mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-30 13:33:53 +08:00
1d2f86b6b7
Currently, it's not possible to call a variadic C++ function: ``` (gdb) print sum_vararg_int(1, 10) Cannot resolve function sum_vararg_int to any overloaded instance (gdb) print sum_vararg_int(2, 20, 30) Cannot resolve function sum_vararg_int to any overloaded instance ``` It's because all additional arguments get the TOO_FEW_PARAMS_BADNESS rank by rank_function, which disqualifies the function. To fix this, I've created the new VARARG_BADNESS rank, which is used only for additional arguments of variadic functions, allowing them to be called: ``` (gdb) print sum_vararg_int(1, 10) $1 = 10 (gdb) print sum_vararg_int(2, 20, 30) $2 = 50 ``` Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28589 Approved-By: Tom Tromey <tom@tromey.com>
6125 lines
172 KiB
C
6125 lines
172 KiB
C
/* Support routines for manipulating internal types for GDB.
|
||
|
||
Copyright (C) 1992-2023 Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Support, using pieces from other GDB modules.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "bfd.h"
|
||
#include "symtab.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
#include "language.h"
|
||
#include "target.h"
|
||
#include "value.h"
|
||
#include "demangle.h"
|
||
#include "complaints.h"
|
||
#include "gdbcmd.h"
|
||
#include "cp-abi.h"
|
||
#include "hashtab.h"
|
||
#include "cp-support.h"
|
||
#include "bcache.h"
|
||
#include "dwarf2/loc.h"
|
||
#include "dwarf2/read.h"
|
||
#include "gdbcore.h"
|
||
#include "floatformat.h"
|
||
#include "f-lang.h"
|
||
#include <algorithm>
|
||
#include "gmp-utils.h"
|
||
#include "rust-lang.h"
|
||
#include "ada-lang.h"
|
||
|
||
/* The value of an invalid conversion badness. */
|
||
#define INVALID_CONVERSION 100
|
||
|
||
static struct dynamic_prop_list *
|
||
copy_dynamic_prop_list (struct obstack *, struct dynamic_prop_list *);
|
||
|
||
/* Initialize BADNESS constants. */
|
||
|
||
const struct rank LENGTH_MISMATCH_BADNESS = {INVALID_CONVERSION,0};
|
||
|
||
const struct rank TOO_FEW_PARAMS_BADNESS = {INVALID_CONVERSION,0};
|
||
const struct rank INCOMPATIBLE_TYPE_BADNESS = {INVALID_CONVERSION,0};
|
||
|
||
const struct rank EXACT_MATCH_BADNESS = {0,0};
|
||
|
||
const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
|
||
const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
|
||
const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
|
||
const struct rank CV_CONVERSION_BADNESS = {1, 0};
|
||
const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
|
||
const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
|
||
const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
|
||
const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
|
||
const struct rank BOOL_CONVERSION_BADNESS = {3,0};
|
||
const struct rank BASE_CONVERSION_BADNESS = {2,0};
|
||
const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
|
||
const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
|
||
const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
|
||
const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
|
||
const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
|
||
const struct rank VARARG_BADNESS = {4, 0};
|
||
|
||
/* Floatformat pairs. */
|
||
const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_ieee_half_big,
|
||
&floatformat_ieee_half_little
|
||
};
|
||
const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_ieee_single_big,
|
||
&floatformat_ieee_single_little
|
||
};
|
||
const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_ieee_double_big,
|
||
&floatformat_ieee_double_little
|
||
};
|
||
const struct floatformat *floatformats_ieee_quad[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_ieee_quad_big,
|
||
&floatformat_ieee_quad_little
|
||
};
|
||
const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_ieee_double_big,
|
||
&floatformat_ieee_double_littlebyte_bigword
|
||
};
|
||
const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_i387_ext,
|
||
&floatformat_i387_ext
|
||
};
|
||
const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_m68881_ext,
|
||
&floatformat_m68881_ext
|
||
};
|
||
const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_arm_ext_big,
|
||
&floatformat_arm_ext_littlebyte_bigword
|
||
};
|
||
const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_ia64_spill_big,
|
||
&floatformat_ia64_spill_little
|
||
};
|
||
const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_vax_f,
|
||
&floatformat_vax_f
|
||
};
|
||
const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_vax_d,
|
||
&floatformat_vax_d
|
||
};
|
||
const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_ibm_long_double_big,
|
||
&floatformat_ibm_long_double_little
|
||
};
|
||
const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
|
||
&floatformat_bfloat16_big,
|
||
&floatformat_bfloat16_little
|
||
};
|
||
|
||
/* Should opaque types be resolved? */
|
||
|
||
static bool opaque_type_resolution = true;
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
unsigned int overload_debug = 0;
|
||
|
||
/* A flag to enable strict type checking. */
|
||
|
||
static bool strict_type_checking = true;
|
||
|
||
/* A function to show whether opaque types are resolved. */
|
||
|
||
static void
|
||
show_opaque_type_resolution (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
gdb_printf (file, _("Resolution of opaque struct/class/union types "
|
||
"(if set before loading symbols) is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* A function to show whether C++ overload debugging is enabled. */
|
||
|
||
static void
|
||
show_overload_debug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
gdb_printf (file, _("Debugging of C++ overloading is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* A function to show the status of strict type checking. */
|
||
|
||
static void
|
||
show_strict_type_checking (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
gdb_printf (file, _("Strict type checking is %s.\n"), value);
|
||
}
|
||
|
||
|
||
/* Helper function to initialize a newly allocated type. Set type code
|
||
to CODE and initialize the type-specific fields accordingly. */
|
||
|
||
static void
|
||
set_type_code (struct type *type, enum type_code code)
|
||
{
|
||
type->set_code (code);
|
||
|
||
switch (code)
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_NAMESPACE:
|
||
INIT_CPLUS_SPECIFIC (type);
|
||
break;
|
||
case TYPE_CODE_FLT:
|
||
TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
|
||
break;
|
||
case TYPE_CODE_FUNC:
|
||
INIT_FUNC_SPECIFIC (type);
|
||
break;
|
||
case TYPE_CODE_FIXED_POINT:
|
||
INIT_FIXED_POINT_SPECIFIC (type);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
type *
|
||
type_allocator::new_type ()
|
||
{
|
||
if (m_smash)
|
||
return m_data.type;
|
||
|
||
obstack *obstack = (m_is_objfile
|
||
? &m_data.objfile->objfile_obstack
|
||
: gdbarch_obstack (m_data.gdbarch));
|
||
|
||
/* Alloc the structure and start off with all fields zeroed. */
|
||
struct type *type = OBSTACK_ZALLOC (obstack, struct type);
|
||
TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (obstack, struct main_type);
|
||
TYPE_MAIN_TYPE (type)->m_lang = m_lang;
|
||
|
||
if (m_is_objfile)
|
||
{
|
||
OBJSTAT (m_data.objfile, n_types++);
|
||
type->set_owner (m_data.objfile);
|
||
}
|
||
else
|
||
type->set_owner (m_data.gdbarch);
|
||
|
||
/* Initialize the fields that might not be zero. */
|
||
type->set_code (TYPE_CODE_UNDEF);
|
||
TYPE_CHAIN (type) = type; /* Chain back to itself. */
|
||
|
||
return type;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
type *
|
||
type_allocator::new_type (enum type_code code, int bit, const char *name)
|
||
{
|
||
struct type *type = new_type ();
|
||
set_type_code (type, code);
|
||
gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
|
||
type->set_length (bit / TARGET_CHAR_BIT);
|
||
|
||
if (name != nullptr)
|
||
{
|
||
obstack *obstack = (m_is_objfile
|
||
? &m_data.objfile->objfile_obstack
|
||
: gdbarch_obstack (m_data.gdbarch));
|
||
type->set_name (obstack_strdup (obstack, name));
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
gdbarch *
|
||
type_allocator::arch ()
|
||
{
|
||
if (m_smash)
|
||
return m_data.type->arch ();
|
||
if (m_is_objfile)
|
||
return m_data.objfile->arch ();
|
||
return m_data.gdbarch;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
gdbarch *
|
||
type::arch () const
|
||
{
|
||
struct gdbarch *arch;
|
||
|
||
if (this->is_objfile_owned ())
|
||
arch = this->objfile_owner ()->arch ();
|
||
else
|
||
arch = this->arch_owner ();
|
||
|
||
/* The ARCH can be NULL if TYPE is associated with neither an objfile nor
|
||
a gdbarch, however, this is very rare, and even then, in most cases
|
||
that type::arch is called, we assume that a non-NULL value is
|
||
returned. */
|
||
gdb_assert (arch != nullptr);
|
||
return arch;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
get_target_type (struct type *type)
|
||
{
|
||
if (type != NULL)
|
||
{
|
||
type = type->target_type ();
|
||
if (type != NULL)
|
||
type = check_typedef (type);
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
unsigned int
|
||
type_length_units (struct type *type)
|
||
{
|
||
int unit_size = gdbarch_addressable_memory_unit_size (type->arch ());
|
||
|
||
return type->length () / unit_size;
|
||
}
|
||
|
||
/* Alloc a new type instance structure, fill it with some defaults,
|
||
and point it at OLDTYPE. Allocate the new type instance from the
|
||
same place as OLDTYPE. */
|
||
|
||
static struct type *
|
||
alloc_type_instance (struct type *oldtype)
|
||
{
|
||
struct type *type;
|
||
|
||
/* Allocate the structure. */
|
||
|
||
if (!oldtype->is_objfile_owned ())
|
||
type = GDBARCH_OBSTACK_ZALLOC (oldtype->arch_owner (), struct type);
|
||
else
|
||
type = OBSTACK_ZALLOC (&oldtype->objfile_owner ()->objfile_obstack,
|
||
struct type);
|
||
|
||
TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
|
||
|
||
TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Clear all remnants of the previous type at TYPE, in preparation for
|
||
replacing it with something else. Preserve owner information. */
|
||
|
||
static void
|
||
smash_type (struct type *type)
|
||
{
|
||
bool objfile_owned = type->is_objfile_owned ();
|
||
objfile *objfile = type->objfile_owner ();
|
||
gdbarch *arch = type->arch_owner ();
|
||
|
||
memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
|
||
|
||
/* Restore owner information. */
|
||
if (objfile_owned)
|
||
type->set_owner (objfile);
|
||
else
|
||
type->set_owner (arch);
|
||
|
||
/* For now, delete the rings. */
|
||
TYPE_CHAIN (type) = type;
|
||
|
||
/* For now, leave the pointer/reference types alone. */
|
||
}
|
||
|
||
/* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
|
||
to a pointer to memory where the pointer type should be stored.
|
||
If *TYPEPTR is zero, update it to point to the pointer type we return.
|
||
We allocate new memory if needed. */
|
||
|
||
struct type *
|
||
make_pointer_type (struct type *type, struct type **typeptr)
|
||
{
|
||
struct type *ntype; /* New type */
|
||
struct type *chain;
|
||
|
||
ntype = TYPE_POINTER_TYPE (type);
|
||
|
||
if (ntype)
|
||
{
|
||
if (typeptr == 0)
|
||
return ntype; /* Don't care about alloc,
|
||
and have new type. */
|
||
else if (*typeptr == 0)
|
||
{
|
||
*typeptr = ntype; /* Tracking alloc, and have new type. */
|
||
return ntype;
|
||
}
|
||
}
|
||
|
||
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
|
||
{
|
||
ntype = type_allocator (type).new_type ();
|
||
if (typeptr)
|
||
*typeptr = ntype;
|
||
}
|
||
else /* We have storage, but need to reset it. */
|
||
{
|
||
ntype = *typeptr;
|
||
chain = TYPE_CHAIN (ntype);
|
||
smash_type (ntype);
|
||
TYPE_CHAIN (ntype) = chain;
|
||
}
|
||
|
||
ntype->set_target_type (type);
|
||
TYPE_POINTER_TYPE (type) = ntype;
|
||
|
||
/* FIXME! Assumes the machine has only one representation for pointers! */
|
||
|
||
ntype->set_length (gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT);
|
||
ntype->set_code (TYPE_CODE_PTR);
|
||
|
||
/* Mark pointers as unsigned. The target converts between pointers
|
||
and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
|
||
gdbarch_address_to_pointer. */
|
||
ntype->set_is_unsigned (true);
|
||
|
||
/* Update the length of all the other variants of this type. */
|
||
chain = TYPE_CHAIN (ntype);
|
||
while (chain != ntype)
|
||
{
|
||
chain->set_length (ntype->length ());
|
||
chain = TYPE_CHAIN (chain);
|
||
}
|
||
|
||
return ntype;
|
||
}
|
||
|
||
/* Given a type TYPE, return a type of pointers to that type.
|
||
May need to construct such a type if this is the first use. */
|
||
|
||
struct type *
|
||
lookup_pointer_type (struct type *type)
|
||
{
|
||
return make_pointer_type (type, (struct type **) 0);
|
||
}
|
||
|
||
/* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
|
||
points to a pointer to memory where the reference type should be
|
||
stored. If *TYPEPTR is zero, update it to point to the reference
|
||
type we return. We allocate new memory if needed. REFCODE denotes
|
||
the kind of reference type to lookup (lvalue or rvalue reference). */
|
||
|
||
struct type *
|
||
make_reference_type (struct type *type, struct type **typeptr,
|
||
enum type_code refcode)
|
||
{
|
||
struct type *ntype; /* New type */
|
||
struct type **reftype;
|
||
struct type *chain;
|
||
|
||
gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
|
||
|
||
ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
|
||
: TYPE_RVALUE_REFERENCE_TYPE (type));
|
||
|
||
if (ntype)
|
||
{
|
||
if (typeptr == 0)
|
||
return ntype; /* Don't care about alloc,
|
||
and have new type. */
|
||
else if (*typeptr == 0)
|
||
{
|
||
*typeptr = ntype; /* Tracking alloc, and have new type. */
|
||
return ntype;
|
||
}
|
||
}
|
||
|
||
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
|
||
{
|
||
ntype = type_allocator (type).new_type ();
|
||
if (typeptr)
|
||
*typeptr = ntype;
|
||
}
|
||
else /* We have storage, but need to reset it. */
|
||
{
|
||
ntype = *typeptr;
|
||
chain = TYPE_CHAIN (ntype);
|
||
smash_type (ntype);
|
||
TYPE_CHAIN (ntype) = chain;
|
||
}
|
||
|
||
ntype->set_target_type (type);
|
||
reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
|
||
: &TYPE_RVALUE_REFERENCE_TYPE (type));
|
||
|
||
*reftype = ntype;
|
||
|
||
/* FIXME! Assume the machine has only one representation for
|
||
references, and that it matches the (only) representation for
|
||
pointers! */
|
||
|
||
ntype->set_length (gdbarch_ptr_bit (type->arch ()) / TARGET_CHAR_BIT);
|
||
ntype->set_code (refcode);
|
||
|
||
*reftype = ntype;
|
||
|
||
/* Update the length of all the other variants of this type. */
|
||
chain = TYPE_CHAIN (ntype);
|
||
while (chain != ntype)
|
||
{
|
||
chain->set_length (ntype->length ());
|
||
chain = TYPE_CHAIN (chain);
|
||
}
|
||
|
||
return ntype;
|
||
}
|
||
|
||
/* Same as above, but caller doesn't care about memory allocation
|
||
details. */
|
||
|
||
struct type *
|
||
lookup_reference_type (struct type *type, enum type_code refcode)
|
||
{
|
||
return make_reference_type (type, (struct type **) 0, refcode);
|
||
}
|
||
|
||
/* Lookup the lvalue reference type for the type TYPE. */
|
||
|
||
struct type *
|
||
lookup_lvalue_reference_type (struct type *type)
|
||
{
|
||
return lookup_reference_type (type, TYPE_CODE_REF);
|
||
}
|
||
|
||
/* Lookup the rvalue reference type for the type TYPE. */
|
||
|
||
struct type *
|
||
lookup_rvalue_reference_type (struct type *type)
|
||
{
|
||
return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
|
||
}
|
||
|
||
/* Lookup a function type that returns type TYPE. TYPEPTR, if
|
||
nonzero, points to a pointer to memory where the function type
|
||
should be stored. If *TYPEPTR is zero, update it to point to the
|
||
function type we return. We allocate new memory if needed. */
|
||
|
||
struct type *
|
||
make_function_type (struct type *type, struct type **typeptr)
|
||
{
|
||
struct type *ntype; /* New type */
|
||
|
||
if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
|
||
{
|
||
ntype = type_allocator (type).new_type ();
|
||
if (typeptr)
|
||
*typeptr = ntype;
|
||
}
|
||
else /* We have storage, but need to reset it. */
|
||
{
|
||
ntype = *typeptr;
|
||
smash_type (ntype);
|
||
}
|
||
|
||
ntype->set_target_type (type);
|
||
|
||
ntype->set_length (1);
|
||
ntype->set_code (TYPE_CODE_FUNC);
|
||
|
||
INIT_FUNC_SPECIFIC (ntype);
|
||
|
||
return ntype;
|
||
}
|
||
|
||
/* Given a type TYPE, return a type of functions that return that type.
|
||
May need to construct such a type if this is the first use. */
|
||
|
||
struct type *
|
||
lookup_function_type (struct type *type)
|
||
{
|
||
return make_function_type (type, (struct type **) 0);
|
||
}
|
||
|
||
/* Given a type TYPE and argument types, return the appropriate
|
||
function type. If the final type in PARAM_TYPES is NULL, make a
|
||
varargs function. */
|
||
|
||
struct type *
|
||
lookup_function_type_with_arguments (struct type *type,
|
||
int nparams,
|
||
struct type **param_types)
|
||
{
|
||
struct type *fn = make_function_type (type, (struct type **) 0);
|
||
int i;
|
||
|
||
if (nparams > 0)
|
||
{
|
||
if (param_types[nparams - 1] == NULL)
|
||
{
|
||
--nparams;
|
||
fn->set_has_varargs (true);
|
||
}
|
||
else if (check_typedef (param_types[nparams - 1])->code ()
|
||
== TYPE_CODE_VOID)
|
||
{
|
||
--nparams;
|
||
/* Caller should have ensured this. */
|
||
gdb_assert (nparams == 0);
|
||
fn->set_is_prototyped (true);
|
||
}
|
||
else
|
||
fn->set_is_prototyped (true);
|
||
}
|
||
|
||
fn->alloc_fields (nparams);
|
||
for (i = 0; i < nparams; ++i)
|
||
fn->field (i).set_type (param_types[i]);
|
||
|
||
return fn;
|
||
}
|
||
|
||
/* Identify address space identifier by name -- return a
|
||
type_instance_flags. */
|
||
|
||
type_instance_flags
|
||
address_space_name_to_type_instance_flags (struct gdbarch *gdbarch,
|
||
const char *space_identifier)
|
||
{
|
||
type_instance_flags type_flags;
|
||
|
||
/* Check for known address space delimiters. */
|
||
if (!strcmp (space_identifier, "code"))
|
||
return TYPE_INSTANCE_FLAG_CODE_SPACE;
|
||
else if (!strcmp (space_identifier, "data"))
|
||
return TYPE_INSTANCE_FLAG_DATA_SPACE;
|
||
else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
|
||
&& gdbarch_address_class_name_to_type_flags (gdbarch,
|
||
space_identifier,
|
||
&type_flags))
|
||
return type_flags;
|
||
else
|
||
error (_("Unknown address space specifier: \"%s\""), space_identifier);
|
||
}
|
||
|
||
/* Identify address space identifier by type_instance_flags and return
|
||
the string version of the adress space name. */
|
||
|
||
const char *
|
||
address_space_type_instance_flags_to_name (struct gdbarch *gdbarch,
|
||
type_instance_flags space_flag)
|
||
{
|
||
if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
|
||
return "code";
|
||
else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
|
||
return "data";
|
||
else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
|
||
&& gdbarch_address_class_type_flags_to_name_p (gdbarch))
|
||
return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Create a new type with instance flags NEW_FLAGS, based on TYPE.
|
||
|
||
If STORAGE is non-NULL, create the new type instance there.
|
||
STORAGE must be in the same obstack as TYPE. */
|
||
|
||
static struct type *
|
||
make_qualified_type (struct type *type, type_instance_flags new_flags,
|
||
struct type *storage)
|
||
{
|
||
struct type *ntype;
|
||
|
||
ntype = type;
|
||
do
|
||
{
|
||
if (ntype->instance_flags () == new_flags)
|
||
return ntype;
|
||
ntype = TYPE_CHAIN (ntype);
|
||
}
|
||
while (ntype != type);
|
||
|
||
/* Create a new type instance. */
|
||
if (storage == NULL)
|
||
ntype = alloc_type_instance (type);
|
||
else
|
||
{
|
||
/* If STORAGE was provided, it had better be in the same objfile
|
||
as TYPE. Otherwise, we can't link it into TYPE's cv chain:
|
||
if one objfile is freed and the other kept, we'd have
|
||
dangling pointers. */
|
||
gdb_assert (type->objfile_owner () == storage->objfile_owner ());
|
||
|
||
ntype = storage;
|
||
TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
|
||
TYPE_CHAIN (ntype) = ntype;
|
||
}
|
||
|
||
/* Pointers or references to the original type are not relevant to
|
||
the new type. */
|
||
TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
|
||
TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
|
||
|
||
/* Chain the new qualified type to the old type. */
|
||
TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
|
||
TYPE_CHAIN (type) = ntype;
|
||
|
||
/* Now set the instance flags and return the new type. */
|
||
ntype->set_instance_flags (new_flags);
|
||
|
||
/* Set length of new type to that of the original type. */
|
||
ntype->set_length (type->length ());
|
||
|
||
return ntype;
|
||
}
|
||
|
||
/* Make an address-space-delimited variant of a type -- a type that
|
||
is identical to the one supplied except that it has an address
|
||
space attribute attached to it (such as "code" or "data").
|
||
|
||
The space attributes "code" and "data" are for Harvard
|
||
architectures. The address space attributes are for architectures
|
||
which have alternately sized pointers or pointers with alternate
|
||
representations. */
|
||
|
||
struct type *
|
||
make_type_with_address_space (struct type *type,
|
||
type_instance_flags space_flag)
|
||
{
|
||
type_instance_flags new_flags = ((type->instance_flags ()
|
||
& ~(TYPE_INSTANCE_FLAG_CODE_SPACE
|
||
| TYPE_INSTANCE_FLAG_DATA_SPACE
|
||
| TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
|
||
| space_flag);
|
||
|
||
return make_qualified_type (type, new_flags, NULL);
|
||
}
|
||
|
||
/* Make a "c-v" variant of a type -- a type that is identical to the
|
||
one supplied except that it may have const or volatile attributes
|
||
CNST is a flag for setting the const attribute
|
||
VOLTL is a flag for setting the volatile attribute
|
||
TYPE is the base type whose variant we are creating.
|
||
|
||
If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
|
||
storage to hold the new qualified type; *TYPEPTR and TYPE must be
|
||
in the same objfile. Otherwise, allocate fresh memory for the new
|
||
type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
|
||
new type we construct. */
|
||
|
||
struct type *
|
||
make_cv_type (int cnst, int voltl,
|
||
struct type *type,
|
||
struct type **typeptr)
|
||
{
|
||
struct type *ntype; /* New type */
|
||
|
||
type_instance_flags new_flags = (type->instance_flags ()
|
||
& ~(TYPE_INSTANCE_FLAG_CONST
|
||
| TYPE_INSTANCE_FLAG_VOLATILE));
|
||
|
||
if (cnst)
|
||
new_flags |= TYPE_INSTANCE_FLAG_CONST;
|
||
|
||
if (voltl)
|
||
new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
|
||
|
||
if (typeptr && *typeptr != NULL)
|
||
{
|
||
/* TYPE and *TYPEPTR must be in the same objfile. We can't have
|
||
a C-V variant chain that threads across objfiles: if one
|
||
objfile gets freed, then the other has a broken C-V chain.
|
||
|
||
This code used to try to copy over the main type from TYPE to
|
||
*TYPEPTR if they were in different objfiles, but that's
|
||
wrong, too: TYPE may have a field list or member function
|
||
lists, which refer to types of their own, etc. etc. The
|
||
whole shebang would need to be copied over recursively; you
|
||
can't have inter-objfile pointers. The only thing to do is
|
||
to leave stub types as stub types, and look them up afresh by
|
||
name each time you encounter them. */
|
||
gdb_assert ((*typeptr)->objfile_owner () == type->objfile_owner ());
|
||
}
|
||
|
||
ntype = make_qualified_type (type, new_flags,
|
||
typeptr ? *typeptr : NULL);
|
||
|
||
if (typeptr != NULL)
|
||
*typeptr = ntype;
|
||
|
||
return ntype;
|
||
}
|
||
|
||
/* Make a 'restrict'-qualified version of TYPE. */
|
||
|
||
struct type *
|
||
make_restrict_type (struct type *type)
|
||
{
|
||
return make_qualified_type (type,
|
||
(type->instance_flags ()
|
||
| TYPE_INSTANCE_FLAG_RESTRICT),
|
||
NULL);
|
||
}
|
||
|
||
/* Make a type without const, volatile, or restrict. */
|
||
|
||
struct type *
|
||
make_unqualified_type (struct type *type)
|
||
{
|
||
return make_qualified_type (type,
|
||
(type->instance_flags ()
|
||
& ~(TYPE_INSTANCE_FLAG_CONST
|
||
| TYPE_INSTANCE_FLAG_VOLATILE
|
||
| TYPE_INSTANCE_FLAG_RESTRICT)),
|
||
NULL);
|
||
}
|
||
|
||
/* Make a '_Atomic'-qualified version of TYPE. */
|
||
|
||
struct type *
|
||
make_atomic_type (struct type *type)
|
||
{
|
||
return make_qualified_type (type,
|
||
(type->instance_flags ()
|
||
| TYPE_INSTANCE_FLAG_ATOMIC),
|
||
NULL);
|
||
}
|
||
|
||
/* Replace the contents of ntype with the type *type. This changes the
|
||
contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
|
||
the changes are propogated to all types in the TYPE_CHAIN.
