scale; /* scale factor to be applied to imm */
|
|
int is_signed; /* is the imm field signed? */
|
|
{
|
|
int offset;
|
|
|
|
if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
|
|
{
|
|
offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
|
|
if (offset & 0x8000) /* check for negative extend */
|
|
offset = 0 - (0x10000 - (offset & 0xffff));
|
|
return offset | (inst & 0x1f);
|
|
}
|
|
else
|
|
{
|
|
int max_imm = 1 << nbits;
|
|
int mask = max_imm - 1;
|
|
int sign_bit = max_imm >> 1;
|
|
|
|
offset = inst & mask;
|
|
if (is_signed && (offset & sign_bit))
|
|
offset = 0 - (max_imm - offset);
|
|
return offset * scale;
|
|
}
|
|
}
|
|
|
|
|
|
/* Fill in values in temp_proc_desc based on the MIPS16 instruction
|
|
stream from start_pc to limit_pc. */
|
|
|
|
static void
|
|
mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp)
|
|
CORE_ADDR start_pc, limit_pc;
|
|
struct frame_info *next_frame;
|
|
CORE_ADDR sp;
|
|
{
|
|
CORE_ADDR cur_pc;
|
|
CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
|
|
unsigned short prev_inst = 0; /* saved copy of previous instruction */
|
|
unsigned inst = 0; /* current instruction */
|
|
unsigned entry_inst = 0; /* the entry instruction */
|
|
int reg, offset;
|
|
|
|
PROC_FRAME_OFFSET (&temp_proc_desc) = 0; /* size of stack frame */
|
|
PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
|
|
|
|
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS16_INSTLEN)
|
|
{
|
|
/* Save the previous instruction. If it's an EXTEND, we'll extract
|
|
the immediate offset extension from it in mips16_get_imm. */
|
|
prev_inst = inst;
|
|
|
|
/* Fetch and decode the instruction. */
|
|
inst = (unsigned short) mips_fetch_instruction (cur_pc);
|
|
if ((inst & 0xff00) == 0x6300 /* addiu sp */
|
|
|| (inst & 0xff00) == 0xfb00) /* daddiu sp */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
|
|
if (offset < 0) /* negative stack adjustment? */
|
|
PROC_FRAME_OFFSET (&temp_proc_desc) -= offset;
|
|
else
|
|
/* Exit loop if a positive stack adjustment is found, which
|
|
usually means that the stack cleanup code in the function
|
|
epilogue is reached. */
|
|
break;
|
|
}
|
|
else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
|
|
reg = mips16_to_32_reg[(inst & 0x700) >> 8];
|
|
PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
|
|
set_reg_offset (reg, sp + offset);
|
|
}
|
|
else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
|
|
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
|
|
PROC_REG_MASK (&temp_proc_desc) |= (1 << reg);
|
|
set_reg_offset (reg, sp + offset);
|
|
}
|
|
else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
|
|
PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
|
|
set_reg_offset (RA_REGNUM, sp + offset);
|
|
}
|
|
else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
|
|
PROC_REG_MASK (&temp_proc_desc) |= (1 << RA_REGNUM);
|
|
set_reg_offset (RA_REGNUM, sp + offset);
|
|
}
|
|
else if (inst == 0x673d) /* move $s1, $sp */
|
|
{
|
|
frame_addr = sp;
|
|
PROC_FRAME_REG (&temp_proc_desc) = 17;
|
|
}
|
|
else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
|
|
frame_addr = sp + offset;
|
|
PROC_FRAME_REG (&temp_proc_desc) = 17;
|
|
PROC_FRAME_ADJUST (&temp_proc_desc) = offset;
|
|
}
|
|
else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
|
|
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (reg, frame_addr + offset);
|
|
}
|
|
else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
|
|
{
|
|
offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
|
|
reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (reg, frame_addr + offset);
|
|
}
|
|
else if ((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
|
|
entry_inst = inst; /* save for later processing */
|
|
else if ((inst & 0xf800) == 0x1800) /* jal(x) */
|
|
cur_pc += MIPS16_INSTLEN; /* 32-bit instruction */
|
|
}
|
|
|
|
/* The entry instruction is typically the first instruction in a function,
|
|
and it stores registers at offsets relative to the value of the old SP
|
|
(before the prologue). But the value of the sp parameter to this
|
|
function is the new SP (after the prologue has been executed). So we
|
|
can't calculate those offsets until we've seen the entire prologue,
|
|
and can calculate what the old SP must have been. */
|
|
if (entry_inst != 0)
|
|
{
|
|
int areg_count = (entry_inst >> 8) & 7;
|
|
int sreg_count = (entry_inst >> 6) & 3;
|
|
|
|
/* The entry instruction always subtracts 32 from the SP. */
|
|
PROC_FRAME_OFFSET (&temp_proc_desc) += 32;
|
|
|
|
/* Now we can calculate what the SP must have been at the
|
|
start of the function prologue. */
|
|
sp += PROC_FRAME_OFFSET (&temp_proc_desc);
|
|
|
|
/* Check if a0-a3 were saved in the caller's argument save area. */
|
|
for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
|
|
{
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (reg, sp + offset);
|
|
offset += MIPS_SAVED_REGSIZE;
|
|
}
|
|
|
|
/* Check if the ra register was pushed on the stack. */
|
|
offset = -4;
|
|
if (entry_inst & 0x20)
|
|
{
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << RA_REGNUM;
|
|
set_reg_offset (RA_REGNUM, sp + offset);
|
|
offset -= MIPS_SAVED_REGSIZE;
|
|
}
|
|
|
|
/* Check if the s0 and s1 registers were pushed on the stack. */
|
|
for (reg = 16; reg < sreg_count + 16; reg++)
|
|
{
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (reg, sp + offset);
|
|
offset -= MIPS_SAVED_REGSIZE;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp)
|
|
CORE_ADDR start_pc, limit_pc;
|
|
struct frame_info *next_frame;
|
|
CORE_ADDR sp;
|
|
{
|
|
CORE_ADDR cur_pc;
|
|
CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
|
|
restart:
|
|
memset (temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
|
|
PROC_FRAME_OFFSET (&temp_proc_desc) = 0;
|
|
PROC_FRAME_ADJUST (&temp_proc_desc) = 0; /* offset of FP from SP */
|
|
for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSTLEN)
|
|
{
|
|
unsigned long inst, high_word, low_word;
|
|
int reg;
|
|
|
|
/* Fetch the instruction. */
|
|
inst = (unsigned long) mips_fetch_instruction (cur_pc);
|
|
|
|
/* Save some code by pre-extracting some useful fields. */
|
|
high_word = (inst >> 16) & 0xffff;
|
|
low_word = inst & 0xffff;
|
|
reg = high_word & 0x1f;
|
|
|
|
if (high_word == 0x27bd /* addiu $sp,$sp,-i */
|
|
|| high_word == 0x23bd /* addi $sp,$sp,-i */
|
|
|| high_word == 0x67bd) /* daddiu $sp,$sp,-i */
|
|
{
|
|
if (low_word & 0x8000) /* negative stack adjustment? */
|
|
PROC_FRAME_OFFSET (&temp_proc_desc) += 0x10000 - low_word;
|
|
else
|
|
/* Exit loop if a positive stack adjustment is found, which
|
|
usually means that the stack cleanup code in the function
|
|
epilogue is reached. */
|
|
break;
|
|
}
|
|
else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
|
|
{
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (reg, sp + low_word);
|
|
}
|
|
else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
|
|
{
|
|
/* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra,
|
|
but the register size used is only 32 bits. Make the address
|
|
for the saved register point to the lower 32 bits. */
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (reg, sp + low_word + 8 - MIPS_REGSIZE);
|
|
}
|
|
else if (high_word == 0x27be) /* addiu $30,$sp,size */
|
|
{
|
|
/* Old gcc frame, r30 is virtual frame pointer. */
|
|
if ((long) low_word != PROC_FRAME_OFFSET (&temp_proc_desc))
|
|
frame_addr = sp + low_word;
|
|
else if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
|
|
{
|
|
unsigned alloca_adjust;
|
|
PROC_FRAME_REG (&temp_proc_desc) = 30;
|
|
frame_addr = read_next_frame_reg (next_frame, 30);
|
|
alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
|
|
if (alloca_adjust > 0)
|
|
{
|
|
/* FP > SP + frame_size. This may be because
|
|
* of an alloca or somethings similar.
|
|
* Fix sp to "pre-alloca" value, and try again.
|
|
*/
|
|
sp += alloca_adjust;
|
|
goto restart;
|
|
}
|
|
}
|
|
}
|
|
/* move $30,$sp. With different versions of gas this will be either
|
|
`addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
|
|
Accept any one of these. */
|
|
else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
|
|
{
|
|
/* New gcc frame, virtual frame pointer is at r30 + frame_size. */
|
|
if (PROC_FRAME_REG (&temp_proc_desc) == SP_REGNUM)
|
|
{
|
|
unsigned alloca_adjust;
|
|
PROC_FRAME_REG (&temp_proc_desc) = 30;
|
|
frame_addr = read_next_frame_reg (next_frame, 30);
|
|
alloca_adjust = (unsigned) (frame_addr - sp);
|
|
if (alloca_adjust > 0)
|
|
{
|
|
/* FP > SP + frame_size. This may be because
|
|
* of an alloca or somethings similar.
|
|
* Fix sp to "pre-alloca" value, and try again.
|
|
*/
|
|
sp += alloca_adjust;
|
|
goto restart;
|
|
}
|
|
}
|
|
}
|
|
else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
|
|
{
|
|
PROC_REG_MASK (&temp_proc_desc) |= 1 << reg;
|
|
set_reg_offset (reg, frame_addr + low_word);
|
|
}
|
|
}
|
|
}
|
|
|
|
static mips_extra_func_info_t
|
|
heuristic_proc_desc (start_pc, limit_pc, next_frame)
|
|
CORE_ADDR start_pc, limit_pc;
|
|
struct frame_info *next_frame;
|
|
{
|
|
CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
|
|
|
|
if (start_pc == 0)
|
|
return NULL;
|
|
memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
|
|
memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
|
|
PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
|
|
PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
|
|
PROC_PC_REG (&temp_proc_desc) = RA_REGNUM;
|
|
|
|
if (start_pc + 200 < limit_pc)
|
|
limit_pc = start_pc + 200;
|
|
if (pc_is_mips16 (start_pc))
|
|
mips16_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
|
|
else
|
|
mips32_heuristic_proc_desc (start_pc, limit_pc, next_frame, sp);
|
|
return &temp_proc_desc;
|
|
}
|
|
|
|
static mips_extra_func_info_t
|
|
non_heuristic_proc_desc (pc, addrptr)
|
|
CORE_ADDR pc;
|
|
CORE_ADDR *addrptr;
|
|
{
|
|
CORE_ADDR startaddr;
|
|
mips_extra_func_info_t proc_desc;
|
|
struct block *b = block_for_pc (pc);
|
|
struct symbol *sym;
|
|
|
|
find_pc_partial_function (pc, NULL, &startaddr, NULL);
|
|
if (addrptr)
|
|
*addrptr = startaddr;
|
|
if (b == NULL || PC_IN_CALL_DUMMY (pc, 0, 0))
|
|
sym = NULL;
|
|
else
|
|
{
|
|
if (startaddr > BLOCK_START (b))
|
|
/* This is the "pathological" case referred to in a comment in
|
|
print_frame_info. It might be better to move this check into
|
|
symbol reading. */
|
|
sym = NULL;
|
|
else
|
|
sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE, 0, NULL);
|
|
}
|
|
|
|
/* If we never found a PDR for this function in symbol reading, then
|
|
examine prologues to find the information. */
|
|
if (sym)
|
|
{
|
|
proc_desc = (mips_extra_func_info_t) SYMBOL_VALUE (sym);
|
|
if (PROC_FRAME_REG (proc_desc) == -1)
|
|
return NULL;
|
|
else
|
|
return proc_desc;
|
|
}
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static mips_extra_func_info_t
|
|
find_proc_desc (pc, next_frame)
|
|
CORE_ADDR pc;
|
|
struct frame_info *next_frame;
|
|
{
|
|
mips_extra_func_info_t proc_desc;
|
|
CORE_ADDR startaddr;
|
|
|
|
proc_desc = non_heuristic_proc_desc (pc, &startaddr);
|
|
|
|
if (proc_desc)
|
|
{
|
|
/* IF this is the topmost frame AND
|
|
* (this proc does not have debugging information OR
|
|
* the PC is in the procedure prologue)
|
|
* THEN create a "heuristic" proc_desc (by analyzing
|
|
* the actual code) to replace the "official" proc_desc.
