binutils-gdb/gdb/score-tdep.c
Pedro Alves 8fbca658f0 gdb/
* frame.c (frame_unwind_register): Throw an error if unwinding the
	register failed.
	* get_prev_frame_1 (get_prev_frame_1): Ask the unwinder if there's
	an unwind stop reason.
	(frame_stop_reason_string): Handle UNWIND_UNAVAILABLE.
	* frame.h (enum unwind_stop_reason) <UNWIND_OUTERMOST,
	UNWIND_UNAVAILABLE>: New.
	* inline-frame.c (inline_frame_unwind): Install
	default_frame_unwind_stop_reason.
	* frame-unwind.c: Include "exceptions.h".
	(frame_unwind_find_by_frame): Swallow NOT_AVAILABLE_ERROR errors.
	(default_frame_unwind_stop_reason): New.
	* frame-unwind.h (frame_unwind_stop_reason_ftype): New typedef.
	(default_frame_unwind_stop_reason): Declare.
	(struct frame_unwind) <stop_reason>: New function pointer.

	* dummy-frame.c: Install default_frame_unwind_stop_reason.
	* dwarf2-frame.c: Include exceptions.h.
	(struct dwarf2_frame_cache) <unavailable_retaddr>: New field.
	(dwarf2_frame_cache): Swallow NOT_AVAILABLE_ERROR errors when
	computing the CFA.  If such an error was thrown, set
	unavailable_retaddr.
	(dwarf2_frame_unwind_stop_reason): New.
	(dwarf2_frame_this_id): Don't build a frame id if the CFA was
	unavailable.
	(dwarf2_frame_unwind): Install dwarf2_frame_unwind_stop_reason.
	(dwarf2_signal_frame_unwind): Ditto.

	* amd64-tdep.c: Include "exceptions.h".
	(struct amd64_frame_cache): New field "base_p".
	(amd64_init_frame_cache): Clear it.
	(amd64_frame_cache_1): New, factored out from amd64_frame_cache.
	Avoid reading registers with functions that throw if the register
	is not necessary to compute the frame base.
	(amd64_frame_cache): Reimplement wrapping amd64_frame_cache_1, and
	swallowing NOT_AVAILABLE_ERROR.
	(amd64_frame_unwind_stop_reason): New.
	(amd64_frame_this_id): Don't build a frame id if the frame base
	was unavailable.
	(amd64_frame_unwind): Install amd64_frame_unwind_stop_reason.
	(amd64_sigtramp_frame_cache): Swallow NOT_AVAILABLE_ERROR, and set
	base_p if the frame base was computable.
	(amd64_sigtramp_frame_unwind_stop_reason): New.
	(amd64_sigtramp_frame_this_id): Don't build a frame id if the
	frame base was unavailable.
	(amd64_sigtramp_frame_unwind): Install
	amd64_sigtramp_frame_unwind_stop_reason.
	(amd64_epilogue_frame_cache): Swallow NOT_AVAILABLE_ERROR, and set
	base_p if the frame base was computable.
	(amd64_epilogue_frame_unwind_stop_reason): New.
	(amd64_epilogue_frame_this_id): Don't build a frame id if the
	frame base was unavailable.
	(amd64_epilogue_frame_unwind): Install
	amd64_epilogue_frame_unwind_stop_reason.
	* i386-tdep.c: Include "exceptions.h".
	(struct i386_frame_cache): New field "base_p".
	(i386_init_frame_cache): Clear it.
	(i386_frame_cache_1): New, factored out from amd64_frame_cache.
	Avoid reading registers with functions that throw if the register
	is not necessary to compute the frame base.
	(i386_frame_cache): Reimplement wrapping amd64_frame_cache_1, and
	swallowing NOT_AVAILABLE_ERROR.
	(i386_frame_unwind_stop_reason): New.
	(i386_frame_this_id): Don't build a frame id if the frame base was
	unavailable.
	(i386_frame_prev_register): Handle unavailable SP.
	(i386_frame_unwind): Install i386_frame_unwind_stop_reason.
	(i386_epilogue_frame_cache): Swallow NOT_AVAILABLE_ERROR, and set
	base_p if the frame base was computable.
	(i386_epilogue_frame_unwind_stop_reason): New.
	(i386_epilogue_frame_this_id): Don't build a frame id if the frame
	base was unavailable.
	(i386_epilogue_frame_unwind): Install
	i386_epilogue_frame_unwind_stop_reason.
	(i386_sigtramp_frame_cache): Swallow NOT_AVAILABLE_ERROR, and set
	base_p if the frame base was computable.
	(i386_sigtramp_frame_unwind_stop_reason): New.
	(i386_sigtramp_frame_this_id): Don't build a frame id if the frame
	base was unavailable.
	(i386_sigtramp_frame_unwind): Install
	i386_sigtramp_frame_unwind_stop_reason.
	* sentinel-frame.c (sentinel_frame_prev_register): Use the value
	type's size, not the register's.
	(sentinel_frame_unwind): Install default_frame_unwind_stop_reason.

	* alpha-mdebug-tdep.c (alpha_mdebug_frame_unwind): Install
	default_frame_unwind_stop_reason.
	* alpha-tdep.c (alpha_sigtramp_frame_unwind)
	(alpha_heuristic_frame_unwind): Ditto.
	* amd64obsd-tdep.c (amd64obsd_trapframe_unwind): Ditto.
	* arm-tdep.c (arm_prologue_unwind, arm_stub_unwind): Ditto.
	* avr-tdep.c (avr_frame_unwind): Ditto.
	* cris-tdep.c (cris_sigtramp_frame_unwind, cris_frame_unwind):
	Ditto.
	* frv-linux-tdep.c (frv_linux_sigtramp_frame_unwind): Ditto.
	* frv-tdep.c (frv_frame_unwind): Ditto.
	* h8300-tdep.c (h8300_frame_unwind): Ditto.
	* hppa-hpux-tdep.c (hppa_hpux_sigtramp_frame_unwind): Ditto.
	* hppa-linux-tdep.c (hppa_linux_sigtramp_frame_unwind): Ditto.
	* hppa-tdep.c (hppa_frame_unwind, hppa_fallback_frame_unwind)
	(hppa_stub_frame_unwind): Ditto.
	* i386obsd-tdep.c (i386obsd_trapframe_unwind): Ditto.
	* ia64-tdep.c (ia64_frame_unwind, ia64_sigtramp_frame_unwind)
	(ia64_libunwind_frame_unwind)
	(ia64_libunwind_sigtramp_frame_unwind): Ditto.
	* iq2000-tdep.c (iq2000_frame_unwind): Ditto.
	* lm32-tdep.c (lm32_frame_unwind): Ditto.
	* m32c-tdep.c (m32c_unwind): Ditto.
	* m32r-linux-tdep.c (m32r_linux_sigtramp_frame_unwind): Ditto.
	* m32r-tdep.c (m32r_frame_unwind): Ditto.
	* m68hc11-tdep.c (m68hc11_frame_unwind): Ditto.
	* m68k-tdep.c (m68k_frame_unwind): Ditto.
	* m68klinux-tdep.c (m68k_linux_sigtramp_frame_unwind): Ditto.
	* m88k-tdep.c (m88k_frame_unwind): Ditto.
	* mep-tdep.c (mep_frame_unwind): Ditto.