|
||
|
||
In order to build recursive types, it's inevitable that we'll need
|
||
to update types in place --- but this sort of indiscriminate
|
||
smashing is ugly, and needs to be replaced with something more
|
||
controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
|
||
clear if more steps are needed. */
|
||
|
||
void
|
||
replace_type (struct type *ntype, struct type *type)
|
||
{
|
||
struct type *chain;
|
||
|
||
/* These two types had better be in the same objfile. Otherwise,
|
||
the assignment of one type's main type structure to the other
|
||
will produce a type with references to objects (names; field
|
||
lists; etc.) allocated on an objfile other than its own. */
|
||
gdb_assert (ntype->objfile_owner () == type->objfile_owner ());
|
||
|
||
*TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
|
||
|
||
/* The type length is not a part of the main type. Update it for
|
||
each type on the variant chain. */
|
||
chain = ntype;
|
||
do
|
||
{
|
||
/* Assert that this element of the chain has no address-class bits
|
||
set in its flags. Such type variants might have type lengths
|
||
which are supposed to be different from the non-address-class
|
||
variants. This assertion shouldn't ever be triggered because
|
||
symbol readers which do construct address-class variants don't
|
||
call replace_type(). */
|
||
gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
|
||
|
||
chain->set_length (type->length ());
|
||
chain = TYPE_CHAIN (chain);
|
||
}
|
||
while (ntype != chain);
|
||
|
||
/* Assert that the two types have equivalent instance qualifiers.
|
||
This should be true for at least all of our debug readers. */
|
||
gdb_assert (ntype->instance_flags () == type->instance_flags ());
|
||
}
|
||
|
||
/* Implement direct support for MEMBER_TYPE in GNU C++.
|
||
May need to construct such a type if this is the first use.
|
||
The TYPE is the type of the member. The DOMAIN is the type
|
||
of the aggregate that the member belongs to. */
|
||
|
||
struct type *
|
||
lookup_memberptr_type (struct type *type, struct type *domain)
|
||
{
|
||
struct type *mtype;
|
||
|
||
mtype = type_allocator (type).new_type ();
|
||
smash_to_memberptr_type (mtype, domain, type);
|
||
return mtype;
|
||
}
|
||
|
||
/* Return a pointer-to-method type, for a method of type TO_TYPE. */
|
||
|
||
struct type *
|
||
lookup_methodptr_type (struct type *to_type)
|
||
{
|
||
struct type *mtype;
|
||
|
||
mtype = type_allocator (to_type).new_type ();
|
||
smash_to_methodptr_type (mtype, to_type);
|
||
return mtype;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
bool
|
||
operator== (const dynamic_prop &l, const dynamic_prop &r)
|
||
{
|
||
if (l.kind () != r.kind ())
|
||
return false;
|
||
|
||
switch (l.kind ())
|
||
{
|
||
case PROP_UNDEFINED:
|
||
return true;
|
||
case PROP_CONST:
|
||
return l.const_val () == r.const_val ();
|
||
case PROP_ADDR_OFFSET:
|
||
case PROP_LOCEXPR:
|
||
case PROP_LOCLIST:
|
||
return l.baton () == r.baton ();
|
||
case PROP_VARIANT_PARTS:
|
||
return l.variant_parts () == r.variant_parts ();
|
||
case PROP_TYPE:
|
||
return l.original_type () == r.original_type ();
|
||
}
|
||
|
||
gdb_assert_not_reached ("unhandled dynamic_prop kind");
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
bool
|
||
operator== (const range_bounds &l, const range_bounds &r)
|
||
{
|
||
#define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
|
||
|
||
return (FIELD_EQ (low)
|
||
&& FIELD_EQ (high)
|
||
&& FIELD_EQ (flag_upper_bound_is_count)
|
||
&& FIELD_EQ (flag_bound_evaluated)
|
||
&& FIELD_EQ (bias));
|
||
|
||
#undef FIELD_EQ
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
create_range_type (type_allocator &alloc, struct type *index_type,
|
||
const struct dynamic_prop *low_bound,
|
||
const struct dynamic_prop *high_bound,
|
||
LONGEST bias)
|
||
{
|
||
/* The INDEX_TYPE should be a type capable of holding the upper and lower
|
||
bounds, as such a zero sized, or void type makes no sense. */
|
||
gdb_assert (index_type->code () != TYPE_CODE_VOID);
|
||
gdb_assert (index_type->length () > 0);
|
||
|
||
struct type *result_type = alloc.new_type ();
|
||
result_type->set_code (TYPE_CODE_RANGE);
|
||
result_type->set_target_type (index_type);
|
||
if (index_type->is_stub ())
|
||
result_type->set_target_is_stub (true);
|
||
else
|
||
result_type->set_length (check_typedef (index_type)->length ());
|
||
|
||
range_bounds *bounds
|
||
= (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
|
||
bounds->low = *low_bound;
|
||
bounds->high = *high_bound;
|
||
bounds->bias = bias;
|
||
bounds->stride.set_const_val (0);
|
||
|
||
result_type->set_bounds (bounds);
|
||
|
||
if (index_type->code () == TYPE_CODE_FIXED_POINT)
|
||
result_type->set_is_unsigned (index_type->is_unsigned ());
|
||
else if (index_type->is_unsigned ())
|
||
{
|
||
/* If the underlying type is unsigned, then the range
|
||
necessarily is. */
|
||
result_type->set_is_unsigned (true);
|
||
}
|
||
/* Otherwise, the signed-ness of a range type can't simply be copied
|
||
from the underlying type. Consider a case where the underlying
|
||
type is 'int', but the range type can hold 0..65535, and where
|
||
the range is further specified to fit into 16 bits. In this
|
||
case, if we copy the underlying type's sign, then reading some
|
||
range values will cause an unwanted sign extension. So, we have
|
||
some heuristics here instead. */
|
||
else if (low_bound->is_constant () && low_bound->const_val () >= 0)
|
||
{
|
||
result_type->set_is_unsigned (true);
|
||
/* Ada allows the declaration of range types whose upper bound is
|
||
less than the lower bound, so checking the lower bound is not
|
||
enough. Make sure we do not mark a range type whose upper bound
|
||
is negative as unsigned. */
|
||
if (high_bound->is_constant () && high_bound->const_val () < 0)
|
||
result_type->set_is_unsigned (false);
|
||
}
|
||
|
||
result_type->set_endianity_is_not_default
|
||
(index_type->endianity_is_not_default ());
|
||
|
||
return result_type;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
create_range_type_with_stride (type_allocator &alloc,
|
||
struct type *index_type,
|
||
const struct dynamic_prop *low_bound,
|
||
const struct dynamic_prop *high_bound,
|
||
LONGEST bias,
|
||
const struct dynamic_prop *stride,
|
||
bool byte_stride_p)
|
||
{
|
||
struct type *result_type = create_range_type (alloc, index_type, low_bound,
|
||
high_bound, bias);
|
||
|
||
gdb_assert (stride != nullptr);
|
||
result_type->bounds ()->stride = *stride;
|
||
result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
|
||
|
||
return result_type;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
create_static_range_type (type_allocator &alloc, struct type *index_type,
|
||
LONGEST low_bound, LONGEST high_bound)
|
||
{
|
||
struct dynamic_prop low, high;
|
||
|
||
low.set_const_val (low_bound);
|
||
high.set_const_val (high_bound);
|
||
|
||
struct type *result_type = create_range_type (alloc, index_type,
|
||
&low, &high, 0);
|
||
|
||
return result_type;
|
||
}
|
||
|
||
/* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
|
||
are static, otherwise returns 0. */
|
||
|
||
static bool
|
||
has_static_range (const struct range_bounds *bounds)
|
||
{
|
||
/* If the range doesn't have a defined stride then its stride field will
|
||
be initialized to the constant 0. */
|
||
return (bounds->low.is_constant ()
|
||
&& bounds->high.is_constant ()
|
||
&& bounds->stride.is_constant ());
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
std::optional<LONGEST>
|
||
get_discrete_low_bound (struct type *type)
|
||
{
|
||
type = check_typedef (type);
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_RANGE:
|
||
{
|
||
/* This function only works for ranges with a constant low bound. */
|
||
if (!type->bounds ()->low.is_constant ())
|
||
return {};
|
||
|
||
LONGEST low = type->bounds ()->low.const_val ();
|
||
|
||
if (type->target_type ()->code () == TYPE_CODE_ENUM)
|
||
{
|
||
std::optional<LONGEST> low_pos
|
||
= discrete_position (type->target_type (), low);
|
||
|
||
if (low_pos.has_value ())
|
||
low = *low_pos;
|
||
}
|
||
|
||
return low;
|
||
}
|
||
|
||
case TYPE_CODE_ENUM:
|
||
{
|
||
if (type->num_fields () > 0)
|
||
{
|
||
/* The enums may not be sorted by value, so search all
|
||
entries. */
|
||
LONGEST low = type->field (0).loc_enumval ();
|
||
|
||
for (int i = 0; i < type->num_fields (); i++)
|
||
{
|
||
if (type->field (i).loc_enumval () < low)
|
||
low = type->field (i).loc_enumval ();
|
||
}
|
||
|
||
return low;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
case TYPE_CODE_BOOL:
|
||
return 0;
|
||
|
||
case TYPE_CODE_INT:
|
||
if (type->length () > sizeof (LONGEST)) /* Too big */
|
||
return {};
|
||
|
||
if (!type->is_unsigned ())
|
||
return -(1 << (type->length () * TARGET_CHAR_BIT - 1));
|
||
|
||
[[fallthrough]];
|
||
case TYPE_CODE_CHAR:
|
||
return 0;
|
||
|
||
default:
|
||
return {};
|
||
}
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
std::optional<LONGEST>
|
||
get_discrete_high_bound (struct type *type)
|
||
{
|
||
type = check_typedef (type);
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_RANGE:
|
||
{
|
||
/* This function only works for ranges with a constant high bound. */
|
||
if (!type->bounds ()->high.is_constant ())
|
||
return {};
|
||
|
||
LONGEST high = type->bounds ()->high.const_val ();
|
||
|
||
if (type->target_type ()->code () == TYPE_CODE_ENUM)
|
||
{
|
||
std::optional<LONGEST> high_pos
|
||
= discrete_position (type->target_type (), high);
|
||
|
||
if (high_pos.has_value ())
|
||
high = *high_pos;
|
||
}
|
||
|
||
return high;
|
||
}
|
||
|
||
case TYPE_CODE_ENUM:
|
||
{
|
||
if (type->num_fields () > 0)
|
||
{
|
||
/* The enums may not be sorted by value, so search all
|
||
entries. */
|
||
LONGEST high = type->field (0).loc_enumval ();
|
||
|
||
for (int i = 0; i < type->num_fields (); i++)
|
||
{
|
||
if (type->field (i).loc_enumval () > high)
|
||
high = type->field (i).loc_enumval ();
|
||
}
|
||
|
||
return high;
|
||
}
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
case TYPE_CODE_BOOL:
|
||
return 1;
|
||
|
||
case TYPE_CODE_INT:
|
||
if (type->length () > sizeof (LONGEST)) /* Too big */
|
||
return {};
|
||
|
||
if (!type->is_unsigned ())
|
||
{
|
||
LONGEST low = -(1 << (type->length () * TARGET_CHAR_BIT - 1));
|
||
return -low - 1;
|
||
}
|
||
|
||
[[fallthrough]];
|
||
case TYPE_CODE_CHAR:
|
||
{
|
||
/* This round-about calculation is to avoid shifting by
|
||
type->length () * TARGET_CHAR_BIT, which will not work
|
||
if type->length () == sizeof (LONGEST). */
|
||
LONGEST high = 1 << (type->length () * TARGET_CHAR_BIT - 1);
|
||
return (high - 1) | high;
|
||
}
|
||
|
||
default:
|
||
return {};
|
||
}
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
bool
|
||
get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
|
||
{
|
||
std::optional<LONGEST> low = get_discrete_low_bound (type);
|
||
if (!low.has_value ())
|
||
return false;
|
||
|
||
std::optional<LONGEST> high = get_discrete_high_bound (type);
|
||
if (!high.has_value ())
|
||
return false;
|
||
|
||
*lowp = *low;
|
||
*highp = *high;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* See gdbtypes.h */
|
||
|
||
bool
|
||
get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
|
||
{
|
||
struct type *index = type->index_type ();
|
||
LONGEST low = 0;
|
||
LONGEST high = 0;
|
||
|
||
if (index == NULL)
|
||
return false;
|
||
|
||
if (!get_discrete_bounds (index, &low, &high))
|
||
return false;
|
||
|
||
if (low_bound)
|
||
*low_bound = low;
|
||
|
||
if (high_bound)
|
||
*high_bound = high;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Assuming that TYPE is a discrete type and VAL is a valid integer
|
||
representation of a value of this type, save the corresponding
|
||
position number in POS.
|
||
|
||
Its differs from VAL only in the case of enumeration types. In
|
||
this case, the position number of the value of the first listed
|
||
enumeration literal is zero; the position number of the value of
|
||
each subsequent enumeration literal is one more than that of its
|
||
predecessor in the list.
|
||
|
||
Return 1 if the operation was successful. Return zero otherwise,
|
||
in which case the value of POS is unmodified.
|
||
*/
|
||
|
||
std::optional<LONGEST>
|
||
discrete_position (struct type *type, LONGEST val)
|
||
{
|
||
if (type->code () == TYPE_CODE_RANGE)
|
||
type = type->target_type ();
|
||
|
||
if (type->code () == TYPE_CODE_ENUM)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < type->num_fields (); i += 1)
|
||
{
|
||
if (val == type->field (i).loc_enumval ())
|
||
return i;
|
||
}
|
||
|
||
/* Invalid enumeration value. */
|
||
return {};
|
||
}
|
||
else
|
||
return val;
|
||
}
|
||
|
||
/* If the array TYPE has static bounds calculate and update its
|
||
size, then return true. Otherwise return false and leave TYPE
|
||
unchanged. */
|
||
|
||
static bool
|
||
update_static_array_size (struct type *type)
|
||
{
|
||
gdb_assert (type->code () == TYPE_CODE_ARRAY);
|
||
|
||
struct type *range_type = type->index_type ();
|
||
|
||
if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
|
||
&& has_static_range (range_type->bounds ())
|
||
&& (!type_not_associated (type)
|
||
&& !type_not_allocated (type)))
|
||
{
|
||
LONGEST low_bound, high_bound;
|
||
int stride;
|
||
struct type *element_type;
|
||
|
||
stride = type->bit_stride ();
|
||
|
||
if (!get_discrete_bounds (range_type, &low_bound, &high_bound))
|
||
low_bound = high_bound = 0;
|
||
|
||
element_type = check_typedef (type->target_type ());
|
||
/* Be careful when setting the array length. Ada arrays can be
|
||
empty arrays with the high_bound being smaller than the low_bound.
|
||
In such cases, the array length should be zero. */
|
||
if (high_bound < low_bound)
|
||
type->set_length (0);
|
||
else if (stride != 0)
|
||
{
|
||
/* Ensure that the type length is always positive, even in the
|
||
case where (for example in Fortran) we have a negative
|
||
stride. It is possible to have a single element array with a
|
||
negative stride in Fortran (this doesn't mean anything
|
||
special, it's still just a single element array) so do
|
||
consider that case when touching this code. */
|
||
LONGEST element_count = std::abs (high_bound - low_bound + 1);
|
||
type->set_length (((std::abs (stride) * element_count) + 7) / 8);
|
||
}
|
||
else
|
||
type->set_length (element_type->length ()
|
||
* (high_bound - low_bound + 1));
|
||
|
||
/* If this array's element is itself an array with a bit stride,
|
||
then we want to update this array's bit stride to reflect the
|
||
size of the sub-array. Otherwise, we'll end up using the
|
||
wrong size when trying to find elements of the outer
|
||
array. */
|
||
if (element_type->code () == TYPE_CODE_ARRAY
|
||
&& (stride != 0 || element_type->is_multi_dimensional ())
|
||
&& element_type->length () != 0
|
||
&& element_type->field (0).bitsize () != 0
|
||
&& get_array_bounds (element_type, &low_bound, &high_bound)
|
||
&& high_bound >= low_bound)
|
||
type->field (0).set_bitsize
|
||
((high_bound - low_bound + 1)
|
||
* element_type->field (0).bitsize ());
|
||
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
create_array_type_with_stride (type_allocator &alloc,
|
||
struct type *element_type,
|
||
struct type *range_type,
|
||
struct dynamic_prop *byte_stride_prop,
|
||
unsigned int bit_stride)
|
||
{
|
||
if (byte_stride_prop != nullptr && byte_stride_prop->is_constant ())
|
||
{
|
||
/* The byte stride is actually not dynamic. Pretend we were
|
||
called with bit_stride set instead of byte_stride_prop.
|
||
This will give us the same result type, while avoiding
|
||
the need to handle this as a special case. */
|
||
bit_stride = byte_stride_prop->const_val () * 8;
|
||
byte_stride_prop = NULL;
|
||
}
|
||
|
||
struct type *result_type = alloc.new_type ();
|
||
|
||
result_type->set_code (TYPE_CODE_ARRAY);
|
||
result_type->set_target_type (element_type);
|
||
|
||
result_type->alloc_fields (1);
|
||
result_type->set_index_type (range_type);
|
||
if (byte_stride_prop != NULL)
|
||
result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
|
||
else if (bit_stride > 0)
|
||
result_type->field (0).set_bitsize (bit_stride);
|
||
|
||
if (!update_static_array_size (result_type))
|
||
{
|
||
/* This type is dynamic and its length needs to be computed
|
||
on demand. In the meantime, avoid leaving the TYPE_LENGTH
|
||
undefined by setting it to zero. Although we are not expected
|
||
to trust TYPE_LENGTH in this case, setting the size to zero
|
||
allows us to avoid allocating objects of random sizes in case
|
||
we accidently do. */
|
||
result_type->set_length (0);
|
||
}
|
||
|
||
/* TYPE_TARGET_STUB will take care of zero length arrays. */
|
||
if (result_type->length () == 0)
|
||
result_type->set_target_is_stub (true);
|
||
|
||
return result_type;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
create_array_type (type_allocator &alloc,
|
||
struct type *element_type,
|
||
struct type *range_type)
|
||
{
|
||
return create_array_type_with_stride (alloc, element_type,
|
||
range_type, NULL, 0);
|
||
}
|
||
|
||
struct type *
|
||
lookup_array_range_type (struct type *element_type,
|
||
LONGEST low_bound, LONGEST high_bound)
|
||
{
|
||
struct type *index_type;
|
||
struct type *range_type;
|
||
|
||
type_allocator alloc (element_type);
|
||
index_type = builtin_type (element_type->arch ())->builtin_int;
|
||
|
||
range_type = create_static_range_type (alloc, index_type,
|
||
low_bound, high_bound);
|
||
|
||
return create_array_type (alloc, element_type, range_type);
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
create_string_type (type_allocator &alloc,
|
||
struct type *string_char_type,
|
||
struct type *range_type)
|
||
{
|
||
struct type *result_type = create_array_type (alloc,
|
||
string_char_type,
|
||
range_type);
|
||
result_type->set_code (TYPE_CODE_STRING);
|
||
return result_type;
|
||
}
|
||
|
||
struct type *
|
||
lookup_string_range_type (struct type *string_char_type,
|
||
LONGEST low_bound, LONGEST high_bound)
|
||
{
|
||
struct type *result_type;
|
||
|
||
result_type = lookup_array_range_type (string_char_type,
|
||
low_bound, high_bound);
|
||
result_type->set_code (TYPE_CODE_STRING);
|
||
return result_type;
|
||
}
|
||
|
||
struct type *
|
||
create_set_type (type_allocator &alloc, struct type *domain_type)
|
||
{
|
||
struct type *result_type = alloc.new_type ();
|
||
|
||
result_type->set_code (TYPE_CODE_SET);
|
||
result_type->alloc_fields (1);
|
||
|
||
if (!domain_type->is_stub ())
|
||
{
|
||
LONGEST low_bound, high_bound, bit_length;
|
||
|
||
if (!get_discrete_bounds (domain_type, &low_bound, &high_bound))
|
||
low_bound = high_bound = 0;
|
||
|
||
bit_length = high_bound - low_bound + 1;
|
||
result_type->set_length ((bit_length + TARGET_CHAR_BIT - 1)
|
||
/ TARGET_CHAR_BIT);
|
||
if (low_bound >= 0)
|
||
result_type->set_is_unsigned (true);
|
||
}
|
||
result_type->field (0).set_type (domain_type);
|
||
|
||
return result_type;
|
||
}
|
||
|
||
/* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
|
||
and any array types nested inside it. */
|
||
|
||
void
|
||
make_vector_type (struct type *array_type)
|
||
{
|
||
struct type *inner_array, *elt_type;
|
||
|
||
/* Find the innermost array type, in case the array is
|
||
multi-dimensional. */
|
||
inner_array = array_type;
|
||
while (inner_array->target_type ()->code () == TYPE_CODE_ARRAY)
|
||
inner_array = inner_array->target_type ();
|
||
|
||
elt_type = inner_array->target_type ();
|
||
if (elt_type->code () == TYPE_CODE_INT)
|
||
{
|
||
type_instance_flags flags
|
||
= elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT;
|
||
elt_type = make_qualified_type (elt_type, flags, NULL);
|
||
inner_array->set_target_type (elt_type);
|
||
}
|
||
|
||
array_type->set_is_vector (true);
|
||
}
|
||
|
||
struct type *
|
||
init_vector_type (struct type *elt_type, int n)
|
||
{
|
||
struct type *array_type;
|
||
|
||
array_type = lookup_array_range_type (elt_type, 0, n - 1);
|
||
make_vector_type (array_type);
|
||
return array_type;
|
||
}
|
||
|
||
/* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
|
||
belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
|
||
confusing. "self" is a common enough replacement for "this".
|
||
TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
|
||
TYPE_CODE_METHOD. */
|
||
|
||
struct type *
|
||
internal_type_self_type (struct type *type)
|
||
{
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_METHODPTR:
|
||
case TYPE_CODE_MEMBERPTR:
|
||
if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
|
||
return NULL;
|
||
gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
|
||
return TYPE_MAIN_TYPE (type)->type_specific.self_type;
|
||
case TYPE_CODE_METHOD:
|
||
if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
|
||
return NULL;
|
||
gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
|
||
return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
|
||
default:
|
||
gdb_assert_not_reached ("bad type");
|
||
}
|
||
}
|
||
|
||
/* Set the type of the class that TYPE belongs to.
|
||
In c++ this is the class of "this".
|
||
TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
|
||
TYPE_CODE_METHOD. */
|
||
|
||
void
|
||
set_type_self_type (struct type *type, struct type *self_type)
|
||
{
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_METHODPTR:
|
||
case TYPE_CODE_MEMBERPTR:
|
||
if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
|
||
TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
|
||
gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
|
||
TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
|
||
break;
|
||
case TYPE_CODE_METHOD:
|
||
if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
|
||
INIT_FUNC_SPECIFIC (type);
|
||
gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
|
||
TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
|
||
break;
|
||
default:
|
||
gdb_assert_not_reached ("bad type");
|
||
}
|
||
}
|
||
|
||
/* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
|
||
TO_TYPE. A member pointer is a wierd thing -- it amounts to a
|
||
typed offset into a struct, e.g. "an int at offset 8". A MEMBER
|
||
TYPE doesn't include the offset (that's the value of the MEMBER
|
||
itself), but does include the structure type into which it points
|
||
(for some reason).
|
||
|
||
When "smashing" the type, we preserve the objfile that the old type
|
||
pointed to, since we aren't changing where the type is actually
|
||
allocated. */
|
||
|
||
void
|
||
smash_to_memberptr_type (struct type *type, struct type *self_type,
|
||
struct type *to_type)
|
||
{
|
||
smash_type (type);
|
||
type->set_code (TYPE_CODE_MEMBERPTR);
|
||
type->set_target_type (to_type);
|
||
set_type_self_type (type, self_type);
|
||
/* Assume that a data member pointer is the same size as a normal
|
||
pointer. */
|
||
type->set_length (gdbarch_ptr_bit (to_type->arch ()) / TARGET_CHAR_BIT);
|
||
}
|
||
|
||
/* Smash TYPE to be a type of pointer to methods type TO_TYPE.
|
||
|
||
When "smashing" the type, we preserve the objfile that the old type
|
||
pointed to, since we aren't changing where the type is actually
|
||
allocated. */
|
||
|
||
void
|
||
smash_to_methodptr_type (struct type *type, struct type *to_type)
|
||
{
|
||
smash_type (type);
|
||
type->set_code (TYPE_CODE_METHODPTR);
|
||
type->set_target_type (to_type);
|
||
set_type_self_type (type, TYPE_SELF_TYPE (to_type));
|
||
type->set_length (cplus_method_ptr_size (to_type));
|
||
}
|
||
|
||
/* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
|
||
METHOD just means `function that gets an extra "this" argument'.
|
||
|
||
When "smashing" the type, we preserve the objfile that the old type
|
||
pointed to, since we aren't changing where the type is actually
|
||
allocated. */
|
||
|
||
void
|
||
smash_to_method_type (struct type *type, struct type *self_type,
|
||
struct type *to_type, struct field *args,
|
||
int nargs, int varargs)
|
||
{
|
||
smash_type (type);
|
||
type->set_code (TYPE_CODE_METHOD);
|
||
type->set_target_type (to_type);
|
||
set_type_self_type (type, self_type);
|
||
type->set_fields (args);
|
||
type->set_num_fields (nargs);
|
||
|
||
if (varargs)
|
||
type->set_has_varargs (true);
|
||
|
||
/* In practice, this is never needed. */
|
||
type->set_length (1);
|
||
}
|
||
|
||
/* A wrapper of TYPE_NAME which calls error if the type is anonymous.
|
||
Since GCC PR debug/47510 DWARF provides associated information to detect the
|
||
anonymous class linkage name from its typedef.