|
|
*/
|
|
if (next_frame == NULL)
|
|
{
|
|
struct symtab_and_line val;
|
|
struct symbol *proc_symbol =
|
|
PROC_DESC_IS_DUMMY (proc_desc) ? 0 : PROC_SYMBOL (proc_desc);
|
|
|
|
if (proc_symbol)
|
|
{
|
|
val = find_pc_line (BLOCK_START
|
|
(SYMBOL_BLOCK_VALUE (proc_symbol)),
|
|
0);
|
|
val.pc = val.end ? val.end : pc;
|
|
}
|
|
if (!proc_symbol || pc < val.pc)
|
|
{
|
|
mips_extra_func_info_t found_heuristic =
|
|
heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
|
|
pc, next_frame);
|
|
if (found_heuristic)
|
|
proc_desc = found_heuristic;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Is linked_proc_desc_table really necessary? It only seems to be used
|
|
by procedure call dummys. However, the procedures being called ought
|
|
to have their own proc_descs, and even if they don't,
|
|
heuristic_proc_desc knows how to create them! */
|
|
|
|
register struct linked_proc_info *link;
|
|
|
|
for (link = linked_proc_desc_table; link; link = link->next)
|
|
if (PROC_LOW_ADDR (&link->info) <= pc
|
|
&& PROC_HIGH_ADDR (&link->info) > pc)
|
|
return &link->info;
|
|
|
|
if (startaddr == 0)
|
|
startaddr = heuristic_proc_start (pc);
|
|
|
|
proc_desc =
|
|
heuristic_proc_desc (startaddr, pc, next_frame);
|
|
}
|
|
return proc_desc;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
get_frame_pointer (frame, proc_desc)
|
|
struct frame_info *frame;
|
|
mips_extra_func_info_t proc_desc;
|
|
{
|
|
return ADDR_BITS_REMOVE (
|
|
read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc)) +
|
|
PROC_FRAME_OFFSET (proc_desc) - PROC_FRAME_ADJUST (proc_desc));
|
|
}
|
|
|
|
mips_extra_func_info_t cached_proc_desc;
|
|
|
|
CORE_ADDR
|
|
mips_frame_chain (frame)
|
|
struct frame_info *frame;
|
|
{
|
|
mips_extra_func_info_t proc_desc;
|
|
CORE_ADDR tmp;
|
|
CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
|
|
|
|
if (saved_pc == 0 || inside_entry_file (saved_pc))
|
|
return 0;
|
|
|
|
/* Check if the PC is inside a call stub. If it is, fetch the
|
|
PC of the caller of that stub. */
|
|
if ((tmp = mips_skip_stub (saved_pc)) != 0)
|
|
saved_pc = tmp;
|
|
|
|
/* Look up the procedure descriptor for this PC. */
|
|
proc_desc = find_proc_desc (saved_pc, frame);
|
|
if (!proc_desc)
|
|
return 0;
|
|
|
|
cached_proc_desc = proc_desc;
|
|
|
|
/* If no frame pointer and frame size is zero, we must be at end
|
|
of stack (or otherwise hosed). If we don't check frame size,
|
|
we loop forever if we see a zero size frame. */
|
|
if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
|
|
&& PROC_FRAME_OFFSET (proc_desc) == 0
|
|
/* The previous frame from a sigtramp frame might be frameless
|
|
and have frame size zero. */
|
|
&& !frame->signal_handler_caller)
|
|
return 0;
|
|
else
|
|
return get_frame_pointer (frame, proc_desc);
|
|
}
|
|
|
|
void
|
|
mips_init_extra_frame_info (fromleaf, fci)
|
|
int fromleaf;
|
|
struct frame_info *fci;
|
|
{
|
|
int regnum;
|
|
|
|
/* Use proc_desc calculated in frame_chain */
|
|
mips_extra_func_info_t proc_desc =
|
|
fci->next ? cached_proc_desc : find_proc_desc (fci->pc, fci->next);
|
|
|
|
fci->extra_info = (struct frame_extra_info *)
|
|
frame_obstack_alloc (sizeof (struct frame_extra_info));
|
|
|
|
fci->saved_regs = NULL;
|
|
fci->extra_info->proc_desc =
|
|
proc_desc == &temp_proc_desc ? 0 : proc_desc;
|
|
if (proc_desc)
|
|
{
|
|
/* Fixup frame-pointer - only needed for top frame */
|
|
/* This may not be quite right, if proc has a real frame register.
|
|
Get the value of the frame relative sp, procedure might have been
|
|
interrupted by a signal at it's very start. */
|
|
if (fci->pc == PROC_LOW_ADDR (proc_desc)
|
|
&& !PROC_DESC_IS_DUMMY (proc_desc))
|
|
fci->frame = read_next_frame_reg (fci->next, SP_REGNUM);
|
|
else
|
|
fci->frame = get_frame_pointer (fci->next, proc_desc);
|
|
|
|
if (proc_desc == &temp_proc_desc)
|
|
{
|
|
char *name;
|
|
|
|
/* Do not set the saved registers for a sigtramp frame,
|
|
mips_find_saved_registers will do that for us.
|
|
We can't use fci->signal_handler_caller, it is not yet set. */
|
|
find_pc_partial_function (fci->pc, &name,
|
|
(CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
|
|
if (!IN_SIGTRAMP (fci->pc, name))
|
|
{
|
|
frame_saved_regs_zalloc (fci);
|
|
memcpy (fci->saved_regs, temp_saved_regs, SIZEOF_FRAME_SAVED_REGS);
|
|
fci->saved_regs[PC_REGNUM]
|
|
= fci->saved_regs[RA_REGNUM];
|
|
}
|
|
}
|
|
|
|
/* hack: if argument regs are saved, guess these contain args */
|
|
/* assume we can't tell how many args for now */
|
|
fci->extra_info->num_args = -1;
|
|
for (regnum = MIPS_LAST_ARG_REGNUM; regnum >= A0_REGNUM; regnum--)
|
|
{
|
|
if (PROC_REG_MASK (proc_desc) & (1 << regnum))
|
|
{
|
|
fci->extra_info->num_args = regnum - A0_REGNUM + 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* MIPS stack frames are almost impenetrable. When execution stops,
|
|
we basically have to look at symbol information for the function
|
|
that we stopped in, which tells us *which* register (if any) is
|
|
the base of the frame pointer, and what offset from that register
|
|
the frame itself is at.
|
|
|
|
This presents a problem when trying to examine a stack in memory
|
|
(that isn't executing at the moment), using the "frame" command. We
|
|
don't have a PC, nor do we have any registers except SP.
|
|
|
|
This routine takes two arguments, SP and PC, and tries to make the
|
|
cached frames look as if these two arguments defined a frame on the
|
|
cache. This allows the rest of info frame to extract the important
|
|
arguments without difficulty. */
|
|
|
|
struct frame_info *
|
|
setup_arbitrary_frame (argc, argv)
|
|
int argc;
|
|
CORE_ADDR *argv;
|
|
{
|
|
if (argc != 2)
|
|
error ("MIPS frame specifications require two arguments: sp and pc");
|
|
|
|
return create_new_frame (argv[0], argv[1]);
|
|
}
|
|
|
|
/*
|
|
* STACK_ARGSIZE -- how many bytes does a pushed function arg take up on the stack?
|
|
*
|
|
* For n32 ABI, eight.
|
|
* For all others, he same as the size of a general register.
|
|
*/
|
|
#if defined (_MIPS_SIM_NABI32) && _MIPS_SIM == _MIPS_SIM_NABI32
|
|
#define MIPS_NABI32 1
|
|
#define STACK_ARGSIZE 8
|
|
#else
|
|
#define MIPS_NABI32 0
|
|
#define STACK_ARGSIZE MIPS_SAVED_REGSIZE
|
|
#endif
|
|
|
|
CORE_ADDR
|
|
mips_push_arguments (nargs, args, sp, struct_return, struct_addr)
|
|
int nargs;
|
|
value_ptr *args;
|
|
CORE_ADDR sp;
|
|
int struct_return;
|
|
CORE_ADDR struct_addr;
|
|
{
|
|
int argreg;
|
|
int float_argreg;
|
|
int argnum;
|
|
int len = 0;
|
|
int stack_offset = 0;
|
|
|
|
/* Macros to round N up or down to the next A boundary; A must be
|
|
a power of two. */
|
|
#define ROUND_DOWN(n,a) ((n) & ~((a)-1))
|
|
#define ROUND_UP(n,a) (((n)+(a)-1) & ~((a)-1))
|
|
|
|
/* First ensure that the stack and structure return address (if any)
|
|
are properly aligned. The stack has to be at least 64-bit aligned
|
|
even on 32-bit machines, because doubles must be 64-bit aligned.
|
|
On at least one MIPS variant, stack frames need to be 128-bit
|
|
aligned, so we round to this widest known alignment. */
|
|
sp = ROUND_DOWN (sp, 16);
|
|
struct_addr = ROUND_DOWN (struct_addr, MIPS_SAVED_REGSIZE);
|
|
|
|
/* Now make space on the stack for the args. We allocate more
|
|
than necessary for EABI, because the first few arguments are
|
|
passed in registers, but that's OK. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
len += ROUND_UP (TYPE_LENGTH (VALUE_TYPE (args[argnum])), MIPS_SAVED_REGSIZE);
|
|
sp -= ROUND_UP (len, 16);
|
|
|
|
/* Initialize the integer and float register pointers. */
|
|
argreg = A0_REGNUM;
|
|
float_argreg = FPA0_REGNUM;
|
|
|
|
/* the struct_return pointer occupies the first parameter-passing reg */
|
|
if (struct_return)
|
|
write_register (argreg++, struct_addr);
|
|
|
|
/* Now load as many as possible of the first arguments into
|
|
registers, and push the rest onto the stack. Loop thru args
|
|
from first to last. */
|
|
for (argnum = 0; argnum < nargs; argnum++)
|
|
{
|
|
char *val;
|
|
char valbuf[MAX_REGISTER_RAW_SIZE];
|
|
value_ptr arg = args[argnum];
|
|
struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
|
int len = TYPE_LENGTH (arg_type);
|
|
enum type_code typecode = TYPE_CODE (arg_type);
|
|
|
|
/* The EABI passes structures that do not fit in a register by
|
|
reference. In all other cases, pass the structure by value. */
|
|
if (MIPS_EABI && len > MIPS_SAVED_REGSIZE &&
|
|
(typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
|
|
{
|
|
store_address (valbuf, MIPS_SAVED_REGSIZE, VALUE_ADDRESS (arg));
|
|
typecode = TYPE_CODE_PTR;
|
|
len = MIPS_SAVED_REGSIZE;
|
|
val = valbuf;
|
|
}
|
|
else
|
|
val = (char *) VALUE_CONTENTS (arg);
|
|
|
|
/* 32-bit ABIs always start floating point arguments in an
|
|
even-numbered floating point register. */
|
|
if (!FP_REGISTER_DOUBLE && typecode == TYPE_CODE_FLT
|
|
&& (float_argreg & 1))
|
|
float_argreg++;
|
|
|
|
/* Floating point arguments passed in registers have to be
|
|
treated specially. On 32-bit architectures, doubles
|
|
are passed in register pairs; the even register gets
|
|
the low word, and the odd register gets the high word.
