binutils-gdb/gdb/doc/gdb.texinfo
1991-12-13 17:48:06 +00:00

7997 lines
297 KiB
Plaintext

_dnl__ -*-Texinfo-*-
_dnl__ Copyright (c) 1988 1989 1990 1991 Free Software Foundation, Inc.
_dnl__ $Id$
\input texinfo @c -*-texinfo-*-
@c Copyright (c) 1988 1989 1990 1991 Free Software Foundation, Inc.
@c %**start of header
@setfilename _GDBP__.info
_if__(_GENERIC__)
@settitle Using _GDBN__ (<v>_GDB_VN__)
_fi__(_GENERIC__)
_if__(!_GENERIC__)
@settitle Using _GDBN__ <v>_GDB_VN__ (_HOST__)
_fi__(!_GENERIC__)
@setchapternewpage odd
@c @smallbook
@c @cropmarks
@c %**end of header
@finalout
@syncodeindex ky cp
_0__@c ===> NOTE! <==_1__
@c Determine the edition number in *three* places by hand:
@c 1. First ifinfo section 2. title page 3. top node
@c To find the locations, search for !!set
@c The following is for Pesch for his RCS system.
@c This revision number *not* the same as the Edition number.
@tex
\def\$#1${{#1}} % Kluge: collect RCS revision info without $...$
\xdef\manvers{\$Revision$} % For use in headers, footers too
@end tex
@c FOR UPDATES LEADING TO THIS DRAFT, GDB CHANGELOG CONSULTED BETWEEN:
@c Fri Oct 11 23:27:06 1991 John Gilmore (gnu at cygnus.com)
@c Sat Dec 22 02:51:40 1990 John Gilmore (gnu at cygint)
@c THIS MANUAL REQUIRES TEXINFO-2 macros and info-makers to format properly.
@ifinfo
@format
START-INFO-DIR-ENTRY
* Gdb: (gdb). The GNU debugger.
END-INFO-DIR-ENTRY
@end format
@end ifinfo
_if__(0)
NOTE: this manual is marked up for preprocessing with a collection
of m4 macros called "pretex.m4".
THIS IS THE SOURCE PRIOR TO PREPROCESSING. The full source needs to
be run through m4 before either tex- or info- formatting: for example,
_0__
m4 pretex.m4 none.m4 all.m4 gdb.texinfo >gdb-all.texinfo
will produce (assuming your path finds either GNU m4 >= 0.84, or SysV
m4; Berkeley won't do) a file suitable for formatting. See the text in
"pretex.m4" for a fuller explanation (and the macro definitions).
_1__
_fi__(0)
@c
@ifinfo
This file documents the GNU debugger _GDBN__.
@c !!set edition, date, version
This is Edition 4.00, December 1991,
of @cite{Using GDB: A Guide to the GNU Source-Level Debugger}
for GDB Version _GDB_VN__.
Copyright (C) 1988, 1989, 1990, 1991 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
@ignore
Permission is granted to process this file through TeX and print the
results, provided the printed document carries copying permission
notice identical to this one except for the removal of this paragraph
(this paragraph not being relevant to the printed manual).
@end ignore
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that the
section entitled ``GNU General Public License'' is included exactly as
in the original, and provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this
one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that the section entitled ``GNU General Public License'' may be
included in a translation approved by the Free Software Foundation
instead of in the original English.
@end ifinfo
@titlepage
@title Using _GDBN__
@subtitle A Guide to the GNU Source-Level Debugger
_if__(!_GENERIC__)
@subtitle On _HOST__ Systems
_fi__(!_GENERIC__)
@sp 1
@c !!set edition, date, version
@subtitle Edition 4.00, for _GDBN__ version _GDB_VN__
@subtitle December 1991
@author by Richard M. Stallman and Roland H. Pesch
@page
@tex
{\parskip=0pt
\hfill rms\@ai.mit.edu, pesch\@cygnus.com\par
\hfill {\it Using _GDBN__}, \manvers\par
\hfill \TeX{}info \texinfoversion\par
}
@end tex
@vskip 0pt plus 1filll
Copyright @copyright{} 1988, 1989, 1990, 1991 Free Software Foundation, Inc.
Permission is granted to make and distribute verbatim copies of
this manual provided the copyright notice and this permission notice
are preserved on all copies.