|
||
|
||
Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
|
||
apply it itself. */
|
||
|
||
const char *
|
||
type_name_or_error (struct type *type)
|
||
{
|
||
struct type *saved_type = type;
|
||
const char *name;
|
||
struct objfile *objfile;
|
||
|
||
type = check_typedef (type);
|
||
|
||
name = type->name ();
|
||
if (name != NULL)
|
||
return name;
|
||
|
||
name = saved_type->name ();
|
||
objfile = saved_type->objfile_owner ();
|
||
error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
|
||
name ? name : "<anonymous>",
|
||
objfile ? objfile_name (objfile) : "<arch>");
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
lookup_typename (const struct language_defn *language,
|
||
const char *name,
|
||
const struct block *block, int noerr)
|
||
{
|
||
struct symbol *sym;
|
||
|
||
sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
|
||
language->la_language, NULL).symbol;
|
||
if (sym != NULL && sym->aclass () == LOC_TYPEDEF)
|
||
{
|
||
struct type *type = sym->type ();
|
||
/* Ensure the length of TYPE is valid. */
|
||
check_typedef (type);
|
||
return type;
|
||
}
|
||
|
||
if (noerr)
|
||
return NULL;
|
||
error (_("No type named %s."), name);
|
||
}
|
||
|
||
struct type *
|
||
lookup_unsigned_typename (const struct language_defn *language,
|
||
const char *name)
|
||
{
|
||
std::string uns;
|
||
uns.reserve (strlen (name) + strlen ("unsigned "));
|
||
uns = "unsigned ";
|
||
uns += name;
|
||
|
||
return lookup_typename (language, uns.c_str (), NULL, 0);
|
||
}
|
||
|
||
struct type *
|
||
lookup_signed_typename (const struct language_defn *language, const char *name)
|
||
{
|
||
/* In C and C++, "char" and "signed char" are distinct types. */
|
||
if (streq (name, "char"))
|
||
name = "signed char";
|
||
return lookup_typename (language, name, NULL, 0);
|
||
}
|
||
|
||
/* Lookup a structure type named "struct NAME",
|
||
visible in lexical block BLOCK. */
|
||
|
||
struct type *
|
||
lookup_struct (const char *name, const struct block *block)
|
||
{
|
||
struct symbol *sym;
|
||
|
||
sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
|
||
|
||
if (sym == NULL)
|
||
{
|
||
error (_("No struct type named %s."), name);
|
||
}
|
||
if (sym->type ()->code () != TYPE_CODE_STRUCT)
|
||
{
|
||
error (_("This context has class, union or enum %s, not a struct."),
|
||
name);
|
||
}
|
||
return (sym->type ());
|
||
}
|
||
|
||
/* Lookup a union type named "union NAME",
|
||
visible in lexical block BLOCK. */
|
||
|
||
struct type *
|
||
lookup_union (const char *name, const struct block *block)
|
||
{
|
||
struct symbol *sym;
|
||
struct type *t;
|
||
|
||
sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
|
||
|
||
if (sym == NULL)
|
||
error (_("No union type named %s."), name);
|
||
|
||
t = sym->type ();
|
||
|
||
if (t->code () == TYPE_CODE_UNION)
|
||
return t;
|
||
|
||
/* If we get here, it's not a union. */
|
||
error (_("This context has class, struct or enum %s, not a union."),
|
||
name);
|
||
}
|
||
|
||
/* Lookup an enum type named "enum NAME",
|
||
visible in lexical block BLOCK. */
|
||
|
||
struct type *
|
||
lookup_enum (const char *name, const struct block *block)
|
||
{
|
||
struct symbol *sym;
|
||
|
||
sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
|
||
if (sym == NULL)
|
||
{
|
||
error (_("No enum type named %s."), name);
|
||
}
|
||
if (sym->type ()->code () != TYPE_CODE_ENUM)
|
||
{
|
||
error (_("This context has class, struct or union %s, not an enum."),
|
||
name);
|
||
}
|
||
return (sym->type ());
|
||
}
|
||
|
||
/* Lookup a template type named "template NAME<TYPE>",
|
||
visible in lexical block BLOCK. */
|
||
|
||
struct type *
|
||
lookup_template_type (const char *name, struct type *type,
|
||
const struct block *block)
|
||
{
|
||
std::string nam;
|
||
nam.reserve (strlen (name) + strlen (type->name ()) + strlen ("< >"));
|
||
nam = name;
|
||
nam += "<";
|
||
nam += type->name ();
|
||
nam += " >"; /* FIXME, extra space still introduced in gcc? */
|
||
|
||
symbol *sym = lookup_symbol (nam.c_str (), block, VAR_DOMAIN, 0).symbol;
|
||
|
||
if (sym == NULL)
|
||
{
|
||
error (_("No template type named %s."), name);
|
||
}
|
||
if (sym->type ()->code () != TYPE_CODE_STRUCT)
|
||
{
|
||
error (_("This context has class, union or enum %s, not a struct."),
|
||
name);
|
||
}
|
||
return (sym->type ());
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct_elt
|
||
lookup_struct_elt (struct type *type, const char *name, int noerr)
|
||
{
|
||
int i;
|
||
|
||
for (;;)
|
||
{
|
||
type = check_typedef (type);
|
||
if (type->code () != TYPE_CODE_PTR
|
||
&& type->code () != TYPE_CODE_REF)
|
||
break;
|
||
type = type->target_type ();
|
||
}
|
||
|
||
if (type->code () != TYPE_CODE_STRUCT
|
||
&& type->code () != TYPE_CODE_UNION)
|
||
{
|
||
std::string type_name = type_to_string (type);
|
||
error (_("Type %s is not a structure or union type."),
|
||
type_name.c_str ());
|
||
}
|
||
|
||
for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
|
||
{
|
||
const char *t_field_name = type->field (i).name ();
|
||
|
||
if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
|
||
{
|
||
return {&type->field (i), type->field (i).loc_bitpos ()};
|
||
}
|
||
else if (!t_field_name || *t_field_name == '\0')
|
||
{
|
||
struct_elt elt
|
||
= lookup_struct_elt (type->field (i).type (), name, 1);
|
||
if (elt.field != NULL)
|
||
{
|
||
elt.offset += type->field (i).loc_bitpos ();
|
||
return elt;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* OK, it's not in this class. Recursively check the baseclasses. */
|
||
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
||
{
|
||
struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
|
||
if (elt.field != NULL)
|
||
return elt;
|
||
}
|
||
|
||
if (noerr)
|
||
return {nullptr, 0};
|
||
|
||
std::string type_name = type_to_string (type);
|
||
error (_("Type %s has no component named %s."), type_name.c_str (), name);
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
lookup_struct_elt_type (struct type *type, const char *name, int noerr)
|
||
{
|
||
struct_elt elt = lookup_struct_elt (type, name, noerr);
|
||
if (elt.field != NULL)
|
||
return elt.field->type ();
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the largest number representable by unsigned integer type TYPE. */
|
||
|
||
ULONGEST
|
||
get_unsigned_type_max (struct type *type)
|
||
{
|
||
unsigned int n;
|
||
|
||
type = check_typedef (type);
|
||
gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ());
|
||
gdb_assert (type->length () <= sizeof (ULONGEST));
|
||
|
||
/* Written this way to avoid overflow. */
|
||
n = type->length () * TARGET_CHAR_BIT;
|
||
return ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
|
||
}
|
||
|
||
/* Store in *MIN, *MAX the smallest and largest numbers representable by
|
||
signed integer type TYPE. */
|
||
|
||
void
|
||
get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
|
||
{
|
||
unsigned int n;
|
||
|
||
type = check_typedef (type);
|
||
gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ());
|
||
gdb_assert (type->length () <= sizeof (LONGEST));
|
||
|
||
n = type->length () * TARGET_CHAR_BIT;
|
||
*min = -((ULONGEST) 1 << (n - 1));
|
||
*max = ((ULONGEST) 1 << (n - 1)) - 1;
|
||
}
|
||
|
||
/* Return the largest value representable by pointer type TYPE. */
|
||
|
||
CORE_ADDR
|
||
get_pointer_type_max (struct type *type)
|
||
{
|
||
unsigned int n;
|
||
|
||
type = check_typedef (type);
|
||
gdb_assert (type->code () == TYPE_CODE_PTR);
|
||
gdb_assert (type->length () <= sizeof (CORE_ADDR));
|
||
|
||
n = type->length () * TARGET_CHAR_BIT;
|
||
return ((((CORE_ADDR) 1 << (n - 1)) - 1) << 1) | 1;
|
||
}
|
||
|
||
/* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
|
||
cplus_stuff.vptr_fieldno.
|
||
|
||
cplus_stuff is initialized to cplus_struct_default which does not
|
||
set vptr_fieldno to -1 for portability reasons (IWBN to use C99
|
||
designated initializers). We cope with that here. */
|
||
|
||
int
|
||
internal_type_vptr_fieldno (struct type *type)
|
||
{
|
||
type = check_typedef (type);
|
||
gdb_assert (type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION);
|
||
if (!HAVE_CPLUS_STRUCT (type))
|
||
return -1;
|
||
return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
|
||
}
|
||
|
||
/* Set the value of cplus_stuff.vptr_fieldno. */
|
||
|
||
void
|
||
set_type_vptr_fieldno (struct type *type, int fieldno)
|
||
{
|
||
type = check_typedef (type);
|
||
gdb_assert (type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION);
|
||
if (!HAVE_CPLUS_STRUCT (type))
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
|
||
}
|
||
|
||
/* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
|
||
cplus_stuff.vptr_basetype. */
|
||
|
||
struct type *
|
||
internal_type_vptr_basetype (struct type *type)
|
||
{
|
||
type = check_typedef (type);
|
||
gdb_assert (type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION);
|
||
gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
|
||
return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
|
||
}
|
||
|
||
/* Set the value of cplus_stuff.vptr_basetype. */
|
||
|
||
void
|
||
set_type_vptr_basetype (struct type *type, struct type *basetype)
|
||
{
|
||
type = check_typedef (type);
|
||
gdb_assert (type->code () == TYPE_CODE_STRUCT
|
||
|| type->code () == TYPE_CODE_UNION);
|
||
if (!HAVE_CPLUS_STRUCT (type))
|
||
ALLOCATE_CPLUS_STRUCT_TYPE (type);
|
||
TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
|
||
}
|
||
|
||
/* Lookup the vptr basetype/fieldno values for TYPE.
|
||
If found store vptr_basetype in *BASETYPEP if non-NULL, and return
|
||
vptr_fieldno. Also, if found and basetype is from the same objfile,
|
||
cache the results.
|
||
If not found, return -1 and ignore BASETYPEP.
|
||
Callers should be aware that in some cases (for example,
|
||
the type or one of its baseclasses is a stub type and we are
|
||
debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
|
||
this function will not be able to find the
|
||
virtual function table pointer, and vptr_fieldno will remain -1 and
|
||
vptr_basetype will remain NULL or incomplete. */
|
||
|
||
int
|
||
get_vptr_fieldno (struct type *type, struct type **basetypep)
|
||
{
|
||
type = check_typedef (type);
|
||
|
||
if (TYPE_VPTR_FIELDNO (type) < 0)
|
||
{
|
||
int i;
|
||
|
||
/* We must start at zero in case the first (and only) baseclass
|
||
is virtual (and hence we cannot share the table pointer). */
|
||
for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
|
||
{
|
||
struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
|
||
int fieldno;
|
||
struct type *basetype;
|
||
|
||
fieldno = get_vptr_fieldno (baseclass, &basetype);
|
||
if (fieldno >= 0)
|
||
{
|
||
/* If the type comes from a different objfile we can't cache
|
||
it, it may have a different lifetime. PR 2384 */
|
||
if (type->objfile_owner () == basetype->objfile_owner ())
|
||
{
|
||
set_type_vptr_fieldno (type, fieldno);
|
||
set_type_vptr_basetype (type, basetype);
|
||
}
|
||
if (basetypep)
|
||
*basetypep = basetype;
|
||
return fieldno;
|
||
}
|
||
}
|
||
|
||
/* Not found. */
|
||
return -1;
|
||
}
|
||
else
|
||
{
|
||
if (basetypep)
|
||
*basetypep = TYPE_VPTR_BASETYPE (type);
|
||
return TYPE_VPTR_FIELDNO (type);
|
||
}
|
||
}
|
||
|
||
static void
|
||
stub_noname_complaint (void)
|
||
{
|
||
complaint (_("stub type has NULL name"));
|
||
}
|
||
|
||
/* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
|
||
attached to it, and that property has a non-constant value. */
|
||
|
||
static int
|
||
array_type_has_dynamic_stride (struct type *type)
|
||
{
|
||
struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
|
||
|
||
return prop != nullptr && prop->is_constant ();
|
||
}
|
||
|
||
/* Worker for is_dynamic_type. */
|
||
|
||
static int
|
||
is_dynamic_type_internal (struct type *type, int top_level)
|
||
{
|
||
type = check_typedef (type);
|
||
|
||
/* We only want to recognize references at the outermost level. */
|
||
if (top_level && type->code () == TYPE_CODE_REF)
|
||
type = check_typedef (type->target_type ());
|
||
|
||
/* Types that have a dynamic TYPE_DATA_LOCATION are considered
|
||
dynamic, even if the type itself is statically defined.
|
||
From a user's point of view, this may appear counter-intuitive;
|
||
but it makes sense in this context, because the point is to determine
|
||
whether any part of the type needs to be resolved before it can
|
||
be exploited. */
|
||
if (TYPE_DATA_LOCATION (type) != NULL
|
||
&& (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
|
||
|| TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
|
||
return 1;
|
||
|
||
if (TYPE_ASSOCIATED_PROP (type))
|
||
return 1;
|
||
|
||
if (TYPE_ALLOCATED_PROP (type))
|
||
return 1;
|
||
|
||
struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
|
||
if (prop != nullptr && prop->kind () != PROP_TYPE)
|
||
return 1;
|
||
|
||
if (TYPE_HAS_DYNAMIC_LENGTH (type))
|
||
return 1;
|
||
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_RANGE:
|
||
{
|
||
/* A range type is obviously dynamic if it has at least one
|
||
dynamic bound. But also consider the range type to be
|
||
dynamic when its subtype is dynamic, even if the bounds
|
||
of the range type are static. It allows us to assume that
|
||
the subtype of a static range type is also static. */
|
||
return (!has_static_range (type->bounds ())
|
||
|| is_dynamic_type_internal (type->target_type (), 0));
|
||
}
|
||
|
||
case TYPE_CODE_STRING:
|
||
/* Strings are very much like an array of characters, and can be
|
||
treated as one here. */
|
||
case TYPE_CODE_ARRAY:
|
||
{
|
||
gdb_assert (type->num_fields () == 1);
|
||
|
||
/* The array is dynamic if either the bounds are dynamic... */
|
||
if (is_dynamic_type_internal (type->index_type (), 0))
|
||
return 1;
|
||
/* ... or the elements it contains have a dynamic contents... */
|
||
if (is_dynamic_type_internal (type->target_type (), 0))
|
||
return 1;
|
||
/* ... or if it has a dynamic stride... */
|
||
if (array_type_has_dynamic_stride (type))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
{
|
||
int i;
|
||
|
||
bool is_cplus = HAVE_CPLUS_STRUCT (type);
|
||
|
||
for (i = 0; i < type->num_fields (); ++i)
|
||
{
|
||
/* Static fields can be ignored here. */
|
||
if (type->field (i).is_static ())
|
||
continue;
|
||
/* If the field has dynamic type, then so does TYPE. */
|
||
if (is_dynamic_type_internal (type->field (i).type (), 0))
|
||
return 1;
|
||
/* If the field is at a fixed offset, then it is not
|
||
dynamic. */
|
||
if (type->field (i).loc_kind () != FIELD_LOC_KIND_DWARF_BLOCK)
|
||
continue;
|
||
/* Do not consider C++ virtual base types to be dynamic
|
||
due to the field's offset being dynamic; these are
|
||
handled via other means. */
|
||
if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
|
||
continue;
|
||
return 1;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
int
|
||
is_dynamic_type (struct type *type)
|
||
{
|
||
return is_dynamic_type_internal (type, 1);
|
||
}
|
||
|
||
static struct type *resolve_dynamic_type_internal
|
||
(struct type *type, struct property_addr_info *addr_stack,
|
||
const frame_info_ptr &frame, int top_level);
|
||
|
||
/* Given a dynamic range type (dyn_range_type) and a stack of
|
||
struct property_addr_info elements, return a static version
|
||
of that type.
|
||
|
||
When RESOLVE_P is true then the returned static range is created by
|
||
actually evaluating any dynamic properties within the range type, while
|
||
when RESOLVE_P is false the returned static range has all of the bounds
|
||
and stride information set to undefined. The RESOLVE_P set to false
|
||
case will be used when evaluating a dynamic array that is not
|
||
allocated, or not associated, i.e. the bounds information might not be
|
||
initialized yet.
|
||
|
||
RANK is the array rank for which we are resolving this range, and is a
|
||
zero based count. The rank should never be negative.
|
||
*/
|
||
|
||
static struct type *
|
||
resolve_dynamic_range (struct type *dyn_range_type,
|
||
struct property_addr_info *addr_stack,
|
||
const frame_info_ptr &frame,
|
||
int rank, bool resolve_p = true)
|
||
{
|
||
CORE_ADDR value;
|
||
struct type *static_range_type, *static_target_type;
|
||
struct dynamic_prop low_bound, high_bound, stride;
|
||
|
||
gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
|
||
gdb_assert (rank >= 0);
|
||
|
||
const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
|
||
if (resolve_p && dwarf2_evaluate_property (prop, frame, addr_stack, &value,
|
||
{ (CORE_ADDR) rank }))
|
||
low_bound.set_const_val (value);
|
||
else
|
||
low_bound.set_undefined ();
|
||
|
||
prop = &dyn_range_type->bounds ()->high;
|
||
if (resolve_p && dwarf2_evaluate_property (prop, frame, addr_stack, &value,
|
||
{ (CORE_ADDR) rank }))
|
||
{
|
||
high_bound.set_const_val (value);
|
||
|
||
if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
|
||
high_bound.set_const_val
|
||
(low_bound.const_val () + high_bound.const_val () - 1);
|
||
}
|
||
else
|
||
high_bound.set_undefined ();
|
||
|
||
bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
|
||
prop = &dyn_range_type->bounds ()->stride;
|
||
if (resolve_p && dwarf2_evaluate_property (prop, frame, addr_stack, &value,
|
||
{ (CORE_ADDR) rank }))
|
||
{
|
||
stride.set_const_val (value);
|
||
|
||
/* If we have a bit stride that is not an exact number of bytes then
|
||
I really don't think this is going to work with current GDB, the
|
||
array indexing code in GDB seems to be pretty heavily tied to byte
|
||
offsets right now. Assuming 8 bits in a byte. */
|
||
struct gdbarch *gdbarch = dyn_range_type->arch ();
|
||
int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
|
||
if (!byte_stride_p && (value % (unit_size * 8)) != 0)
|
||
error (_("bit strides that are not a multiple of the byte size "
|
||
"are currently not supported"));
|
||
}
|
||
else
|
||
{
|
||
stride.set_undefined ();
|
||
byte_stride_p = true;
|
||
}
|
||
|
||
static_target_type
|
||
= resolve_dynamic_type_internal (dyn_range_type->target_type (),
|
||
addr_stack, frame, 0);
|
||
LONGEST bias = dyn_range_type->bounds ()->bias;
|
||
type_allocator alloc (dyn_range_type);
|
||
static_range_type = create_range_type_with_stride
|
||
(alloc, static_target_type,
|
||
&low_bound, &high_bound, bias, &stride, byte_stride_p);
|
||
static_range_type->set_name (dyn_range_type->name ());
|
||
static_range_type->bounds ()->flag_bound_evaluated = 1;
|
||
return static_range_type;
|
||
}
|
||
|
||
/* Helper function for resolve_dynamic_array_or_string. This function
|
||
resolves the properties for a single array at RANK within a nested array
|
||
of arrays structure. The RANK value is greater than or equal to 0, and
|
||
starts at it's maximum value and goes down by 1 for each recursive call
|
||
to this function. So, for a 3-dimensional array, the first call to this
|
||
function has RANK == 2, then we call ourselves recursively with RANK ==
|
||
1, than again with RANK == 0, and at that point we should return.
|
||
|
||
TYPE is updated as the dynamic properties are resolved, and so, should
|
||
be a copy of the dynamic type, rather than the original dynamic type
|
||
itself.
|
||
|
||
ADDR_STACK is a stack of struct property_addr_info to be used if needed
|
||
during the dynamic resolution.
|
||
|
||
When RESOLVE_P is true then the dynamic properties of TYPE are
|
||
evaluated, otherwise the dynamic properties of TYPE are not evaluated,
|
||
instead we assume the array is not allocated/associated yet. */
|
||
|
||
static struct type *
|
||
resolve_dynamic_array_or_string_1 (struct type *type,
|
||
struct property_addr_info *addr_stack,
|
||
const frame_info_ptr &frame,
|
||
int rank, bool resolve_p)
|
||
{
|
||
CORE_ADDR value;
|
||
struct type *elt_type;
|
||
struct type *range_type;
|
||
struct type *ary_dim;
|
||
struct dynamic_prop *prop;
|
||
unsigned int bit_stride = 0;
|
||
|
||
/* For dynamic type resolution strings can be treated like arrays of
|
||
characters. */
|
||
gdb_assert (type->code () == TYPE_CODE_ARRAY
|
||
|| type->code () == TYPE_CODE_STRING);
|
||
|
||
/* As the rank is a zero based count we expect this to never be
|
||
negative. */
|
||
gdb_assert (rank >= 0);
|
||
|
||
/* Resolve the allocated and associated properties before doing anything
|
||
else. If an array is not allocated or not associated then (at least
|
||
for Fortran) there is no guarantee that the data to define the upper
|
||
bound, lower bound, or stride will be correct. If RESOLVE_P is
|
||
already false at this point then this is not the first dimension of
|
||
the array and a more outer dimension has already marked this array as
|
||
not allocated/associated, as such we just ignore this property. This
|
||
is fine as GDB only checks the allocated/associated on the outer most
|
||
dimension of the array. */
|
||
prop = TYPE_ALLOCATED_PROP (type);
|
||
if (prop != NULL && resolve_p
|
||
&& dwarf2_evaluate_property (prop, frame, addr_stack, &value))
|
||
{
|
||
prop->set_const_val (value);
|
||
if (value == 0)
|
||
resolve_p = false;
|
||
}
|
||
|
||
prop = TYPE_ASSOCIATED_PROP (type);
|
||
if (prop != NULL && resolve_p
|
||
&& dwarf2_evaluate_property (prop, frame, addr_stack, &value))
|
||
{
|
||
prop->set_const_val (value);
|
||
if (value == 0)
|
||
resolve_p = false;
|
||
}
|
||
|
||
range_type = check_typedef (type->index_type ());
|
||
range_type
|
||
= resolve_dynamic_range (range_type, addr_stack, frame, rank, resolve_p);
|
||
|
||
ary_dim = check_typedef (type->target_type ());
|
||
if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
|
||
{
|
||
ary_dim = copy_type (ary_dim);
|
||
elt_type = resolve_dynamic_array_or_string_1 (ary_dim, addr_stack,
|
||
frame, rank - 1,
|
||
resolve_p);
|
||
}
|
||
else
|
||
elt_type = type->target_type ();
|
||
|
||
prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
|
||
if (prop != NULL && resolve_p)
|
||
{
|
||
if (dwarf2_evaluate_property (prop, frame, addr_stack, &value))
|
||
{
|
||
type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
|
||
bit_stride = (unsigned int) (value * 8);
|
||
}
|
||
else
|
||
{
|
||
/* Could be a bug in our code, but it could also happen
|
||
if the DWARF info is not correct. Issue a warning,
|
||
and assume no byte/bit stride (leave bit_stride = 0). */
|
||
warning (_("cannot determine array stride for type %s"),
|
||
type->name () ? type->name () : "<no name>");
|
||
}
|
||
}
|
||
else
|
||
bit_stride = type->field (0).bitsize ();
|
||
|
||
type_allocator alloc (type, type_allocator::SMASH);
|
||
return create_array_type_with_stride (alloc, elt_type, range_type, NULL,
|
||
bit_stride);
|
||
}
|
||
|
||
/* Resolve an array or string type with dynamic properties, return a new
|
||
type with the dynamic properties resolved to actual values. The
|
||
ADDR_STACK represents the location of the object being resolved. */
|
||
|
||
static struct type *
|
||
resolve_dynamic_array_or_string (struct type *type,
|
||
struct property_addr_info *addr_stack,
|
||
const frame_info_ptr &frame)
|
||
{
|
||
CORE_ADDR value;
|
||
int rank = 0;
|
||
|
||
/* For dynamic type resolution strings can be treated like arrays of
|
||
characters. */
|
||
gdb_assert (type->code () == TYPE_CODE_ARRAY
|
||
|| type->code () == TYPE_CODE_STRING);
|
||
|
||
type = copy_type (type);
|
||
|
||
/* Resolve the rank property to get rank value. */
|
||
struct dynamic_prop *prop = TYPE_RANK_PROP (type);
|
||
if (dwarf2_evaluate_property (prop, frame, addr_stack, &value))
|
||
{
|
||
prop->set_const_val (value);
|
||
rank = value;
|
||
|
||
if (rank == 0)
|
||
{
|
||
/* Rank is zero, if a variable is passed as an argument to a
|
||
function. In this case the resolved type should not be an
|
||
array, but should instead be that of an array element. */
|
||
struct type *dynamic_array_type = type;
|
||
type = copy_type (dynamic_array_type->target_type ());
|
||
struct dynamic_prop_list *prop_list
|
||
= TYPE_MAIN_TYPE (dynamic_array_type)->dyn_prop_list;
|
||
if (prop_list != nullptr)
|
||
{
|
||
struct obstack *obstack
|
||
= &type->objfile_owner ()->objfile_obstack;
|
||
TYPE_MAIN_TYPE (type)->dyn_prop_list
|
||
= copy_dynamic_prop_list (obstack, prop_list);
|
||
}
|
||
return type;
|
||
}
|
||
else if (type->code () == TYPE_CODE_STRING && rank != 1)
|
||
{
|
||
/* What would this even mean? A string with a dynamic rank
|
||
greater than 1. */
|
||
error (_("unable to handle string with dynamic rank greater than 1"));
|
||
}
|
||
else if (rank > 1)
|
||
{
|
||
/* Arrays with dynamic rank are initially just an array type
|
||
with a target type that is the array element.