|
|
On non-EABI processors, the first two floating point arguments are
|
|
also copied to general registers, because MIPS16 functions
|
|
don't use float registers for arguments. This duplication of
|
|
arguments in general registers can't hurt non-MIPS16 functions
|
|
because those registers are normally skipped. */
|
|
if (typecode == TYPE_CODE_FLT
|
|
&& float_argreg <= MIPS_LAST_FP_ARG_REGNUM
|
|
&& MIPS_FPU_TYPE != MIPS_FPU_NONE)
|
|
{
|
|
if (!FP_REGISTER_DOUBLE && len == 8)
|
|
{
|
|
int low_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
|
|
unsigned long regval;
|
|
|
|
/* Write the low word of the double to the even register(s). */
|
|
regval = extract_unsigned_integer (val + low_offset, 4);
|
|
write_register (float_argreg++, regval);
|
|
if (!MIPS_EABI)
|
|
write_register (argreg + 1, regval);
|
|
|
|
/* Write the high word of the double to the odd register(s). */
|
|
regval = extract_unsigned_integer (val + 4 - low_offset, 4);
|
|
write_register (float_argreg++, regval);
|
|
if (!MIPS_EABI)
|
|
{
|
|
write_register (argreg, regval);
|
|
argreg += 2;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
/* This is a floating point value that fits entirely
|
|
in a single register. */
|
|
/* On 32 bit ABI's the float_argreg is further adjusted
|
|
above to ensure that it is even register aligned. */
|
|
CORE_ADDR regval = extract_address (val, len);
|
|
write_register (float_argreg++, regval);
|
|
if (!MIPS_EABI)
|
|
{
|
|
/* CAGNEY: 32 bit MIPS ABI's always reserve two FP
|
|
registers for each argument. The below is (my
|
|
guess) to ensure that the corresponding integer
|
|
register has reserved the same space. */
|
|
write_register (argreg, regval);
|
|
argreg += FP_REGISTER_DOUBLE ? 1 : 2;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Copy the argument to general registers or the stack in
|
|
register-sized pieces. Large arguments are split between
|
|
registers and stack. */
|
|
/* Note: structs whose size is not a multiple of MIPS_REGSIZE
|
|
are treated specially: Irix cc passes them in registers
|
|
where gcc sometimes puts them on the stack. For maximum
|
|
compatibility, we will put them in both places. */
|
|
|
|
int odd_sized_struct = ((len > MIPS_SAVED_REGSIZE) &&
|
|
(len % MIPS_SAVED_REGSIZE != 0));
|
|
while (len > 0)
|
|
{
|
|
int partial_len = len < MIPS_SAVED_REGSIZE ? len : MIPS_SAVED_REGSIZE;
|
|
|
|
if (argreg > MIPS_LAST_ARG_REGNUM || odd_sized_struct)
|
|
{
|
|
/* Write this portion of the argument to the stack. */
|
|
/* Should shorter than int integer values be
|
|
promoted to int before being stored? */
|
|
|
|
int longword_offset = 0;
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
{
|
|
if (STACK_ARGSIZE == 8 &&
|
|
(typecode == TYPE_CODE_INT ||
|
|
typecode == TYPE_CODE_PTR ||
|
|
typecode == TYPE_CODE_FLT) && len <= 4)
|
|
longword_offset = STACK_ARGSIZE - len;
|
|
else if ((typecode == TYPE_CODE_STRUCT ||
|
|
typecode == TYPE_CODE_UNION) &&
|
|
TYPE_LENGTH (arg_type) < STACK_ARGSIZE)
|
|
longword_offset = STACK_ARGSIZE - len;
|
|
}
|
|
|
|
write_memory (sp + stack_offset + longword_offset,
|
|
val, partial_len);
|
|
}
|
|
|
|
/* Note!!! This is NOT an else clause.
|
|
Odd sized structs may go thru BOTH paths. */
|
|
if (argreg <= MIPS_LAST_ARG_REGNUM)
|
|
{
|
|
CORE_ADDR regval = extract_address (val, partial_len);
|
|
|
|
/* A non-floating-point argument being passed in a
|
|
general register. If a struct or union, and if
|
|
the remaining length is smaller than the register
|
|
size, we have to adjust the register value on
|
|
big endian targets.
|
|
|
|
It does not seem to be necessary to do the
|
|
same for integral types.
|
|
|
|
Also don't do this adjustment on EABI and O64
|
|
binaries. */
|
|
|
|
if (!MIPS_EABI
|
|
&& MIPS_SAVED_REGSIZE < 8
|
|
&& TARGET_BYTE_ORDER == BIG_ENDIAN
|
|
&& partial_len < MIPS_SAVED_REGSIZE
|
|
&& (typecode == TYPE_CODE_STRUCT ||
|
|
typecode == TYPE_CODE_UNION))
|
|
regval <<= ((MIPS_SAVED_REGSIZE - partial_len) *
|
|
TARGET_CHAR_BIT);
|
|
|
|
write_register (argreg, regval);
|
|
argreg++;
|
|
|
|
/* If this is the old ABI, prevent subsequent floating
|
|
point arguments from being passed in floating point
|
|
registers. */
|
|
if (!MIPS_EABI)
|
|
float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
|
|
}
|
|
|
|
len -= partial_len;
|
|
val += partial_len;
|
|
|
|
/* The offset onto the stack at which we will start
|
|
copying parameters (after the registers are used up)
|
|
begins at (4 * MIPS_REGSIZE) in the old ABI. This
|
|
leaves room for the "home" area for register parameters.
|
|
|
|
In the new EABI (and the NABI32), the 8 register parameters
|
|
do not have "home" stack space reserved for them, so the
|
|
stack offset does not get incremented until after
|
|
we have used up the 8 parameter registers. */
|
|
|
|
if (!(MIPS_EABI || MIPS_NABI32) ||
|
|
argnum >= 8)
|
|
stack_offset += ROUND_UP (partial_len, STACK_ARGSIZE);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return adjusted stack pointer. */
|
|
return sp;
|
|
}
|
|
|
|
CORE_ADDR
|
|
mips_push_return_address (pc, sp)
|
|
CORE_ADDR pc;
|
|
CORE_ADDR sp;
|
|
{
|
|
/* Set the return address register to point to the entry
|
|
point of the program, where a breakpoint lies in wait. */
|
|
write_register (RA_REGNUM, CALL_DUMMY_ADDRESS ());
|
|
return sp;
|
|
}
|
|
|
|
static void
|
|
mips_push_register (CORE_ADDR * sp, int regno)
|
|
{
|
|
char buffer[MAX_REGISTER_RAW_SIZE];
|
|
int regsize;
|
|
int offset;
|
|
if (MIPS_SAVED_REGSIZE < REGISTER_RAW_SIZE (regno))
|
|
{
|
|
regsize = MIPS_SAVED_REGSIZE;
|
|
offset = (TARGET_BYTE_ORDER == BIG_ENDIAN
|
|
? REGISTER_RAW_SIZE (regno) - MIPS_SAVED_REGSIZE
|
|
: 0);
|
|
}
|
|
else
|
|
{
|
|
regsize = REGISTER_RAW_SIZE (regno);
|
|
offset = 0;
|
|
}
|
|
*sp -= regsize;
|
|
read_register_gen (regno, buffer);
|
|
write_memory (*sp, buffer + offset, regsize);
|
|
}
|
|
|
|
/* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<(MIPS_NUMREGS-1). */
|
|
#define MASK(i,j) (((1 << ((j)+1))-1) ^ ((1 << (i))-1))
|
|
|
|
void
|
|
mips_push_dummy_frame ()
|
|
{
|
|
int ireg;
|
|
struct linked_proc_info *link = (struct linked_proc_info *)
|
|
xmalloc (sizeof (struct linked_proc_info));
|
|
mips_extra_func_info_t proc_desc = &link->info;
|
|
CORE_ADDR sp = ADDR_BITS_REMOVE (read_register (SP_REGNUM));
|
|
CORE_ADDR old_sp = sp;
|
|
link->next = linked_proc_desc_table;
|
|
linked_proc_desc_table = link;
|
|
|
|
/* FIXME! are these correct ? */
|
|
#define PUSH_FP_REGNUM 16 /* must be a register preserved across calls */
|
|
#define GEN_REG_SAVE_MASK MASK(1,16)|MASK(24,28)|(1<<(MIPS_NUMREGS-1))
|
|
#define FLOAT_REG_SAVE_MASK MASK(0,19)
|
|
#define FLOAT_SINGLE_REG_SAVE_MASK \
|
|
((1<<18)|(1<<16)|(1<<14)|(1<<12)|(1<<10)|(1<<8)|(1<<6)|(1<<4)|(1<<2)|(1<<0))
|
|
/*
|
|
* The registers we must save are all those not preserved across
|
|
* procedure calls. Dest_Reg (see tm-mips.h) must also be saved.
|
|
* In addition, we must save the PC, PUSH_FP_REGNUM, MMLO/-HI
|
|
* and FP Control/Status registers.
|
|
*
|
|
*
|
|
* Dummy frame layout:
|
|
* (high memory)
|
|
* Saved PC
|
|
* Saved MMHI, MMLO, FPC_CSR
|
|
* Saved R31
|
|
* Saved R28
|
|
* ...
|
|
* Saved R1
|
|
* Saved D18 (i.e. F19, F18)
|
|
* ...
|
|
* Saved D0 (i.e. F1, F0)
|
|
* Argument build area and stack arguments written via mips_push_arguments
|
|
* (low memory)
|
|
*/
|
|
|
|
/* Save special registers (PC, MMHI, MMLO, FPC_CSR) */
|
|
PROC_FRAME_REG (proc_desc) = PUSH_FP_REGNUM;
|
|
PROC_FRAME_OFFSET (proc_desc) = 0;
|
|
PROC_FRAME_ADJUST (proc_desc) = 0;
|
|
mips_push_register (&sp, PC_REGNUM);
|
|
mips_push_register (&sp, HI_REGNUM);
|
|
mips_push_register (&sp, LO_REGNUM);
|
|
mips_push_register (&sp, MIPS_FPU_TYPE == MIPS_FPU_NONE ? 0 : FCRCS_REGNUM);
|
|
|
|
/* Save general CPU registers */
|
|
PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
|
|
/* PROC_REG_OFFSET is the offset of the first saved register from FP. */
|
|
PROC_REG_OFFSET (proc_desc) = sp - old_sp - MIPS_SAVED_REGSIZE;
|
|
for (ireg = 32; --ireg >= 0;)
|
|
if (PROC_REG_MASK (proc_desc) & (1 << ireg))
|
|
mips_push_register (&sp, ireg);
|
|
|
|
/* Save floating point registers starting with high order word */
|
|
PROC_FREG_MASK (proc_desc) =
|
|
MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? FLOAT_REG_SAVE_MASK
|
|
: MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? FLOAT_SINGLE_REG_SAVE_MASK : 0;
|
|
/* PROC_FREG_OFFSET is the offset of the first saved *double* register
|
|
from FP. */
|
|
PROC_FREG_OFFSET (proc_desc) = sp - old_sp - 8;
|
|
for (ireg = 32; --ireg >= 0;)
|
|
if (PROC_FREG_MASK (proc_desc) & (1 << ireg))
|
|
mips_push_register (&sp, ireg + FP0_REGNUM);
|
|
|
|
/* Update the frame pointer for the call dummy and the stack pointer.