	* microblaze-tdep.c (microblaze_frame_unwind): Ditto.
	* mips-tdep.c (mips_insn16_frame_unwind, mips_insn32_frame_unwind)
	(mips_stub_frame_unwind): Ditto.
	* mn10300-tdep.c (mn10300_frame_unwind): Ditto.
	* moxie-tdep.c (moxie_frame_unwind): Ditto.
	* mt-tdep.c (mt_frame_unwind): Ditto.
	* ppc-linux-tdep.c (ppu2spu_unwind): Ditto.
	* ppcobsd-tdep.c (ppcobsd_sigtramp_frame_unwind): Ditto.
	* rs6000-tdep.c (rs6000_frame_unwind): Ditto.
	* s390-tdep.c (s390_frame_unwind, s390_stub_frame_unwind)
	(s390_sigtramp_frame_unwind): Ditto.
	* score-tdep.c (score_prologue_unwind): Ditto.
	* sh-tdep.c (sh_frame_unwind): Ditto.
	* sh64-tdep.c (sh64_frame_unwind): Ditto.
	* sparc-sol2-tdep.c (sparc32_sol2_sigtramp_frame_unwind): Ditto.
	* sparc-tdep.c (sparc32_frame_unwind): Ditto.
	* sparc64-sol2-tdep.c (sparc64_sol2_sigtramp_frame_unwind): Ditto.
	* sparc64-tdep.c (sparc64_frame_unwind): Ditto.
	* sparc64fbsd-tdep.c (sparc64fbsd_sigtramp_frame_unwind): Ditto.
	* sparc64nbsd-tdep.c (sparc64nbsd_sigcontext_frame_unwind): Ditto.
	* sparc64obsd-tdep.c (sparc64obsd_frame_unwind)
	(sparc64obsd_trapframe_unwind): Ditto.
	* sparcnbsd-tdep.c (sparc32nbsd_sigcontext_frame_unwind): Ditto.
	* sparcobsd-tdep.c (sparc32obsd_sigtramp_frame_unwind): Ditto.
	* spu-tdep.c (spu_frame_unwind, spu2ppu_unwind): Ditto.
	* v850-tdep.c (v850_frame_unwind): Ditto.
	* vax-tdep.c (vax_frame_unwind): Ditto.
	* vaxobsd-tdep.c (vaxobsd_sigtramp_frame_unwind): Ditto.
	* xstormy16-tdep.c (frame_unwind xstormy16_frame_unwind): Ditto.
	* xtensa-tdep.c (xtensa_unwind): Ditto.
2011-03-18 18:52:32 +00:00

1560 lines
46 KiB
C

/* Target-dependent code for the S+core architecture, for GDB,
the GNU Debugger.
Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
Free Software Foundation, Inc.
Contributed by Qinwei (qinwei@sunnorth.com.cn)
Contributed by Ching-Peng Lin (cplin@sunplus.com)
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "gdb_assert.h"
#include "inferior.h"
#include "symtab.h"
#include "objfiles.h"
#include "gdbcore.h"
#include "target.h"
#include "arch-utils.h"
#include "regcache.h"
#include "regset.h"
#include "dis-asm.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "trad-frame.h"
#include "dwarf2-frame.h"
#include "score-tdep.h"
#define G_FLD(_i,_ms,_ls) \
((unsigned)((_i) << (31 - (_ms))) >> (31 - (_ms) + (_ls)))
typedef struct{
unsigned long long v;
unsigned long long raw;
unsigned int len;
}inst_t;
struct score_frame_cache
{
CORE_ADDR base;
CORE_ADDR fp;
struct trad_frame_saved_reg *saved_regs;
};
static int target_mach = bfd_mach_score7;
static struct type *
score_register_type (struct gdbarch *gdbarch, int regnum)
{
gdb_assert (regnum >= 0
&& regnum < ((target_mach == bfd_mach_score7)
? SCORE7_NUM_REGS : SCORE3_NUM_REGS));
return builtin_type (gdbarch)->builtin_uint32;
}
static CORE_ADDR
score_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, SCORE_SP_REGNUM);
}
static CORE_ADDR
score_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
{
return frame_unwind_register_unsigned (next_frame, SCORE_PC_REGNUM);
}
static const char *
score7_register_name (struct gdbarch *gdbarch, int regnum)
{
const char *score_register_names[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"PSR", "COND", "ECR", "EXCPVEC", "CCR",
"EPC", "EMA", "TLBLOCK", "TLBPT", "PEADDR",
"TLBRPT", "PEVN", "PECTX", "LIMPFN", "LDMPFN",
"PREV", "DREG", "PC", "DSAVE", "COUNTER",
"LDCR", "STCR", "CEH", "CEL",
};
gdb_assert (regnum >= 0 && regnum < SCORE7_NUM_REGS);
return score_register_names[regnum];
}
static const char *
score3_register_name (struct gdbarch *gdbarch, int regnum)
{
const char *score_register_names[] = {
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
"PSR", "COND", "ECR", "EXCPVEC", "CCR",
"EPC", "EMA", "PREV", "DREG", "DSAVE",
"COUNTER", "LDCR", "STCR", "CEH", "CEL",
"", "", "PC",
};
gdb_assert (regnum >= 0 && regnum < SCORE3_NUM_REGS);
return score_register_names[regnum];
}
#if WITH_SIM
static int
score_register_sim_regno (struct gdbarch *gdbarch, int regnum)
{
gdb_assert (regnum >= 0
&& regnum < ((target_mach == bfd_mach_score7)
? SCORE7_NUM_REGS : SCORE3_NUM_REGS));
return regnum;
}
#endif
static int
score_print_insn (bfd_vma memaddr, struct disassemble_info *info)
{
if (info->endian == BFD_ENDIAN_BIG)
return print_insn_big_score (memaddr, info);
else
return print_insn_little_score (memaddr, info);
}
static inst_t *
score7_fetch_inst (struct gdbarch *gdbarch, CORE_ADDR addr, char *memblock)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
static inst_t inst = { 0, 0, 0 };
char buf[SCORE_INSTLEN] = { 0 };
int big;
int ret;
if (target_has_execution && memblock != NULL)
{
/* Fetch instruction from local MEMBLOCK. */
memcpy (buf, memblock, SCORE_INSTLEN);
}
else
{
/* Fetch instruction from target. */
ret = target_read_memory (addr & ~0x3, buf, SCORE_INSTLEN);
if (ret)
{
error (_("Error: target_read_memory in file:%s, line:%d!"),
__FILE__, __LINE__);
return 0;
}
}
inst.raw = extract_unsigned_integer (buf, SCORE_INSTLEN, byte_order);
inst.len = (inst.raw & 0x80008000) ? 4 : 2;
inst.v = ((inst.raw >> 16 & 0x7FFF) << 15) | (inst.raw & 0x7FFF);
big = (byte_order == BFD_ENDIAN_BIG);
if (inst.len == 2)
{
if (big ^ ((addr & 0x2) == 2))
inst.v = G_FLD (inst.v, 29, 15);