|
||
|
||
However, now we know the rank of the array we need to build
|
||
the array of arrays structure that GDB expects, that is we
|
||
need an array type that has a target which is an array type,
|
||
and so on, until eventually, we have the element type at the
|
||
end of the chain. Create all the additional array types here
|
||
by copying the top level array type. */
|
||
struct type *element_type = type->target_type ();
|
||
struct type *rank_type = type;
|
||
for (int i = 1; i < rank; i++)
|
||
{
|
||
rank_type->set_target_type (copy_type (rank_type));
|
||
rank_type = rank_type->target_type ();
|
||
}
|
||
rank_type->set_target_type (element_type);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
rank = 1;
|
||
|
||
for (struct type *tmp_type = check_typedef (type->target_type ());
|
||
tmp_type->code () == TYPE_CODE_ARRAY;
|
||
tmp_type = check_typedef (tmp_type->target_type ()))
|
||
++rank;
|
||
}
|
||
|
||
/* The rank that we calculated above is actually a count of the number of
|
||
ranks. However, when we resolve the type of each individual array
|
||
rank we should actually use a rank "offset", e.g. an array with a rank
|
||
count of 1 (calculated above) will use the rank offset 0 in order to
|
||
resolve the details of the first array dimension. As a result, we
|
||
reduce the rank by 1 here. */
|
||
--rank;
|
||
|
||
return resolve_dynamic_array_or_string_1 (type, addr_stack, frame, rank,
|
||
true);
|
||
}
|
||
|
||
/* Resolve dynamic bounds of members of the union TYPE to static
|
||
bounds. ADDR_STACK is a stack of struct property_addr_info
|
||
to be used if needed during the dynamic resolution. */
|
||
|
||
static struct type *
|
||
resolve_dynamic_union (struct type *type,
|
||
struct property_addr_info *addr_stack,
|
||
const frame_info_ptr &frame)
|
||
{
|
||
struct type *resolved_type;
|
||
int i;
|
||
unsigned int max_len = 0;
|
||
|
||
gdb_assert (type->code () == TYPE_CODE_UNION);
|
||
|
||
resolved_type = copy_type (type);
|
||
resolved_type->copy_fields (type);
|
||
for (i = 0; i < resolved_type->num_fields (); ++i)
|
||
{
|
||
struct type *t;
|
||
|
||
if (type->field (i).is_static ())
|
||
continue;
|
||
|
||
t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
|
||
addr_stack, frame, 0);
|
||
resolved_type->field (i).set_type (t);
|
||
|
||
struct type *real_type = check_typedef (t);
|
||
if (real_type->length () > max_len)
|
||
max_len = real_type->length ();
|
||
}
|
||
|
||
resolved_type->set_length (max_len);
|
||
return resolved_type;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
bool
|
||
variant::matches (ULONGEST value, bool is_unsigned) const
|
||
{
|
||
for (const discriminant_range &range : discriminants)
|
||
if (range.contains (value, is_unsigned))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
static void
|
||
compute_variant_fields_inner (struct type *type,
|
||
struct property_addr_info *addr_stack,
|
||
const variant_part &part,
|
||
std::vector<bool> &flags);
|
||
|
||
/* A helper function to determine which variant fields will be active.
|
||
This handles both the variant's direct fields, and any variant
|
||
parts embedded in this variant. TYPE is the type we're examining.
|
||
ADDR_STACK holds information about the concrete object. VARIANT is
|
||
the current variant to be handled. FLAGS is where the results are
|
||
stored -- this function sets the Nth element in FLAGS if the
|
||
corresponding field is enabled. ENABLED is whether this variant is
|
||
enabled or not. */
|
||
|
||
static void
|
||
compute_variant_fields_recurse (struct type *type,
|
||
struct property_addr_info *addr_stack,
|
||
const variant &variant,
|
||
std::vector<bool> &flags,
|
||
bool enabled)
|
||
{
|
||
for (int field = variant.first_field; field < variant.last_field; ++field)
|
||
flags[field] = enabled;
|
||
|
||
for (const variant_part &new_part : variant.parts)
|
||
{
|
||
if (enabled)
|
||
compute_variant_fields_inner (type, addr_stack, new_part, flags);
|
||
else
|
||
{
|
||
for (const auto &sub_variant : new_part.variants)
|
||
compute_variant_fields_recurse (type, addr_stack, sub_variant,
|
||
flags, enabled);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* A helper function to determine which variant fields will be active.
|
||
This evaluates the discriminant, decides which variant (if any) is
|
||
active, and then updates FLAGS to reflect which fields should be
|
||
available. TYPE is the type we're examining. ADDR_STACK holds
|
||
information about the concrete object. VARIANT is the current
|
||
variant to be handled. FLAGS is where the results are stored --
|
||
this function sets the Nth element in FLAGS if the corresponding
|
||
field is enabled. */
|
||
|
||
static void
|
||
compute_variant_fields_inner (struct type *type,
|
||
struct property_addr_info *addr_stack,
|
||
const variant_part &part,
|
||
std::vector<bool> &flags)
|
||
{
|
||
/* Evaluate the discriminant. */
|
||
std::optional<ULONGEST> discr_value;
|
||
if (part.discriminant_index != -1)
|
||
{
|
||
int idx = part.discriminant_index;
|
||
|
||
if (type->field (idx).loc_kind () != FIELD_LOC_KIND_BITPOS)
|
||
error (_("Cannot determine struct field location"
|
||
" (invalid location kind)"));
|
||
|
||
if (addr_stack->valaddr.data () != NULL)
|
||
discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
|
||
idx);
|
||
else
|
||
{
|
||
CORE_ADDR addr = (addr_stack->addr
|
||
+ (type->field (idx).loc_bitpos ()
|
||
/ TARGET_CHAR_BIT));
|
||
|
||
LONGEST bitsize = type->field (idx).bitsize ();
|
||
LONGEST size = bitsize / 8;
|
||
if (size == 0)
|
||
size = type->field (idx).type ()->length ();
|
||
|
||
gdb_byte bits[sizeof (ULONGEST)];
|
||
read_memory (addr, bits, size);
|
||
|
||
LONGEST bitpos = (type->field (idx).loc_bitpos ()
|
||
% TARGET_CHAR_BIT);
|
||
|
||
discr_value = unpack_bits_as_long (type->field (idx).type (),
|
||
bits, bitpos, bitsize);
|
||
}
|
||
}
|
||
|
||
/* Go through each variant and see which applies. */
|
||
const variant *default_variant = nullptr;
|
||
const variant *applied_variant = nullptr;
|
||
for (const auto &variant : part.variants)
|
||
{
|
||
if (variant.is_default ())
|
||
default_variant = &variant;
|
||
else if (discr_value.has_value ()
|
||
&& variant.matches (*discr_value, part.is_unsigned))
|
||
{
|
||
applied_variant = &variant;
|
||
break;
|
||
}
|
||
}
|
||
if (applied_variant == nullptr)
|
||
applied_variant = default_variant;
|
||
|
||
for (const auto &variant : part.variants)
|
||
compute_variant_fields_recurse (type, addr_stack, variant,
|
||
flags, applied_variant == &variant);
|
||
}
|
||
|
||
/* Determine which variant fields are available in TYPE. The enabled
|
||
fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
|
||
about the concrete object. PARTS describes the top-level variant
|
||
parts for this type. */
|
||
|
||
static void
|
||
compute_variant_fields (struct type *type,
|
||
struct type *resolved_type,
|
||
struct property_addr_info *addr_stack,
|
||
const gdb::array_view<variant_part> &parts)
|
||
{
|
||
/* Assume all fields are included by default. */
|
||
std::vector<bool> flags (resolved_type->num_fields (), true);
|
||
|
||
/* Now disable fields based on the variants that control them. */
|
||
for (const auto &part : parts)
|
||
compute_variant_fields_inner (type, addr_stack, part, flags);
|
||
|
||
unsigned int nfields = std::count (flags.begin (), flags.end (), true);
|
||
/* No need to zero-initialize the newly allocated fields, they'll be
|
||
initialized by the copy in the loop below. */
|
||
resolved_type->alloc_fields (nfields, false);
|
||
|
||
int out = 0;
|
||
for (int i = 0; i < type->num_fields (); ++i)
|
||
{
|
||
if (!flags[i])
|
||
continue;
|
||
|
||
resolved_type->field (out) = type->field (i);
|
||
++out;
|
||
}
|
||
}
|
||
|
||
/* Resolve dynamic bounds of members of the struct TYPE to static
|
||
bounds. ADDR_STACK is a stack of struct property_addr_info to
|
||
be used if needed during the dynamic resolution. */
|
||
|
||
static struct type *
|
||
resolve_dynamic_struct (struct type *type,
|
||
struct property_addr_info *addr_stack,
|
||
const frame_info_ptr &frame)
|
||
{
|
||
struct type *resolved_type;
|
||
int i;
|
||
unsigned resolved_type_bit_length = 0;
|
||
|
||
gdb_assert (type->code () == TYPE_CODE_STRUCT);
|
||
|
||
resolved_type = copy_type (type);
|
||
|
||
dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
|
||
if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
|
||
{
|
||
compute_variant_fields (type, resolved_type, addr_stack,
|
||
*variant_prop->variant_parts ());
|
||
/* We want to leave the property attached, so that the Rust code
|
||
can tell whether the type was originally an enum. */
|
||
variant_prop->set_original_type (type);
|
||
}
|
||
else
|
||
{
|
||
resolved_type->copy_fields (type);
|
||
}
|
||
|
||
for (i = 0; i < resolved_type->num_fields (); ++i)
|
||
{
|
||
unsigned new_bit_length;
|
||
struct property_addr_info pinfo;
|
||
|
||
if (resolved_type->field (i).is_static ())
|
||
continue;
|
||
|
||
if (resolved_type->field (i).loc_kind () == FIELD_LOC_KIND_DWARF_BLOCK)
|
||
{
|
||
struct dwarf2_property_baton baton;
|
||
baton.property_type
|
||
= lookup_pointer_type (resolved_type->field (i).type ());
|
||
baton.locexpr = *resolved_type->field (i).loc_dwarf_block ();
|
||
|
||
struct dynamic_prop prop;
|
||
prop.set_locexpr (&baton);
|
||
|
||
CORE_ADDR addr;
|
||
if (dwarf2_evaluate_property (&prop, frame, addr_stack, &addr,
|
||
{addr_stack->addr}))
|
||
resolved_type->field (i).set_loc_bitpos
|
||
(TARGET_CHAR_BIT * (addr - addr_stack->addr));
|
||
}
|
||
|
||
/* As we know this field is not a static field, the field's
|
||
field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
|
||
this is the case, but only trigger a simple error rather
|
||
than an internal error if that fails. While failing
|
||
that verification indicates a bug in our code, the error
|
||
is not severe enough to suggest to the user he stops
|
||
his debugging session because of it. */
|
||
if (resolved_type->field (i).loc_kind () != FIELD_LOC_KIND_BITPOS)
|
||
error (_("Cannot determine struct field location"
|
||
" (invalid location kind)"));
|
||
|
||
pinfo.type = check_typedef (resolved_type->field (i).type ());
|
||
size_t offset = resolved_type->field (i).loc_bitpos () / TARGET_CHAR_BIT;
|
||
pinfo.valaddr = addr_stack->valaddr;
|
||
if (!pinfo.valaddr.empty ())
|
||
pinfo.valaddr = pinfo.valaddr.slice (offset);
|
||
pinfo.addr = addr_stack->addr + offset;
|
||
pinfo.next = addr_stack;
|
||
|
||
resolved_type->field (i).set_type
|
||
(resolve_dynamic_type_internal (resolved_type->field (i).type (),
|
||
&pinfo, frame, 0));
|
||
gdb_assert (resolved_type->field (i).loc_kind ()
|
||
== FIELD_LOC_KIND_BITPOS);
|
||
|
||
new_bit_length = resolved_type->field (i).loc_bitpos ();
|
||
if (resolved_type->field (i).bitsize () != 0)
|
||
new_bit_length += resolved_type->field (i).bitsize ();
|
||
else
|
||
{
|
||
struct type *real_type
|
||
= check_typedef (resolved_type->field (i).type ());
|
||
|
||
new_bit_length += (real_type->length () * TARGET_CHAR_BIT);
|
||
}
|
||
|
||
/* Normally, we would use the position and size of the last field
|
||
to determine the size of the enclosing structure. But GCC seems
|
||
to be encoding the position of some fields incorrectly when
|
||
the struct contains a dynamic field that is not placed last.
|
||
So we compute the struct size based on the field that has
|
||
the highest position + size - probably the best we can do. */
|
||
if (new_bit_length > resolved_type_bit_length)
|
||
resolved_type_bit_length = new_bit_length;
|
||
}
|
||
|
||
/* The length of a type won't change for fortran, but it does for C and Ada.
|
||
For fortran the size of dynamic fields might change over time but not the
|
||
type length of the structure. If we adapt it, we run into problems
|
||
when calculating the element offset for arrays of structs. */
|
||
if (current_language->la_language != language_fortran)
|
||
resolved_type->set_length ((resolved_type_bit_length + TARGET_CHAR_BIT - 1)
|
||
/ TARGET_CHAR_BIT);
|
||
|
||
/* The Ada language uses this field as a cache for static fixed types: reset
|
||
it as RESOLVED_TYPE must have its own static fixed type. */
|
||
resolved_type->set_target_type (nullptr);
|
||
|
||
return resolved_type;
|
||
}
|
||
|
||
/* Worker for resolved_dynamic_type. */
|
||
|
||
static struct type *
|
||
resolve_dynamic_type_internal (struct type *type,
|
||
struct property_addr_info *addr_stack,
|
||
const frame_info_ptr &frame,
|
||
int top_level)
|
||
{
|
||
struct type *real_type = check_typedef (type);
|
||
struct type *resolved_type = nullptr;
|
||
struct dynamic_prop *prop;
|
||
CORE_ADDR value;
|
||
|
||
if (!is_dynamic_type_internal (real_type, top_level))
|
||
return type;
|
||
|
||
std::optional<CORE_ADDR> type_length;
|
||
prop = TYPE_DYNAMIC_LENGTH (type);
|
||
if (prop != NULL
|
||
&& dwarf2_evaluate_property (prop, frame, addr_stack, &value))
|
||
type_length = value;
|
||
|
||
if (type->code () == TYPE_CODE_TYPEDEF)
|
||
{
|
||
resolved_type = copy_type (type);
|
||
resolved_type->set_target_type
|
||
(resolve_dynamic_type_internal (type->target_type (), addr_stack,
|
||
frame, top_level));
|
||
}
|
||
else
|
||
{
|
||
/* Before trying to resolve TYPE, make sure it is not a stub. */
|
||
type = real_type;
|
||
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_REF:
|
||
{
|
||
struct property_addr_info pinfo;
|
||
|
||
pinfo.type = check_typedef (type->target_type ());
|
||
pinfo.valaddr = {};
|
||
if (addr_stack->valaddr.data () != NULL)
|
||
pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
|
||
type);
|
||
else
|
||
pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
|
||
pinfo.next = addr_stack;
|
||
|
||
resolved_type = copy_type (type);
|
||
resolved_type->set_target_type
|
||
(resolve_dynamic_type_internal (type->target_type (),
|
||
&pinfo, frame, top_level));
|
||
break;
|
||
}
|
||
|
||
case TYPE_CODE_STRING:
|
||
/* Strings are very much like an array of characters, and can be
|
||
treated as one here. */
|
||
case TYPE_CODE_ARRAY:
|
||
resolved_type = resolve_dynamic_array_or_string (type, addr_stack,
|
||
frame);
|
||
break;
|
||
|
||
case TYPE_CODE_RANGE:
|
||
/* Pass 0 for the rank value here, which indicates this is a
|
||
range for the first rank of an array. The assumption is that
|
||
this rank value is not actually required for the resolution of
|
||
the dynamic range, otherwise, we'd be resolving this range
|
||
within the context of a dynamic array. */
|
||
resolved_type = resolve_dynamic_range (type, addr_stack, frame, 0);
|
||
break;
|
||
|
||
case TYPE_CODE_UNION:
|
||
resolved_type = resolve_dynamic_union (type, addr_stack, frame);
|
||
break;
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
resolved_type = resolve_dynamic_struct (type, addr_stack, frame);
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (resolved_type == nullptr)
|
||
return type;
|
||
|
||
if (type_length.has_value ())
|
||
{
|
||
resolved_type->set_length (*type_length);
|
||
resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
|
||
}
|
||
|
||
/* Resolve data_location attribute. */
|
||
prop = TYPE_DATA_LOCATION (resolved_type);
|
||
if (prop != NULL
|
||
&& dwarf2_evaluate_property (prop, frame, addr_stack, &value))
|
||
{
|
||
/* Start of Fortran hack. See comment in f-lang.h for what is going
|
||
on here.*/
|
||
if (current_language->la_language == language_fortran
|
||
&& resolved_type->code () == TYPE_CODE_ARRAY)
|
||
value = fortran_adjust_dynamic_array_base_address_hack (resolved_type,
|
||
value);
|
||
/* End of Fortran hack. */
|
||
prop->set_const_val (value);
|
||
}
|
||
|
||
return resolved_type;
|
||
}
|
||
|
||
/* See gdbtypes.h */
|
||
|
||
struct type *
|
||
resolve_dynamic_type (struct type *type,
|
||
gdb::array_view<const gdb_byte> valaddr,
|
||
CORE_ADDR addr,
|
||
const frame_info_ptr *in_frame)
|
||
{
|
||
struct property_addr_info pinfo
|
||
= {check_typedef (type), valaddr, addr, NULL};
|
||
|
||
frame_info_ptr frame;
|
||
if (in_frame != nullptr)
|
||
frame = *in_frame;
|
||
|
||
return resolve_dynamic_type_internal (type, &pinfo, frame, 1);
|
||
}
|
||
|
||
/* See gdbtypes.h */
|
||
|
||
dynamic_prop *
|
||
type::dyn_prop (dynamic_prop_node_kind prop_kind) const
|
||
{
|
||
dynamic_prop_list *node = this->main_type->dyn_prop_list;
|
||
|
||
while (node != NULL)
|
||
{
|
||
if (node->prop_kind == prop_kind)
|
||
return &node->prop;
|
||
node = node->next;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* See gdbtypes.h */
|
||
|
||
void
|
||
type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
|
||
{
|
||
struct dynamic_prop_list *temp;
|
||
|
||
gdb_assert (this->is_objfile_owned ());
|
||
|
||
temp = XOBNEW (&this->objfile_owner ()->objfile_obstack,
|
||
struct dynamic_prop_list);
|
||
temp->prop_kind = prop_kind;
|
||
temp->prop = prop;
|
||
temp->next = this->main_type->dyn_prop_list;
|
||
|
||
this->main_type->dyn_prop_list = temp;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
void
|
||
type::remove_dyn_prop (dynamic_prop_node_kind kind)
|
||
{
|
||
struct dynamic_prop_list *prev_node, *curr_node;
|
||
|
||
curr_node = this->main_type->dyn_prop_list;
|
||
prev_node = NULL;
|
||
|
||
while (NULL != curr_node)
|
||
{
|
||
if (curr_node->prop_kind == kind)
|
||
{
|
||
/* Update the linked list but don't free anything.
|
||
The property was allocated on objstack and it is not known
|
||
if we are on top of it. Nevertheless, everything is released
|
||
when the complete objstack is freed. */
|
||
if (NULL == prev_node)
|
||
this->main_type->dyn_prop_list = curr_node->next;
|
||
else
|
||
prev_node->next = curr_node->next;
|
||
|
||
return;
|
||
}
|
||
|
||
prev_node = curr_node;
|
||
curr_node = curr_node->next;
|
||
}
|
||
}
|
||
|
||
/* Find the real type of TYPE. This function returns the real type,
|
||
after removing all layers of typedefs, and completing opaque or stub
|
||
types. Completion changes the TYPE argument, but stripping of
|
||
typedefs does not.
|
||
|
||
Instance flags (e.g. const/volatile) are preserved as typedefs are
|
||
stripped. If necessary a new qualified form of the underlying type
|
||
is created.
|
||
|
||
NOTE: This will return a typedef if type::target_type for the typedef has
|
||
not been computed and we're either in the middle of reading symbols, or
|
||
there was no name for the typedef in the debug info.
|
||
|
||
NOTE: Lookup of opaque types can throw errors for invalid symbol files.
|
||
QUITs in the symbol reading code can also throw.
|
||
Thus this function can throw an exception.
|
||
|
||
If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
|
||
the target type.
|
||
|
||
If this is a stubbed struct (i.e. declared as struct foo *), see if
|
||
we can find a full definition in some other file. If so, copy this
|
||
definition, so we can use it in future. There used to be a comment
|
||
(but not any code) that if we don't find a full definition, we'd
|
||
set a flag so we don't spend time in the future checking the same
|
||
type. That would be a mistake, though--we might load in more
|
||
symbols which contain a full definition for the type. */
|
||
|
||
struct type *
|
||
check_typedef (struct type *type)
|
||
{
|
||
struct type *orig_type = type;
|
||
|
||
gdb_assert (type);
|
||
|
||
/* While we're removing typedefs, we don't want to lose qualifiers.
|
||
E.g., const/volatile. */
|
||
type_instance_flags instance_flags = type->instance_flags ();
|
||
|
||
while (type->code () == TYPE_CODE_TYPEDEF)
|
||
{
|
||
if (!type->target_type ())
|
||
{
|
||
const char *name;
|
||
struct symbol *sym;
|
||
|
||
/* It is dangerous to call lookup_symbol if we are currently
|
||
reading a symtab. Infinite recursion is one danger. */
|
||
if (currently_reading_symtab)
|
||
return make_qualified_type (type, instance_flags, NULL);
|
||
|
||
name = type->name ();
|
||
/* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
|
||
VAR_DOMAIN as appropriate? */
|
||
if (name == NULL)
|
||
{
|
||
stub_noname_complaint ();
|
||
return make_qualified_type (type, instance_flags, NULL);
|
||
}
|
||
sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
|
||
if (sym)
|
||
type->set_target_type (sym->type ());
|
||
else /* TYPE_CODE_UNDEF */
|
||
type->set_target_type (type_allocator (type->arch ()).new_type ());
|
||
}
|
||
type = type->target_type ();
|
||
|
||
/* Preserve the instance flags as we traverse down the typedef chain.
|
||
|
||
Handling address spaces/classes is nasty, what do we do if there's a
|
||
conflict?
|
||
E.g., what if an outer typedef marks the type as class_1 and an inner
|
||
typedef marks the type as class_2?
|
||
This is the wrong place to do such error checking. We leave it to
|
||
the code that created the typedef in the first place to flag the
|
||
error. We just pick the outer address space (akin to letting the
|
||
outer cast in a chain of casting win), instead of assuming
|
||
"it can't happen". */
|
||
{
|
||
const type_instance_flags ALL_SPACES
|
||
= (TYPE_INSTANCE_FLAG_CODE_SPACE
|
||
| TYPE_INSTANCE_FLAG_DATA_SPACE);
|
||
const type_instance_flags ALL_CLASSES
|
||
= TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
|
||
|
||
type_instance_flags new_instance_flags = type->instance_flags ();
|
||
|
||
/* Treat code vs data spaces and address classes separately. */
|
||
if ((instance_flags & ALL_SPACES) != 0)
|
||
new_instance_flags &= ~ALL_SPACES;
|
||
if ((instance_flags & ALL_CLASSES) != 0)
|
||
new_instance_flags &= ~ALL_CLASSES;
|
||
|
||
instance_flags |= new_instance_flags;
|
||
}
|
||
}
|
||
|
||
/* If this is a struct/class/union with no fields, then check
|
||
whether a full definition exists somewhere else. This is for
|
||
systems where a type definition with no fields is issued for such
|
||
types, instead of identifying them as stub types in the first
|
||
place. */
|
||
|
||
if (TYPE_IS_OPAQUE (type)
|
||
&& opaque_type_resolution
|
||
&& !currently_reading_symtab)
|
||
{
|
||
const char *name = type->name ();
|
||
struct type *newtype;
|
||
|
||
if (name == NULL)
|
||
{
|
||
stub_noname_complaint ();
|
||
return make_qualified_type (type, instance_flags, NULL);
|
||
}
|
||
newtype = lookup_transparent_type (name);
|
||
|
||
if (newtype)
|
||
{
|
||
/* If the resolved type and the stub are in the same
|
||
objfile, then replace the stub type with the real deal.