|
|
Set the procedure's starting and ending addresses to point to the
|
|
call dummy address at the entry point. */
|
|
write_register (PUSH_FP_REGNUM, old_sp);
|
|
write_register (SP_REGNUM, sp);
|
|
PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
|
|
PROC_HIGH_ADDR (proc_desc) = CALL_DUMMY_ADDRESS () + 4;
|
|
SET_PROC_DESC_IS_DUMMY (proc_desc);
|
|
PROC_PC_REG (proc_desc) = RA_REGNUM;
|
|
}
|
|
|
|
void
|
|
mips_pop_frame ()
|
|
{
|
|
register int regnum;
|
|
struct frame_info *frame = get_current_frame ();
|
|
CORE_ADDR new_sp = FRAME_FP (frame);
|
|
|
|
mips_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
|
|
|
|
write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
|
|
if (frame->saved_regs == NULL)
|
|
mips_find_saved_regs (frame);
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|
{
|
|
if (regnum != SP_REGNUM && regnum != PC_REGNUM
|
|
&& frame->saved_regs[regnum])
|
|
write_register (regnum,
|
|
read_memory_integer (frame->saved_regs[regnum],
|
|
MIPS_SAVED_REGSIZE));
|
|
}
|
|
write_register (SP_REGNUM, new_sp);
|
|
flush_cached_frames ();
|
|
|
|
if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
|
|
{
|
|
struct linked_proc_info *pi_ptr, *prev_ptr;
|
|
|
|
for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
|
|
pi_ptr != NULL;
|
|
prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
|
|
{
|
|
if (&pi_ptr->info == proc_desc)
|
|
break;
|
|
}
|
|
|
|
if (pi_ptr == NULL)
|
|
error ("Can't locate dummy extra frame info\n");
|
|
|
|
if (prev_ptr != NULL)
|
|
prev_ptr->next = pi_ptr->next;
|
|
else
|
|
linked_proc_desc_table = pi_ptr->next;
|
|
|
|
free (pi_ptr);
|
|
|
|
write_register (HI_REGNUM,
|
|
read_memory_integer (new_sp - 2 * MIPS_SAVED_REGSIZE,
|
|
MIPS_SAVED_REGSIZE));
|
|
write_register (LO_REGNUM,
|
|
read_memory_integer (new_sp - 3 * MIPS_SAVED_REGSIZE,
|
|
MIPS_SAVED_REGSIZE));
|
|
if (MIPS_FPU_TYPE != MIPS_FPU_NONE)
|
|
write_register (FCRCS_REGNUM,
|
|
read_memory_integer (new_sp - 4 * MIPS_SAVED_REGSIZE,
|
|
MIPS_SAVED_REGSIZE));
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips_print_register (regnum, all)
|
|
int regnum, all;
|
|
{
|
|
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
|
|
|
/* Get the data in raw format. */
|
|
if (read_relative_register_raw_bytes (regnum, raw_buffer))
|
|
{
|
|
printf_filtered ("%s: [Invalid]", REGISTER_NAME (regnum));
|
|
return;
|
|
}
|
|
|
|
/* If an even floating point register, also print as double. */
|
|
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT
|
|
&& !((regnum - FP0_REGNUM) & 1))
|
|
if (REGISTER_RAW_SIZE (regnum) == 4) /* this would be silly on MIPS64 or N32 (Irix 6) */
|
|
{
|
|
char dbuffer[2 * MAX_REGISTER_RAW_SIZE];
|
|
|
|
read_relative_register_raw_bytes (regnum, dbuffer);
|
|
read_relative_register_raw_bytes (regnum + 1, dbuffer + MIPS_REGSIZE);
|
|
REGISTER_CONVERT_TO_TYPE (regnum, builtin_type_double, dbuffer);
|
|
|
|
printf_filtered ("(d%d: ", regnum - FP0_REGNUM);
|
|
val_print (builtin_type_double, dbuffer, 0, 0,
|
|
gdb_stdout, 0, 1, 0, Val_pretty_default);
|
|
printf_filtered ("); ");
|
|
}
|
|
fputs_filtered (REGISTER_NAME (regnum), gdb_stdout);
|
|
|
|
/* The problem with printing numeric register names (r26, etc.) is that
|
|
the user can't use them on input. Probably the best solution is to
|
|
fix it so that either the numeric or the funky (a2, etc.) names
|
|
are accepted on input. */
|
|
if (regnum < MIPS_NUMREGS)
|
|
printf_filtered ("(r%d): ", regnum);
|
|
else
|
|
printf_filtered (": ");
|
|
|
|
/* If virtual format is floating, print it that way. */
|
|
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
|
|
if (FP_REGISTER_DOUBLE)
|
|
{ /* show 8-byte floats as float AND double: */
|
|
int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
|
|
|
|
printf_filtered (" (float) ");
|
|
val_print (builtin_type_float, raw_buffer + offset, 0, 0,
|
|
gdb_stdout, 0, 1, 0, Val_pretty_default);
|
|
printf_filtered (", (double) ");
|
|
val_print (builtin_type_double, raw_buffer, 0, 0,
|
|
gdb_stdout, 0, 1, 0, Val_pretty_default);
|
|
}
|
|
else
|
|
val_print (REGISTER_VIRTUAL_TYPE (regnum), raw_buffer, 0, 0,
|
|
gdb_stdout, 0, 1, 0, Val_pretty_default);
|
|
/* Else print as integer in hex. */
|
|
else
|
|
{
|
|
int offset;
|
|
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
offset = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
|
|
else
|
|
offset = 0;
|
|
|
|
print_scalar_formatted (raw_buffer + offset,
|
|
REGISTER_VIRTUAL_TYPE (regnum),
|
|
'x', 0, gdb_stdout);
|
|
}
|
|
}
|
|
|
|
/* Replacement for generic do_registers_info.
|
|
Print regs in pretty columns. */
|
|
|
|
static int
|
|
do_fp_register_row (regnum)
|
|
int regnum;
|
|
{ /* do values for FP (float) regs */
|
|
char *raw_buffer[2];
|
|
char *dbl_buffer;
|
|
/* use HI and LO to control the order of combining two flt regs */
|
|
int HI = (TARGET_BYTE_ORDER == BIG_ENDIAN);
|
|
int LO = (TARGET_BYTE_ORDER != BIG_ENDIAN);
|
|
double doub, flt1, flt2; /* doubles extracted from raw hex data */
|
|
int inv1, inv2, inv3;
|
|
|
|
raw_buffer[0] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
|
|
raw_buffer[1] = (char *) alloca (REGISTER_RAW_SIZE (FP0_REGNUM));
|
|
dbl_buffer = (char *) alloca (2 * REGISTER_RAW_SIZE (FP0_REGNUM));
|
|
|
|
/* Get the data in raw format. */
|
|
if (read_relative_register_raw_bytes (regnum, raw_buffer[HI]))
|
|
error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
|
|
if (REGISTER_RAW_SIZE (regnum) == 4)
|
|
{
|
|
/* 4-byte registers: we can fit two registers per row. */
|
|
/* Also print every pair of 4-byte regs as an 8-byte double. */
|
|
if (read_relative_register_raw_bytes (regnum + 1, raw_buffer[LO]))
|
|
error ("can't read register %d (%s)",
|
|
regnum + 1, REGISTER_NAME (regnum + 1));
|
|
|
|
/* copy the two floats into one double, and unpack both */
|
|
memcpy (dbl_buffer, raw_buffer, sizeof (dbl_buffer));
|
|
flt1 = unpack_double (builtin_type_float, raw_buffer[HI], &inv1);
|
|
flt2 = unpack_double (builtin_type_float, raw_buffer[LO], &inv2);
|
|
doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
|
|
|
|
printf_filtered (inv1 ? " %-5s: <invalid float>" :
|
|
" %-5s%-17.9g", REGISTER_NAME (regnum), flt1);
|
|
printf_filtered (inv2 ? " %-5s: <invalid float>" :
|
|
" %-5s%-17.9g", REGISTER_NAME (regnum + 1), flt2);
|
|
printf_filtered (inv3 ? " dbl: <invalid double>\n" :
|
|
" dbl: %-24.17g\n", doub);
|
|
/* may want to do hex display here (future enhancement) */
|
|
regnum += 2;
|
|
}
|
|
else
|
|
{ /* eight byte registers: print each one as float AND as double. */
|
|
int offset = 4 * (TARGET_BYTE_ORDER == BIG_ENDIAN);
|
|
|
|
memcpy (dbl_buffer, raw_buffer[HI], sizeof (dbl_buffer));
|
|
flt1 = unpack_double (builtin_type_float,
|
|
&raw_buffer[HI][offset], &inv1);
|
|
doub = unpack_double (builtin_type_double, dbl_buffer, &inv3);
|
|
|
|
printf_filtered (inv1 ? " %-5s: <invalid float>" :
|
|
" %-5s flt: %-17.9g", REGISTER_NAME (regnum), flt1);
|
|
printf_filtered (inv3 ? " dbl: <invalid double>\n" :
|
|
" dbl: %-24.17g\n", doub);
|
|
/* may want to do hex display here (future enhancement) */
|
|
regnum++;
|
|
}
|
|
return regnum;
|
|
}
|
|
|
|
/* Print a row's worth of GP (int) registers, with name labels above */
|
|
|
|
static int
|
|
do_gp_register_row (regnum)
|
|
int regnum;
|
|
{
|
|
/* do values for GP (int) regs */
|
|
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
|
int ncols = (MIPS_REGSIZE == 8 ? 4 : 8); /* display cols per row */
|
|
int col, byte;
|
|
int start_regnum = regnum;
|
|
int numregs = NUM_REGS;
|
|
|
|
|
|
/* For GP registers, we print a separate row of names above the vals */
|
|
printf_filtered (" ");
|
|
for (col = 0; col < ncols && regnum < numregs; regnum++)
|
|
{
|
|
if (*REGISTER_NAME (regnum) == '\0')
|
|
continue; /* unused register */
|
|
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
|
|
break; /* end the row: reached FP register */
|
|
printf_filtered (MIPS_REGSIZE == 8 ? "%17s" : "%9s",
|
|
REGISTER_NAME (regnum));
|
|
col++;
|
|
}
|
|
printf_filtered (start_regnum < MIPS_NUMREGS ? "\n R%-4d" : "\n ",
|
|
start_regnum); /* print the R0 to R31 names */
|
|
|
|
regnum = start_regnum; /* go back to start of row */
|
|
/* now print the values in hex, 4 or 8 to the row */
|
|
for (col = 0; col < ncols && regnum < numregs; regnum++)
|
|
{
|
|
if (*REGISTER_NAME (regnum) == '\0')
|
|
continue; /* unused register */
|
|
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
|
|
break; /* end row: reached FP register */
|
|
/* OK: get the data in raw format. */
|
|
if (read_relative_register_raw_bytes (regnum, raw_buffer))
|
|
error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
|
|
/* pad small registers */
|
|
for (byte = 0; byte < (MIPS_REGSIZE - REGISTER_VIRTUAL_SIZE (regnum)); byte++)
|
|
printf_filtered (" ");
|
|
/* Now print the register value in hex, endian order. */
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
for (byte = REGISTER_RAW_SIZE (regnum) - REGISTER_VIRTUAL_SIZE (regnum);
|
|
byte < REGISTER_RAW_SIZE (regnum);
|
|
byte++)
|
|
printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
|
|
else
|
|
for (byte = REGISTER_VIRTUAL_SIZE (regnum) - 1;
|
|
byte >= 0;
|
|
byte--)
|
|
printf_filtered ("%02x", (unsigned char) raw_buffer[byte]);
|
|
printf_filtered (" ");
|
|
col++;
|
|
}
|
|
if (col > 0) /* ie. if we actually printed anything... */
|
|
printf_filtered ("\n");
|
|
|
|
return regnum;
|
|
}
|
|
|
|
/* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
|
|
|
|
void
|
|
mips_do_registers_info (regnum, fpregs)
|
|
int regnum;
|
|
int fpregs;
|
|
{
|
|
if (regnum != -1) /* do one specified register */
|
|
{
|
|
if (*(REGISTER_NAME (regnum)) == '\0')
|
|
error ("Not a valid register for the current processor type");
|
|
|
|
mips_print_register (regnum, 0);
|
|
printf_filtered ("\n");
|
|
}
|
|
else
|
|
/* do all (or most) registers */
|
|
{
|
|
regnum = 0;
|
|
while (regnum < NUM_REGS)
|
|
{
|
|
if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (regnum)) == TYPE_CODE_FLT)
|
|
if (fpregs) /* true for "INFO ALL-REGISTERS" command */
|
|
regnum = do_fp_register_row (regnum); /* FP regs */
|
|
else
|
|
regnum += MIPS_NUMREGS; /* skip floating point regs */
|
|
else
|
|
regnum = do_gp_register_row (regnum); /* GP (int) regs */
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Return number of args passed to a frame. described by FIP.
|
|
Can return -1, meaning no way to tell. */
|
|
|
|
int
|
|
mips_frame_num_args (frame)
|
|
struct frame_info *frame;
|
|
{
|
|
#if 0 /* FIXME Use or lose this! */
|
|
struct chain_info_t *p;
|
|
|
|
p = mips_find_cached_frame (FRAME_FP (frame));
|
|
if (p->valid)
|
|
return p->the_info.numargs;
|
|
#endif
|
|
return -1;
|
|
}
|
|
|
|
/* Is this a branch with a delay slot? */
|
|
|
|
static int is_delayed PARAMS ((unsigned long));
|
|
|
|
static int
|
|
is_delayed (insn)
|
|
unsigned long insn;
|
|
{
|
|
int i;
|
|
for (i = 0; i < NUMOPCODES; ++i)
|
|
if (mips_opcodes[i].pinfo != INSN_MACRO
|
|
&& (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
|
|
break;
|
|
return (i < NUMOPCODES
|
|
&& (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
|
|
| INSN_COND_BRANCH_DELAY
|
|
| INSN_COND_BRANCH_LIKELY)));
|
|
}
|
|
|
|
int
|
|
mips_step_skips_delay (pc)
|
|
CORE_ADDR pc;
|
|
{
|
|
char buf[MIPS_INSTLEN];
|
|
|
|
/* There is no branch delay slot on MIPS16. */
|
|
if (pc_is_mips16 (pc))
|
|
return 0;
|
|
|
|
if (target_read_memory (pc, buf, MIPS_INSTLEN) != 0)
|
|
/* If error reading memory, guess that it is not a delayed branch. */
|
|
return 0;
|
|
return is_delayed ((unsigned long) extract_unsigned_integer (buf, MIPS_INSTLEN));
|
|
}
|
|
|
|
|
|
/* Skip the PC past function prologue instructions (32-bit version).