else
inst.v = G_FLD (inst.v, 14, 0);
}
return &inst;
}
static inst_t *
score3_adjust_pc_and_fetch_inst (CORE_ADDR *pcptr, int *lenptr,
enum bfd_endian byte_order)
{
static inst_t inst = { 0, 0, 0 };
struct breakplace
{
int break_offset;
int inst_len;
};
/* raw table 1 (column 2, 3, 4)
* 0 1 0 * # 2
* 0 1 1 0 # 3
0 1 1 0 * # 6
table 2 (column 1, 2, 3)
* 0 0 * * # 0, 4
0 1 0 * * # 2
1 1 0 * * # 6
*/
static const struct breakplace bk_table[16] =
{
/* table 1 */
{0, 0},
{0, 0},
{0, 4},
{0, 6},
{0, 0},
{0, 0},
{-2, 6},
{0, 0},
/* table 2 */
{0, 2},
{0, 0},
{-2, 4},
{0, 0},
{0, 2},
{0, 0},
{-4, 6},
{0, 0}
};
#define EXTRACT_LEN 2
CORE_ADDR adjust_pc = *pcptr & ~0x1;
int inst_len;
gdb_byte buf[5][EXTRACT_LEN] =
{
{'\0', '\0'},
{'\0', '\0'},
{'\0', '\0'},
{'\0', '\0'},
{'\0', '\0'}
};
int ret;
unsigned int raw;
unsigned int cbits = 0;
int bk_index;
int i, count;
inst.v = 0;
inst.raw = 0;
inst.len = 0;
adjust_pc -= 4;
for (i = 0; i < 5; i++)
{
ret = target_read_memory (adjust_pc + 2 * i, buf[i], EXTRACT_LEN);
if (ret != 0)
{
buf[i][0] = '\0';
buf[i][1] = '\0';
if (i == 2)
error (_("Error: target_read_memory in file:%s, line:%d!"),
__FILE__, __LINE__);
}
raw = extract_unsigned_integer (buf[i], EXTRACT_LEN, byte_order);
cbits = (cbits << 1) | (raw >> 15);
}
adjust_pc += 4;
if (cbits & 0x4)
{
/* table 1 */
cbits = (cbits >> 1) & 0x7;
bk_index = cbits;
}
else
{
/* table 2 */
cbits = (cbits >> 2) & 0x7;
bk_index = cbits + 8;
}
gdb_assert (!((bk_table[bk_index].break_offset == 0)
&& (bk_table[bk_index].inst_len == 0)));
inst.len = bk_table[bk_index].inst_len;
i = (bk_table[bk_index].break_offset + 4) / 2;
count = inst.len / 2;
for (; count > 0; i++, count--)
{
inst.raw = (inst.raw << 16)
| extract_unsigned_integer (buf[i], EXTRACT_LEN, byte_order);
}
switch (inst.len)
{
case 2:
inst.v = inst.raw & 0x7FFF;
break;
case 4:
inst.v = ((inst.raw >> 16 & 0x7FFF) << 15) | (inst.raw & 0x7FFF);
break;
case 6:
inst.v = ((inst.raw >> 32 & 0x7FFF) << 30)
| ((inst.raw >> 16 & 0x7FFF) << 15) | (inst.raw & 0x7FFF);
break;
}
if (pcptr)
*pcptr = adjust_pc + bk_table[bk_index].break_offset;
if (lenptr)
*lenptr = bk_table[bk_index].inst_len;
#undef EXTRACT_LEN
return &inst;
}
static const gdb_byte *
score7_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
int *lenptr)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
gdb_byte buf[SCORE_INSTLEN] = { 0 };
int ret;
unsigned int raw;
if ((ret = target_read_memory (*pcptr & ~0x3, buf, SCORE_INSTLEN)) != 0)
{
error (_("Error: target_read_memory in file:%s, line:%d!"),
__FILE__, __LINE__);
}
raw = extract_unsigned_integer (buf, SCORE_INSTLEN, byte_order);
if (byte_order == BFD_ENDIAN_BIG)
{
if (!(raw & 0x80008000))
{
/* 16bits instruction. */
static gdb_byte big_breakpoint16[] = { 0x60, 0x02 };
*pcptr &= ~0x1;
*lenptr = sizeof (big_breakpoint16);
return big_breakpoint16;
}
else
{
/* 32bits instruction. */
static gdb_byte big_breakpoint32[] = { 0x80, 0x00, 0x80, 0x06 };
*pcptr &= ~0x3;
*lenptr = sizeof (big_breakpoint32);
return big_breakpoint32;
}
}
else
{
if (!(raw & 0x80008000))
{
/* 16bits instruction. */
static gdb_byte little_breakpoint16[] = { 0x02, 0x60 };
*pcptr &= ~0x1;
*lenptr = sizeof (little_breakpoint16);
return little_breakpoint16;
}
else
{
/* 32bits instruction. */
static gdb_byte little_breakpoint32[] = { 0x06, 0x80, 0x00, 0x80 };
*pcptr &= ~0x3;
*lenptr = sizeof (little_breakpoint32);
return little_breakpoint32;
}
}
}
static const gdb_byte *
score3_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr,
int *lenptr)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR adjust_pc = *pcptr;
int len;
static gdb_byte score_break_insns[6][6] = {
/* The following three instructions are big endian. */
{ 0x00, 0x20 },
{ 0x80, 0x00, 0x00, 0x06 },
{ 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 },
/* The following three instructions are little endian. */
{ 0x20, 0x00 },
{ 0x00, 0x80, 0x06, 0x00 },
{ 0x00, 0x80, 0x00, 0x80, 0x00, 0x00 }};
gdb_byte *p = NULL;
int index = 0;
score3_adjust_pc_and_fetch_inst (&adjust_pc, &len, byte_order);
index = ((byte_order == BFD_ENDIAN_BIG) ? 0 : 3) + (len / 2 - 1);
p = score_break_insns[index];
*pcptr = adjust_pc;
*lenptr = len;
return p;
}
static CORE_ADDR
score_adjust_breakpoint_address (struct gdbarch *gdbarch, CORE_ADDR bpaddr)
{
CORE_ADDR adjust_pc = bpaddr;
if (target_mach == bfd_mach_score3)
score3_adjust_pc_and_fetch_inst (&adjust_pc, NULL,
gdbarch_byte_order (gdbarch));
else
adjust_pc = align_down (adjust_pc, 2);
return adjust_pc;
}
static CORE_ADDR
score_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
{
return align_down (addr, 16);
}
static void
score_xfer_register (struct regcache *regcache, int regnum, int length,
enum bfd_endian endian, gdb_byte *readbuf,
const gdb_byte *writebuf, int buf_offset)
{
int reg_offset = 0;
gdb_assert (regnum >= 0
&& regnum < ((target_mach == bfd_mach_score7)
? SCORE7_NUM_REGS : SCORE3_NUM_REGS));
switch (endian)
{
case BFD_ENDIAN_BIG:
reg_offset = SCORE_REGSIZE - length;
break;
case BFD_ENDIAN_LITTLE:
reg_offset = 0;
break;
case BFD_ENDIAN_UNKNOWN:
reg_offset = 0;
break;
default:
error (_("Error: score_xfer_register in file:%s, line:%d!"),
__FILE__, __LINE__);
}
if (readbuf != NULL)