|
||
But if they're in separate objfiles, leave the stub
|
||
alone; we'll just look up the transparent type every time
|
||
we call check_typedef. We can't create pointers between
|
||
types allocated to different objfiles, since they may
|
||
have different lifetimes. Trying to copy NEWTYPE over to
|
||
TYPE's objfile is pointless, too, since you'll have to
|
||
move over any other types NEWTYPE refers to, which could
|
||
be an unbounded amount of stuff. */
|
||
if (newtype->objfile_owner () == type->objfile_owner ())
|
||
type = make_qualified_type (newtype, type->instance_flags (), type);
|
||
else
|
||
type = newtype;
|
||
}
|
||
}
|
||
/* Otherwise, rely on the stub flag being set for opaque/stubbed
|
||
types. */
|
||
else if (type->is_stub () && !currently_reading_symtab)
|
||
{
|
||
const char *name = type->name ();
|
||
/* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
|
||
as appropriate? */
|
||
struct symbol *sym;
|
||
|
||
if (name == NULL)
|
||
{
|
||
stub_noname_complaint ();
|
||
return make_qualified_type (type, instance_flags, NULL);
|
||
}
|
||
sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
|
||
if (sym)
|
||
{
|
||
/* Same as above for opaque types, we can replace the stub
|
||
with the complete type only if they are in the same
|
||
objfile. */
|
||
if (sym->type ()->objfile_owner () == type->objfile_owner ())
|
||
type = make_qualified_type (sym->type (),
|
||
type->instance_flags (), type);
|
||
else
|
||
type = sym->type ();
|
||
}
|
||
}
|
||
|
||
if (type->target_is_stub ())
|
||
{
|
||
struct type *target_type = check_typedef (type->target_type ());
|
||
|
||
if (target_type->is_stub () || target_type->target_is_stub ())
|
||
{
|
||
/* Nothing we can do. */
|
||
}
|
||
else if (type->code () == TYPE_CODE_RANGE)
|
||
{
|
||
type->set_length (target_type->length ());
|
||
type->set_target_is_stub (false);
|
||
}
|
||
else if (type->code () == TYPE_CODE_ARRAY
|
||
&& update_static_array_size (type))
|
||
type->set_target_is_stub (false);
|
||
}
|
||
|
||
type = make_qualified_type (type, instance_flags, NULL);
|
||
|
||
/* Cache TYPE_LENGTH for future use. */
|
||
orig_type->set_length (type->length ());
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Parse a type expression in the string [P..P+LENGTH). If an error
|
||
occurs, silently return a void type. */
|
||
|
||
static struct type *
|
||
safe_parse_type (struct gdbarch *gdbarch, const char *p, int length)
|
||
{
|
||
struct type *type = NULL; /* Initialize to keep gcc happy. */
|
||
|
||
/* Suppress error messages. */
|
||
scoped_restore saved_gdb_stderr = make_scoped_restore (&gdb_stderr,
|
||
&null_stream);
|
||
|
||
/* Call parse_and_eval_type() without fear of longjmp()s. */
|
||
try
|
||
{
|
||
type = parse_and_eval_type (p, length);
|
||
}
|
||
catch (const gdb_exception_error &except)
|
||
{
|
||
type = builtin_type (gdbarch)->builtin_void;
|
||
}
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Ugly hack to convert method stubs into method types.
|
||
|
||
He ain't kiddin'. This demangles the name of the method into a
|
||
string including argument types, parses out each argument type,
|
||
generates a string casting a zero to that type, evaluates the
|
||
string, and stuffs the resulting type into an argtype vector!!!
|
||
Then it knows the type of the whole function (including argument
|
||
types for overloading), which info used to be in the stab's but was
|
||
removed to hack back the space required for them. */
|
||
|
||
static void
|
||
check_stub_method (struct type *type, int method_id, int signature_id)
|
||
{
|
||
struct gdbarch *gdbarch = type->arch ();
|
||
struct fn_field *f;
|
||
char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
|
||
gdb::unique_xmalloc_ptr<char> demangled_name
|
||
= gdb_demangle (mangled_name, DMGL_PARAMS | DMGL_ANSI);
|
||
char *argtypetext, *p;
|
||
int depth = 0, argcount = 1;
|
||
struct field *argtypes;
|
||
struct type *mtype;
|
||
|
||
/* Make sure we got back a function string that we can use. */
|
||
if (demangled_name)
|
||
p = strchr (demangled_name.get (), '(');
|
||
else
|
||
p = NULL;
|
||
|
||
if (demangled_name == NULL || p == NULL)
|
||
error (_("Internal: Cannot demangle mangled name `%s'."),
|
||
mangled_name);
|
||
|
||
/* Now, read in the parameters that define this type. */
|
||
p += 1;
|
||
argtypetext = p;
|
||
while (*p)
|
||
{
|
||
if (*p == '(' || *p == '<')
|
||
{
|
||
depth += 1;
|
||
}
|
||
else if (*p == ')' || *p == '>')
|
||
{
|
||
depth -= 1;
|
||
}
|
||
else if (*p == ',' && depth == 0)
|
||
{
|
||
argcount += 1;
|
||
}
|
||
|
||
p += 1;
|
||
}
|
||
|
||
/* If we read one argument and it was ``void'', don't count it. */
|
||
if (startswith (argtypetext, "(void)"))
|
||
argcount -= 1;
|
||
|
||
/* We need one extra slot, for the THIS pointer. */
|
||
|
||
argtypes = (struct field *)
|
||
TYPE_ZALLOC (type, (argcount + 1) * sizeof (struct field));
|
||
p = argtypetext;
|
||
|
||
/* Add THIS pointer for non-static methods. */
|
||
f = TYPE_FN_FIELDLIST1 (type, method_id);
|
||
if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
|
||
argcount = 0;
|
||
else
|
||
{
|
||
argtypes[0].set_type (lookup_pointer_type (type));
|
||
argcount = 1;
|
||
}
|
||
|
||
if (*p != ')') /* () means no args, skip while. */
|
||
{
|
||
depth = 0;
|
||
while (*p)
|
||
{
|
||
if (depth <= 0 && (*p == ',' || *p == ')'))
|
||
{
|
||
/* Avoid parsing of ellipsis, they will be handled below.
|
||
Also avoid ``void'' as above. */
|
||
if (strncmp (argtypetext, "...", p - argtypetext) != 0
|
||
&& strncmp (argtypetext, "void", p - argtypetext) != 0)
|
||
{
|
||
argtypes[argcount].set_type
|
||
(safe_parse_type (gdbarch, argtypetext, p - argtypetext));
|
||
argcount += 1;
|
||
}
|
||
argtypetext = p + 1;
|
||
}
|
||
|
||
if (*p == '(' || *p == '<')
|
||
{
|
||
depth += 1;
|
||
}
|
||
else if (*p == ')' || *p == '>')
|
||
{
|
||
depth -= 1;
|
||
}
|
||
|
||
p += 1;
|
||
}
|
||
}
|
||
|
||
TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
|
||
|
||
/* Now update the old "stub" type into a real type. */
|
||
mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
|
||
/* MTYPE may currently be a function (TYPE_CODE_FUNC).
|
||
We want a method (TYPE_CODE_METHOD). */
|
||
smash_to_method_type (mtype, type, mtype->target_type (),
|
||
argtypes, argcount, p[-2] == '.');
|
||
mtype->set_is_stub (false);
|
||
TYPE_FN_FIELD_STUB (f, signature_id) = 0;
|
||
}
|
||
|
||
/* This is the external interface to check_stub_method, above. This
|
||
function unstubs all of the signatures for TYPE's METHOD_ID method
|
||
name. After calling this function TYPE_FN_FIELD_STUB will be
|
||
cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
|
||
correct.
|
||
|
||
This function unfortunately can not die until stabs do. */
|
||
|
||
void
|
||
check_stub_method_group (struct type *type, int method_id)
|
||
{
|
||
int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
|
||
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
|
||
|
||
for (int j = 0; j < len; j++)
|
||
{
|
||
if (TYPE_FN_FIELD_STUB (f, j))
|
||
check_stub_method (type, method_id, j);
|
||
}
|
||
}
|
||
|
||
/* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
|
||
const struct cplus_struct_type cplus_struct_default = { };
|
||
|
||
void
|
||
allocate_cplus_struct_type (struct type *type)
|
||
{
|
||
if (HAVE_CPLUS_STRUCT (type))
|
||
/* Structure was already allocated. Nothing more to do. */
|
||
return;
|
||
|
||
TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
|
||
TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
|
||
TYPE_ZALLOC (type, sizeof (struct cplus_struct_type));
|
||
*(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
|
||
set_type_vptr_fieldno (type, -1);
|
||
}
|
||
|
||
const struct gnat_aux_type gnat_aux_default =
|
||
{ NULL };
|
||
|
||
/* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
|
||
and allocate the associated gnat-specific data. The gnat-specific
|
||
data is also initialized to gnat_aux_default. */
|
||
|
||
void
|
||
allocate_gnat_aux_type (struct type *type)
|
||
{
|
||
TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
|
||
TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
|
||
TYPE_ZALLOC (type, sizeof (struct gnat_aux_type));
|
||
*(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
|
||
}
|
||
|
||
/* Helper function to verify floating-point format and size.
|
||
BIT is the type size in bits; if BIT equals -1, the size is
|
||
determined by the floatformat. Returns size to be used. */
|
||
|
||
static int
|
||
verify_floatformat (int bit, const struct floatformat *floatformat)
|
||
{
|
||
gdb_assert (floatformat != NULL);
|
||
|
||
if (bit == -1)
|
||
bit = floatformat->totalsize;
|
||
|
||
gdb_assert (bit >= 0);
|
||
gdb_assert (bit >= floatformat->totalsize);
|
||
|
||
return bit;
|
||
}
|
||
|
||
/* Return the floating-point format for a floating-point variable of
|
||
type TYPE. */
|
||
|
||
const struct floatformat *
|
||
floatformat_from_type (const struct type *type)
|
||
{
|
||
gdb_assert (type->code () == TYPE_CODE_FLT);
|
||
gdb_assert (TYPE_FLOATFORMAT (type));
|
||
return TYPE_FLOATFORMAT (type);
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
init_integer_type (type_allocator &alloc,
|
||
int bit, int unsigned_p, const char *name)
|
||
{
|
||
struct type *t;
|
||
|
||
t = alloc.new_type (TYPE_CODE_INT, bit, name);
|
||
if (unsigned_p)
|
||
t->set_is_unsigned (true);
|
||
|
||
TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
|
||
TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
|
||
TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
init_character_type (type_allocator &alloc,
|
||
int bit, int unsigned_p, const char *name)
|
||
{
|
||
struct type *t;
|
||
|
||
t = alloc.new_type (TYPE_CODE_CHAR, bit, name);
|
||
if (unsigned_p)
|
||
t->set_is_unsigned (true);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
init_boolean_type (type_allocator &alloc,
|
||
int bit, int unsigned_p, const char *name)
|
||
{
|
||
struct type *t;
|
||
|
||
t = alloc.new_type (TYPE_CODE_BOOL, bit, name);
|
||
if (unsigned_p)
|
||
t->set_is_unsigned (true);
|
||
|
||
TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
|
||
TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
|
||
TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
init_float_type (type_allocator &alloc,
|
||
int bit, const char *name,
|
||
const struct floatformat **floatformats,
|
||
enum bfd_endian byte_order)
|
||
{
|
||
if (byte_order == BFD_ENDIAN_UNKNOWN)
|
||
{
|
||
struct gdbarch *gdbarch = alloc.arch ();
|
||
byte_order = gdbarch_byte_order (gdbarch);
|
||
}
|
||
const struct floatformat *fmt = floatformats[byte_order];
|
||
struct type *t;
|
||
|
||
bit = verify_floatformat (bit, fmt);
|
||
t = alloc.new_type (TYPE_CODE_FLT, bit, name);
|
||
TYPE_FLOATFORMAT (t) = fmt;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
init_decfloat_type (type_allocator &alloc, int bit, const char *name)
|
||
{
|
||
return alloc.new_type (TYPE_CODE_DECFLOAT, bit, name);
|
||
}
|
||
|
||
/* Return true if init_complex_type can be called with TARGET_TYPE. */
|
||
|
||
bool
|
||
can_create_complex_type (struct type *target_type)
|
||
{
|
||
return (target_type->code () == TYPE_CODE_INT
|
||
|| target_type->code () == TYPE_CODE_FLT);
|
||
}
|
||
|
||
/* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
|
||
name. TARGET_TYPE is the component type. */
|
||
|
||
struct type *
|
||
init_complex_type (const char *name, struct type *target_type)
|
||
{
|
||
struct type *t;
|
||
|
||
gdb_assert (can_create_complex_type (target_type));
|
||
|
||
if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
|
||
{
|
||
if (name == nullptr && target_type->name () != nullptr)
|
||
{
|
||
/* No zero-initialization required, initialized by strcpy/strcat
|
||
below. */
|
||
char *new_name
|
||
= (char *) TYPE_ALLOC (target_type,
|
||
strlen (target_type->name ())
|
||
+ strlen ("_Complex ") + 1);
|
||
strcpy (new_name, "_Complex ");
|
||
strcat (new_name, target_type->name ());
|
||
name = new_name;
|
||
}
|
||
|
||
t = type_allocator (target_type).new_type ();
|
||
set_type_code (t, TYPE_CODE_COMPLEX);
|
||
t->set_length (2 * target_type->length ());
|
||
t->set_name (name);
|
||
|
||
t->set_target_type (target_type);
|
||
TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
|
||
}
|
||
|
||
return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
init_pointer_type (type_allocator &alloc,
|
||
int bit, const char *name, struct type *target_type)
|
||
{
|
||
struct type *t;
|
||
|
||
t = alloc.new_type (TYPE_CODE_PTR, bit, name);
|
||
t->set_target_type (target_type);
|
||
t->set_is_unsigned (true);
|
||
return t;
|
||
}
|
||
|
||
/* Allocate a TYPE_CODE_FIXED_POINT type structure associated with OBJFILE.
|
||
BIT is the pointer type size in bits.
|
||
UNSIGNED_P should be nonzero if the type is unsigned.
|
||
NAME is the type name. */
|
||
|
||
struct type *
|
||
init_fixed_point_type (type_allocator &alloc,
|
||
int bit, int unsigned_p, const char *name)
|
||
{
|
||
struct type *t;
|
||
|
||
t = alloc.new_type (TYPE_CODE_FIXED_POINT, bit, name);
|
||
if (unsigned_p)
|
||
t->set_is_unsigned (true);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
unsigned
|
||
type_raw_align (struct type *type)
|
||
{
|
||
if (type->align_log2 != 0)
|
||
return 1 << (type->align_log2 - 1);
|
||
return 0;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
unsigned
|
||
type_align (struct type *type)
|
||
{
|
||
/* Check alignment provided in the debug information. */
|
||
unsigned raw_align = type_raw_align (type);
|
||
if (raw_align != 0)
|
||
return raw_align;
|
||
|
||
/* Allow the architecture to provide an alignment. */
|
||
ULONGEST align = gdbarch_type_align (type->arch (), type);
|
||
if (align != 0)
|
||
return align;
|
||
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_FUNC:
|
||
case TYPE_CODE_FLAGS:
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_FLT:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_REF:
|
||
case TYPE_CODE_RVALUE_REF:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_DECFLOAT:
|
||
case TYPE_CODE_METHODPTR:
|
||
case TYPE_CODE_MEMBERPTR:
|
||
align = type_length_units (check_typedef (type));
|
||
break;
|
||
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_COMPLEX:
|
||
case TYPE_CODE_TYPEDEF:
|
||
align = type_align (type->target_type ());
|
||
break;
|
||
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
{
|
||
int number_of_non_static_fields = 0;
|
||
for (unsigned i = 0; i < type->num_fields (); ++i)
|
||
{
|
||
if (!type->field (i).is_static ())
|
||
{
|
||
number_of_non_static_fields++;
|
||
ULONGEST f_align = type_align (type->field (i).type ());
|
||
if (f_align == 0)
|
||
{
|
||
/* Don't pretend we know something we don't. */
|
||
align = 0;
|
||
break;
|
||
}
|
||
if (f_align > align)
|
||
align = f_align;
|
||
}
|
||
}
|
||
/* A struct with no fields, or with only static fields has an
|
||
alignment of 1. */
|
||
if (number_of_non_static_fields == 0)
|
||
align = 1;
|
||
}
|
||
break;
|
||
|
||
case TYPE_CODE_SET:
|
||
case TYPE_CODE_STRING:
|
||
/* Not sure what to do here, and these can't appear in C or C++
|
||
anyway. */
|
||
break;
|
||
|
||
case TYPE_CODE_VOID:
|
||
align = 1;
|
||
break;
|
||
|
||
case TYPE_CODE_ERROR:
|
||
case TYPE_CODE_METHOD:
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if ((align & (align - 1)) != 0)
|
||
{
|
||
/* Not a power of 2, so pass. */
|
||
align = 0;
|
||
}
|
||
|
||
return align;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
bool
|
||
set_type_align (struct type *type, ULONGEST align)
|
||
{
|
||
/* Must be a power of 2. Zero is ok. */
|
||
gdb_assert ((align & (align - 1)) == 0);
|
||
|
||
unsigned result = 0;
|
||
while (align != 0)
|
||
{
|
||
++result;
|
||
align >>= 1;
|
||
}
|
||
|
||
if (result >= (1 << TYPE_ALIGN_BITS))
|
||
return false;
|
||
|
||
type->align_log2 = result;
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Queries on types. */
|
||
|
||
int
|
||
can_dereference (struct type *t)
|
||
{
|
||
/* FIXME: Should we return true for references as well as
|
||
pointers? */
|
||
t = check_typedef (t);
|
||
return
|
||
(t != NULL
|
||
&& t->code () == TYPE_CODE_PTR
|
||
&& t->target_type ()->code () != TYPE_CODE_VOID);
|
||
}
|
||
|
||
int
|
||
is_integral_type (struct type *t)
|
||
{
|
||
t = check_typedef (t);
|
||
return
|
||
((t != NULL)
|
||
&& !is_fixed_point_type (t)
|
||
&& ((t->code () == TYPE_CODE_INT)
|
||
|| (t->code () == TYPE_CODE_ENUM)
|
||
|| (t->code () == TYPE_CODE_FLAGS)
|
||
|| (t->code () == TYPE_CODE_CHAR)
|
||
|| (t->code () == TYPE_CODE_RANGE)
|
||
|| (t->code () == TYPE_CODE_BOOL)));
|
||
}
|
||
|
||
int
|
||
is_floating_type (struct type *t)
|
||
{
|
||
t = check_typedef (t);
|
||
return
|
||
((t != NULL)
|
||
&& ((t->code () == TYPE_CODE_FLT)
|
||
|| (t->code () == TYPE_CODE_DECFLOAT)));
|
||
}
|
||
|
||
/* Return true if TYPE is scalar. */
|
||
|
||
int
|
||
is_scalar_type (struct type *type)
|
||
{
|
||
type = check_typedef (type);
|
||
|
||
if (is_fixed_point_type (type))
|
||
return 0; /* Implemented as a scalar, but more like a floating point. */
|
||
|
||
switch (type->code ())
|
||
{
|
||
case TYPE_CODE_ARRAY:
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_SET:
|
||
case TYPE_CODE_STRING:
|
||
return 0;
|
||
default:
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* Return true if T is scalar, or a composite type which in practice has
|
||
the memory layout of a scalar type. E.g., an array or struct with only
|
||
one scalar element inside it, or a union with only scalar elements. */
|
||
|
||
int
|
||
is_scalar_type_recursive (struct type *t)
|
||
{
|
||
t = check_typedef (t);
|
||
|
||
if (is_scalar_type (t))
|
||
return 1;
|
||
/* Are we dealing with an array or string of known dimensions? */
|
||
else if ((t->code () == TYPE_CODE_ARRAY
|
||
|| t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
|
||
&& t->index_type ()->code () == TYPE_CODE_RANGE)
|
||
{
|
||
LONGEST low_bound, high_bound;
|
||
struct type *elt_type = check_typedef (t->target_type ());
|
||
|
||
if (get_discrete_bounds (t->index_type (), &low_bound, &high_bound))
|
||
return (high_bound == low_bound
|
||
&& is_scalar_type_recursive (elt_type));
|
||
else
|
||
return 0;
|
||
}
|
||
/* Are we dealing with a struct with one element? */
|
||
else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
|
||
return is_scalar_type_recursive (t->field (0).type ());
|
||
else if (t->code () == TYPE_CODE_UNION)
|
||
{
|
||
int i, n = t->num_fields ();
|
||
|
||
/* If all elements of the union are scalar, then the union is scalar. */
|
||
for (i = 0; i < n; i++)
|
||
if (!is_scalar_type_recursive (t->field (i).type ()))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true is T is a class or a union. False otherwise. */
|
||
|
||
int
|
||
class_or_union_p (const struct type *t)
|
||
{
|
||
return (t->code () == TYPE_CODE_STRUCT
|
||
|| t->code () == TYPE_CODE_UNION);
|
||
}
|
||
|
||
/* A helper function which returns true if types A and B represent the
|
||
"same" class type. This is true if the types have the same main
|
||
type, or the same name. */
|
||
|
||
int
|
||
class_types_same_p (const struct type *a, const struct type *b)
|
||
{
|
||
return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
|
||
|| (a->name () && b->name ()
|
||
&& !strcmp (a->name (), b->name ())));
|
||
}
|
||
|
||
/* If BASE is an ancestor of DCLASS return the distance between them.
|
||
otherwise return -1;
|
||
eg:
|
||
|
||
class A {};
|
||
class B: public A {};
|
||
class C: public B {};
|
||
class D: C {};
|
||
|
||
distance_to_ancestor (A, A, 0) = 0
|
||
distance_to_ancestor (A, B, 0) = 1
|
||
distance_to_ancestor (A, C, 0) = 2
|
||
distance_to_ancestor (A, D, 0) = 3
|
||
|
||
If PUBLIC is 1 then only public ancestors are considered,
|
||
and the function returns the distance only if BASE is a public ancestor
|
||
of DCLASS.
|
||
Eg:
|
||
|
||
distance_to_ancestor (A, D, 1) = -1. */
|
||
|
||
static int
|
||
distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
|
||
{
|
||
int i;
|
||
int d;
|
||
|
||
base = check_typedef (base);
|
||
dclass = check_typedef (dclass);
|
||
|
||
if (class_types_same_p (base, dclass))
|
||
return 0;
|
||
|
||
for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
|
||
{
|
||
if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
|
||
continue;
|
||
|
||
d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
|
||
if (d >= 0)
|
||
return 1 + d;
|
||
}
|
||
|
||
return -1;
|
||
}
|
||
|
||
/* Check whether BASE is an ancestor or base class or DCLASS
|
||
Return 1 if so, and 0 if not.
|
||
Note: If BASE and DCLASS are of the same type, this function
|
||
will return 1. So for some class A, is_ancestor (A, A) will
|
||
return 1. */
|
||
|
||
int
|
||
is_ancestor (struct type *base, struct type *dclass)
|
||
{
|
||
return distance_to_ancestor (base, dclass, 0) >= 0;
|
||
}
|
||
|
||
/* Like is_ancestor, but only returns true when BASE is a public
|
||
ancestor of DCLASS. */
|
||
|
||
int
|
||
is_public_ancestor (struct type *base, struct type *dclass)
|
||
{
|
||
return distance_to_ancestor (base, dclass, 1) >= 0;
|
||
}
|
||
|
||
/* A helper function for is_unique_ancestor. */
|
||
|
||
static int
|
||
is_unique_ancestor_worker (struct type *base, struct type *dclass,
|
||
int *offset,
|
||
const gdb_byte *valaddr, int embedded_offset,
|
||
CORE_ADDR address, struct value *val)
|
||
{
|
||
int i, count = 0;
|
||
|
||
base = check_typedef (base);
|
||
dclass = check_typedef (dclass);
|
||
|
||
for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
|
||
{
|
||
struct type *iter;
|
||
int this_offset;
|
||
|
||
iter = check_typedef (TYPE_BASECLASS (dclass, i));
|
||
|
||
this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
|
||
address, val);
|
||
|
||
if (class_types_same_p (base, iter))
|
||
{
|
||
/* If this is the first subclass, set *OFFSET and set count
|
||
to 1. Otherwise, if this is at the same offset as
|
||
previous instances, do nothing. Otherwise, increment
|
||
count. */
|
||
if (*offset == -1)
|
||
{
|
||
*offset = this_offset;
|
||
count = 1;
|
||
}
|
||
else if (this_offset == *offset)
|
||
{
|
||
/* Nothing. */
|
||
}
|
||
else
|
||
++count;
|
||
}
|
||
else
|
||
count += is_unique_ancestor_worker (base, iter, offset,
|
||
valaddr,
|
||
embedded_offset + this_offset,
|
||
address, val);
|
||
}
|
||
|
||
return count;
|
||
}
|
||
|
||
/* Like is_ancestor, but only returns true if BASE is a unique base
|
||
class of the type of VAL. */
|
||
|
||
int
|
||
is_unique_ancestor (struct type *base, struct value *val)
|
||
{
|
||
int offset = -1;
|
||
|
||
return is_unique_ancestor_worker (base, val->type (), &offset,
|
||
val->contents_for_printing ().data (),
|
||
val->embedded_offset (),
|
||
val->address (), val) == 1;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
enum bfd_endian
|
||
type_byte_order (const struct type *type)
|
||
{
|
||
bfd_endian byteorder = gdbarch_byte_order (type->arch ());
|
||
if (type->endianity_is_not_default ())
|
||
{
|
||
if (byteorder == BFD_ENDIAN_BIG)
|
||
return BFD_ENDIAN_LITTLE;
|
||
else
|
||
{
|
||
gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
|
||
return BFD_ENDIAN_BIG;
|
||
}
|
||
}
|
||
|
||
return byteorder;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
bool
|
||
is_nocall_function (const struct type *type)
|
||
{
|
||
if (type->code () != TYPE_CODE_FUNC && type->code () != TYPE_CODE_METHOD)
|
||
return false;
|
||
|
||
return TYPE_CALLING_CONVENTION (type) == DW_CC_nocall;
|
||
}
|
||
|
||
|
||
/* Overload resolution. */
|
||
|
||
/* Return the sum of the rank of A with the rank of B. */
|
||
|
||
struct rank
|
||
sum_ranks (struct rank a, struct rank b)
|
||
{
|
||
struct rank c;
|
||
c.rank = a.rank + b.rank;
|
||
c.subrank = a.subrank + b.subrank;
|
||
return c;
|
||
}
|
||
|
||
/* Compare rank A and B and return:
|
||
0 if a = b
|
||
1 if a is better than b
|
||
-1 if b is better than a. */
|
||
|
||
int
|
||
compare_ranks (struct rank a, struct rank b)
|
||
{
|
||
if (a.rank == b.rank)
|
||
{
|
||
if (a.subrank == b.subrank)
|
||
return 0;
|
||
if (a.subrank < b.subrank)
|
||
return 1;
|
||
if (a.subrank > b.subrank)
|
||
return -1;
|
||
}
|
||
|
||
if (a.rank < b.rank)
|
||
return 1;
|
||
|
||
/* a.rank > b.rank */
|
||
return -1;
|
||
}
|
||
|
||
/* Functions for overload resolution begin here. */
|
||
|
||
/* Compare two badness vectors A and B and return the result.