Permission is granted to copy and distribute modified versions of this
manual under the conditions for verbatim copying, provided also that the
section entitled ``GNU General Public License'' is included exactly as
in the original, and provided that the entire resulting derived work is
distributed under the terms of a permission notice identical to this
one.
Permission is granted to copy and distribute translations of this manual
into another language, under the above conditions for modified versions,
except that the section entitled ``GNU General Public License'' may be
included in a translation approved by the Free Software Foundation
instead of in the original English.
@end titlepage
@page
@ifinfo
@node Top, Summary, (dir), (dir)
@top _GDBN__, the GNU symbolic debugger
This file describes _GDBN__, the GNU symbolic debugger.
@c !!set edition, date, version
This is Edition 4.00, December 1991, for GDB Version _GDB_VN__.
@end ifinfo
@menu
* Summary:: Summary of _GDBN__
* New Features:: New features since _GDBN__ version 3.5
* Sample Session:: A sample _GDBN__ session
* Invocation:: Getting in and out of _GDBN__
* Commands:: _GDBN__ commands
* Running:: Running programs under _GDBN__
* Stopping:: Stopping and continuing
* Stack:: Examining the stack
* Source:: Examining source files
* Data:: Examining data
* Languages:: Using _GDBN__ with different languages
* Symbols:: Examining the symbol table
* Altering:: Altering execution
* _GDBN__ Files:: _GDBN__'s files
* Targets:: Specifying a debugging target
* Controlling _GDBN__:: Controlling _GDBN__
* Sequences:: Canned sequences of commands
* Emacs:: Using _GDBN__ under GNU Emacs
* _GDBN__ Bugs:: Reporting bugs in _GDBN__
* Renamed Commands::
* Installing _GDBN__:: Installing _GDBN__
* Copying:: GNU GENERAL PUBLIC LICENSE
* Index:: Index
--- The Detailed Node Listing ---
Summary of _GDBN__
* Free Software:: Free Software
* Contributors:: Contributors to _GDBN__
Getting In and Out of _GDBN__
* Invoking _GDBN__:: Starting _GDBN__
* Leaving _GDBN__:: Leaving _GDBN__
* Shell Commands:: Shell Commands
Starting _GDBN__
* File Options:: Choosing Files
* Mode Options:: Choosing Modes
_GDBN__ Commands
* Command Syntax:: Command Syntax
* Help:: Getting Help
Running Programs Under _GDBN__
* Compilation:: Compiling for Debugging
* Starting:: Starting your Program
* Arguments:: Your Program's Arguments
* Environment:: Your Program's Environment
* Working Directory:: Your Program's Working Directory
* Input/Output:: Your Program's Input and Output
* Attach:: Debugging an Already-Running Process
* Kill Process:: Killing the Child Process
Stopping and Continuing
* Breakpoints:: Breakpoints, Watchpoints, and Exceptions
* Continuing and Stepping:: Resuming Execution
* Signals:: Signals
Breakpoints, Watchpoints, and Exceptions
* Set Breaks:: Setting Breakpoints
* Set Watchpoints:: Setting Watchpoints
* Exception Handling:: Breakpoints and Exceptions
* Delete Breaks:: Deleting Breakpoints
* Disabling:: Disabling Breakpoints
* Conditions:: Break Conditions
* Break Commands:: Breakpoint Command Lists
* Breakpoint Menus:: Breakpoint Menus
* Error in Breakpoints:: ``Cannot insert breakpoints''
Examining the Stack
* Frames:: Stack Frames
* Backtrace:: Backtraces
* Selection:: Selecting a Frame
* Frame Info:: Information on a Frame
Examining Source Files
* List:: Printing Source Lines
* Search:: Searching Source Files
* Source Path:: Specifying Source Directories
* Machine Code:: Source and Machine Code
Examining Data
* Expressions:: Expressions
* Variables:: Program Variables
* Arrays:: Artificial Arrays
* Output formats:: Output formats
* Memory:: Examining Memory
* Auto Display:: Automatic Display
* Print Settings:: Print Settings
* Value History:: Value History
* Convenience Vars:: Convenience Variables
* Registers:: Registers
* Floating Point Hardware:: Floating Point Hardware
Using GDB with Different Languages
* Setting:: Switching between source languages