regcache_cooked_read_part (regcache, regnum, reg_offset, length,
readbuf + buf_offset);
if (writebuf != NULL)
regcache_cooked_write_part (regcache, regnum, reg_offset, length,
writebuf + buf_offset);
}
static enum return_value_convention
score_return_value (struct gdbarch *gdbarch, struct type *func_type,
struct type *type, struct regcache *regcache,
gdb_byte * readbuf, const gdb_byte * writebuf)
{
if (TYPE_CODE (type) == TYPE_CODE_STRUCT
|| TYPE_CODE (type) == TYPE_CODE_UNION
|| TYPE_CODE (type) == TYPE_CODE_ARRAY)
return RETURN_VALUE_STRUCT_CONVENTION;
else
{
int offset;
int regnum;
for (offset = 0, regnum = SCORE_A0_REGNUM;
offset < TYPE_LENGTH (type);
offset += SCORE_REGSIZE, regnum++)
{
int xfer = SCORE_REGSIZE;
if (offset + xfer > TYPE_LENGTH (type))
xfer = TYPE_LENGTH (type) - offset;
score_xfer_register (regcache, regnum, xfer,
gdbarch_byte_order(gdbarch),
readbuf, writebuf, offset);
}
return RETURN_VALUE_REGISTER_CONVENTION;
}
}
static struct frame_id
score_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
{
return frame_id_build (get_frame_register_unsigned (this_frame,
SCORE_SP_REGNUM),
get_frame_pc (this_frame));
}
static int
score_type_needs_double_align (struct type *type)
{
enum type_code typecode = TYPE_CODE (type);
if ((typecode == TYPE_CODE_INT && TYPE_LENGTH (type) == 8)
|| (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8))
return 1;
else if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
{
int i, n;
n = TYPE_NFIELDS (type);
for (i = 0; i < n; i++)
if (score_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
return 1;
return 0;
}
return 0;
}
static CORE_ADDR
score_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
struct regcache *regcache, CORE_ADDR bp_addr,
int nargs, struct value **args, CORE_ADDR sp,
int struct_return, CORE_ADDR struct_addr)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
int argnum;
int argreg;
int arglen = 0;
CORE_ADDR stack_offset = 0;
CORE_ADDR addr = 0;
/* Step 1, Save RA. */
regcache_cooked_write_unsigned (regcache, SCORE_RA_REGNUM, bp_addr);
/* Step 2, Make space on the stack for the args. */
struct_addr = align_down (struct_addr, 16);
sp = align_down (sp, 16);
for (argnum = 0; argnum < nargs; argnum++)
arglen += align_up (TYPE_LENGTH (value_type (args[argnum])),
SCORE_REGSIZE);
sp -= align_up (arglen, 16);
argreg = SCORE_BEGIN_ARG_REGNUM;
/* Step 3, Check if struct return then save the struct address to
r4 and increase the stack_offset by 4. */
if (struct_return)
{
regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
stack_offset += SCORE_REGSIZE;
}
/* Step 4, Load arguments:
If arg length is too long (> 4 bytes), then split the arg and
save every parts. */
for (argnum = 0; argnum < nargs; argnum++)
{
struct value *arg = args[argnum];
struct type *arg_type = check_typedef (value_type (arg));
enum type_code typecode = TYPE_CODE (arg_type);
const gdb_byte *val = value_contents (arg);
int downward_offset = 0;
int odd_sized_struct_p;
int arg_last_part_p = 0;
arglen = TYPE_LENGTH (arg_type);
odd_sized_struct_p = (arglen > SCORE_REGSIZE
&& arglen % SCORE_REGSIZE != 0);
/* If a arg should be aligned to 8 bytes (long long or double),
the value should be put to even register numbers. */
if (score_type_needs_double_align (arg_type))
{
if (argreg & 1)
argreg++;
}
/* If sizeof a block < SCORE_REGSIZE, then Score GCC will chose
the default "downward"/"upward" method:
Example:
struct struc
{
char a; char b; char c;
} s = {'a', 'b', 'c'};
Big endian: s = {X, 'a', 'b', 'c'}
Little endian: s = {'a', 'b', 'c', X}
Where X is a hole. */
if (gdbarch_byte_order(gdbarch) == BFD_ENDIAN_BIG
&& (typecode == TYPE_CODE_STRUCT
|| typecode == TYPE_CODE_UNION)
&& argreg > SCORE_LAST_ARG_REGNUM
&& arglen < SCORE_REGSIZE)
downward_offset += (SCORE_REGSIZE - arglen);
while (arglen > 0)
{
int partial_len = arglen < SCORE_REGSIZE ? arglen : SCORE_REGSIZE;
ULONGEST regval = extract_unsigned_integer (val, partial_len,
byte_order);
/* The last part of a arg should shift left when
gdbarch_byte_order is BFD_ENDIAN_BIG. */
if (byte_order == BFD_ENDIAN_BIG
&& arg_last_part_p == 1
&& (typecode == TYPE_CODE_STRUCT
|| typecode == TYPE_CODE_UNION))
regval <<= ((SCORE_REGSIZE - partial_len) * TARGET_CHAR_BIT);
/* Always increase the stack_offset and save args to stack. */
addr = sp + stack_offset + downward_offset;
write_memory (addr, val, partial_len);
if (argreg <= SCORE_LAST_ARG_REGNUM)
{
regcache_cooked_write_unsigned (regcache, argreg++, regval);
if (arglen > SCORE_REGSIZE && arglen < SCORE_REGSIZE * 2)
arg_last_part_p = 1;
}
val += partial_len;
arglen -= partial_len;
stack_offset += align_up (partial_len, SCORE_REGSIZE);
}
}
/* Step 5, Save SP. */
regcache_cooked_write_unsigned (regcache, SCORE_SP_REGNUM, sp);
return sp;
}
static CORE_ADDR
score7_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
CORE_ADDR cpc = pc;
int iscan = 32, stack_sub = 0;
while (iscan-- > 0)
{
inst_t *inst = score7_fetch_inst (gdbarch, cpc, NULL);
if (!inst)
break;
if ((inst->len == 4) && !stack_sub
&& (G_FLD (inst->v, 29, 25) == 0x1
&& G_FLD (inst->v, 24, 20) == 0x0))
{
/* addi r0, offset */
stack_sub = cpc + SCORE_INSTLEN;
pc = cpc + SCORE_INSTLEN;
}
else if ((inst->len == 4)
&& (G_FLD (inst->v, 29, 25) == 0x0)