|
||
0 => A and B are identical
|
||
1 => A and B are incomparable
|
||
2 => A is better than B
|
||
3 => A is worse than B */
|
||
|
||
int
|
||
compare_badness (const badness_vector &a, const badness_vector &b)
|
||
{
|
||
int i;
|
||
int tmp;
|
||
/* Any positives in comparison? */
|
||
bool found_pos = false;
|
||
/* Any negatives in comparison? */
|
||
bool found_neg = false;
|
||
/* Did A have any INVALID_CONVERSION entries. */
|
||
bool a_invalid = false;
|
||
/* Did B have any INVALID_CONVERSION entries. */
|
||
bool b_invalid = false;
|
||
|
||
/* differing sizes => incomparable */
|
||
if (a.size () != b.size ())
|
||
return 1;
|
||
|
||
/* Subtract b from a */
|
||
for (i = 0; i < a.size (); i++)
|
||
{
|
||
tmp = compare_ranks (b[i], a[i]);
|
||
if (tmp > 0)
|
||
found_pos = true;
|
||
else if (tmp < 0)
|
||
found_neg = true;
|
||
if (a[i].rank >= INVALID_CONVERSION)
|
||
a_invalid = true;
|
||
if (b[i].rank >= INVALID_CONVERSION)
|
||
b_invalid = true;
|
||
}
|
||
|
||
/* B will only be considered better than or incomparable to A if
|
||
they both have invalid entries, or if neither does. That is, if
|
||
A has only valid entries, and B has an invalid entry, then A will
|
||
be considered better than B, even if B happens to be better for
|
||
some parameter. */
|
||
if (a_invalid != b_invalid)
|
||
{
|
||
if (a_invalid)
|
||
return 3; /* A > B */
|
||
return 2; /* A < B */
|
||
}
|
||
else if (found_pos)
|
||
{
|
||
if (found_neg)
|
||
return 1; /* incomparable */
|
||
else
|
||
return 3; /* A > B */
|
||
}
|
||
else
|
||
/* no positives */
|
||
{
|
||
if (found_neg)
|
||
return 2; /* A < B */
|
||
else
|
||
return 0; /* A == B */
|
||
}
|
||
}
|
||
|
||
/* Rank a function by comparing its parameter types (PARMS), to the
|
||
types of an argument list (ARGS). Return the badness vector. This
|
||
has ARGS.size() + 1 entries. */
|
||
|
||
badness_vector
|
||
rank_function (gdb::array_view<type *> parms,
|
||
gdb::array_view<value *> args,
|
||
bool varargs)
|
||
{
|
||
/* add 1 for the length-match rank. */
|
||
badness_vector bv;
|
||
bv.reserve (1 + args.size ());
|
||
|
||
/* First compare the lengths of the supplied lists.
|
||
If there is a mismatch, set it to a high value. */
|
||
|
||
/* pai/1997-06-03 FIXME: when we have debug info about default
|
||
arguments and ellipsis parameter lists, we should consider those
|
||
and rank the length-match more finely. */
|
||
|
||
bv.push_back ((args.size () != parms.size ()
|
||
&& (! varargs || args.size () < parms.size ()))
|
||
? LENGTH_MISMATCH_BADNESS
|
||
: EXACT_MATCH_BADNESS);
|
||
|
||
/* Now rank all the parameters of the candidate function. */
|
||
size_t min_len = std::min (parms.size (), args.size ());
|
||
|
||
for (size_t i = 0; i < min_len; i++)
|
||
bv.push_back (rank_one_type (parms[i], args[i]->type (),
|
||
args[i]));
|
||
|
||
/* If more arguments than parameters, add dummy entries. */
|
||
for (size_t i = min_len; i < args.size (); i++)
|
||
bv.push_back (varargs ? VARARG_BADNESS : TOO_FEW_PARAMS_BADNESS);
|
||
|
||
return bv;
|
||
}
|
||
|
||
/* Compare the names of two integer types, assuming that any sign
|
||
qualifiers have been checked already. We do it this way because
|
||
there may be an "int" in the name of one of the types. */
|
||
|
||
static int
|
||
integer_types_same_name_p (const char *first, const char *second)
|
||
{
|
||
int first_p, second_p;
|
||
|
||
/* If both are shorts, return 1; if neither is a short, keep
|
||
checking. */
|
||
first_p = (strstr (first, "short") != NULL);
|
||
second_p = (strstr (second, "short") != NULL);
|
||
if (first_p && second_p)
|
||
return 1;
|
||
if (first_p || second_p)
|
||
return 0;
|
||
|
||
/* Likewise for long. */
|
||
first_p = (strstr (first, "long") != NULL);
|
||
second_p = (strstr (second, "long") != NULL);
|
||
if (first_p && second_p)
|
||
return 1;
|
||
if (first_p || second_p)
|
||
return 0;
|
||
|
||
/* Likewise for char. */
|
||
first_p = (strstr (first, "char") != NULL);
|
||
second_p = (strstr (second, "char") != NULL);
|
||
if (first_p && second_p)
|
||
return 1;
|
||
if (first_p || second_p)
|
||
return 0;
|
||
|
||
/* They must both be ints. */
|
||
return 1;
|
||
}
|
||
|
||
/* Compares type A to type B. Returns true if they represent the same
|
||
type, false otherwise. */
|
||
|
||
bool
|
||
types_equal (struct type *a, struct type *b)
|
||
{
|
||
/* Identical type pointers. */
|
||
/* However, this still doesn't catch all cases of same type for b
|
||
and a. The reason is that builtin types are different from
|
||
the same ones constructed from the object. */
|
||
if (a == b)
|
||
return true;
|
||
|
||
/* Resolve typedefs */
|
||
if (a->code () == TYPE_CODE_TYPEDEF)
|
||
a = check_typedef (a);
|
||
if (b->code () == TYPE_CODE_TYPEDEF)
|
||
b = check_typedef (b);
|
||
|
||
/* Check if identical after resolving typedefs. */
|
||
if (a == b)
|
||
return true;
|
||
|
||
/* If after resolving typedefs a and b are not of the same type
|
||
code then they are not equal. */
|
||
if (a->code () != b->code ())
|
||
return false;
|
||
|
||
/* If a and b are both pointers types or both reference types then
|
||
they are equal of the same type iff the objects they refer to are
|
||
of the same type. */
|
||
if (a->code () == TYPE_CODE_PTR
|
||
|| a->code () == TYPE_CODE_REF)
|
||
return types_equal (a->target_type (),
|
||
b->target_type ());
|
||
|
||
/* Well, damnit, if the names are exactly the same, I'll say they
|
||
are exactly the same. This happens when we generate method
|
||
stubs. The types won't point to the same address, but they
|
||
really are the same. */
|
||
|
||
if (a->name () && b->name ()
|
||
&& strcmp (a->name (), b->name ()) == 0)
|
||
return true;
|
||
|
||
/* Two function types are equal if their argument and return types
|
||
are equal. */
|
||
if (a->code () == TYPE_CODE_FUNC)
|
||
{
|
||
int i;
|
||
|
||
if (a->num_fields () != b->num_fields ())
|
||
return false;
|
||
|
||
if (!types_equal (a->target_type (), b->target_type ()))
|
||
return false;
|
||
|
||
for (i = 0; i < a->num_fields (); ++i)
|
||
if (!types_equal (a->field (i).type (), b->field (i).type ()))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Deep comparison of types. */
|
||
|
||
/* An entry in the type-equality bcache. */
|
||
|
||
struct type_equality_entry
|
||
{
|
||
type_equality_entry (struct type *t1, struct type *t2)
|
||
: type1 (t1),
|
||
type2 (t2)
|
||
{
|
||
}
|
||
|
||
struct type *type1, *type2;
|
||
};
|
||
|
||
/* A helper function to compare two strings. Returns true if they are
|
||
the same, false otherwise. Handles NULLs properly. */
|
||
|
||
static bool
|
||
compare_maybe_null_strings (const char *s, const char *t)
|
||
{
|
||
if (s == NULL || t == NULL)
|
||
return s == t;
|
||
return strcmp (s, t) == 0;
|
||
}
|
||
|
||
/* A helper function for check_types_worklist that checks two types for
|
||
"deep" equality. Returns true if the types are considered the
|
||
same, false otherwise. */
|
||
|
||
static bool
|
||
check_types_equal (struct type *type1, struct type *type2,
|
||
std::vector<type_equality_entry> *worklist)
|
||
{
|
||
type1 = check_typedef (type1);
|
||
type2 = check_typedef (type2);
|
||
|
||
if (type1 == type2)
|
||
return true;
|
||
|
||
if (type1->code () != type2->code ()
|
||
|| type1->length () != type2->length ()
|
||
|| type1->is_unsigned () != type2->is_unsigned ()
|
||
|| type1->has_no_signedness () != type2->has_no_signedness ()
|
||
|| type1->endianity_is_not_default () != type2->endianity_is_not_default ()
|
||
|| type1->has_varargs () != type2->has_varargs ()
|
||
|| type1->is_vector () != type2->is_vector ()
|
||
|| TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
|
||
|| type1->instance_flags () != type2->instance_flags ()
|
||
|| type1->num_fields () != type2->num_fields ())
|
||
return false;
|
||
|
||
if (!compare_maybe_null_strings (type1->name (), type2->name ()))
|
||
return false;
|
||
if (!compare_maybe_null_strings (type1->name (), type2->name ()))
|
||
return false;
|
||
|
||
if (type1->code () == TYPE_CODE_RANGE)
|
||
{
|
||
if (*type1->bounds () != *type2->bounds ())
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < type1->num_fields (); ++i)
|
||
{
|
||
const struct field *field1 = &type1->field (i);
|
||
const struct field *field2 = &type2->field (i);
|
||
|
||
if (field1->is_artificial () != field2->is_artificial ()
|
||
|| field1->bitsize () != field2->bitsize ()
|
||
|| field1->loc_kind () != field2->loc_kind ())
|
||
return false;
|
||
if (!compare_maybe_null_strings (field1->name (), field2->name ()))
|
||
return false;
|
||
switch (field1->loc_kind ())
|
||
{
|
||
case FIELD_LOC_KIND_BITPOS:
|
||
if (field1->loc_bitpos () != field2->loc_bitpos ())
|
||
return false;
|
||
break;
|
||
case FIELD_LOC_KIND_ENUMVAL:
|
||
if (field1->loc_enumval () != field2->loc_enumval ())
|
||
return false;
|
||
/* Don't compare types of enum fields, because they don't
|
||
have a type. */
|
||
continue;
|
||
case FIELD_LOC_KIND_PHYSADDR:
|
||
if (field1->loc_physaddr () != field2->loc_physaddr ())
|
||
return false;
|
||
break;
|
||
case FIELD_LOC_KIND_PHYSNAME:
|
||
if (!compare_maybe_null_strings (field1->loc_physname (),
|
||
field2->loc_physname ()))
|
||
return false;
|
||
break;
|
||
case FIELD_LOC_KIND_DWARF_BLOCK:
|
||
{
|
||
struct dwarf2_locexpr_baton *block1, *block2;
|
||
|
||
block1 = field1->loc_dwarf_block ();
|
||
block2 = field2->loc_dwarf_block ();
|
||
if (block1->per_cu != block2->per_cu
|
||
|| block1->size != block2->size
|
||
|| memcmp (block1->data, block2->data, block1->size) != 0)
|
||
return false;
|
||
}
|
||
break;
|
||
default:
|
||
internal_error (_("Unsupported field kind "
|
||
"%d by check_types_equal"),
|
||
field1->loc_kind ());
|
||
}
|
||
|
||
worklist->emplace_back (field1->type (), field2->type ());
|
||
}
|
||
}
|
||
|
||
if (type1->target_type () != NULL)
|
||
{
|
||
if (type2->target_type () == NULL)
|
||
return false;
|
||
|
||
worklist->emplace_back (type1->target_type (),
|
||
type2->target_type ());
|
||
}
|
||
else if (type2->target_type () != NULL)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Check types on a worklist for equality. Returns false if any pair
|
||
is not equal, true if they are all considered equal. */
|
||
|
||
static bool
|
||
check_types_worklist (std::vector<type_equality_entry> *worklist,
|
||
gdb::bcache *cache)
|
||
{
|
||
while (!worklist->empty ())
|
||
{
|
||
bool added;
|
||
|
||
struct type_equality_entry entry = std::move (worklist->back ());
|
||
worklist->pop_back ();
|
||
|
||
/* If the type pair has already been visited, we know it is
|
||
ok. */
|
||
cache->insert (&entry, sizeof (entry), &added);
|
||
if (!added)
|
||
continue;
|
||
|
||
if (!check_types_equal (entry.type1, entry.type2, worklist))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true if types TYPE1 and TYPE2 are equal, as determined by a
|
||
"deep comparison". Otherwise return false. */
|
||
|
||
bool
|
||
types_deeply_equal (struct type *type1, struct type *type2)
|
||
{
|
||
std::vector<type_equality_entry> worklist;
|
||
|
||
gdb_assert (type1 != NULL && type2 != NULL);
|
||
|
||
/* Early exit for the simple case. */
|
||
if (type1 == type2)
|
||
return true;
|
||
|
||
gdb::bcache cache;
|
||
worklist.emplace_back (type1, type2);
|
||
return check_types_worklist (&worklist, &cache);
|
||
}
|
||
|
||
/* Allocated status of type TYPE. Return zero if type TYPE is allocated.
|
||
Otherwise return one. */
|
||
|
||
int
|
||
type_not_allocated (const struct type *type)
|
||
{
|
||
struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
|
||
|
||
return prop != nullptr && prop->is_constant () && prop->const_val () == 0;
|
||
}
|
||
|
||
/* Associated status of type TYPE. Return zero if type TYPE is associated.
|
||
Otherwise return one. */
|
||
|
||
int
|
||
type_not_associated (const struct type *type)
|
||
{
|
||
struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
|
||
|
||
return prop != nullptr && prop->is_constant () && prop->const_val () == 0;
|
||
}
|
||
|
||
/* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
|
||
|
||
static struct rank
|
||
rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
|
||
{
|
||
struct rank rank = {0,0};
|
||
|
||
switch (arg->code ())
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
|
||
/* Allowed pointer conversions are:
|
||
(a) pointer to void-pointer conversion. */
|
||
if (parm->target_type ()->code () == TYPE_CODE_VOID)
|
||
return VOID_PTR_CONVERSION_BADNESS;
|
||
|
||
/* (b) pointer to ancestor-pointer conversion. */
|
||
rank.subrank = distance_to_ancestor (parm->target_type (),
|
||
arg->target_type (),
|
||
0);
|
||
if (rank.subrank >= 0)
|
||
return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
|
||
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
case TYPE_CODE_ARRAY:
|
||
{
|
||
struct type *t1 = parm->target_type ();
|
||
struct type *t2 = arg->target_type ();
|
||
|
||
if (types_equal (t1, t2))
|
||
{
|
||
/* Make sure they are CV equal. */
|
||
if (TYPE_CONST (t1) != TYPE_CONST (t2))
|
||
rank.subrank |= CV_CONVERSION_CONST;
|
||
if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
|
||
rank.subrank |= CV_CONVERSION_VOLATILE;
|
||
if (rank.subrank != 0)
|
||
return sum_ranks (CV_CONVERSION_BADNESS, rank);
|
||
return EXACT_MATCH_BADNESS;
|
||
}
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
case TYPE_CODE_FUNC:
|
||
return rank_one_type (parm->target_type (), arg, NULL);
|
||
case TYPE_CODE_INT:
|
||
if (value != NULL && value->type ()->code () == TYPE_CODE_INT)
|
||
{
|
||
if (value_as_long (value) == 0)
|
||
{
|
||
/* Null pointer conversion: allow it to be cast to a pointer.
|
||
[4.10.1 of C++ standard draft n3290] */
|
||
return NULL_POINTER_CONVERSION_BADNESS;
|
||
}
|
||
else
|
||
{
|
||
/* If type checking is disabled, allow the conversion. */
|
||
if (!strict_type_checking)
|
||
return NS_INTEGER_POINTER_CONVERSION_BADNESS;
|
||
}
|
||
}
|
||
[[fallthrough]];
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_FLAGS:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_BOOL:
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
}
|
||
|
||
/* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
|
||
|
||
static struct rank
|
||
rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
|
||
{
|
||
switch (arg->code ())
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_ARRAY:
|
||
return rank_one_type (parm->target_type (),
|
||
arg->target_type (), NULL);
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
}
|
||
|
||
/* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
|
||
|
||
static struct rank
|
||
rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
|
||
{
|
||
switch (arg->code ())
|
||
{
|
||
case TYPE_CODE_PTR: /* funcptr -> func */
|
||
return rank_one_type (parm, arg->target_type (), NULL);
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
}
|
||
|
||
/* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
|
||
|
||
static struct rank
|
||
rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
|
||
{
|
||
switch (arg->code ())
|
||
{
|
||
case TYPE_CODE_INT:
|
||
if (arg->length () == parm->length ())
|
||
{
|
||
/* Deal with signed, unsigned, and plain chars and
|
||
signed and unsigned ints. */
|
||
if (parm->has_no_signedness ())
|
||
{
|
||
/* This case only for character types. */
|
||
if (arg->has_no_signedness ())
|
||
return EXACT_MATCH_BADNESS; /* plain char -> plain char */
|
||
else /* signed/unsigned char -> plain char */
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
}
|
||
else if (parm->is_unsigned ())
|
||
{
|
||
if (arg->is_unsigned ())
|
||
{
|
||
/* unsigned int -> unsigned int, or
|
||
unsigned long -> unsigned long */
|
||
if (integer_types_same_name_p (parm->name (),
|
||
arg->name ()))
|
||
return EXACT_MATCH_BADNESS;
|
||
else if (integer_types_same_name_p (arg->name (),
|
||
"int")
|
||
&& integer_types_same_name_p (parm->name (),
|
||
"long"))
|
||
/* unsigned int -> unsigned long */
|
||
return INTEGER_PROMOTION_BADNESS;
|
||
else
|
||
/* unsigned long -> unsigned int */
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
}
|
||
else
|
||
{
|
||
if (integer_types_same_name_p (arg->name (),
|
||
"long")
|
||
&& integer_types_same_name_p (parm->name (),
|
||
"int"))
|
||
/* signed long -> unsigned int */
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
else
|
||
/* signed int/long -> unsigned int/long */
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
}
|
||
}
|
||
else if (!arg->has_no_signedness () && !arg->is_unsigned ())
|
||
{
|
||
if (integer_types_same_name_p (parm->name (),
|
||
arg->name ()))
|
||
return EXACT_MATCH_BADNESS;
|
||
else if (integer_types_same_name_p (arg->name (),
|
||
"int")
|
||
&& integer_types_same_name_p (parm->name (),
|
||
"long"))
|
||
return INTEGER_PROMOTION_BADNESS;
|
||
else
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
}
|
||
else
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
}
|
||
else if (arg->length () < parm->length ())
|
||
return INTEGER_PROMOTION_BADNESS;
|
||
else
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_FLAGS:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_BOOL:
|
||
if (arg->is_declared_class ())
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
return INTEGER_PROMOTION_BADNESS;
|
||
case TYPE_CODE_FLT:
|
||
return INT_FLOAT_CONVERSION_BADNESS;
|
||
case TYPE_CODE_PTR:
|
||
return NS_POINTER_CONVERSION_BADNESS;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
}
|
||
|
||
/* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
|
||
|
||
static struct rank
|
||
rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
|
||
{
|
||
switch (arg->code ())
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_ENUM:
|
||
if (parm->is_declared_class () || arg->is_declared_class ())
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
case TYPE_CODE_FLT:
|
||
return INT_FLOAT_CONVERSION_BADNESS;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
}
|
||
|
||
/* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
|
||
|
||
static struct rank
|
||
rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
|
||
{
|
||
switch (arg->code ())
|
||
{
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_ENUM:
|
||
if (arg->is_declared_class ())
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
case TYPE_CODE_FLT:
|
||
return INT_FLOAT_CONVERSION_BADNESS;
|
||
case TYPE_CODE_INT:
|
||
if (arg->length () > parm->length ())
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
else if (arg->length () < parm->length ())
|
||
return INTEGER_PROMOTION_BADNESS;
|
||
[[fallthrough]];
|
||
case TYPE_CODE_CHAR:
|
||
/* Deal with signed, unsigned, and plain chars for C++ and
|
||
with int cases falling through from previous case. */
|
||
if (parm->has_no_signedness ())
|
||
{
|
||
if (arg->has_no_signedness ())
|
||
return EXACT_MATCH_BADNESS;
|
||
else
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
}
|
||
else if (parm->is_unsigned ())
|
||
{
|
||
if (arg->is_unsigned ())
|
||
return EXACT_MATCH_BADNESS;
|
||
else
|
||
return INTEGER_PROMOTION_BADNESS;
|
||
}
|
||
else if (!arg->has_no_signedness () && !arg->is_unsigned ())
|
||
return EXACT_MATCH_BADNESS;
|
||
else
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
}
|
||
|
||
/* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
|
||
|
||
static struct rank
|
||
rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
|
||
{
|
||
switch (arg->code ())
|
||
{
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_ENUM:
|
||
return INTEGER_CONVERSION_BADNESS;
|
||
case TYPE_CODE_FLT:
|
||
return INT_FLOAT_CONVERSION_BADNESS;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
}
|
||
|
||
/* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
|
||
|
||
static struct rank
|
||
rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
|
||
{
|
||
switch (arg->code ())
|
||
{
|
||
/* n3290 draft, section 4.12.1 (conv.bool):
|
||
|
||
"A prvalue of arithmetic, unscoped enumeration, pointer, or
|
||
pointer to member type can be converted to a prvalue of type
|
||
bool. A zero value, null pointer value, or null member pointer
|
||
value is converted to false; any other value is converted to
|
||
true. A prvalue of type std::nullptr_t can be converted to a
|
||
prvalue of type bool; the resulting value is false." */
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_FLT:
|
||
case TYPE_CODE_MEMBERPTR:
|
||
case TYPE_CODE_PTR:
|
||
return BOOL_CONVERSION_BADNESS;
|
||
case TYPE_CODE_RANGE:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
case TYPE_CODE_BOOL:
|
||
return EXACT_MATCH_BADNESS;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
}
|
||
|
||
/* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
|
||
|
||
static struct rank
|
||
rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
|
||
{
|
||
switch (arg->code ())
|
||
{
|
||
case TYPE_CODE_FLT:
|
||
if (arg->length () < parm->length ())
|
||
return FLOAT_PROMOTION_BADNESS;
|
||
else if (arg->length () == parm->length ())
|
||
return EXACT_MATCH_BADNESS;
|
||
else
|
||
return FLOAT_CONVERSION_BADNESS;
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_ENUM:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_CHAR:
|
||
return INT_FLOAT_CONVERSION_BADNESS;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
}
|
||
|
||
/* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
|
||
|
||
static struct rank
|
||
rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
|
||
{
|
||
switch (arg->code ())
|
||
{ /* Strictly not needed for C++, but... */
|
||
case TYPE_CODE_FLT:
|
||
return FLOAT_PROMOTION_BADNESS;
|
||
case TYPE_CODE_COMPLEX:
|
||
return EXACT_MATCH_BADNESS;
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
}
|
||
|
||
/* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
|
||
|
||
static struct rank
|
||
rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
|
||
{
|
||
struct rank rank = {0, 0};
|
||
|
||
switch (arg->code ())
|
||
{
|
||
case TYPE_CODE_STRUCT:
|
||
/* Check for derivation */
|
||
rank.subrank = distance_to_ancestor (parm, arg, 0);
|
||
if (rank.subrank >= 0)
|
||
return sum_ranks (BASE_CONVERSION_BADNESS, rank);
|
||
[[fallthrough]];
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
}
|
||
|
||
/* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
|
||
|
||
static struct rank
|
||
rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
|
||
{
|
||
switch (arg->code ())
|
||
{
|
||
/* Not in C++ */
|
||
case TYPE_CODE_SET:
|
||
return rank_one_type (parm->field (0).type (),
|
||
arg->field (0).type (), NULL);
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
}
|
||
|
||
/* Compare one type (PARM) for compatibility with another (ARG).
|
||
* PARM is intended to be the parameter type of a function; and
|
||
* ARG is the supplied argument's type. This function tests if
|
||
* the latter can be converted to the former.
|
||
* VALUE is the argument's value or NULL if none (or called recursively)
|
||
*
|
||
* Return 0 if they are identical types;
|
||
* Otherwise, return an integer which corresponds to how compatible
|
||
* PARM is to ARG. The higher the return value, the worse the match.