|
|
This is a helper function for mips_skip_prologue. */
|
|
|
|
static CORE_ADDR
|
|
mips32_skip_prologue (pc, lenient)
|
|
CORE_ADDR pc; /* starting PC to search from */
|
|
int lenient;
|
|
{
|
|
t_inst inst;
|
|
CORE_ADDR end_pc;
|
|
int seen_sp_adjust = 0;
|
|
int load_immediate_bytes = 0;
|
|
|
|
/* Skip the typical prologue instructions. These are the stack adjustment
|
|
instruction and the instructions that save registers on the stack
|
|
or in the gcc frame. */
|
|
for (end_pc = pc + 100; pc < end_pc; pc += MIPS_INSTLEN)
|
|
{
|
|
unsigned long high_word;
|
|
|
|
inst = mips_fetch_instruction (pc);
|
|
high_word = (inst >> 16) & 0xffff;
|
|
|
|
#if 0
|
|
if (lenient && is_delayed (inst))
|
|
continue;
|
|
#endif
|
|
|
|
if (high_word == 0x27bd /* addiu $sp,$sp,offset */
|
|
|| high_word == 0x67bd) /* daddiu $sp,$sp,offset */
|
|
seen_sp_adjust = 1;
|
|
else if (inst == 0x03a1e823 || /* subu $sp,$sp,$at */
|
|
inst == 0x03a8e823) /* subu $sp,$sp,$t0 */
|
|
seen_sp_adjust = 1;
|
|
else if (((inst & 0xFFE00000) == 0xAFA00000 /* sw reg,n($sp) */
|
|
|| (inst & 0xFFE00000) == 0xFFA00000) /* sd reg,n($sp) */
|
|
&& (inst & 0x001F0000)) /* reg != $zero */
|
|
continue;
|
|
|
|
else if ((inst & 0xFFE00000) == 0xE7A00000) /* swc1 freg,n($sp) */
|
|
continue;
|
|
else if ((inst & 0xF3E00000) == 0xA3C00000 && (inst & 0x001F0000))
|
|
/* sx reg,n($s8) */
|
|
continue; /* reg != $zero */
|
|
|
|
/* move $s8,$sp. With different versions of gas this will be either
|
|
`addu $s8,$sp,$zero' or `or $s8,$sp,$zero' or `daddu s8,sp,$0'.
|
|
Accept any one of these. */
|
|
else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
|
|
continue;
|
|
|
|
else if ((inst & 0xFF9F07FF) == 0x00800021) /* move reg,$a0-$a3 */
|
|
continue;
|
|
else if (high_word == 0x3c1c) /* lui $gp,n */
|
|
continue;
|
|
else if (high_word == 0x279c) /* addiu $gp,$gp,n */
|
|
continue;
|
|
else if (inst == 0x0399e021 /* addu $gp,$gp,$t9 */
|
|
|| inst == 0x033ce021) /* addu $gp,$t9,$gp */
|
|
continue;
|
|
/* The following instructions load $at or $t0 with an immediate
|
|
value in preparation for a stack adjustment via
|
|
subu $sp,$sp,[$at,$t0]. These instructions could also initialize
|
|
a local variable, so we accept them only before a stack adjustment
|
|
instruction was seen. */
|
|
else if (!seen_sp_adjust)
|
|
{
|
|
if (high_word == 0x3c01 || /* lui $at,n */
|
|
high_word == 0x3c08) /* lui $t0,n */
|
|
{
|
|
load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
|
|
continue;
|
|
}
|
|
else if (high_word == 0x3421 || /* ori $at,$at,n */
|
|
high_word == 0x3508 || /* ori $t0,$t0,n */
|
|
high_word == 0x3401 || /* ori $at,$zero,n */
|
|
high_word == 0x3408) /* ori $t0,$zero,n */
|
|
{
|
|
load_immediate_bytes += MIPS_INSTLEN; /* FIXME!! */
|
|
continue;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
/* In a frameless function, we might have incorrectly
|
|
skipped some load immediate instructions. Undo the skipping
|
|
if the load immediate was not followed by a stack adjustment. */
|
|
if (load_immediate_bytes && !seen_sp_adjust)
|
|
pc -= load_immediate_bytes;
|
|
return pc;
|
|
}
|
|
|
|
/* Skip the PC past function prologue instructions (16-bit version).
|
|
This is a helper function for mips_skip_prologue. */
|
|
|
|
static CORE_ADDR
|
|
mips16_skip_prologue (pc, lenient)
|
|
CORE_ADDR pc; /* starting PC to search from */
|
|
int lenient;
|
|
{
|
|
CORE_ADDR end_pc;
|
|
int extend_bytes = 0;
|
|
int prev_extend_bytes;
|
|
|
|
/* Table of instructions likely to be found in a function prologue. */
|
|
static struct
|
|
{
|
|
unsigned short inst;
|
|
unsigned short mask;
|
|
}
|
|
table[] =
|
|
{
|
|
{
|
|
0x6300, 0xff00
|
|
}
|
|
, /* addiu $sp,offset */
|
|
{
|
|
0xfb00, 0xff00
|
|
}
|
|
, /* daddiu $sp,offset */
|
|
{
|
|
0xd000, 0xf800
|
|
}
|
|
, /* sw reg,n($sp) */
|
|
{
|
|
0xf900, 0xff00
|
|
}
|
|
, /* sd reg,n($sp) */
|
|
{
|
|
0x6200, 0xff00
|
|
}
|
|
, /* sw $ra,n($sp) */
|
|
{
|
|
0xfa00, 0xff00
|
|
}
|
|
, /* sd $ra,n($sp) */
|
|
{
|
|
0x673d, 0xffff
|
|
}
|
|
, /* move $s1,sp */
|
|
{
|
|
0xd980, 0xff80
|
|
}
|
|
, /* sw $a0-$a3,n($s1) */
|
|
{
|
|
0x6704, 0xff1c
|
|
}
|
|
, /* move reg,$a0-$a3 */
|
|
{
|
|
0xe809, 0xf81f
|
|
}
|
|
, /* entry pseudo-op */
|
|
{
|
|
0x0100, 0xff00
|
|
}
|
|
, /* addiu $s1,$sp,n */
|
|
{
|
|
0, 0
|
|
} /* end of table marker */
|
|
};
|
|
|
|
/* Skip the typical prologue instructions. These are the stack adjustment
|
|
instruction and the instructions that save registers on the stack
|
|
or in the gcc frame. */
|
|
for (end_pc = pc + 100; pc < end_pc; pc += MIPS16_INSTLEN)
|
|
{
|
|
unsigned short inst;
|
|
int i;
|
|
|
|
inst = mips_fetch_instruction (pc);
|
|
|
|
/* Normally we ignore an extend instruction. However, if it is
|
|
not followed by a valid prologue instruction, we must adjust
|
|
the pc back over the extend so that it won't be considered
|
|
part of the prologue. */
|
|
if ((inst & 0xf800) == 0xf000) /* extend */
|
|
{
|
|
extend_bytes = MIPS16_INSTLEN;
|
|
continue;
|
|
}
|
|
prev_extend_bytes = extend_bytes;
|
|
extend_bytes = 0;
|
|
|
|
/* Check for other valid prologue instructions besides extend. */
|
|
for (i = 0; table[i].mask != 0; i++)
|
|
if ((inst & table[i].mask) == table[i].inst) /* found, get out */
|
|
break;
|
|
if (table[i].mask != 0) /* it was in table? */
|
|
continue; /* ignore it */
|
|
else
|
|
/* non-prologue */
|
|
{
|
|
/* Return the current pc, adjusted backwards by 2 if
|
|
the previous instruction was an extend. */
|
|
return pc - prev_extend_bytes;
|
|
}
|
|
}
|
|
return pc;
|
|
}
|
|
|
|
/* To skip prologues, I use this predicate. Returns either PC itself
|
|
if the code at PC does not look like a function prologue; otherwise
|
|
returns an address that (if we're lucky) follows the prologue. If
|
|
LENIENT, then we must skip everything which is involved in setting
|
|
up the frame (it's OK to skip more, just so long as we don't skip
|
|
anything which might clobber the registers which are being saved.
|
|
We must skip more in the case where part of the prologue is in the
|
|
delay slot of a non-prologue instruction). */
|
|
|
|
CORE_ADDR
|
|
mips_skip_prologue (pc, lenient)
|
|
CORE_ADDR pc;
|
|
int lenient;
|
|
{
|
|
/* See if we can determine the end of the prologue via the symbol table.
|
|
If so, then return either PC, or the PC after the prologue, whichever
|
|
is greater. */
|
|
|
|
CORE_ADDR post_prologue_pc = after_prologue (pc, NULL);
|
|
|
|
if (post_prologue_pc != 0)
|
|
return max (pc, post_prologue_pc);
|
|
|
|
/* Can't determine prologue from the symbol table, need to examine
|
|
instructions. */
|
|
|
|
if (pc_is_mips16 (pc))
|
|
return mips16_skip_prologue (pc, lenient);
|
|
else
|
|
return mips32_skip_prologue (pc, lenient);
|
|
}
|
|
|
|
#if 0
|
|
/* The lenient prologue stuff should be superseded by the code in
|
|
init_extra_frame_info which looks to see whether the stores mentioned
|
|
in the proc_desc have actually taken place. */
|
|
|
|
/* Is address PC in the prologue (loosely defined) for function at
|
|
STARTADDR? */
|
|
|
|
static int
|
|
mips_in_lenient_prologue (startaddr, pc)
|
|
CORE_ADDR startaddr;
|
|
CORE_ADDR pc;
|
|
{
|
|
CORE_ADDR end_prologue = mips_skip_prologue (startaddr, 1);
|
|
return pc >= startaddr && pc < end_prologue;
|
|
}
|
|
#endif
|
|
|
|
/* Determine how a return value is stored within the MIPS register
|
|
file, given the return type `valtype'. */
|
|
|
|
struct return_value_word
|
|
{
|
|
int len;
|
|
int reg;
|
|
int reg_offset;
|
|
int buf_offset;
|
|
};
|
|
|
|
static void return_value_location PARAMS ((struct type *, struct return_value_word *, struct return_value_word *));
|
|
|
|
static void
|
|
return_value_location (valtype, hi, lo)
|
|
struct type *valtype;
|
|
struct return_value_word *hi;
|
|
struct return_value_word *lo;
|
|
{
|
|
int len = TYPE_LENGTH (valtype);
|
|
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT
|
|
&& ((MIPS_FPU_TYPE == MIPS_FPU_DOUBLE && (len == 4 || len == 8))
|
|
|| (MIPS_FPU_TYPE == MIPS_FPU_SINGLE && len == 4)))
|
|
{
|
|
if (!FP_REGISTER_DOUBLE && len == 8)
|
|
{
|
|
/* We need to break a 64bit float in two 32 bit halves and
|
|
spread them across a floating-point register pair. */
|
|
lo->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 4 : 0;
|
|
hi->buf_offset = TARGET_BYTE_ORDER == BIG_ENDIAN ? 0 : 4;
|
|
lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
|
|
&& REGISTER_RAW_SIZE (FP0_REGNUM) == 8)
|
|
? 4 : 0);
|
|
hi->reg_offset = lo->reg_offset;
|
|
lo->reg = FP0_REGNUM + 0;
|
|
hi->reg = FP0_REGNUM + 1;
|
|
lo->len = 4;
|
|
hi->len = 4;
|
|
}
|
|
else
|
|
{
|
|
/* The floating point value fits in a single floating-point
|
|
register. */
|
|
lo->reg_offset = ((TARGET_BYTE_ORDER == BIG_ENDIAN
|
|
&& REGISTER_RAW_SIZE (FP0_REGNUM) == 8
|
|
&& len == 4)
|
|
? 4 : 0);
|
|
lo->reg = FP0_REGNUM;
|
|
lo->len = len;
|
|
lo->buf_offset = 0;
|
|
hi->len = 0;
|
|
hi->reg_offset = 0;
|
|
hi->buf_offset = 0;
|
|
hi->reg = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Locate a result possibly spread across two registers. */
|
|
int regnum = 2;
|
|
lo->reg = regnum + 0;
|
|
hi->reg = regnum + 1;
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN
|
|
&& len < MIPS_SAVED_REGSIZE)
|
|
{
|
|
/* "un-left-justify" the value in the low register */
|
|
lo->reg_offset = MIPS_SAVED_REGSIZE - len;
|
|
lo->len = len;
|
|
hi->reg_offset = 0;
|
|
hi->len = 0;
|
|
}
|
|
else if (TARGET_BYTE_ORDER == BIG_ENDIAN
|
|
&& len > MIPS_SAVED_REGSIZE /* odd-size structs */
|
|
&& len < MIPS_SAVED_REGSIZE * 2
|
|
&& (TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
|
|
TYPE_CODE (valtype) == TYPE_CODE_UNION))
|
|
{
|
|
/* "un-left-justify" the value spread across two registers. */
|
|
lo->reg_offset = 2 * MIPS_SAVED_REGSIZE - len;
|
|
lo->len = MIPS_SAVED_REGSIZE - lo->reg_offset;
|
|
hi->reg_offset = 0;
|
|
hi->len = len - lo->len;
|
|
}
|
|
else
|
|
{
|
|
/* Only perform a partial copy of the second register. */
|
|
lo->reg_offset = 0;
|
|
hi->reg_offset = 0;
|
|