* Show:: Displaying the language
* Checks:: Type and Range checks
* Support:: Supported languages
Switching between source languages
* Manually:: Setting the working language manually
* Automatically:: Having GDB infer the source language
Type and range Checking
* Type Checking:: An overview of type checking
* Range Checking:: An overview of range checking
Supported Languages
* C:: C and C++
* Modula-2:: Modula-2
C and C++
* C Operators:: C and C++ Operators
* C Constants:: C and C++ Constants
* Cplusplus expressions:: C++ Expressions
* C Defaults:: Default settings for C and C++
* C Checks:: C and C++ Type and Range Checks
* Debugging C:: _GDBN__ and C
* Debugging C plus plus:: Special features for C++
Modula-2
* M2 Operators:: Built-in operators
* Built-In Func/Proc:: Built-in Functions and Procedures
* M2 Constants:: Modula-2 Constants
* M2 Defaults:: Default settings for Modula-2
* Deviations:: Deviations from standard Modula-2
* M2 Checks:: Modula-2 Type and Range Checks
* M2 Scope:: The scope operators @code{::} and @code{.}
* GDB/M2:: GDB and Modula-2
Altering Execution
* Assignment:: Assignment to Variables
* Jumping:: Continuing at a Different Address
* Signaling:: Giving your program a Signal
* Returning:: Returning from a Function
* Calling:: Calling your Program's Functions
* Patching:: Patching your Program
_GDBN__'s Files
* Files:: Commands to Specify Files
* Symbol Errors:: Errors Reading Symbol Files
Specifying a Debugging Target
* Active Targets:: Active Targets
* Target Commands:: Commands for Managing Targets
* Remote:: Remote Debugging
Remote Debugging
* i960-Nindy Remote:: _GDBN__ with a Remote i960 (Nindy)
* EB29K Remote:: _GDBN__ with a Remote EB29K
* VxWorks Remote:: _GDBN__ and VxWorks
_GDBN__ with a Remote i960 (Nindy)
* Nindy Startup:: Startup with Nindy
* Nindy Options:: Options for Nindy
* Nindy reset:: Nindy Reset Command
_GDBN__ with a Remote EB29K
* Comms (EB29K):: Communications Setup
* gdb-EB29K:: EB29K cross-debugging
* Remote Log:: Remote Log
_GDBN__ and VxWorks
* VxWorks connection:: Connecting to VxWorks
* VxWorks download:: VxWorks Download
* VxWorks attach:: Running Tasks
Controlling _GDBN__
* Prompt:: Prompt
* Editing:: Command Editing
* History:: Command History
* Screen Size:: Screen Size
* Numbers:: Numbers
* Messages/Warnings:: Optional Warnings and Messages
Canned Sequences of Commands
* Define:: User-Defined Commands
* Command Files:: Command Files
* Output:: Commands for Controlled Output
Reporting Bugs in _GDBN__
* Bug Criteria:: Have You Found a Bug?
* Bug Reporting:: How to Report Bugs
Installing GDB
* Subdirectories:: Configuration subdirectories
* Config Names:: Specifying names for hosts and targets
* configure Options:: Summary of options for configure
* Formatting Documentation:: How to format and print GDB documentation
@end menu
@node Summary, New Features, Top, Top
@unnumbered Summary of _GDBN__
The purpose of a debugger such as _GDBN__ is to allow you to see what is
going on ``inside'' another program while it executes---or what another
program was doing at the moment it crashed.@refill
_GDBN__ can do four main kinds of things (plus other things in support of
these) to help you catch bugs in the act:@refill
@itemize @bullet
@item
Start your program, specifying anything that might affect its behavior.
@item
Make your program stop on specified conditions.
@item
Examine what has happened, when your program has stopped.
@item
Change things in your program, so you can experiment with correcting the
effects of one bug and go on to learn about another.
@end itemize
You can use _GDBN__ to debug programs written in C, C++, and Modula-2.
Fortran support will be added when a GNU Fortran compiler is ready.
@menu
* Free Software:: Free Software
* Contributors:: Contributors to GDB
@end menu
@node Free Software, Contributors, Summary, Summary
@unnumberedsec Free Software
_GDBN__ is @dfn{free software}, protected by the GNU General Public License (GPL).