|
||
* Generally the "bad" conversions are all uniformly assigned
|
||
* INVALID_CONVERSION. */
|
||
|
||
struct rank
|
||
rank_one_type (struct type *parm, struct type *arg, struct value *value)
|
||
{
|
||
struct rank rank = {0,0};
|
||
|
||
/* Resolve typedefs */
|
||
if (parm->code () == TYPE_CODE_TYPEDEF)
|
||
parm = check_typedef (parm);
|
||
if (arg->code () == TYPE_CODE_TYPEDEF)
|
||
arg = check_typedef (arg);
|
||
|
||
if (TYPE_IS_REFERENCE (parm) && value != NULL)
|
||
{
|
||
if (value->lval () == not_lval)
|
||
{
|
||
/* Rvalues should preferably bind to rvalue references or const
|
||
lvalue references. */
|
||
if (parm->code () == TYPE_CODE_RVALUE_REF)
|
||
rank.subrank = REFERENCE_CONVERSION_RVALUE;
|
||
else if (TYPE_CONST (parm->target_type ()))
|
||
rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
|
||
else
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
|
||
}
|
||
else
|
||
{
|
||
/* It's illegal to pass an lvalue as an rvalue. */
|
||
if (parm->code () == TYPE_CODE_RVALUE_REF)
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
}
|
||
}
|
||
|
||
if (types_equal (parm, arg))
|
||
{
|
||
struct type *t1 = parm;
|
||
struct type *t2 = arg;
|
||
|
||
/* For pointers and references, compare target type. */
|
||
if (parm->is_pointer_or_reference ())
|
||
{
|
||
t1 = parm->target_type ();
|
||
t2 = arg->target_type ();
|
||
}
|
||
|
||
/* Make sure they are CV equal, too. */
|
||
if (TYPE_CONST (t1) != TYPE_CONST (t2))
|
||
rank.subrank |= CV_CONVERSION_CONST;
|
||
if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
|
||
rank.subrank |= CV_CONVERSION_VOLATILE;
|
||
if (rank.subrank != 0)
|
||
return sum_ranks (CV_CONVERSION_BADNESS, rank);
|
||
return EXACT_MATCH_BADNESS;
|
||
}
|
||
|
||
/* See through references, since we can almost make non-references
|
||
references. */
|
||
|
||
if (TYPE_IS_REFERENCE (arg))
|
||
return (sum_ranks (rank_one_type (parm, arg->target_type (), NULL),
|
||
REFERENCE_SEE_THROUGH_BADNESS));
|
||
if (TYPE_IS_REFERENCE (parm))
|
||
return (sum_ranks (rank_one_type (parm->target_type (), arg, NULL),
|
||
REFERENCE_SEE_THROUGH_BADNESS));
|
||
if (overload_debug)
|
||
{
|
||
/* Debugging only. */
|
||
gdb_printf (gdb_stderr,
|
||
"------ Arg is %s [%d], parm is %s [%d]\n",
|
||
arg->name (), arg->code (),
|
||
parm->name (), parm->code ());
|
||
}
|
||
|
||
/* x -> y means arg of type x being supplied for parameter of type y. */
|
||
|
||
switch (parm->code ())
|
||
{
|
||
case TYPE_CODE_PTR:
|
||
return rank_one_type_parm_ptr (parm, arg, value);
|
||
case TYPE_CODE_ARRAY:
|
||
return rank_one_type_parm_array (parm, arg, value);
|
||
case TYPE_CODE_FUNC:
|
||
return rank_one_type_parm_func (parm, arg, value);
|
||
case TYPE_CODE_INT:
|
||
return rank_one_type_parm_int (parm, arg, value);
|
||
case TYPE_CODE_ENUM:
|
||
return rank_one_type_parm_enum (parm, arg, value);
|
||
case TYPE_CODE_CHAR:
|
||
return rank_one_type_parm_char (parm, arg, value);
|
||
case TYPE_CODE_RANGE:
|
||
return rank_one_type_parm_range (parm, arg, value);
|
||
case TYPE_CODE_BOOL:
|
||
return rank_one_type_parm_bool (parm, arg, value);
|
||
case TYPE_CODE_FLT:
|
||
return rank_one_type_parm_float (parm, arg, value);
|
||
case TYPE_CODE_COMPLEX:
|
||
return rank_one_type_parm_complex (parm, arg, value);
|
||
case TYPE_CODE_STRUCT:
|
||
return rank_one_type_parm_struct (parm, arg, value);
|
||
case TYPE_CODE_SET:
|
||
return rank_one_type_parm_set (parm, arg, value);
|
||
default:
|
||
return INCOMPATIBLE_TYPE_BADNESS;
|
||
} /* switch (arg->code ()) */
|
||
}
|
||
|
||
/* End of functions for overload resolution. */
|
||
|
||
|
||
/* Note the first arg should be the "this" pointer, we may not want to
|
||
include it since we may get into a infinitely recursive
|
||
situation. */
|
||
|
||
static void
|
||
print_args (struct field *args, int nargs, int spaces)
|
||
{
|
||
if (args != NULL)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
gdb_printf
|
||
("%*s[%d] name '%s'\n", spaces, "", i,
|
||
args[i].name () != NULL ? args[i].name () : "<NULL>");
|
||
recursive_dump_type (args[i].type (), spaces + 2);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
dump_fn_fieldlists (struct type *type, int spaces)
|
||
{
|
||
int method_idx;
|
||
int overload_idx;
|
||
struct fn_field *f;
|
||
|
||
gdb_printf ("%*sfn_fieldlists %s\n", spaces, "",
|
||
host_address_to_string (TYPE_FN_FIELDLISTS (type)));
|
||
for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
|
||
{
|
||
f = TYPE_FN_FIELDLIST1 (type, method_idx);
|
||
gdb_printf
|
||
("%*s[%d] name '%s' (%s) length %d\n", spaces + 2, "",
|
||
method_idx,
|
||
TYPE_FN_FIELDLIST_NAME (type, method_idx),
|
||
host_address_to_string (TYPE_FN_FIELDLIST_NAME (type, method_idx)),
|
||
TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
|
||
for (overload_idx = 0;
|
||
overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
|
||
overload_idx++)
|
||
{
|
||
gdb_printf
|
||
("%*s[%d] physname '%s' (%s)\n",
|
||
spaces + 4, "", overload_idx,
|
||
TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
|
||
host_address_to_string (TYPE_FN_FIELD_PHYSNAME (f,
|
||
overload_idx)));
|
||
gdb_printf
|
||
("%*stype %s\n", spaces + 8, "",
|
||
host_address_to_string (TYPE_FN_FIELD_TYPE (f, overload_idx)));
|
||
|
||
recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
|
||
spaces + 8 + 2);
|
||
|
||
gdb_printf
|
||
("%*sargs %s\n", spaces + 8, "",
|
||
host_address_to_string (TYPE_FN_FIELD_ARGS (f, overload_idx)));
|
||
print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
|
||
TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
|
||
spaces + 8 + 2);
|
||
gdb_printf
|
||
("%*sfcontext %s\n", spaces + 8, "",
|
||
host_address_to_string (TYPE_FN_FIELD_FCONTEXT (f,
|
||
overload_idx)));
|
||
|
||
gdb_printf ("%*sis_const %d\n", spaces + 8, "",
|
||
TYPE_FN_FIELD_CONST (f, overload_idx));
|
||
gdb_printf ("%*sis_volatile %d\n", spaces + 8, "",
|
||
TYPE_FN_FIELD_VOLATILE (f, overload_idx));
|
||
gdb_printf ("%*sis_private %d\n", spaces + 8, "",
|
||
TYPE_FN_FIELD_PRIVATE (f, overload_idx));
|
||
gdb_printf ("%*sis_protected %d\n", spaces + 8, "",
|
||
TYPE_FN_FIELD_PROTECTED (f, overload_idx));
|
||
gdb_printf ("%*sis_stub %d\n", spaces + 8, "",
|
||
TYPE_FN_FIELD_STUB (f, overload_idx));
|
||
gdb_printf ("%*sdefaulted %d\n", spaces + 8, "",
|
||
TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
|
||
gdb_printf ("%*sis_deleted %d\n", spaces + 8, "",
|
||
TYPE_FN_FIELD_DELETED (f, overload_idx));
|
||
gdb_printf ("%*svoffset %u\n", spaces + 8, "",
|
||
TYPE_FN_FIELD_VOFFSET (f, overload_idx));
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
print_cplus_stuff (struct type *type, int spaces)
|
||
{
|
||
gdb_printf ("%*svptr_fieldno %d\n", spaces, "",
|
||
TYPE_VPTR_FIELDNO (type));
|
||
gdb_printf ("%*svptr_basetype %s\n", spaces, "",
|
||
host_address_to_string (TYPE_VPTR_BASETYPE (type)));
|
||
if (TYPE_VPTR_BASETYPE (type) != NULL)
|
||
recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
|
||
|
||
gdb_printf ("%*sn_baseclasses %d\n", spaces, "",
|
||
TYPE_N_BASECLASSES (type));
|
||
gdb_printf ("%*snfn_fields %d\n", spaces, "",
|
||
TYPE_NFN_FIELDS (type));
|
||
if (TYPE_NFN_FIELDS (type) > 0)
|
||
{
|
||
dump_fn_fieldlists (type, spaces);
|
||
}
|
||
|
||
gdb_printf ("%*scalling_convention %d\n", spaces, "",
|
||
TYPE_CPLUS_CALLING_CONVENTION (type));
|
||
}
|
||
|
||
/* Print the contents of the TYPE's type_specific union, assuming that
|
||
its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
|
||
|
||
static void
|
||
print_gnat_stuff (struct type *type, int spaces)
|
||
{
|
||
struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
|
||
|
||
if (descriptive_type == NULL)
|
||
gdb_printf ("%*sno descriptive type\n", spaces + 2, "");
|
||
else
|
||
{
|
||
gdb_printf ("%*sdescriptive type\n", spaces + 2, "");
|
||
recursive_dump_type (descriptive_type, spaces + 4);
|
||
}
|
||
}
|
||
|
||
/* Print the contents of the TYPE's type_specific union, assuming that
|
||
its type-specific kind is TYPE_SPECIFIC_FIXED_POINT. */
|
||
|
||
static void
|
||
print_fixed_point_type_info (struct type *type, int spaces)
|
||
{
|
||
gdb_printf ("%*sscaling factor: %s\n", spaces + 2, "",
|
||
type->fixed_point_scaling_factor ().str ().c_str ());
|
||
}
|
||
|
||
static struct obstack dont_print_type_obstack;
|
||
|
||
/* Print the dynamic_prop PROP. */
|
||
|
||
static void
|
||
dump_dynamic_prop (dynamic_prop const& prop)
|
||
{
|
||
switch (prop.kind ())
|
||
{
|
||
case PROP_CONST:
|
||
gdb_printf ("%s", plongest (prop.const_val ()));
|
||
break;
|
||
case PROP_UNDEFINED:
|
||
gdb_printf ("(undefined)");
|
||
break;
|
||
case PROP_LOCEXPR:
|
||
case PROP_LOCLIST:
|
||
gdb_printf ("(dynamic)");
|
||
break;
|
||
default:
|
||
gdb_assert_not_reached ("unhandled prop kind");
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Return a string that represents a type code. */
|
||
static const char *
|
||
type_code_name (type_code code)
|
||
{
|
||
switch (code)
|
||
{
|
||
#define OP(X) case X: return # X;
|
||
#include "type-codes.def"
|
||
#undef OP
|
||
|
||
case TYPE_CODE_UNDEF:
|
||
return "TYPE_CODE_UNDEF";
|
||
}
|
||
|
||
gdb_assert_not_reached ("unhandled type_code");
|
||
}
|
||
|
||
void
|
||
recursive_dump_type (struct type *type, int spaces)
|
||
{
|
||
int idx;
|
||
|
||
if (spaces == 0)
|
||
obstack_begin (&dont_print_type_obstack, 0);
|
||
|
||
if (type->num_fields () > 0
|
||
|| (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
|
||
{
|
||
struct type **first_dont_print
|
||
= (struct type **) obstack_base (&dont_print_type_obstack);
|
||
|
||
int i = (struct type **)
|
||
obstack_next_free (&dont_print_type_obstack) - first_dont_print;
|
||
|
||
while (--i >= 0)
|
||
{
|
||
if (type == first_dont_print[i])
|
||
{
|
||
gdb_printf ("%*stype node %s", spaces, "",
|
||
host_address_to_string (type));
|
||
gdb_printf (_(" <same as already seen type>\n"));
|
||
return;
|
||
}
|
||
}
|
||
|
||
obstack_ptr_grow (&dont_print_type_obstack, type);
|
||
}
|
||
|
||
gdb_printf ("%*stype node %s\n", spaces, "",
|
||
host_address_to_string (type));
|
||
gdb_printf ("%*sname '%s' (%s)\n", spaces, "",
|
||
type->name () ? type->name () : "<NULL>",
|
||
host_address_to_string (type->name ()));
|
||
gdb_printf ("%*scode 0x%x ", spaces, "", type->code ());
|
||
gdb_printf ("(%s)", type_code_name (type->code ()));
|
||
gdb_puts ("\n");
|
||
gdb_printf ("%*slength %s\n", spaces, "",
|
||
pulongest (type->length ()));
|
||
if (type->is_objfile_owned ())
|
||
gdb_printf ("%*sobjfile %s\n", spaces, "",
|
||
host_address_to_string (type->objfile_owner ()));
|
||
else
|
||
gdb_printf ("%*sgdbarch %s\n", spaces, "",
|
||
host_address_to_string (type->arch_owner ()));
|
||
gdb_printf ("%*starget_type %s\n", spaces, "",
|
||
host_address_to_string (type->target_type ()));
|
||
if (type->target_type () != NULL)
|
||
{
|
||
recursive_dump_type (type->target_type (), spaces + 2);
|
||
}
|
||
gdb_printf ("%*spointer_type %s\n", spaces, "",
|
||
host_address_to_string (TYPE_POINTER_TYPE (type)));
|
||
gdb_printf ("%*sreference_type %s\n", spaces, "",
|
||
host_address_to_string (TYPE_REFERENCE_TYPE (type)));
|
||
gdb_printf ("%*stype_chain %s\n", spaces, "",
|
||
host_address_to_string (TYPE_CHAIN (type)));
|
||
gdb_printf ("%*sinstance_flags 0x%x", spaces, "",
|
||
(unsigned) type->instance_flags ());
|
||
if (TYPE_CONST (type))
|
||
{
|
||
gdb_puts (" TYPE_CONST");
|
||
}
|
||
if (TYPE_VOLATILE (type))
|
||
{
|
||
gdb_puts (" TYPE_VOLATILE");
|
||
}
|
||
if (TYPE_CODE_SPACE (type))
|
||
{
|
||
gdb_puts (" TYPE_CODE_SPACE");
|
||
}
|
||
if (TYPE_DATA_SPACE (type))
|
||
{
|
||
gdb_puts (" TYPE_DATA_SPACE");
|
||
}
|
||
if (TYPE_ADDRESS_CLASS_1 (type))
|
||
{
|
||
gdb_puts (" TYPE_ADDRESS_CLASS_1");
|
||
}
|
||
if (TYPE_ADDRESS_CLASS_2 (type))
|
||
{
|
||
gdb_puts (" TYPE_ADDRESS_CLASS_2");
|
||
}
|
||
if (TYPE_RESTRICT (type))
|
||
{
|
||
gdb_puts (" TYPE_RESTRICT");
|
||
}
|
||
if (TYPE_ATOMIC (type))
|
||
{
|
||
gdb_puts (" TYPE_ATOMIC");
|
||
}
|
||
gdb_puts ("\n");
|
||
|
||
gdb_printf ("%*sflags", spaces, "");
|
||
if (type->is_unsigned ())
|
||
{
|
||
gdb_puts (" TYPE_UNSIGNED");
|
||
}
|
||
if (type->has_no_signedness ())
|
||
{
|
||
gdb_puts (" TYPE_NOSIGN");
|
||
}
|
||
if (type->endianity_is_not_default ())
|
||
{
|
||
gdb_puts (" TYPE_ENDIANITY_NOT_DEFAULT");
|
||
}
|
||
if (type->is_stub ())
|
||
{
|
||
gdb_puts (" TYPE_STUB");
|
||
}
|
||
if (type->target_is_stub ())
|
||
{
|
||
gdb_puts (" TYPE_TARGET_STUB");
|
||
}
|
||
if (type->is_prototyped ())
|
||
{
|
||
gdb_puts (" TYPE_PROTOTYPED");
|
||
}
|
||
if (type->has_varargs ())
|
||
{
|
||
gdb_puts (" TYPE_VARARGS");
|
||
}
|
||
/* This is used for things like AltiVec registers on ppc. Gcc emits
|
||
an attribute for the array type, which tells whether or not we
|
||
have a vector, instead of a regular array. */
|
||
if (type->is_vector ())
|
||
{
|
||
gdb_puts (" TYPE_VECTOR");
|
||
}
|
||
if (type->is_fixed_instance ())
|
||
{
|
||
gdb_puts (" TYPE_FIXED_INSTANCE");
|
||
}
|
||
if (type->stub_is_supported ())
|
||
{
|
||
gdb_puts (" TYPE_STUB_SUPPORTED");
|
||
}
|
||
if (TYPE_NOTTEXT (type))
|
||
{
|
||
gdb_puts (" TYPE_NOTTEXT");
|
||
}
|
||
gdb_puts ("\n");
|
||
gdb_printf ("%*snfields %d ", spaces, "", type->num_fields ());
|
||
if (TYPE_ASSOCIATED_PROP (type) != nullptr
|
||
|| TYPE_ALLOCATED_PROP (type) != nullptr)
|
||
{
|
||
gdb_printf ("%*s", spaces, "");
|
||
if (TYPE_ASSOCIATED_PROP (type) != nullptr)
|
||
{
|
||
gdb_printf ("associated ");
|
||
dump_dynamic_prop (*TYPE_ASSOCIATED_PROP (type));
|
||
}
|
||
if (TYPE_ALLOCATED_PROP (type) != nullptr)
|
||
{
|
||
if (TYPE_ASSOCIATED_PROP (type) != nullptr)
|
||
gdb_printf (" ");
|
||
gdb_printf ("allocated ");
|
||
dump_dynamic_prop (*TYPE_ALLOCATED_PROP (type));
|
||
}
|
||
gdb_printf ("\n");
|
||
}
|
||
gdb_printf ("%s\n", host_address_to_string (type->fields ()));
|
||
for (idx = 0; idx < type->num_fields (); idx++)
|
||
{
|
||
field &fld = type->field (idx);
|
||
if (type->code () == TYPE_CODE_ENUM)
|
||
gdb_printf ("%*s[%d] enumval %s type ", spaces + 2, "",
|
||
idx, plongest (fld.loc_enumval ()));
|
||
else
|
||
gdb_printf ("%*s[%d] bitpos %s bitsize %d type ", spaces + 2, "",
|
||
idx, plongest (fld.loc_bitpos ()),
|
||
fld.bitsize ());
|
||
gdb_printf ("%s name '%s' (%s)",
|
||
host_address_to_string (fld.type ()),
|
||
fld.name () != NULL
|
||
? fld.name ()
|
||
: "<NULL>",
|
||
host_address_to_string (fld.name ()));
|
||
if (fld.is_virtual ())
|
||
gdb_printf (" virtual");
|
||
|
||
if (fld.is_private ())
|
||
gdb_printf (" private");
|
||
else if (fld.is_protected ())
|
||
gdb_printf (" protected");
|
||
else if (fld.is_ignored ())
|
||
gdb_printf (" ignored");
|
||
|
||
gdb_printf ("\n");
|
||
if (fld.type () != NULL)
|
||
{
|
||
recursive_dump_type (fld.type (), spaces + 4);
|
||
}
|
||
}
|
||
if (type->code () == TYPE_CODE_RANGE)
|
||
{
|
||
gdb_printf ("%*slow ", spaces, "");
|
||
dump_dynamic_prop (type->bounds ()->low);
|
||
gdb_printf (" high ");
|
||
dump_dynamic_prop (type->bounds ()->high);
|
||
gdb_printf ("\n");
|
||
}
|
||
|
||
switch (TYPE_SPECIFIC_FIELD (type))
|
||
{
|
||
case TYPE_SPECIFIC_CPLUS_STUFF:
|
||
gdb_printf ("%*scplus_stuff %s\n", spaces, "",
|
||
host_address_to_string (TYPE_CPLUS_SPECIFIC (type)));
|
||
print_cplus_stuff (type, spaces);
|
||
break;
|
||
|
||
case TYPE_SPECIFIC_GNAT_STUFF:
|
||
gdb_printf ("%*sgnat_stuff %s\n", spaces, "",
|
||
host_address_to_string (TYPE_GNAT_SPECIFIC (type)));
|
||
print_gnat_stuff (type, spaces);
|
||
break;
|
||
|
||
case TYPE_SPECIFIC_FLOATFORMAT:
|
||
gdb_printf ("%*sfloatformat ", spaces, "");
|
||
if (TYPE_FLOATFORMAT (type) == NULL
|
||
|| TYPE_FLOATFORMAT (type)->name == NULL)
|
||
gdb_puts ("(null)");
|
||
else
|
||
gdb_puts (TYPE_FLOATFORMAT (type)->name);
|
||
gdb_puts ("\n");
|
||
break;
|
||
|
||
case TYPE_SPECIFIC_FUNC:
|
||
gdb_printf ("%*scalling_convention %d\n", spaces, "",
|
||
TYPE_CALLING_CONVENTION (type));
|
||
/* tail_call_list is not printed. */
|
||
break;
|
||
|
||
case TYPE_SPECIFIC_SELF_TYPE:
|
||
gdb_printf ("%*sself_type %s\n", spaces, "",
|
||
host_address_to_string (TYPE_SELF_TYPE (type)));
|
||
break;
|
||
|
||
case TYPE_SPECIFIC_FIXED_POINT:
|
||
gdb_printf ("%*sfixed_point_info ", spaces, "");
|
||
print_fixed_point_type_info (type, spaces);
|
||
gdb_puts ("\n");
|
||
break;
|
||
|
||
case TYPE_SPECIFIC_INT:
|
||
if (type->bit_size_differs_p ())
|
||
{
|
||
unsigned bit_size = type->bit_size ();
|
||
unsigned bit_off = type->bit_offset ();
|
||
gdb_printf ("%*s bit size = %u, bit offset = %u\n", spaces, "",
|
||
bit_size, bit_off);
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (spaces == 0)
|
||
obstack_free (&dont_print_type_obstack, NULL);
|
||
}
|
||
|
||
/* Trivial helpers for the libiberty hash table, for mapping one
|
||
type to another. */
|
||
|
||
struct type_pair
|
||
{
|
||
type_pair (struct type *old_, struct type *newobj_)
|
||
: old (old_), newobj (newobj_)
|
||
{}
|
||
|
||
struct type * const old, * const newobj;
|
||
};
|
||
|
||
static hashval_t
|
||
type_pair_hash (const void *item)
|
||
{
|
||
const struct type_pair *pair = (const struct type_pair *) item;
|
||
|
||
return htab_hash_pointer (pair->old);
|
||
}
|
||
|
||
static int
|
||
type_pair_eq (const void *item_lhs, const void *item_rhs)
|
||
{
|
||
const struct type_pair *lhs = (const struct type_pair *) item_lhs;
|
||
const struct type_pair *rhs = (const struct type_pair *) item_rhs;
|
||
|
||
return lhs->old == rhs->old;
|
||
}
|
||
|
||
/* Allocate the hash table used by copy_type_recursive to walk
|
||
types without duplicates. */
|
||
|
||
htab_up
|
||
create_copied_types_hash ()
|
||
{
|
||
return htab_up (htab_create_alloc (1, type_pair_hash, type_pair_eq,
|
||
htab_delete_entry<type_pair>,
|
||
xcalloc, xfree));
|
||
}
|
||
|
||
/* Recursively copy (deep copy) a dynamic attribute list of a type. */
|
||
|
||
static struct dynamic_prop_list *
|
||
copy_dynamic_prop_list (struct obstack *storage,
|
||
struct dynamic_prop_list *list)
|
||
{
|
||
struct dynamic_prop_list *copy = list;
|
||
struct dynamic_prop_list **node_ptr = ©
|
||
|
||
while (*node_ptr != NULL)
|
||
{
|
||
struct dynamic_prop_list *node_copy;
|
||
|
||
node_copy = ((struct dynamic_prop_list *)
|
||
obstack_copy (storage, *node_ptr,
|
||
sizeof (struct dynamic_prop_list)));
|
||
node_copy->prop = (*node_ptr)->prop;
|
||
*node_ptr = node_copy;
|
||
|
||
node_ptr = &node_copy->next;
|
||
}
|
||
|
||
return copy;
|
||
}
|
||
|
||
/* Recursively copy (deep copy) TYPE, if it is associated with
|
||
OBJFILE. Return a new type owned by the gdbarch associated with the type, a
|
||
saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
|
||
it is not associated with OBJFILE. */
|
||
|
||
struct type *
|
||
copy_type_recursive (struct type *type, htab_t copied_types)
|
||
{
|
||
void **slot;
|
||
struct type *new_type;
|
||
|
||
if (!type->is_objfile_owned ())
|
||
return type;
|
||
|
||
struct type_pair pair (type, nullptr);
|
||
|
||
slot = htab_find_slot (copied_types, &pair, INSERT);
|
||
if (*slot != NULL)
|
||
return ((struct type_pair *) *slot)->newobj;
|
||
|
||
new_type = type_allocator (type->arch ()).new_type ();
|
||
|
||
/* We must add the new type to the hash table immediately, in case
|
||
we encounter this type again during a recursive call below. */
|
||
struct type_pair *stored = new type_pair (type, new_type);
|
||
|
||
*slot = stored;
|
||
|
||
/* Copy the common fields of types. For the main type, we simply
|
||
copy the entire thing and then update specific fields as needed. */
|
||
*TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
|
||
|
||
new_type->set_owner (type->arch ());
|
||
|
||
if (type->name ())
|
||
new_type->set_name (xstrdup (type->name ()));
|
||
|
||
new_type->set_instance_flags (type->instance_flags ());
|
||
new_type->set_length (type->length ());
|
||
|
||
/* Copy the fields. */
|
||
if (type->num_fields ())
|
||
{
|
||
int i, nfields;
|
||
|
||
nfields = type->num_fields ();
|
||
new_type->alloc_fields (type->num_fields ());
|
||
|
||
for (i = 0; i < nfields; i++)
|
||
{
|
||
new_type->field (i).set_is_artificial
|
||
(type->field (i).is_artificial ());
|
||
new_type->field (i).set_bitsize (type->field (i).bitsize ());
|
||
if (type->field (i).type ())
|
||
new_type->field (i).set_type
|
||
(copy_type_recursive (type->field (i).type (), copied_types));
|
||
if (type->field (i).name ())
|
||
new_type->field (i).set_name (xstrdup (type->field (i).name ()));
|
||
|
||
switch (type->field (i).loc_kind ())
|
||
{
|
||
case FIELD_LOC_KIND_BITPOS:
|
||
new_type->field (i).set_loc_bitpos (type->field (i).loc_bitpos ());
|
||
break;
|
||
case FIELD_LOC_KIND_ENUMVAL:
|
||
new_type->field (i).set_loc_enumval (type->field (i).loc_enumval ());
|
||
break;
|
||
case FIELD_LOC_KIND_PHYSADDR:
|
||
new_type->field (i).set_loc_physaddr
|
||
(type->field (i).loc_physaddr ());
|
||
break;
|
||
case FIELD_LOC_KIND_PHYSNAME:
|
||
new_type->field (i).set_loc_physname
|
||
(xstrdup (type->field (i).loc_physname ()));
|
||
break;
|
||
case FIELD_LOC_KIND_DWARF_BLOCK:
|
||
new_type->field (i).set_loc_dwarf_block
|
||
(type->field (i).loc_dwarf_block ());
|
||
break;
|
||
default:
|
||
internal_error (_("Unexpected type field location kind: %d"),
|
||
type->field (i).loc_kind ());
|
||
}
|
||
}
|
||
}
|
||
|
||
/* For range types, copy the bounds information. */
|
||
if (type->code () == TYPE_CODE_RANGE)
|
||
{
|
||
range_bounds *bounds
|
||
= ((struct range_bounds *) TYPE_ALLOC
|
||
(new_type, sizeof (struct range_bounds)));
|
||
|
||
*bounds = *type->bounds ();
|
||
new_type->set_bounds (bounds);
|
||
}
|
||
|
||
if (type->main_type->dyn_prop_list != NULL)
|
||
new_type->main_type->dyn_prop_list
|
||
= copy_dynamic_prop_list (gdbarch_obstack (new_type->arch_owner ()),
|
||
type->main_type->dyn_prop_list);
|
||
|
||
|
||
/* Copy pointers to other types. */
|
||
if (type->target_type ())
|
||
new_type->set_target_type
|
||
(copy_type_recursive (type->target_type (), copied_types));
|
||
|
||
/* Maybe copy the type_specific bits.