&& (G_FLD (inst->v, 24, 20) == 0x2)
&& (G_FLD (inst->v, 19, 15) == 0x0)
&& (G_FLD (inst->v, 14, 10) == 0xF)
&& (G_FLD (inst->v, 9, 0) == 0x56))
{
/* mv r2, r0 */
pc = cpc + SCORE_INSTLEN;
break;
}
else if ((inst->len == 2)
&& (G_FLD (inst->v, 14, 12) == 0x0)
&& (G_FLD (inst->v, 11, 8) == 0x2)
&& (G_FLD (inst->v, 7, 4) == 0x0)
&& (G_FLD (inst->v, 3, 0) == 0x3))
{
/* mv! r2, r0 */
pc = cpc + SCORE16_INSTLEN;
break;
}
else if ((inst->len == 2)
&& ((G_FLD (inst->v, 14, 12) == 3) /* j15 form */
|| (G_FLD (inst->v, 14, 12) == 4) /* b15 form */
|| (G_FLD (inst->v, 14, 12) == 0x0
&& G_FLD (inst->v, 3, 0) == 0x4))) /* br! */
break;
else if ((inst->len == 4)
&& ((G_FLD (inst->v, 29, 25) == 2) /* j32 form */
|| (G_FLD (inst->v, 29, 25) == 4) /* b32 form */
|| (G_FLD (inst->v, 29, 25) == 0x0
&& G_FLD (inst->v, 6, 1) == 0x4))) /* br */
break;
cpc += (inst->len == 2) ? SCORE16_INSTLEN : SCORE_INSTLEN;
}
return pc;
}
static CORE_ADDR
score3_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
CORE_ADDR cpc = pc;
int iscan = 32, stack_sub = 0;
while (iscan-- > 0)
{
inst_t *inst
= score3_adjust_pc_and_fetch_inst (&cpc, NULL,
gdbarch_byte_order (gdbarch));
if (!inst)
break;
if (inst->len == 4 && !stack_sub
&& (G_FLD (inst->v, 29, 25) == 0x1)
&& (G_FLD (inst->v, 19, 17) == 0x0)
&& (G_FLD (inst->v, 24, 20) == 0x0))
{
/* addi r0, offset */
stack_sub = cpc + inst->len;
pc = cpc + inst->len;
}
else if (inst->len == 4
&& (G_FLD (inst->v, 29, 25) == 0x0)
&& (G_FLD (inst->v, 24, 20) == 0x2)
&& (G_FLD (inst->v, 19, 15) == 0x0)
&& (G_FLD (inst->v, 14, 10) == 0xF)
&& (G_FLD (inst->v, 9, 0) == 0x56))
{
/* mv r2, r0 */
pc = cpc + inst->len;
break;
}
else if ((inst->len == 2)
&& (G_FLD (inst->v, 14, 10) == 0x10)
&& (G_FLD (inst->v, 9, 5) == 0x2)
&& (G_FLD (inst->v, 4, 0) == 0x0))
{
/* mv! r2, r0 */
pc = cpc + inst->len;
break;
}
else if (inst->len == 2
&& ((G_FLD (inst->v, 14, 12) == 3) /* b15 form */
|| (G_FLD (inst->v, 14, 12) == 0x0
&& G_FLD (inst->v, 11, 5) == 0x4))) /* br! */
break;
else if (inst->len == 4
&& ((G_FLD (inst->v, 29, 25) == 2) /* j32 form */
|| (G_FLD (inst->v, 29, 25) == 4))) /* b32 form */
break;
cpc += inst->len;
}
return pc;
}
static int
score7_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR cur_pc)
{
inst_t *inst = score7_fetch_inst (gdbarch, cur_pc, NULL);
if (inst->v == 0x23)
return 1; /* mv! r0, r2 */
else if (G_FLD (inst->v, 14, 12) == 0x2
&& G_FLD (inst->v, 3, 0) == 0xa)
return 1; /* pop! */
else if (G_FLD (inst->v, 14, 12) == 0x0
&& G_FLD (inst->v, 7, 0) == 0x34)
return 1; /* br! r3 */
else if (G_FLD (inst->v, 29, 15) == 0x2
&& G_FLD (inst->v, 6, 1) == 0x2b)
return 1; /* mv r0, r2 */
else if (G_FLD (inst->v, 29, 25) == 0x0
&& G_FLD (inst->v, 6, 1) == 0x4
&& G_FLD (inst->v, 19, 15) == 0x3)
return 1; /* br r3 */
else
return 0;
}
static int
score3_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR cur_pc)
{
CORE_ADDR pc = cur_pc;
inst_t *inst
= score3_adjust_pc_and_fetch_inst (&pc, NULL,
gdbarch_byte_order (gdbarch));
if (inst->len == 2
&& (G_FLD (inst->v, 14, 10) == 0x10)
&& (G_FLD (inst->v, 9, 5) == 0x0)
&& (G_FLD (inst->v, 4, 0) == 0x2))
return 1; /* mv! r0, r2 */
else if (inst->len == 4
&& (G_FLD (inst->v, 29, 25) == 0x0)
&& (G_FLD (inst->v, 24, 20) == 0x2)
&& (G_FLD (inst->v, 19, 15) == 0x0)
&& (G_FLD (inst->v, 14, 10) == 0xF)
&& (G_FLD (inst->v, 9, 0) == 0x56))
return 1; /* mv r0, r2 */
else if (inst->len == 2
&& (G_FLD (inst->v, 14, 12) == 0x0)
&& (G_FLD (inst->v, 11, 5) == 0x2))
return 1; /* pop! */
else if (inst->len == 2
&& (G_FLD (inst->v, 14, 12) == 0x0)
&& (G_FLD (inst->v, 11, 7) == 0x0)
&& (G_FLD (inst->v, 6, 5) == 0x2))
return 1; /* rpop! */
else if (inst->len == 2
&& (G_FLD (inst->v, 14, 12) == 0x0)
&& (G_FLD (inst->v, 11, 5) == 0x4)
&& (G_FLD (inst->v, 4, 0) == 0x3))
return 1; /* br! r3 */
else if (inst->len == 4
&& (G_FLD (inst->v, 29, 25) == 0x0)
&& (G_FLD (inst->v, 24, 20) == 0x0)
&& (G_FLD (inst->v, 19, 15) == 0x3)
&& (G_FLD (inst->v, 14, 10) == 0xF)
&& (G_FLD (inst->v, 9, 0) == 0x8))
return 1; /* br r3 */
else
return 0;
}
static char *
score7_malloc_and_get_memblock (CORE_ADDR addr, CORE_ADDR size)
{
int ret;
char *memblock = NULL;
if (size < 0)
{
error (_("Error: malloc size < 0 in file:%s, line:%d!"),
__FILE__, __LINE__);
return NULL;
}
else if (size == 0)
return NULL;
memblock = (char *) xmalloc (size);
memset (memblock, 0, size);
ret = target_read_memory (addr & ~0x3, memblock, size);
if (ret)
{
error (_("Error: target_read_memory in file:%s, line:%d!"),
__FILE__, __LINE__);
return NULL;
}
return memblock;
}
static void
score7_free_memblock (char *memblock)
{
xfree (memblock);
}
static void
score7_adjust_memblock_ptr (char **memblock, CORE_ADDR prev_pc,
CORE_ADDR cur_pc)
{
if (prev_pc == -1)
{
/* First time call this function, do nothing. */
}
else if (cur_pc - prev_pc == 2 && (cur_pc & 0x3) == 0)
{
/* First 16-bit instruction, then 32-bit instruction. */
*memblock += SCORE_INSTLEN;
}
else if (cur_pc - prev_pc == 4)
{
/* Is 32-bit instruction, increase MEMBLOCK by 4. */
*memblock += SCORE_INSTLEN;
}
}
static void
score7_analyze_prologue (CORE_ADDR startaddr, CORE_ADDR pc,
struct frame_info *this_frame,
struct score_frame_cache *this_cache)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
CORE_ADDR sp;