if (len > MIPS_SAVED_REGSIZE)
|
|
{
|
|
lo->len = MIPS_SAVED_REGSIZE;
|
|
hi->len = len - MIPS_SAVED_REGSIZE;
|
|
}
|
|
else
|
|
{
|
|
lo->len = len;
|
|
hi->len = 0;
|
|
}
|
|
}
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN
|
|
&& REGISTER_RAW_SIZE (regnum) == 8
|
|
&& MIPS_SAVED_REGSIZE == 4)
|
|
{
|
|
/* Account for the fact that only the least-signficant part
|
|
of the register is being used */
|
|
lo->reg_offset += 4;
|
|
hi->reg_offset += 4;
|
|
}
|
|
lo->buf_offset = 0;
|
|
hi->buf_offset = lo->len;
|
|
}
|
|
}
|
|
|
|
/* Given a return value in `regbuf' with a type `valtype', extract and
|
|
copy its value into `valbuf'. */
|
|
|
|
void
|
|
mips_extract_return_value (valtype, regbuf, valbuf)
|
|
struct type *valtype;
|
|
char regbuf[REGISTER_BYTES];
|
|
char *valbuf;
|
|
{
|
|
struct return_value_word lo;
|
|
struct return_value_word hi;
|
|
return_value_location (valtype, &lo, &hi);
|
|
|
|
memcpy (valbuf + lo.buf_offset,
|
|
regbuf + REGISTER_BYTE (lo.reg) + lo.reg_offset,
|
|
lo.len);
|
|
|
|
if (hi.len > 0)
|
|
memcpy (valbuf + hi.buf_offset,
|
|
regbuf + REGISTER_BYTE (hi.reg) + hi.reg_offset,
|
|
hi.len);
|
|
|
|
#if 0
|
|
int regnum;
|
|
int offset = 0;
|
|
int len = TYPE_LENGTH (valtype);
|
|
|
|
regnum = 2;
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT
|
|
&& (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
|
|
|| (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
|
|
&& len <= MIPS_FPU_SINGLE_REGSIZE)))
|
|
regnum = FP0_REGNUM;
|
|
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
{ /* "un-left-justify" the value from the register */
|
|
if (len < REGISTER_RAW_SIZE (regnum))
|
|
offset = REGISTER_RAW_SIZE (regnum) - len;
|
|
if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
|
|
len < REGISTER_RAW_SIZE (regnum) * 2 &&
|
|
(TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
|
|
TYPE_CODE (valtype) == TYPE_CODE_UNION))
|
|
offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
|
|
}
|
|
memcpy (valbuf, regbuf + REGISTER_BYTE (regnum) + offset, len);
|
|
REGISTER_CONVERT_TO_TYPE (regnum, valtype, valbuf);
|
|
#endif
|
|
}
|
|
|
|
/* Given a return value in `valbuf' with a type `valtype', write it's
|
|
value into the appropriate register. */
|
|
|
|
void
|
|
mips_store_return_value (valtype, valbuf)
|
|
struct type *valtype;
|
|
char *valbuf;
|
|
{
|
|
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
|
struct return_value_word lo;
|
|
struct return_value_word hi;
|
|
return_value_location (valtype, &lo, &hi);
|
|
|
|
memset (raw_buffer, 0, sizeof (raw_buffer));
|
|
memcpy (raw_buffer + lo.reg_offset, valbuf + lo.buf_offset, lo.len);
|
|
write_register_bytes (REGISTER_BYTE (lo.reg),
|
|
raw_buffer,
|
|
REGISTER_RAW_SIZE (lo.reg));
|
|
|
|
if (hi.len > 0)
|
|
{
|
|
memset (raw_buffer, 0, sizeof (raw_buffer));
|
|
memcpy (raw_buffer + hi.reg_offset, valbuf + hi.buf_offset, hi.len);
|
|
write_register_bytes (REGISTER_BYTE (hi.reg),
|
|
raw_buffer,
|
|
REGISTER_RAW_SIZE (hi.reg));
|
|
}
|
|
|
|
#if 0
|
|
int regnum;
|
|
int offset = 0;
|
|
int len = TYPE_LENGTH (valtype);
|
|
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
|
|
|
regnum = 2;
|
|
if (TYPE_CODE (valtype) == TYPE_CODE_FLT
|
|
&& (MIPS_FPU_TYPE == MIPS_FPU_DOUBLE
|
|
|| (MIPS_FPU_TYPE == MIPS_FPU_SINGLE
|
|
&& len <= MIPS_REGSIZE)))
|
|
regnum = FP0_REGNUM;
|
|
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
{ /* "left-justify" the value in the register */
|
|
if (len < REGISTER_RAW_SIZE (regnum))
|
|
offset = REGISTER_RAW_SIZE (regnum) - len;
|
|
if (len > REGISTER_RAW_SIZE (regnum) && /* odd-size structs */
|
|
len < REGISTER_RAW_SIZE (regnum) * 2 &&
|
|
(TYPE_CODE (valtype) == TYPE_CODE_STRUCT ||
|
|
TYPE_CODE (valtype) == TYPE_CODE_UNION))
|
|
offset = 2 * REGISTER_RAW_SIZE (regnum) - len;
|
|
}
|
|
memcpy (raw_buffer + offset, valbuf, len);
|
|
REGISTER_CONVERT_FROM_TYPE (regnum, valtype, raw_buffer);
|
|
write_register_bytes (REGISTER_BYTE (regnum), raw_buffer,
|
|
len > REGISTER_RAW_SIZE (regnum) ?
|
|
len : REGISTER_RAW_SIZE (regnum));
|
|
#endif
|
|
}
|
|
|
|
/* Exported procedure: Is PC in the signal trampoline code */
|
|
|
|
int
|
|
in_sigtramp (pc, ignore)
|
|
CORE_ADDR pc;
|
|
char *ignore; /* function name */
|
|
{
|
|
if (sigtramp_address == 0)
|
|
fixup_sigtramp ();
|
|
return (pc >= sigtramp_address && pc < sigtramp_end);
|
|
}
|
|
|
|
/* Commands to show/set the MIPS FPU type. */
|
|
|
|
static void show_mipsfpu_command PARAMS ((char *, int));
|
|
static void
|
|
show_mipsfpu_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
char *msg;
|
|
char *fpu;
|
|
switch (MIPS_FPU_TYPE)
|
|
{
|
|
case MIPS_FPU_SINGLE:
|
|
fpu = "single-precision";
|
|
break;
|
|
case MIPS_FPU_DOUBLE:
|
|
fpu = "double-precision";
|
|
break;
|
|
case MIPS_FPU_NONE:
|
|
fpu = "absent (none)";
|
|
break;
|
|
}
|
|
if (mips_fpu_type_auto)
|
|
printf_unfiltered ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
|
|
fpu);
|
|
else
|
|
printf_unfiltered ("The MIPS floating-point coprocessor is assumed to be %s\n",
|
|
fpu);
|
|
}
|
|
|
|
|
|
static void set_mipsfpu_command PARAMS ((char *, int));
|
|
static void
|
|
set_mipsfpu_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
printf_unfiltered ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
|
|
show_mipsfpu_command (args, from_tty);
|
|
}
|
|
|
|
static void set_mipsfpu_single_command PARAMS ((char *, int));
|
|
static void
|
|
set_mipsfpu_single_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
mips_fpu_type = MIPS_FPU_SINGLE;
|
|
mips_fpu_type_auto = 0;
|
|
if (GDB_MULTI_ARCH)
|
|
{
|
|
gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_SINGLE;
|
|
}
|
|
}
|
|
|
|
static void set_mipsfpu_double_command PARAMS ((char *, int));
|
|
static void
|
|
set_mipsfpu_double_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
mips_fpu_type = MIPS_FPU_DOUBLE;
|
|
mips_fpu_type_auto = 0;
|
|
if (GDB_MULTI_ARCH)
|
|
{
|
|
gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_DOUBLE;
|
|
}
|
|
}
|
|
|
|
static void set_mipsfpu_none_command PARAMS ((char *, int));
|
|
static void
|
|
set_mipsfpu_none_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
mips_fpu_type = MIPS_FPU_NONE;
|
|
mips_fpu_type_auto = 0;
|
|
if (GDB_MULTI_ARCH)
|
|
{
|
|
gdbarch_tdep (current_gdbarch)->mips_fpu_type = MIPS_FPU_NONE;
|
|
}
|
|
}
|
|
|
|
static void set_mipsfpu_auto_command PARAMS ((char *, int));
|
|
static void
|
|
set_mipsfpu_auto_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
mips_fpu_type_auto = 1;
|
|
}
|
|
|
|
/* Command to set the processor type. */
|
|
|
|
void
|
|
mips_set_processor_type_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
int i;
|
|
|
|
if (tmp_mips_processor_type == NULL || *tmp_mips_processor_type == '\0')
|
|
{
|
|
printf_unfiltered ("The known MIPS processor types are as follows:\n\n");
|
|
for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
|
|
printf_unfiltered ("%s\n", mips_processor_type_table[i].name);
|
|
|
|
/* Restore the value. */
|
|
tmp_mips_processor_type = strsave (mips_processor_type);
|
|
|
|
return;
|
|
}
|
|
|
|
if (!mips_set_processor_type (tmp_mips_processor_type))
|
|
{
|
|
error ("Unknown processor type `%s'.", tmp_mips_processor_type);
|
|
/* Restore its value. */
|
|
tmp_mips_processor_type = strsave (mips_processor_type);
|
|
}
|
|
}
|
|
|
|
static void
|
|
mips_show_processor_type_command (args, from_tty)
|
|
char *args;
|
|
int from_tty;
|
|
{
|
|
}
|
|
|
|
/* Modify the actual processor type. */
|
|
|
|
int
|
|
mips_set_processor_type (str)
|
|
char *str;
|
|
{
|
|
int i, j;
|
|
|
|
if (str == NULL)
|
|
return 0;
|
|
|
|
for (i = 0; mips_processor_type_table[i].name != NULL; ++i)
|
|
{
|
|
if (strcasecmp (str, mips_processor_type_table[i].name) == 0)
|
|
{
|
|
mips_processor_type = str;
|
|
mips_processor_reg_names = mips_processor_type_table[i].regnames;
|
|
return 1;
|
|
/* FIXME tweak fpu flag too */
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Attempt to identify the particular processor model by reading the
|
|
processor id. */
|
|
|
|
char *
|
|
mips_read_processor_type ()
|
|
{
|
|
CORE_ADDR prid;
|
|
|
|
prid = read_register (PRID_REGNUM);
|
|
|
|
if ((prid & ~0xf) == 0x700)
|
|
return savestring ("r3041", strlen ("r3041"));
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Just like reinit_frame_cache, but with the right arguments to be
|
|
callable as an sfunc. */
|
|
|
|
static void
|
|
reinit_frame_cache_sfunc (args, from_tty, c)
|
|
char *args;
|
|
int from_tty;
|
|
struct cmd_list_element *c;
|
|
{
|
|
reinit_frame_cache ();
|
|
}
|
|
|
|
int
|
|
gdb_print_insn_mips (memaddr, info)
|
|
bfd_vma memaddr;
|
|
disassemble_info *info;
|
|
{
|
|
mips_extra_func_info_t proc_desc;
|
|
|
|
/* Search for the function containing this address. Set the low bit
|
|
of the address when searching, in case we were given an even address
|
|
that is the start of a 16-bit function. If we didn't do this,
|
|
the search would fail because the symbol table says the function
|
|
starts at an odd address, i.e. 1 byte past the given address. */
|
|
memaddr = ADDR_BITS_REMOVE (memaddr);
|
|
proc_desc = non_heuristic_proc_desc (MAKE_MIPS16_ADDR (memaddr), NULL);
|
|
|
|
/* Make an attempt to determine if this is a 16-bit function. If
|
|
the procedure descriptor exists and the address therein is odd,
|
|
it's definitely a 16-bit function. Otherwise, we have to just
|
|
guess that if the address passed in is odd, it's 16-bits. */
|
|
if (proc_desc)
|
|
info->mach = pc_is_mips16 (PROC_LOW_ADDR (proc_desc)) ? 16 : TM_PRINT_INSN_MACH;
|
|
else
|
|
info->mach = pc_is_mips16 (memaddr) ? 16 : TM_PRINT_INSN_MACH;
|
|
|
|
/* Round down the instruction address to the appropriate boundary. */
|
|
memaddr &= (info->mach == 16 ? ~1 : ~3);
|
|
|
|
/* Call the appropriate disassembler based on the target endian-ness. */
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
return print_insn_big_mips (memaddr, info);
|
|
else
|
|
return print_insn_little_mips (memaddr, info);
|
|
}
|
|
|
|
/* Old-style breakpoint macros.