The GPL gives you the freedom to copy or adapt a licensed
program---but every person getting a copy also gets with it the
freedom to modify that copy (which means that they must get access to
the source code), and the freedom to distribute further copies.
Typical software companies use copyrights to limit your freedoms; the
Free Software Foundation uses the GPL to preserve these freedoms.
Fundamentally, the General Public License is a license which says that
you have these freedoms and that you cannot take these freedoms away
from anyone else.
For full details, @pxref{Copying, ,GNU GENERAL PUBLIC LICENSE}.
@node Contributors, , Free Software, Summary
@unnumberedsec Contributors to GDB
Richard Stallman was the original author of GDB, and of many other GNU
programs. Many others have contributed to its development. This
section attempts to credit major contributors. One of the virtues of
free software is that everyone is free to contribute to it; with
regret, we cannot actually acknowledge everyone here. The file
@file{ChangeLog} in the GDB distribution approximates a blow-by-blow
account.
Changes much prior to version 2.0 are lost in the mists of time.
@quotation
@emph{Plea:} Additions to this section are particularly welcome. If you
or your friends (or enemies; let's be evenhanded) have been unfairly
omitted from this list, we would like to add your names!
@end quotation
So that they may not regard their long labor as thankless, we
particularly thank those who shepherded GDB through major releases: John
Gilmore (releases _GDB_VN__, 4.2, 4.1, 4.0); Jim Kingdon (releases 3.9,
3.5, 3.4, 3.3); and Randy Smith (releases 3.2, 3.1, 3.0). As major
maintainer of GDB for some period, each contributed significantly to the
structure, stability, and capabilities of the entire debugger.@refill
Richard Stallman, assisted at various times by Pete TerMaat, Chris
Hanson, and Richard Mlynarik, handled releases through 2.8.
Michael Tiemann is the author of most of the GNU C++ support in GDB,
with significant additional contributions from Per Bothner. James
Clark wrote the GNU C++ demangler. Early work on C++ was by Peter
TerMaat (who also did much general update work leading to release 3.0).
GDB 4 uses the BFD subroutine library to examine multiple object-file
formats; BFD was a joint project of V. Gumby Henkel-Wallace, Rich
Pixley, Steve Chamberlain, and John Gilmore.
David Johnson wrote the original COFF support; Pace Willison did the
original support for encapsulated COFF.
Adam de Boor and Bradley Davis contributed the ISI Optimum V support.
Per Bothner, Noboyuki Hikichi, and Alessandro Forin contributed MIPS
support. Jean-Daniel Fekete contributed Sun 386i support. Chris Hanson
improved the HP9000 support. Noboyuki Hikichi and Tomoyuki Hasei
contributed Sony/News OS 3 support. David Johnson contributed Encore
Umax support. Jyrki Kuoppala contributed Altos 3068 support. Keith
Packard contributed NS32K support. Doug Rabson contributed Acorn Risc
Machine support. Chris Smith contributed Convex support (and Fortran
debugging). Jonathan Stone contributed Pyramid support. Michael
Tiemann contributed SPARC support. Tim Tucker contributed support for
the Gould NP1 and Gould Powernode. Pace Willison contributed Intel 386
support. Jay Vosburgh contributed Symmetry support.
Rich Schaefer and Peter Schauer helped with support of SunOS shared
libraries.
Jay Fenlason and Roland McGrath ensured that GDB and GAS agree about
several machine instruction sets.
Patrick Duval, Ted Goldstein, Vikram Koka and Glenn Engel helped develop
remote debugging. Intel Corporation and Wind River Systems contributed
remote debugging modules for their products.
Brian Fox is the author of the readline libraries providing command-line
editing and command history.
Andrew Beers of SUNY Buffalo wrote the language-switching code and the
Modula-2 support, and contributed the Languages chapter of this manual.
@node New Features, Sample Session, Summary, Top
@unnumbered New Features since _GDBN__ version 3.5
@table @emph
@item Targets
Using the new command @code{target}, you can select at runtime whether
you are debugging local files, local processes, standalone systems over
a serial port, realtime systems over a TCP/IP connection, etc. The
command @code{load} can download programs into a remote system. Serial
stubs are available for Motorola 680x0 and Intel 80386 remote systems;
_GDBN__ also supports debugging realtime processes running under
VxWorks, using SunRPC Remote Procedure Calls over TCP/IP to talk to a
debugger stub on the target system. Internally, _GDBN__ now uses a
function vector to mediate access to different targets; if you need to
add your own support for a remote protocol, this makes it much easier.