CORE_ADDR fp;
CORE_ADDR cur_pc = startaddr;
int sp_offset = 0;
int ra_offset = 0;
int fp_offset = 0;
int ra_offset_p = 0;
int fp_offset_p = 0;
int inst_len = 0;
char *memblock = NULL;
char *memblock_ptr = NULL;
CORE_ADDR prev_pc = -1;
/* Allocate MEMBLOCK if PC - STARTADDR > 0. */
memblock_ptr = memblock =
score7_malloc_and_get_memblock (startaddr, pc - startaddr);
sp = get_frame_register_unsigned (this_frame, SCORE_SP_REGNUM);
fp = get_frame_register_unsigned (this_frame, SCORE_FP_REGNUM);
for (; cur_pc < pc; prev_pc = cur_pc, cur_pc += inst_len)
{
inst_t *inst = NULL;
if (memblock != NULL)
{
/* Reading memory block from target succefully and got all
the instructions(from STARTADDR to PC) needed. */
score7_adjust_memblock_ptr (&memblock, prev_pc, cur_pc);
inst = score7_fetch_inst (gdbarch, cur_pc, memblock);
}
else
{
/* Otherwise, we fetch 4 bytes from target, and GDB also
work correctly. */
inst = score7_fetch_inst (gdbarch, cur_pc, NULL);
}
/* FIXME: make a full-power prologue analyzer. */
if (inst->len == 2)
{
inst_len = SCORE16_INSTLEN;
if (G_FLD (inst->v, 14, 12) == 0x2
&& G_FLD (inst->v, 3, 0) == 0xe)
{
/* push! */
sp_offset += 4;
if (G_FLD (inst->v, 11, 7) == 0x6
&& ra_offset_p == 0)
{
/* push! r3, [r0] */
ra_offset = sp_offset;
ra_offset_p = 1;
}
else if (G_FLD (inst->v, 11, 7) == 0x4
&& fp_offset_p == 0)
{
/* push! r2, [r0] */
fp_offset = sp_offset;
fp_offset_p = 1;
}
}
else if (G_FLD (inst->v, 14, 12) == 0x2
&& G_FLD (inst->v, 3, 0) == 0xa)
{
/* pop! */
sp_offset -= 4;
}
else if (G_FLD (inst->v, 14, 7) == 0xc1
&& G_FLD (inst->v, 2, 0) == 0x0)
{
/* subei! r0, n */
sp_offset += (int) pow (2, G_FLD (inst->v, 6, 3));
}
else if (G_FLD (inst->v, 14, 7) == 0xc0
&& G_FLD (inst->v, 2, 0) == 0x0)
{
/* addei! r0, n */
sp_offset -= (int) pow (2, G_FLD (inst->v, 6, 3));
}
}
else
{
inst_len = SCORE_INSTLEN;
if (G_FLD(inst->v, 29, 25) == 0x3
&& G_FLD(inst->v, 2, 0) == 0x4
&& G_FLD(inst->v, 19, 15) == 0)
{
/* sw rD, [r0, offset]+ */
sp_offset += SCORE_INSTLEN;
if (G_FLD(inst->v, 24, 20) == 0x3)
{
/* rD = r3 */
if (ra_offset_p == 0)
{
ra_offset = sp_offset;
ra_offset_p = 1;
}
}
else if (G_FLD(inst->v, 24, 20) == 0x2)
{
/* rD = r2 */
if (fp_offset_p == 0)
{
fp_offset = sp_offset;
fp_offset_p = 1;
}
}
}
else if (G_FLD(inst->v, 29, 25) == 0x14
&& G_FLD(inst->v, 19,15) == 0)
{
/* sw rD, [r0, offset] */
if (G_FLD(inst->v, 24, 20) == 0x3)
{
/* rD = r3 */
ra_offset = sp_offset - G_FLD(inst->v, 14, 0);
ra_offset_p = 1;
}
else if (G_FLD(inst->v, 24, 20) == 0x2)
{
/* rD = r2 */
fp_offset = sp_offset - G_FLD(inst->v, 14, 0);
fp_offset_p = 1;
}
}
else if (G_FLD (inst->v, 29, 15) == 0x1c60
&& G_FLD (inst->v, 2, 0) == 0x0)
{
/* lw r3, [r0]+, 4 */
sp_offset -= SCORE_INSTLEN;
ra_offset_p = 1;
}
else if (G_FLD (inst->v, 29, 15) == 0x1c40
&& G_FLD (inst->v, 2, 0) == 0x0)
{
/* lw r2, [r0]+, 4 */
sp_offset -= SCORE_INSTLEN;
fp_offset_p = 1;
}
else if (G_FLD (inst->v, 29, 17) == 0x100
&& G_FLD (inst->v, 0, 0) == 0x0)
{
/* addi r0, -offset */
sp_offset += 65536 - G_FLD (inst->v, 16, 1);
}
else if (G_FLD (inst->v, 29, 17) == 0x110
&& G_FLD (inst->v, 0, 0) == 0x0)
{
/* addi r2, offset */
if (pc - cur_pc > 4)
{
unsigned int save_v = inst->v;
inst_t *inst2 =
score7_fetch_inst (gdbarch, cur_pc + SCORE_INSTLEN, NULL);
if (inst2->v == 0x23)
{
/* mv! r0, r2 */
sp_offset -= G_FLD (save_v, 16, 1);
}
}
}
}
}
/* Save RA. */
if (ra_offset_p == 1)
{
if (this_cache->saved_regs[SCORE_PC_REGNUM].addr == -1)
this_cache->saved_regs[SCORE_PC_REGNUM].addr =
sp + sp_offset - ra_offset;
}
else
{
this_cache->saved_regs[SCORE_PC_REGNUM] =
this_cache->saved_regs[SCORE_RA_REGNUM];
}
/* Save FP. */
if (fp_offset_p == 1)
{
if (this_cache->saved_regs[SCORE_FP_REGNUM].addr == -1)
this_cache->saved_regs[SCORE_FP_REGNUM].addr =
sp + sp_offset - fp_offset;
}
/* Save SP and FP. */
this_cache->base = sp + sp_offset;
this_cache->fp = fp;
/* Don't forget to free MEMBLOCK if we allocated it. */
if (memblock_ptr != NULL)
score7_free_memblock (memblock_ptr);
}
static void
score3_analyze_prologue (CORE_ADDR startaddr, CORE_ADDR pc,
struct frame_info *this_frame,
struct score_frame_cache *this_cache)
{
CORE_ADDR sp;
CORE_ADDR fp;
CORE_ADDR cur_pc = startaddr;
enum bfd_endian byte_order
= gdbarch_byte_order (get_frame_arch (this_frame));
int sp_offset = 0;
int ra_offset = 0;
int fp_offset = 0;
int ra_offset_p = 0;
int fp_offset_p = 0;
int inst_len = 0;
CORE_ADDR prev_pc = -1;
sp = get_frame_register_unsigned (this_frame, SCORE_SP_REGNUM);
fp = get_frame_register_unsigned (this_frame, SCORE_FP_REGNUM);
for (; cur_pc < pc; prev_pc = cur_pc, cur_pc += inst_len)
{
inst_t *inst = NULL;
inst = score3_adjust_pc_and_fetch_inst (&cur_pc, &inst_len, byte_order);
/* FIXME: make a full-power prologue analyzer. */
if (inst->len == 2)
{
if (G_FLD (inst->v, 14, 12) == 0x0
&& G_FLD (inst->v, 11, 7) == 0x0
&& G_FLD (inst->v, 6, 5) == 0x3)
{
/* push! */
sp_offset += 4;
if (G_FLD (inst->v, 4, 0) == 0x3
&& ra_offset_p == 0)
{
/* push! r3, [r0] */
ra_offset = sp_offset;
ra_offset_p = 1;
}
else if (G_FLD (inst->v, 4, 0) == 0x2
&& fp_offset_p == 0)
{
/* push! r2, [r0] */
fp_offset = sp_offset;
fp_offset_p = 1;
}
}
else if (G_FLD (inst->v, 14, 12) == 0x6
&& G_FLD (inst->v, 11, 10) == 0x3)
{
/* rpush! */