|
|
The IDT board uses an unusual breakpoint value, and sometimes gets
|
|
confused when it sees the usual MIPS breakpoint instruction. */
|
|
|
|
#define BIG_BREAKPOINT {0, 0x5, 0, 0xd}
|
|
#define LITTLE_BREAKPOINT {0xd, 0, 0x5, 0}
|
|
#define PMON_BIG_BREAKPOINT {0, 0, 0, 0xd}
|
|
#define PMON_LITTLE_BREAKPOINT {0xd, 0, 0, 0}
|
|
#define IDT_BIG_BREAKPOINT {0, 0, 0x0a, 0xd}
|
|
#define IDT_LITTLE_BREAKPOINT {0xd, 0x0a, 0, 0}
|
|
#define MIPS16_BIG_BREAKPOINT {0xe8, 0xa5}
|
|
#define MIPS16_LITTLE_BREAKPOINT {0xa5, 0xe8}
|
|
|
|
/* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
|
|
counter value to determine whether a 16- or 32-bit breakpoint should be
|
|
used. It returns a pointer to a string of bytes that encode a breakpoint
|
|
instruction, stores the length of the string to *lenptr, and adjusts pc
|
|
(if necessary) to point to the actual memory location where the
|
|
breakpoint should be inserted. */
|
|
|
|
unsigned char *
|
|
mips_breakpoint_from_pc (pcptr, lenptr)
|
|
CORE_ADDR *pcptr;
|
|
int *lenptr;
|
|
{
|
|
if (TARGET_BYTE_ORDER == BIG_ENDIAN)
|
|
{
|
|
if (pc_is_mips16 (*pcptr))
|
|
{
|
|
static char mips16_big_breakpoint[] = MIPS16_BIG_BREAKPOINT;
|
|
*pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
|
|
*lenptr = sizeof (mips16_big_breakpoint);
|
|
return mips16_big_breakpoint;
|
|
}
|
|
else
|
|
{
|
|
static char big_breakpoint[] = BIG_BREAKPOINT;
|
|
static char pmon_big_breakpoint[] = PMON_BIG_BREAKPOINT;
|
|
static char idt_big_breakpoint[] = IDT_BIG_BREAKPOINT;
|
|
|
|
*lenptr = sizeof (big_breakpoint);
|
|
|
|
if (strcmp (target_shortname, "mips") == 0)
|
|
return idt_big_breakpoint;
|
|
else if (strcmp (target_shortname, "ddb") == 0
|
|
|| strcmp (target_shortname, "pmon") == 0
|
|
|| strcmp (target_shortname, "lsi") == 0)
|
|
return pmon_big_breakpoint;
|
|
else
|
|
return big_breakpoint;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (pc_is_mips16 (*pcptr))
|
|
{
|
|
static char mips16_little_breakpoint[] = MIPS16_LITTLE_BREAKPOINT;
|
|
*pcptr = UNMAKE_MIPS16_ADDR (*pcptr);
|
|
*lenptr = sizeof (mips16_little_breakpoint);
|
|
return mips16_little_breakpoint;
|
|
}
|
|
else
|
|
{
|
|
static char little_breakpoint[] = LITTLE_BREAKPOINT;
|
|
static char pmon_little_breakpoint[] = PMON_LITTLE_BREAKPOINT;
|
|
static char idt_little_breakpoint[] = IDT_LITTLE_BREAKPOINT;
|
|
|
|
*lenptr = sizeof (little_breakpoint);
|
|
|
|
if (strcmp (target_shortname, "mips") == 0)
|
|
return idt_little_breakpoint;
|
|
else if (strcmp (target_shortname, "ddb") == 0
|
|
|| strcmp (target_shortname, "pmon") == 0
|
|
|| strcmp (target_shortname, "lsi") == 0)
|
|
return pmon_little_breakpoint;
|
|
else
|
|
return little_breakpoint;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If PC is in a mips16 call or return stub, return the address of the target
|
|
PC, which is either the callee or the caller. There are several
|
|
cases which must be handled:
|
|
|
|
* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
|
|
target PC is in $31 ($ra).
|
|
* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
|
|
and the target PC is in $2.
|
|
* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
|
|
before the jal instruction, this is effectively a call stub
|
|
and the the target PC is in $2. Otherwise this is effectively
|
|
a return stub and the target PC is in $18.
|
|
|
|
See the source code for the stubs in gcc/config/mips/mips16.S for
|
|
gory details.
|
|
|
|
This function implements the SKIP_TRAMPOLINE_CODE macro.
|
|
*/
|
|
|
|
CORE_ADDR
|
|
mips_skip_stub (pc)
|
|
CORE_ADDR pc;
|
|
{
|
|
char *name;
|
|
CORE_ADDR start_addr;
|
|
|
|
/* Find the starting address and name of the function containing the PC. */
|
|
if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
|
|
return 0;
|
|
|
|
/* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
|
|
target PC is in $31 ($ra). */
|
|
if (strcmp (name, "__mips16_ret_sf") == 0
|
|
|| strcmp (name, "__mips16_ret_df") == 0)
|
|
return read_register (RA_REGNUM);
|
|
|
|
if (strncmp (name, "__mips16_call_stub_", 19) == 0)
|
|
{
|
|
/* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
|
|
and the target PC is in $2. */
|
|
if (name[19] >= '0' && name[19] <= '9')
|
|
return read_register (2);
|
|
|
|
/* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
|
|
before the jal instruction, this is effectively a call stub
|
|
and the the target PC is in $2. Otherwise this is effectively
|
|
a return stub and the target PC is in $18. */
|
|
else if (name[19] == 's' || name[19] == 'd')
|
|
{
|
|
if (pc == start_addr)
|
|
{
|
|
/* Check if the target of the stub is a compiler-generated
|
|
stub. Such a stub for a function bar might have a name
|
|
like __fn_stub_bar, and might look like this:
|
|
mfc1 $4,$f13
|
|
mfc1 $5,$f12
|
|
mfc1 $6,$f15
|
|
mfc1 $7,$f14
|
|
la $1,bar (becomes a lui/addiu pair)
|
|
jr $1
|
|
So scan down to the lui/addi and extract the target
|
|
address from those two instructions. */
|
|
|
|
CORE_ADDR target_pc = read_register (2);
|
|
t_inst inst;
|
|
int i;
|
|
|
|
/* See if the name of the target function is __fn_stub_*. */
|
|
if (find_pc_partial_function (target_pc, &name, NULL, NULL) == 0)
|
|
return target_pc;
|
|
if (strncmp (name, "__fn_stub_", 10) != 0
|
|
&& strcmp (name, "etext") != 0
|
|
&& strcmp (name, "_etext") != 0)
|
|
return target_pc;
|
|
|
|
/* Scan through this _fn_stub_ code for the lui/addiu pair.
|
|
The limit on the search is arbitrarily set to 20
|
|
instructions. FIXME. */
|
|
for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSTLEN)
|
|
{
|
|
inst = mips_fetch_instruction (target_pc);
|
|
if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
|
|
pc = (inst << 16) & 0xffff0000; /* high word */
|
|
else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
|
|
return pc | (inst & 0xffff); /* low word */
|
|
}
|
|
|
|
/* Couldn't find the lui/addui pair, so return stub address. */
|
|
return target_pc;
|
|
}
|
|
else
|
|
/* This is the 'return' part of a call stub. The return
|
|
address is in $r18. */
|
|
return read_register (18);
|
|
}
|
|
}
|
|
return 0; /* not a stub */
|
|
}
|
|
|
|
|
|
/* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
|
|
This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
|
|
|
|
int
|
|
mips_in_call_stub (pc, name)
|
|
CORE_ADDR pc;
|
|
char *name;
|
|
{
|
|
CORE_ADDR start_addr;
|
|
|
|
/* Find the starting address of the function containing the PC. If the
|
|
caller didn't give us a name, look it up at the same time. */
|
|
if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) == 0)
|
|
return 0;
|
|
|
|
if (strncmp (name, "__mips16_call_stub_", 19) == 0)
|
|
{
|
|
/* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
|
|
if (name[19] >= '0' && name[19] <= '9')
|
|
return 1;
|
|
/* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
|
|
before the jal instruction, this is effectively a call stub. */
|
|
else if (name[19] == 's' || name[19] == 'd')
|
|
return pc == start_addr;
|
|
}
|
|
|
|
return 0; /* not a stub */
|
|
}
|
|
|
|
|
|
/* Return non-zero if the PC is inside a return thunk (aka stub or trampoline).