@item Watchpoints
_GDBN__ now sports watchpoints as well as breakpoints. You can use a
watchpoint to stop execution whenever the value of an expression
changes, without having to predict a particular place in your program
where this may happen.
@item Wide Output
Commands that issue wide output now insert newlines at places designed
to make the output more readable.
@item Object Code Formats
_GDBN__ uses a new library called the Binary File Descriptor (BFD)
Library to permit it to switch dynamically, without reconfiguration or
recompilation, between different object-file formats. Formats currently
supported are COFF, a.out, and the Intel 960 b.out; files may be read as
.o's, archive libraries, or core dumps. BFD is available as a
subroutine library so that other programs may take advantage of it, and
the other GNU binary utilities are being converted to use it.
@item Configuration and Ports
Compile-time configuration (to select a particular architecture and
operating system) is much easier. The script @code{configure} now
allows you to configure _GDBN__ as either a native debugger or a
cross-debugger. @xref{Installing _GDBN__}, for details on how to
configure and on what architectures are now available.
@item Interaction
The user interface to _GDBN__'s control variables has been simplified
and consolidated in two commands, @code{set} and @code{show}. Output
lines are now broken at readable places, rather than overflowing onto
the next line. You can suppress output of machine-level addresses,
displaying only source language information.
@item C++
_GDBN__ now supports C++ multiple inheritance (if used with a GCC
version 2 compiler), and also has limited support for C++ exception
handling, with the commands @code{catch} and @code{info catch}: _GDBN__
can break when an exception is raised, before the stack is peeled back
to the exception handler's context.
@item Modula-2
_GDBN__ now has preliminary support for the GNU Modula-2 compiler,
currently under development at the State University of New York at
Buffalo. Coordinated development of both _GDBN__ and the GNU Modula-2
compiler will continue through the fall of 1991 and into 1992. Other
Modula-2 compilers are currently not supported, and attempting to debug
programs compiled with them will likely result in an error as the symbol
table of the executable is read in.
@item Command Rationalization
Many _GDBN__ commands have been renamed to make them easier to remember
and use. In particular, the subcommands of @code{info} and
@code{show}/@code{set} are grouped to make the former refer to the state
of your program, and the latter refer to the state of _GDBN__ itself.
@xref{Renamed Commands}, for details on what commands were renamed.
@item Shared Libraries
_GDBN__ 4 can debug programs and core files that use SunOS shared
libraries.
@item Reference Card
_GDBN__ 4 has a reference card; @xref{Formatting Documentation} for
instructions on printing it.
@item Work in Progress
Kernel debugging for BSD and Mach systems; Tahoe and HPPA architecture
support.
@end table
@node Sample Session, Invocation, New Features, Top
@chapter A Sample _GDBN__ Session
You can use this manual at your leisure to read all about _GDBN__.
However, a handful of commands are enough to get started using the
debugger. This chapter illustrates these commands.
@iftex
In this sample session, we emphasize user input like this: @i{input},
to make it easier to pick out from the surrounding output.
@end iftex
@c FIXME: this example may not be appropriate for some configs, where
@c FIXME...primary interest is in remote use.
_0__
One of the preliminary versions of GNU @code{m4} (a generic macro
processor) exhibits the following bug: sometimes, when we change its
quote strings from the default, the commands used to capture one macro's
definition in another stop working. In the following short @code{m4}
session, we define a macro @code{foo} which expands to @code{0000}; we
then use the @code{m4} built-in @code{defn} to define @code{bar} as the
same thing. However, when we change the open quote string to
@code{<QUOTE>} and the close quote string to @code{<UNQUOTE>}, the same
procedure fails to define a new synonym @code{baz}:
@smallexample
$ @i{cd gnu/m4}
$ @i{./m4}
@i{define(foo,0000)}
@i{foo}
0000
@i{define(bar,defn(`foo'))}
@i{bar}
0000
@i{changequote(<QUOTE>,<UNQUOTE>)}
@i{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
@i{baz}
@i{C-d}
m4: End of input: 0: fatal error: EOF in string
@end smallexample
@noindent
Let's use _GDBN__ to try to see what's going on.