int start_r = G_FLD (inst->v, 9, 5);
int cnt = G_FLD (inst->v, 4, 0);
if ((ra_offset_p == 0)
&& (start_r <= SCORE_RA_REGNUM)
&& (SCORE_RA_REGNUM < start_r + cnt))
{
/* rpush! contains r3 */
ra_offset_p = 1;
ra_offset = sp_offset + 4 * (SCORE_RA_REGNUM - start_r) + 4;
}
if ((fp_offset_p == 0)
&& (start_r <= SCORE_FP_REGNUM)
&& (SCORE_FP_REGNUM < start_r + cnt))
{
/* rpush! contains r2 */
fp_offset_p = 1;
fp_offset = sp_offset + 4 * (SCORE_FP_REGNUM - start_r) + 4;
}
sp_offset += 4 * cnt;
}
else if (G_FLD (inst->v, 14, 12) == 0x0
&& G_FLD (inst->v, 11, 7) == 0x0
&& G_FLD (inst->v, 6, 5) == 0x2)
{
/* pop! */
sp_offset -= 4;
}
else if (G_FLD (inst->v, 14, 12) == 0x6
&& G_FLD (inst->v, 11, 10) == 0x2)
{
/* rpop! */
sp_offset -= 4 * G_FLD (inst->v, 4, 0);
}
else if (G_FLD (inst->v, 14, 12) == 0x5
&& G_FLD (inst->v, 11, 10) == 0x3
&& G_FLD (inst->v, 9, 6) == 0x0)
{
/* addi! r0, -offset */
int imm = G_FLD (inst->v, 5, 0);
if (imm >> 5)
imm = -(0x3F - imm + 1);
sp_offset -= imm;
}
else if (G_FLD (inst->v, 14, 12) == 0x5
&& G_FLD (inst->v, 11, 10) == 0x3
&& G_FLD (inst->v, 9, 6) == 0x2)
{
/* addi! r2, offset */
if (pc - cur_pc >= 2)
{
unsigned int save_v = inst->v;
inst_t *inst2;
cur_pc += inst->len;
inst2 = score3_adjust_pc_and_fetch_inst (&cur_pc, NULL,
byte_order);
if (inst2->len == 2
&& G_FLD (inst2->v, 14, 10) == 0x10
&& G_FLD (inst2->v, 9, 5) == 0x0
&& G_FLD (inst2->v, 4, 0) == 0x2)
{
/* mv! r0, r2 */
int imm = G_FLD (inst->v, 5, 0);
if (imm >> 5)
imm = -(0x3F - imm + 1);
sp_offset -= imm;
}
}
}
}
else if (inst->len == 4)
{
if (G_FLD (inst->v, 29, 25) == 0x3
&& G_FLD (inst->v, 2, 0) == 0x4
&& G_FLD (inst->v, 24, 20) == 0x3
&& G_FLD (inst->v, 19, 15) == 0x0)
{
/* sw r3, [r0, offset]+ */
sp_offset += inst->len;
if (ra_offset_p == 0)
{
ra_offset = sp_offset;
ra_offset_p = 1;
}
}
else if (G_FLD (inst->v, 29, 25) == 0x3
&& G_FLD (inst->v, 2, 0) == 0x4
&& G_FLD (inst->v, 24, 20) == 0x2
&& G_FLD (inst->v, 19, 15) == 0x0)
{
/* sw r2, [r0, offset]+ */
sp_offset += inst->len;
if (fp_offset_p == 0)
{
fp_offset = sp_offset;
fp_offset_p = 1;
}
}
else if (G_FLD (inst->v, 29, 25) == 0x7
&& G_FLD (inst->v, 2, 0) == 0x0
&& G_FLD (inst->v, 24, 20) == 0x3
&& G_FLD (inst->v, 19, 15) == 0x0)
{
/* lw r3, [r0]+, 4 */
sp_offset -= inst->len;
ra_offset_p = 1;
}
else if (G_FLD (inst->v, 29, 25) == 0x7
&& G_FLD (inst->v, 2, 0) == 0x0
&& G_FLD (inst->v, 24, 20) == 0x2
&& G_FLD (inst->v, 19, 15) == 0x0)
{
/* lw r2, [r0]+, 4 */
sp_offset -= inst->len;
fp_offset_p = 1;
}
else if (G_FLD (inst->v, 29, 25) == 0x1
&& G_FLD (inst->v, 19, 17) == 0x0
&& G_FLD (inst->v, 24, 20) == 0x0
&& G_FLD (inst->v, 0, 0) == 0x0)
{
/* addi r0, -offset */
int imm = G_FLD (inst->v, 16, 1);
if (imm >> 15)
imm = -(0xFFFF - imm + 1);
sp_offset -= imm;
}
else if (G_FLD (inst->v, 29, 25) == 0x1
&& G_FLD (inst->v, 19, 17) == 0x0
&& G_FLD (inst->v, 24, 20) == 0x2
&& G_FLD (inst->v, 0, 0) == 0x0)
{
/* addi r2, offset */
if (pc - cur_pc >= 2)
{
unsigned int save_v = inst->v;
inst_t *inst2;
cur_pc += inst->len;
inst2 = score3_adjust_pc_and_fetch_inst (&cur_pc, NULL,
byte_order);
if (inst2->len == 2
&& G_FLD (inst2->v, 14, 10) == 0x10
&& G_FLD (inst2->v, 9, 5) == 0x0
&& G_FLD (inst2->v, 4, 0) == 0x2)
{
/* mv! r0, r2 */
int imm = G_FLD (inst->v, 16, 1);
if (imm >> 15)
imm = -(0xFFFF - imm + 1);
sp_offset -= imm;
}
}
}
}
}
/* Save RA. */
if (ra_offset_p == 1)
{
if (this_cache->saved_regs[SCORE_PC_REGNUM].addr == -1)
this_cache->saved_regs[SCORE_PC_REGNUM].addr =
sp + sp_offset - ra_offset;
}
else
{
this_cache->saved_regs[SCORE_PC_REGNUM] =
this_cache->saved_regs[SCORE_RA_REGNUM];
}
/* Save FP. */
if (fp_offset_p == 1)
{
if (this_cache->saved_regs[SCORE_FP_REGNUM].addr == -1)
this_cache->saved_regs[SCORE_FP_REGNUM].addr =
sp + sp_offset - fp_offset;
}
/* Save SP and FP. */
this_cache->base = sp + sp_offset;
this_cache->fp = fp;
}
static struct score_frame_cache *
score_make_prologue_cache (struct frame_info *this_frame, void **this_cache)
{
struct score_frame_cache *cache;
if ((*this_cache) != NULL)
return (*this_cache);
cache = FRAME_OBSTACK_ZALLOC (struct score_frame_cache);
(*this_cache) = cache;
cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
/* Analyze the prologue. */
{
const CORE_ADDR pc = get_frame_pc (this_frame);
CORE_ADDR start_addr;
find_pc_partial_function (pc, NULL, &start_addr, NULL);
if (start_addr == 0)
return cache;
if (target_mach == bfd_mach_score3)
score3_analyze_prologue (start_addr, pc, this_frame, *this_cache);
else
score7_analyze_prologue (start_addr, pc, this_frame, *this_cache);
}
/* Save SP. */
trad_frame_set_value (cache->saved_regs, SCORE_SP_REGNUM, cache->base);
return (*this_cache);
}
static void
score_prologue_this_id (struct frame_info *this_frame, void **this_cache,
struct frame_id *this_id)
{
struct score_frame_cache *info = score_make_prologue_cache (this_frame,
this_cache);
(*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
}
static struct value *
score_prologue_prev_register (struct frame_info *this_frame,
void **this_cache, int regnum)
{
struct score_frame_cache *info = score_make_prologue_cache (this_frame,
this_cache);
return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
}
static const struct frame_unwind score_prologue_unwind =
{
NORMAL_FRAME,