|
|
This implements the IN_SOLIB_RETURN_TRAMPOLINE macro. */
|
|
|
|
int
|
|
mips_in_return_stub (pc, name)
|
|
CORE_ADDR pc;
|
|
char *name;
|
|
{
|
|
CORE_ADDR start_addr;
|
|
|
|
/* Find the starting address of the function containing the PC. */
|
|
if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
|
|
return 0;
|
|
|
|
/* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
|
|
if (strcmp (name, "__mips16_ret_sf") == 0
|
|
|| strcmp (name, "__mips16_ret_df") == 0)
|
|
return 1;
|
|
|
|
/* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
|
|
i.e. after the jal instruction, this is effectively a return stub. */
|
|
if (strncmp (name, "__mips16_call_stub_", 19) == 0
|
|
&& (name[19] == 's' || name[19] == 'd')
|
|
&& pc != start_addr)
|
|
return 1;
|
|
|
|
return 0; /* not a stub */
|
|
}
|
|
|
|
|
|
/* Return non-zero if the PC is in a library helper function that should
|
|
be ignored. This implements the IGNORE_HELPER_CALL macro. */
|
|
|
|
int
|
|
mips_ignore_helper (pc)
|
|
CORE_ADDR pc;
|
|
{
|
|
char *name;
|
|
|
|
/* Find the starting address and name of the function containing the PC. */
|
|
if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
|
|
return 0;
|
|
|
|
/* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
|
|
that we want to ignore. */
|
|
return (strcmp (name, "__mips16_ret_sf") == 0
|
|
|| strcmp (name, "__mips16_ret_df") == 0);
|
|
}
|
|
|
|
|
|
/* Return a location where we can set a breakpoint that will be hit
|
|
when an inferior function call returns. This is normally the
|
|
program's entry point. Executables that don't have an entry
|
|
point (e.g. programs in ROM) should define a symbol __CALL_DUMMY_ADDRESS
|
|
whose address is the location where the breakpoint should be placed. */
|
|
|
|
CORE_ADDR
|
|
mips_call_dummy_address ()
|
|
{
|
|
struct minimal_symbol *sym;
|
|
|
|
sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
|
|
if (sym)
|
|
return SYMBOL_VALUE_ADDRESS (sym);
|
|
else
|
|
return entry_point_address ();
|
|
}
|
|
|
|
|
|
|
|
static gdbarch_init_ftype mips_gdbarch_init;
|
|
static struct gdbarch *
|
|
mips_gdbarch_init (info, arches)
|
|
struct gdbarch_info info;
|
|
struct gdbarch_list *arches;
|
|
{
|
|
static LONGEST mips_call_dummy_words[] =
|
|
{0};
|
|
struct gdbarch *gdbarch;
|
|
struct gdbarch_tdep *tdep;
|
|
int elf_flags;
|
|
char *ef_mips_abi;
|
|
int ef_mips_bitptrs;
|
|
int ef_mips_arch;
|
|
|
|
/* Extract the elf_flags if available */
|
|
if (info.abfd != NULL
|
|
&& bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
|
|
elf_flags = elf_elfheader (info.abfd)->e_flags;
|
|
else
|
|
elf_flags = 0;
|
|
|
|
/* try to find a pre-existing architecture */
|
|
for (arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
arches != NULL;
|
|
arches = gdbarch_list_lookup_by_info (arches->next, &info))
|
|
{
|
|
/* MIPS needs to be pedantic about which ABI the object is
|
|
using. */
|
|
if (gdbarch_tdep (current_gdbarch)->elf_flags != elf_flags)
|
|
continue;
|
|
return arches->gdbarch;
|
|
}
|
|
|
|
/* Need a new architecture. Fill in a target specific vector. */
|
|
tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
|
|
gdbarch = gdbarch_alloc (&info, tdep);
|
|
tdep->elf_flags = elf_flags;
|
|
|
|
/* Initially set everything according to the ABI. */
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
|
switch ((elf_flags & EF_MIPS_ABI))
|
|
{
|
|
case E_MIPS_ABI_O32:
|
|
ef_mips_abi = "o32";
|
|
tdep->mips_eabi = 0;
|
|
tdep->mips_saved_regsize = 4;
|
|
tdep->mips_fp_register_double = 0;
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
break;
|
|
case E_MIPS_ABI_O64:
|
|
ef_mips_abi = "o64";
|
|
tdep->mips_eabi = 0;
|
|
tdep->mips_saved_regsize = 8;
|
|
tdep->mips_fp_register_double = 1;
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
break;
|
|
case E_MIPS_ABI_EABI32:
|
|
ef_mips_abi = "eabi32";
|
|
tdep->mips_eabi = 1;
|
|
tdep->mips_saved_regsize = 4;
|
|
tdep->mips_fp_register_double = 0;
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
break;
|
|
case E_MIPS_ABI_EABI64:
|
|
ef_mips_abi = "eabi64";
|
|
tdep->mips_eabi = 1;
|
|
tdep->mips_saved_regsize = 8;
|
|
tdep->mips_fp_register_double = 1;
|
|
set_gdbarch_long_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 64);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
break;
|
|
default:
|
|
ef_mips_abi = "default";
|
|
tdep->mips_eabi = 0;
|
|
tdep->mips_saved_regsize = MIPS_REGSIZE;
|
|
tdep->mips_fp_register_double = (REGISTER_VIRTUAL_SIZE (FP0_REGNUM) == 8);
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
break;
|
|
}
|
|
|
|
/* determine the ISA */
|
|
switch (elf_flags & EF_MIPS_ARCH)
|
|
{
|
|
case E_MIPS_ARCH_1:
|
|
ef_mips_arch = 1;
|
|
break;
|
|
case E_MIPS_ARCH_2:
|
|
ef_mips_arch = 2;
|
|
break;
|
|
case E_MIPS_ARCH_3:
|
|
ef_mips_arch = 3;
|
|
break;
|
|
case E_MIPS_ARCH_4:
|
|
ef_mips_arch = 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
/* determine the size of a pointer */
|
|
if ((elf_flags & EF_MIPS_32BITPTRS))
|
|
{
|
|
ef_mips_bitptrs = 32;
|
|
}
|
|
else if ((elf_flags & EF_MIPS_64BITPTRS))
|
|
{
|
|
ef_mips_bitptrs = 64;
|
|
}
|
|
else
|
|
{
|
|
ef_mips_bitptrs = 0;
|
|
}
|
|
#endif
|
|
|
|
/* Select either of the two alternative ABI's */
|
|
if (tdep->mips_eabi)
|
|
{
|
|
/* EABI uses R4 through R11 for args */
|
|
tdep->mips_last_arg_regnum = 11;
|
|
/* EABI uses F12 through F19 for args */
|
|
tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 19;
|
|
}
|
|
else
|
|
{
|
|
/* old ABI uses R4 through R7 for args */
|
|
tdep->mips_last_arg_regnum = 7;
|
|
/* old ABI uses F12 through F15 for args */
|
|
tdep->mips_last_fp_arg_regnum = FP0_REGNUM + 15;
|
|
}
|
|
|
|
/* enable/disable the MIPS FPU */
|
|
if (!mips_fpu_type_auto)
|
|
tdep->mips_fpu_type = mips_fpu_type;
|
|
else if (info.bfd_arch_info != NULL
|
|
&& info.bfd_arch_info->arch == bfd_arch_mips)
|
|
switch (info.bfd_arch_info->mach)
|
|
{
|
|
case bfd_mach_mips4100:
|
|
case bfd_mach_mips4111:
|
|
tdep->mips_fpu_type = MIPS_FPU_NONE;
|
|
break;
|
|
default:
|
|
tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
|
|
break;
|
|
}
|
|
else
|
|
tdep->mips_fpu_type = MIPS_FPU_DOUBLE;
|
|
|
|
/* MIPS version of register names. NOTE: At present the MIPS
|
|
register name management is part way between the old -
|
|
#undef/#define REGISTER_NAMES and the new REGISTER_NAME(nr).
|
|
Further work on it is required. */
|
|
set_gdbarch_register_name (gdbarch, mips_register_name);
|
|
set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
|
|
set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
|
|
set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
|
|
set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
|
|
set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
|
|
set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
|
|
|
|
/* Initialize a frame */
|
|
set_gdbarch_init_extra_frame_info (gdbarch, mips_init_extra_frame_info);
|
|
|
|
/* MIPS version of CALL_DUMMY */
|
|
|
|
set_gdbarch_call_dummy_p (gdbarch, 1);
|
|
set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
|
|
set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
|
|
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
|
|
set_gdbarch_call_dummy_address (gdbarch, mips_call_dummy_address);
|
|
set_gdbarch_call_dummy_start_offset (gdbarch, 0);
|
|
set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
|
|
set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
|
|
set_gdbarch_call_dummy_length (gdbarch, 0);
|
|
set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
|
|
set_gdbarch_call_dummy_words (gdbarch, mips_call_dummy_words);
|
|
set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (mips_call_dummy_words));
|
|
set_gdbarch_push_return_address (gdbarch, mips_push_return_address);
|
|
set_gdbarch_push_arguments (gdbarch, mips_push_arguments);
|
|
set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
|
|
|
|
set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
|
|
set_gdbarch_get_saved_register (gdbarch, default_get_saved_register);
|
|
|
|
if (gdbarch_debug)
|
|
{
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"mips_gdbarch_init: (info)elf_flags = 0x%x\n",
|
|
elf_flags);
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"mips_gdbarch_init: (info)ef_mips_abi = %s\n",
|
|
ef_mips_abi);
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"mips_gdbarch_init: (info)ef_mips_arch = %d\n",
|
|
ef_mips_arch);
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"mips_gdbarch_init: (info)ef_mips_bitptrs = %d\n",
|
|
ef_mips_bitptrs);
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"mips_gdbarch_init: MIPS_EABI = %d\n",
|
|
tdep->mips_eabi);
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"mips_gdbarch_init: MIPS_LAST_ARG_REGNUM = %d\n",
|
|
tdep->mips_last_arg_regnum);
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"mips_gdbarch_init: MIPS_LAST_FP_ARG_REGNUM = %d (%d)\n",
|
|
tdep->mips_last_fp_arg_regnum,
|
|
tdep->mips_last_fp_arg_regnum - FP0_REGNUM);
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"mips_gdbarch_init: tdep->mips_fpu_type = %d (%s)\n",
|
|
tdep->mips_fpu_type,
|
|
(tdep->mips_fpu_type == MIPS_FPU_NONE ? "none"
|
|
: tdep->mips_fpu_type == MIPS_FPU_SINGLE ? "single"
|
|
: tdep->mips_fpu_type == MIPS_FPU_DOUBLE ? "double"
|
|
: "???"));
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"mips_gdbarch_init: tdep->mips_saved_regsize = %d\n",
|
|
tdep->mips_saved_regsize);
|
|
fprintf_unfiltered (gdb_stderr,
|
|
"mips_gdbarch_init: tdep->mips_fp_register_double = %d (%s)\n",
|
|
tdep->mips_fp_register_double,
|
|
(tdep->mips_fp_register_double ? "true" : "false"));
|
|
}
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
|
|
void
|
|
_initialize_mips_tdep ()
|
|
{
|
|
static struct cmd_list_element *mipsfpulist = NULL;
|
|
struct cmd_list_element *c;
|
|
|
|
if (GDB_MULTI_ARCH)
|
|
register_gdbarch_init (bfd_arch_mips, mips_gdbarch_init);
|
|
if (!tm_print_insn) /* Someone may have already set it */
|
|
tm_print_insn = gdb_print_insn_mips;
|
|
|
|
/* Let the user turn off floating point and set the fence post for
|
|
heuristic_proc_start. */
|
|
|
|
add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
|
|
"Set use of MIPS floating-point coprocessor.",
|
|
&mipsfpulist, "set mipsfpu ", 0, &setlist);
|
|
add_cmd ("single", class_support, set_mipsfpu_single_command,
|
|
"Select single-precision MIPS floating-point coprocessor.",
|
|
&mipsfpulist);
|
|
add_cmd ("double", class_support, set_mipsfpu_double_command,
|
|
"Select double-precision MIPS floating-point coprocessor .",
|
|
&mipsfpulist);
|
|
add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
|
|
add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
|
|
add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
|
|
add_cmd ("none", class_support, set_mipsfpu_none_command,
|
|
"Select no MIPS floating-point coprocessor.",
|
|
&mipsfpulist);
|
|
add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
|
|
add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
|
|
add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
|
|
add_cmd ("auto", class_support, set_mipsfpu_auto_command,
|
|
"Select MIPS floating-point coprocessor automatically.",
|
|
&mipsfpulist);
|
|
add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
|
|
"Show current use of MIPS floating-point coprocessor target.",
|
|
&showlist);
|
|
|
|
#if !GDB_MULTI_ARCH
|
|
c = add_set_cmd ("processor", class_support, var_string_noescape,
|
|
(char *) &tmp_mips_processor_type,
|
|
"Set the type of MIPS processor in use.\n\
|
|
Set this to be able to access processor-type-specific registers.\n\
|
|
",
|
|
&setlist);
|
|
c->function.cfunc = mips_set_processor_type_command;
|
|
c = add_show_from_set (c, &showlist);
|
|
c->function.cfunc = mips_show_processor_type_command;
|
|
|
|
tmp_mips_processor_type = strsave (DEFAULT_MIPS_TYPE);
|
|
mips_set_processor_type_command (strsave (DEFAULT_MIPS_TYPE), 0);
|
|
#endif
|
|
|
|
/* We really would like to have both "0" and "unlimited" work, but
|
|
command.c doesn't deal with that. So make it a var_zinteger
|
|
because the user can always use "999999" or some such for unlimited. */
|
|
c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
|
|
(char *) &heuristic_fence_post,
|
|
"\
|
|
Set the distance searched for the start of a function.\n\
|
|
If you are debugging a stripped executable, GDB needs to search through the\n\
|
|
program for the start of a function. This command sets the distance of the\n\
|
|
search. The only need to set it is when debugging a stripped executable.",
|
|
&setlist);
|
|
/* We need to throw away the frame cache when we set this, since it
|
|
might change our ability to get backtraces. */
|
|
c->function.sfunc = reinit_frame_cache_sfunc;
|
|
add_show_from_set (c, &showlist);
|
|
|
|
/* Allow the user to control whether the upper bits of 64-bit
|
|
addresses should be zeroed. */
|
|
add_show_from_set
|
|
(add_set_cmd ("mask-address", no_class, var_boolean, (char *) &mask_address_p,
|
|
"Set zeroing of upper 32 bits of 64-bit addresses.\n\
|
|
Use \"on\" to enable the masking, and \"off\" to disable it.\n\
|
|
Without an argument, zeroing of upper address bits is enabled.", &setlist),
|
|
&showlist);
|
|
|
|
/* Allow the user to control the size of 32 bit registers within the
|
|
raw remote packet. */
|
|
add_show_from_set (add_set_cmd ("remote-mips64-transfers-32bit-regs",
|
|
class_obscure,
|
|
var_boolean,
|
|
(char *)&mips64_transfers_32bit_regs_p, "\
|
|
Set compatibility with MIPS targets that transfers 32 and 64 bit quantities.\n\
|
|
Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
|
|
that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
|
|
64 bits for others. Use \"off\" to disable compatibility mode",
|
|
&setlist),
|
|
&showlist);
|
|
}
|