|
||
|
||
NOTE drow/2005-12-09: We do not copy the C++-specific bits like
|
||
base classes and methods. There's no fundamental reason why we
|
||
can't, but at the moment it is not needed. */
|
||
|
||
switch (TYPE_SPECIFIC_FIELD (type))
|
||
{
|
||
case TYPE_SPECIFIC_NONE:
|
||
break;
|
||
case TYPE_SPECIFIC_FUNC:
|
||
INIT_FUNC_SPECIFIC (new_type);
|
||
TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
|
||
TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
|
||
TYPE_TAIL_CALL_LIST (new_type) = NULL;
|
||
break;
|
||
case TYPE_SPECIFIC_FLOATFORMAT:
|
||
TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
|
||
break;
|
||
case TYPE_SPECIFIC_CPLUS_STUFF:
|
||
INIT_CPLUS_SPECIFIC (new_type);
|
||
break;
|
||
case TYPE_SPECIFIC_GNAT_STUFF:
|
||
INIT_GNAT_SPECIFIC (new_type);
|
||
break;
|
||
case TYPE_SPECIFIC_SELF_TYPE:
|
||
set_type_self_type (new_type,
|
||
copy_type_recursive (TYPE_SELF_TYPE (type),
|
||
copied_types));
|
||
break;
|
||
case TYPE_SPECIFIC_FIXED_POINT:
|
||
INIT_FIXED_POINT_SPECIFIC (new_type);
|
||
new_type->fixed_point_info ().scaling_factor
|
||
= type->fixed_point_info ().scaling_factor;
|
||
break;
|
||
case TYPE_SPECIFIC_INT:
|
||
TYPE_SPECIFIC_FIELD (new_type) = TYPE_SPECIFIC_INT;
|
||
TYPE_MAIN_TYPE (new_type)->type_specific.int_stuff
|
||
= TYPE_MAIN_TYPE (type)->type_specific.int_stuff;
|
||
break;
|
||
|
||
default:
|
||
gdb_assert_not_reached ("bad type_specific_kind");
|
||
}
|
||
|
||
return new_type;
|
||
}
|
||
|
||
/* Make a copy of the given TYPE, except that the pointer & reference
|
||
types are not preserved. */
|
||
|
||
struct type *
|
||
copy_type (const struct type *type)
|
||
{
|
||
struct type *new_type = type_allocator (type).new_type ();
|
||
new_type->set_instance_flags (type->instance_flags ());
|
||
new_type->set_length (type->length ());
|
||
memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
|
||
sizeof (struct main_type));
|
||
if (type->main_type->dyn_prop_list != NULL)
|
||
{
|
||
struct obstack *storage = (type->is_objfile_owned ()
|
||
? &type->objfile_owner ()->objfile_obstack
|
||
: gdbarch_obstack (type->arch_owner ()));
|
||
new_type->main_type->dyn_prop_list
|
||
= copy_dynamic_prop_list (storage, type->main_type->dyn_prop_list);
|
||
}
|
||
|
||
return new_type;
|
||
}
|
||
|
||
/* Helper functions to initialize architecture-specific types. */
|
||
|
||
/* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
|
||
NAME is the type name. BIT is the size of the flag word in bits. */
|
||
|
||
struct type *
|
||
arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
|
||
{
|
||
struct type *type;
|
||
|
||
type = type_allocator (gdbarch).new_type (TYPE_CODE_FLAGS, bit, name);
|
||
type->set_is_unsigned (true);
|
||
/* Pre-allocate enough space assuming every field is one bit. */
|
||
type->alloc_fields (bit);
|
||
type->set_num_fields (0);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
|
||
position BITPOS is called NAME. Pass NAME as "" for fields that
|
||
should not be printed. */
|
||
|
||
void
|
||
append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
|
||
struct type *field_type, const char *name)
|
||
{
|
||
int type_bitsize = type->length () * TARGET_CHAR_BIT;
|
||
int field_nr = type->num_fields ();
|
||
|
||
gdb_assert (type->code () == TYPE_CODE_FLAGS);
|
||
gdb_assert (type->num_fields () + 1 <= type_bitsize);
|
||
gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
|
||
gdb_assert (nr_bits >= 1 && (start_bitpos + nr_bits) <= type_bitsize);
|
||
gdb_assert (name != NULL);
|
||
|
||
type->set_num_fields (type->num_fields () + 1);
|
||
type->field (field_nr).set_name (xstrdup (name));
|
||
type->field (field_nr).set_type (field_type);
|
||
type->field (field_nr).set_loc_bitpos (start_bitpos);
|
||
type->field (field_nr).set_bitsize (nr_bits);
|
||
}
|
||
|
||
/* Special version of append_flags_type_field to add a flag field.
|
||
Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
|
||
position BITPOS is called NAME. */
|
||
|
||
void
|
||
append_flags_type_flag (struct type *type, int bitpos, const char *name)
|
||
{
|
||
append_flags_type_field (type, bitpos, 1,
|
||
builtin_type (type->arch ())->builtin_bool,
|
||
name);
|
||
}
|
||
|
||
/* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
|
||
specified by CODE) associated with GDBARCH. NAME is the type name. */
|
||
|
||
struct type *
|
||
arch_composite_type (struct gdbarch *gdbarch, const char *name,
|
||
enum type_code code)
|
||
{
|
||
struct type *t;
|
||
|
||
gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
|
||
t = type_allocator (gdbarch).new_type (code, 0, NULL);
|
||
t->set_name (name);
|
||
INIT_CPLUS_SPECIFIC (t);
|
||
return t;
|
||
}
|
||
|
||
/* Add new field with name NAME and type FIELD to composite type T.
|
||
Do not set the field's position or adjust the type's length;
|
||
the caller should do so. Return the new field. */
|
||
|
||
struct field *
|
||
append_composite_type_field_raw (struct type *t, const char *name,
|
||
struct type *field)
|
||
{
|
||
struct field *f;
|
||
|
||
t->set_num_fields (t->num_fields () + 1);
|
||
t->set_fields (XRESIZEVEC (struct field, t->fields (),
|
||
t->num_fields ()));
|
||
f = &t->field (t->num_fields () - 1);
|
||
memset (f, 0, sizeof f[0]);
|
||
f[0].set_type (field);
|
||
f[0].set_name (name);
|
||
return f;
|
||
}
|
||
|
||
/* Add new field with name NAME and type FIELD to composite type T.
|
||
ALIGNMENT (if non-zero) specifies the minimum field alignment. */
|
||
|
||
void
|
||
append_composite_type_field_aligned (struct type *t, const char *name,
|
||
struct type *field, int alignment)
|
||
{
|
||
struct field *f = append_composite_type_field_raw (t, name, field);
|
||
|
||
if (t->code () == TYPE_CODE_UNION)
|
||
{
|
||
if (t->length () < field->length ())
|
||
t->set_length (field->length ());
|
||
}
|
||
else if (t->code () == TYPE_CODE_STRUCT)
|
||
{
|
||
t->set_length (t->length () + field->length ());
|
||
if (t->num_fields () > 1)
|
||
{
|
||
f->set_loc_bitpos
|
||
(f[-1].loc_bitpos ()
|
||
+ (f[-1].type ()->length () * TARGET_CHAR_BIT));
|
||
|
||
if (alignment)
|
||
{
|
||
int left;
|
||
|
||
alignment *= TARGET_CHAR_BIT;
|
||
left = f[0].loc_bitpos () % alignment;
|
||
|
||
if (left)
|
||
{
|
||
f->set_loc_bitpos (f[0].loc_bitpos () + (alignment - left));
|
||
t->set_length
|
||
(t->length () + (alignment - left) / TARGET_CHAR_BIT);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add new field with name NAME and type FIELD to composite type T. */
|
||
|
||
void
|
||
append_composite_type_field (struct type *t, const char *name,
|
||
struct type *field)
|
||
{
|
||
append_composite_type_field_aligned (t, name, field, 0);
|
||
}
|
||
|
||
|
||
|
||
/* We manage the lifetimes of fixed_point_type_info objects by
|
||
attaching them to the objfile. Currently, these objects are
|
||
modified during construction, and GMP does not provide a way to
|
||
hash the contents of an mpq_t; so it's a bit of a pain to hash-cons
|
||
them. If we did do this, they could be moved to the per-BFD and
|
||
shared across objfiles. */
|
||
typedef std::vector<std::unique_ptr<fixed_point_type_info>>
|
||
fixed_point_type_storage;
|
||
|
||
/* Key used for managing the storage of fixed-point type info. */
|
||
static const struct registry<objfile>::key<fixed_point_type_storage>
|
||
fixed_point_objfile_key;
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
void
|
||
allocate_fixed_point_type_info (struct type *type)
|
||
{
|
||
auto up = std::make_unique<fixed_point_type_info> ();
|
||
fixed_point_type_info *info;
|
||
|
||
if (type->is_objfile_owned ())
|
||
{
|
||
fixed_point_type_storage *storage
|
||
= fixed_point_objfile_key.get (type->objfile_owner ());
|
||
if (storage == nullptr)
|
||
storage = fixed_point_objfile_key.emplace (type->objfile_owner ());
|
||
info = up.get ();
|
||
storage->push_back (std::move (up));
|
||
}
|
||
else
|
||
{
|
||
/* We just leak the memory, because that's what we do generally
|
||
for non-objfile-attached types. */
|
||
info = up.release ();
|
||
}
|
||
|
||
type->set_fixed_point_info (info);
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
bool
|
||
is_fixed_point_type (struct type *type)
|
||
{
|
||
while (check_typedef (type)->code () == TYPE_CODE_RANGE)
|
||
type = check_typedef (type)->target_type ();
|
||
type = check_typedef (type);
|
||
|
||
return type->code () == TYPE_CODE_FIXED_POINT;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
struct type *
|
||
type::fixed_point_type_base_type ()
|
||
{
|
||
struct type *type = this;
|
||
|
||
while (check_typedef (type)->code () == TYPE_CODE_RANGE)
|
||
type = check_typedef (type)->target_type ();
|
||
type = check_typedef (type);
|
||
|
||
gdb_assert (type->code () == TYPE_CODE_FIXED_POINT);
|
||
return type;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
const gdb_mpq &
|
||
type::fixed_point_scaling_factor ()
|
||
{
|
||
struct type *type = this->fixed_point_type_base_type ();
|
||
|
||
return type->fixed_point_info ().scaling_factor;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
void
|
||
type::alloc_fields (unsigned int nfields, bool init)
|
||
{
|
||
this->set_num_fields (nfields);
|
||
|
||
if (nfields == 0)
|
||
{
|
||
this->main_type->flds_bnds.fields = nullptr;
|
||
return;
|
||
}
|
||
|
||
size_t size = nfields * sizeof (*this->fields ());
|
||
struct field *fields
|
||
= (struct field *) (init
|
||
? TYPE_ZALLOC (this, size)
|
||
: TYPE_ALLOC (this, size));
|
||
|
||
this->main_type->flds_bnds.fields = fields;
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
void
|
||
type::copy_fields (struct type *src)
|
||
{
|
||
unsigned int nfields = src->num_fields ();
|
||
alloc_fields (nfields, false);
|
||
if (nfields == 0)
|
||
return;
|
||
|
||
size_t size = nfields * sizeof (*this->fields ());
|
||
memcpy (this->fields (), src->fields (), size);
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
void
|
||
type::copy_fields (std::vector<struct field> &src)
|
||
{
|
||
unsigned int nfields = src.size ();
|
||
alloc_fields (nfields, false);
|
||
if (nfields == 0)
|
||
return;
|
||
|
||
size_t size = nfields * sizeof (*this->fields ());
|
||
memcpy (this->fields (), src.data (), size);
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
bool
|
||
type::is_string_like ()
|
||
{
|
||
const language_defn *defn = language_def (this->language ());
|
||
return defn->is_string_type_p (this);
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
bool
|
||
type::is_array_like ()
|
||
{
|
||
if (code () == TYPE_CODE_ARRAY)
|
||
return true;
|
||
const language_defn *defn = language_def (this->language ());
|
||
return defn->is_array_like (this);
|
||
}
|
||
|
||
|
||
|
||
static const registry<gdbarch>::key<struct builtin_type> gdbtypes_data;
|
||
|
||
static struct builtin_type *
|
||
create_gdbtypes_data (struct gdbarch *gdbarch)
|
||
{
|
||
struct builtin_type *builtin_type = new struct builtin_type;
|
||
|
||
type_allocator alloc (gdbarch);
|
||
|
||
/* Basic types. */
|
||
builtin_type->builtin_void
|
||
= alloc.new_type (TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
|
||
builtin_type->builtin_char
|
||
= init_integer_type (alloc, TARGET_CHAR_BIT,
|
||
!gdbarch_char_signed (gdbarch), "char");
|
||
builtin_type->builtin_char->set_has_no_signedness (true);
|
||
builtin_type->builtin_signed_char
|
||
= init_integer_type (alloc, TARGET_CHAR_BIT,
|
||
0, "signed char");
|
||
builtin_type->builtin_unsigned_char
|
||
= init_integer_type (alloc, TARGET_CHAR_BIT,
|
||
1, "unsigned char");
|
||
builtin_type->builtin_short
|
||
= init_integer_type (alloc, gdbarch_short_bit (gdbarch),
|
||
0, "short");
|
||
builtin_type->builtin_unsigned_short
|
||
= init_integer_type (alloc, gdbarch_short_bit (gdbarch),
|
||
1, "unsigned short");
|
||
builtin_type->builtin_int
|
||
= init_integer_type (alloc, gdbarch_int_bit (gdbarch),
|
||
0, "int");
|
||
builtin_type->builtin_unsigned_int
|
||
= init_integer_type (alloc, gdbarch_int_bit (gdbarch),
|
||
1, "unsigned int");
|
||
builtin_type->builtin_long
|
||
= init_integer_type (alloc, gdbarch_long_bit (gdbarch),
|
||
0, "long");
|
||
builtin_type->builtin_unsigned_long
|
||
= init_integer_type (alloc, gdbarch_long_bit (gdbarch),
|
||
1, "unsigned long");
|
||
builtin_type->builtin_long_long
|
||
= init_integer_type (alloc, gdbarch_long_long_bit (gdbarch),
|
||
0, "long long");
|
||
builtin_type->builtin_unsigned_long_long
|
||
= init_integer_type (alloc, gdbarch_long_long_bit (gdbarch),
|
||
1, "unsigned long long");
|
||
builtin_type->builtin_half
|
||
= init_float_type (alloc, gdbarch_half_bit (gdbarch),
|
||
"half", gdbarch_half_format (gdbarch));
|
||
builtin_type->builtin_float
|
||
= init_float_type (alloc, gdbarch_float_bit (gdbarch),
|
||
"float", gdbarch_float_format (gdbarch));
|
||
builtin_type->builtin_bfloat16
|
||
= init_float_type (alloc, gdbarch_bfloat16_bit (gdbarch),
|
||
"bfloat16", gdbarch_bfloat16_format (gdbarch));
|
||
builtin_type->builtin_double
|
||
= init_float_type (alloc, gdbarch_double_bit (gdbarch),
|
||
"double", gdbarch_double_format (gdbarch));
|
||
builtin_type->builtin_long_double
|
||
= init_float_type (alloc, gdbarch_long_double_bit (gdbarch),
|
||
"long double", gdbarch_long_double_format (gdbarch));
|
||
builtin_type->builtin_complex
|
||
= init_complex_type ("complex", builtin_type->builtin_float);
|
||
builtin_type->builtin_double_complex
|
||
= init_complex_type ("double complex", builtin_type->builtin_double);
|
||
builtin_type->builtin_string
|
||
= alloc.new_type (TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
|
||
builtin_type->builtin_bool
|
||
= init_boolean_type (alloc, TARGET_CHAR_BIT, 1, "bool");
|
||
|
||
/* The following three are about decimal floating point types, which
|
||
are 32-bits, 64-bits and 128-bits respectively. */
|
||
builtin_type->builtin_decfloat
|
||
= init_decfloat_type (alloc, 32, "_Decimal32");
|
||
builtin_type->builtin_decdouble
|
||
= init_decfloat_type (alloc, 64, "_Decimal64");
|
||
builtin_type->builtin_declong
|
||
= init_decfloat_type (alloc, 128, "_Decimal128");
|
||
|
||
/* "True" character types. */
|
||
builtin_type->builtin_true_char
|
||
= init_character_type (alloc, TARGET_CHAR_BIT, 0, "true character");
|
||
builtin_type->builtin_true_unsigned_char
|
||
= init_character_type (alloc, TARGET_CHAR_BIT, 1, "true character");
|
||
|
||
/* Fixed-size integer types. */
|
||
builtin_type->builtin_int0
|
||
= init_integer_type (alloc, 0, 0, "int0_t");
|
||
builtin_type->builtin_int8
|
||
= init_integer_type (alloc, 8, 0, "int8_t");
|
||
builtin_type->builtin_uint8
|
||
= init_integer_type (alloc, 8, 1, "uint8_t");
|
||
builtin_type->builtin_int16
|
||
= init_integer_type (alloc, 16, 0, "int16_t");
|
||
builtin_type->builtin_uint16
|
||
= init_integer_type (alloc, 16, 1, "uint16_t");
|
||
builtin_type->builtin_int24
|
||
= init_integer_type (alloc, 24, 0, "int24_t");
|
||
builtin_type->builtin_uint24
|
||
= init_integer_type (alloc, 24, 1, "uint24_t");
|
||
builtin_type->builtin_int32
|
||
= init_integer_type (alloc, 32, 0, "int32_t");
|
||
builtin_type->builtin_uint32
|
||
= init_integer_type (alloc, 32, 1, "uint32_t");
|
||
builtin_type->builtin_int64
|
||
= init_integer_type (alloc, 64, 0, "int64_t");
|
||
builtin_type->builtin_uint64
|
||
= init_integer_type (alloc, 64, 1, "uint64_t");
|
||
builtin_type->builtin_int128
|
||
= init_integer_type (alloc, 128, 0, "int128_t");
|
||
builtin_type->builtin_uint128
|
||
= init_integer_type (alloc, 128, 1, "uint128_t");
|
||
|
||
builtin_type->builtin_int8->set_instance_flags
|
||
(builtin_type->builtin_int8->instance_flags ()
|
||
| TYPE_INSTANCE_FLAG_NOTTEXT);
|
||
|
||
builtin_type->builtin_uint8->set_instance_flags
|
||
(builtin_type->builtin_uint8->instance_flags ()
|
||
| TYPE_INSTANCE_FLAG_NOTTEXT);
|
||
|
||
/* Wide character types. */
|
||
builtin_type->builtin_char16
|
||
= init_integer_type (alloc, 16, 1, "char16_t");
|
||
builtin_type->builtin_char32
|
||
= init_integer_type (alloc, 32, 1, "char32_t");
|
||
builtin_type->builtin_wchar
|
||
= init_integer_type (alloc, gdbarch_wchar_bit (gdbarch),
|
||
!gdbarch_wchar_signed (gdbarch), "wchar_t");
|
||
|
||
/* Default data/code pointer types. */
|
||
builtin_type->builtin_data_ptr
|
||
= lookup_pointer_type (builtin_type->builtin_void);
|
||
builtin_type->builtin_func_ptr
|
||
= lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
|
||
builtin_type->builtin_func_func
|
||
= lookup_function_type (builtin_type->builtin_func_ptr);
|
||
|
||
/* This type represents a GDB internal function. */
|
||
builtin_type->internal_fn
|
||
= alloc.new_type (TYPE_CODE_INTERNAL_FUNCTION, 0,
|
||
"<internal function>");
|
||
|
||
/* This type represents an xmethod. */
|
||
builtin_type->xmethod
|
||
= alloc.new_type (TYPE_CODE_XMETHOD, 0, "<xmethod>");
|
||
|
||
/* This type represents a type that was unrecognized in symbol read-in. */
|
||
builtin_type->builtin_error
|
||
= alloc.new_type (TYPE_CODE_ERROR, 0, "<unknown type>");
|
||
|
||
/* The following set of types is used for symbols with no
|
||
debug information. */
|
||
builtin_type->nodebug_text_symbol
|
||
= alloc.new_type (TYPE_CODE_FUNC, TARGET_CHAR_BIT,
|
||
"<text variable, no debug info>");
|
||
|
||
builtin_type->nodebug_text_gnu_ifunc_symbol
|
||
= alloc.new_type (TYPE_CODE_FUNC, TARGET_CHAR_BIT,
|
||
"<text gnu-indirect-function variable, no debug info>");
|
||
builtin_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true);
|
||
|
||
builtin_type->nodebug_got_plt_symbol
|
||
= init_pointer_type (alloc, gdbarch_addr_bit (gdbarch),
|
||
"<text from jump slot in .got.plt, no debug info>",
|
||
builtin_type->nodebug_text_symbol);
|
||
builtin_type->nodebug_data_symbol
|
||
= alloc.new_type (TYPE_CODE_ERROR, 0, "<data variable, no debug info>");
|
||
builtin_type->nodebug_unknown_symbol
|
||
= alloc.new_type (TYPE_CODE_ERROR, 0,
|
||
"<variable (not text or data), no debug info>");
|
||
builtin_type->nodebug_tls_symbol
|
||
= alloc.new_type (TYPE_CODE_ERROR, 0,
|
||
"<thread local variable, no debug info>");
|
||
|
||
/* NOTE: on some targets, addresses and pointers are not necessarily
|
||
the same.
|
||
|
||
The upshot is:
|
||
- gdb's `struct type' always describes the target's
|
||
representation.
|
||
- gdb's `struct value' objects should always hold values in
|
||
target form.
|
||
- gdb's CORE_ADDR values are addresses in the unified virtual
|
||
address space that the assembler and linker work with. Thus,
|
||
since target_read_memory takes a CORE_ADDR as an argument, it
|
||
can access any memory on the target, even if the processor has
|
||
separate code and data address spaces.
|
||
|
||
In this context, builtin_type->builtin_core_addr is a bit odd:
|
||
it's a target type for a value the target will never see. It's
|
||
only used to hold the values of (typeless) linker symbols, which
|
||
are indeed in the unified virtual address space. */
|
||
|
||
builtin_type->builtin_core_addr
|
||
= init_integer_type (alloc, gdbarch_addr_bit (gdbarch), 1,
|
||
"__CORE_ADDR");
|
||
return builtin_type;
|
||
}
|
||
|
||
const struct builtin_type *
|
||
builtin_type (struct gdbarch *gdbarch)
|
||
{
|
||
struct builtin_type *result = gdbtypes_data.get (gdbarch);
|
||
if (result == nullptr)
|
||
{
|
||
result = create_gdbtypes_data (gdbarch);
|
||
gdbtypes_data.set (gdbarch, result);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
const struct builtin_type *
|
||
builtin_type (struct objfile *objfile)
|
||
{
|
||
return builtin_type (objfile->arch ());
|
||
}
|
||
|
||
/* See gdbtypes.h. */
|
||
|
||
CORE_ADDR
|
||
call_site::pc () const
|
||
{
|
||
return per_objfile->relocate (m_unrelocated_pc);
|
||
}
|
||
|
||
void _initialize_gdbtypes ();
|
||
void
|
||
_initialize_gdbtypes ()
|
||
{
|
||
add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
|
||
_("Set debugging of C++ overloading."),
|
||
_("Show debugging of C++ overloading."),
|
||
_("When enabled, ranking of the "
|
||
"functions is displayed."),
|
||
NULL,
|
||
show_overload_debug,
|
||
&setdebuglist, &showdebuglist);
|
||
|
||
/* Add user knob for controlling resolution of opaque types. */
|
||
add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
|
||
&opaque_type_resolution,
|
||
_("Set resolution of opaque struct/class/union"
|
||
" types (if set before loading symbols)."),
|
||
_("Show resolution of opaque struct/class/union"
|
||
" types (if set before loading symbols)."),
|
||
NULL, NULL,
|
||
show_opaque_type_resolution,
|
||
&setlist, &showlist);
|
||
|
||
/* Add an option to permit non-strict type checking. */
|
||
add_setshow_boolean_cmd ("type", class_support,
|
||
&strict_type_checking,
|
||
_("Set strict type checking."),
|
||
_("Show strict type checking."),
|
||
NULL, NULL,
|
||
show_strict_type_checking,
|
||
&setchecklist, &showchecklist);
|
||
}
|