default_frame_unwind_stop_reason,
score_prologue_this_id,
score_prologue_prev_register,
NULL,
default_frame_sniffer,
NULL
};
static CORE_ADDR
score_prologue_frame_base_address (struct frame_info *this_frame,
void **this_cache)
{
struct score_frame_cache *info =
score_make_prologue_cache (this_frame, this_cache);
return info->fp;
}
static const struct frame_base score_prologue_frame_base =
{
&score_prologue_unwind,
score_prologue_frame_base_address,
score_prologue_frame_base_address,
score_prologue_frame_base_address,
};
static const struct frame_base *
score_prologue_frame_base_sniffer (struct frame_info *this_frame)
{
return &score_prologue_frame_base;
}
/* Core file support (dirty hack)
The core file MUST be generated by GNU/Linux on S+core. */
static void
score7_linux_supply_gregset(const struct regset *regset,
struct regcache *regcache,
int regnum, const void *gregs_buf, size_t len)
{
int regno;
elf_gregset_t *gregs;
gdb_assert (regset != NULL);
gdb_assert ((regcache != NULL) && (gregs_buf != NULL));
gregs = (elf_gregset_t *) gregs_buf;
for (regno = 0; regno < 32; regno++)
if (regnum == -1 || regnum == regno)
regcache_raw_supply (regcache, regno, gregs->regs + regno);
{
struct sreg {
int regnum;
void *buf;
} sregs [] = {
{ 55, &(gregs->cel) }, /* CEL */
{ 54, &(gregs->ceh) }, /* CEH */
{ 53, &(gregs->sr0) }, /* sr0, i.e. cnt or COUNTER */
{ 52, &(gregs->sr1) }, /* sr1, i.e. lcr or LDCR */
{ 51, &(gregs->sr1) }, /* sr2, i.e. scr or STCR */
/* Exception occured at this address, exactly the PC we want */
{ 49, &(gregs->cp0_epc) }, /* PC */
{ 38, &(gregs->cp0_ema) }, /* EMA */
{ 37, &(gregs->cp0_epc) }, /* EPC */
{ 34, &(gregs->cp0_ecr) }, /* ECR */
{ 33, &(gregs->cp0_condition) }, /* COND */
{ 32, &(gregs->cp0_psr) }, /* PSR */
};
for (regno = 0; regno < sizeof(sregs)/sizeof(sregs[0]); regno++)
if (regnum == -1 || regnum == sregs[regno].regnum)
regcache_raw_supply (regcache,
sregs[regno].regnum, sregs[regno].buf);
}
}
/* Return the appropriate register set from the core section identified
by SECT_NAME and SECT_SIZE. */
static const struct regset *
score7_linux_regset_from_core_section(struct gdbarch *gdbarch,
const char *sect_name, size_t sect_size)
{
struct gdbarch_tdep *tdep;
gdb_assert (gdbarch != NULL);
gdb_assert (sect_name != NULL);
tdep = gdbarch_tdep (gdbarch);
if (strcmp(sect_name, ".reg") == 0 && sect_size == sizeof(elf_gregset_t))
{
if (tdep->gregset == NULL)
tdep->gregset = regset_alloc (gdbarch,
score7_linux_supply_gregset, NULL);
return tdep->gregset;
}
return NULL;
}
static struct gdbarch *
score_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch *gdbarch;
struct gdbarch_tdep *tdep;
target_mach = info.bfd_arch_info->mach;
arches = gdbarch_list_lookup_by_info (arches, &info);
if (arches != NULL)
{
return (arches->gdbarch);
}
tdep = xcalloc(1, sizeof(struct gdbarch_tdep));
gdbarch = gdbarch_alloc (&info, tdep);
set_gdbarch_short_bit (gdbarch, 16);
set_gdbarch_int_bit (gdbarch, 32);
set_gdbarch_float_bit (gdbarch, 32);
set_gdbarch_double_bit (gdbarch, 64);
set_gdbarch_long_double_bit (gdbarch, 64);
#if WITH_SIM
set_gdbarch_register_sim_regno (gdbarch, score_register_sim_regno);
#endif
set_gdbarch_pc_regnum (gdbarch, SCORE_PC_REGNUM);
set_gdbarch_sp_regnum (gdbarch, SCORE_SP_REGNUM);
set_gdbarch_adjust_breakpoint_address (gdbarch,
score_adjust_breakpoint_address);
set_gdbarch_register_type (gdbarch, score_register_type);
set_gdbarch_frame_align (gdbarch, score_frame_align);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_unwind_sp (gdbarch, score_unwind_sp);
set_gdbarch_unwind_pc (gdbarch, score_unwind_pc);
set_gdbarch_print_insn (gdbarch, score_print_insn);
switch (target_mach)
{
case bfd_mach_score7:
set_gdbarch_breakpoint_from_pc (gdbarch, score7_breakpoint_from_pc);
set_gdbarch_skip_prologue (gdbarch, score7_skip_prologue);
set_gdbarch_in_function_epilogue_p (gdbarch,
score7_in_function_epilogue_p);
set_gdbarch_register_name (gdbarch, score7_register_name);
set_gdbarch_num_regs (gdbarch, SCORE7_NUM_REGS);
/* Core file support. */
set_gdbarch_regset_from_core_section (gdbarch,
score7_linux_regset_from_core_section);
break;
case bfd_mach_score3:
set_gdbarch_breakpoint_from_pc (gdbarch, score3_breakpoint_from_pc);
set_gdbarch_skip_prologue (gdbarch, score3_skip_prologue);
set_gdbarch_in_function_epilogue_p (gdbarch,
score3_in_function_epilogue_p);
set_gdbarch_register_name (gdbarch, score3_register_name);
set_gdbarch_num_regs (gdbarch, SCORE3_NUM_REGS);
break;
}
/* Watchpoint hooks. */
set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
/* Dummy frame hooks. */
set_gdbarch_return_value (gdbarch, score_return_value);
set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
set_gdbarch_dummy_id (gdbarch, score_dummy_id);
set_gdbarch_push_dummy_call (gdbarch, score_push_dummy_call);
/* Normal frame hooks. */
dwarf2_append_unwinders (gdbarch);
frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
frame_unwind_append_unwinder (gdbarch, &score_prologue_unwind);
frame_base_append_sniffer (gdbarch, score_prologue_frame_base_sniffer);
return gdbarch;
}
extern initialize_file_ftype _initialize_score_tdep;
void
_initialize_score_tdep (void)
{
gdbarch_register (bfd_arch_score, score_gdbarch_init, NULL);
}