@smallexample
$ @i{_GDBP__ m4}
@c FIXME: this falsifies the exact text played out, to permit smallbook
@c FIXME... format to come out better.
GDB is free software and you are welcome to distribute copies
of it under certain conditions; type "show copying" to see
the conditions.
There is absolutely no warranty for GDB; type "show warranty"
for details.
GDB _GDB_VN__, Copyright 1991 Free Software Foundation, Inc...
(_GDBP__)
@end smallexample
@noindent
_GDBN__ reads only enough symbol data to know where to find the
rest when needed; as a result, the first prompt comes up very
quickly. We now tell _GDBN__ to use a narrower display width than
usual, so that examples will fit in this manual.@refill
@smallexample
(_GDBP__) @i{set width 70}
@end smallexample
@noindent
Let's see how the @code{m4} built-in @code{changequote} works.
Having looked at the source, we know the relevant subroutine is
@code{m4_changequote}, so we set a breakpoint there with _GDBN__'s
@code{break} command.
@smallexample
(_GDBP__) @i{break m4_changequote}
Breakpoint 1 at 0x62f4: file builtin.c, line 879.
@end smallexample
@noindent
Using the @code{run} command, we start @code{m4} running under _GDBN__
control; as long as control does not reach the @code{m4_changequote}
subroutine, the program runs as usual:
@smallexample
(_GDBP__) @i{run}
Starting program: /work/Editorial/gdb/gnu/m4/m4
@i{define(foo,0000)}
@i{foo}
0000
@end smallexample
@noindent
To trigger the breakpoint, we call @code{changequote}. _GDBN__
suspends execution of @code{m4}, displaying information about the
context where it stops.
@smallexample
@i{changequote(<QUOTE>,<UNQUOTE>)}
Breakpoint 1, m4_changequote (argc=3, argv=0x33c70)
at builtin.c:879
879 if (bad_argc(TOKEN_DATA_TEXT(argv[0]), argc, 1, 3))
@end smallexample
@noindent
Now we use the command @code{n} (@code{next}) to advance execution to
the next line of the current function.
@smallexample
(_GDBP__) @i{n}
882 set_quotes((argc >= 2) ? TOKEN_DATA_TEXT(argv[1])\
: nil,
@end smallexample
@noindent
@code{set_quotes} looks like a promising subroutine. We can go into it
by using the command @code{s} (@code{step}) instead of @code{next}.
@code{step} goes to the next line to be executed in @emph{any}
subroutine, so it steps into @code{set_quotes}.
@smallexample
(_GDBP__) @i{s}
set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
at input.c:530
530 if (lquote != def_lquote)
@end smallexample
@noindent
The display that shows the subroutine where @code{m4} is now
suspended (and its arguments) is called a stack frame display. It
shows a summary of the stack. We can use the @code{backtrace}
command (which can also be spelled @code{bt}), to see where we are
in the stack as a whole: the @code{backtrace} command displays a
stack frame for each active subroutine.
@smallexample
(_GDBP__) @i{bt}
#0 set_quotes (lq=0x34c78 "<QUOTE>", rq=0x34c88 "<UNQUOTE>")
at input.c:530
#1 0x6344 in m4_changequote (argc=3, argv=0x33c70)
at builtin.c:882
#2 0x8174 in expand_macro (sym=0x33320) at macro.c:242
#3 0x7a88 in expand_token (obs=0x0, t=209696, td=0xf7fffa30)
at macro.c:71
#4 0x79dc in expand_input () at macro.c:40
#5 0x2930 in main (argc=0, argv=0xf7fffb20) at m4.c:195
@end smallexample
@noindent
Let's step through a few more lines to see what happens. The first two
times, we can use @samp{s}; the next two times we use @code{n} to avoid
falling into the @code{xstrdup} subroutine.
@smallexample
(_GDBP__) @i{s}
0x3b5c 532 if (rquote != def_rquote)
(_GDBP__) @i{s}
0x3b80 535 lquote = (lq == nil || *lq == '\0') ? \
def_lquote : xstrdup(lq);
(_GDBP__) @i{n}
536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
: xstrdup(rq);
(_GDBP__) @i{n}
538 len_lquote = strlen(rquote);
@end smallexample
@noindent
The last line displayed looks a little odd; let's examine the variables
@code{lquote} and @code{rquote} to see if they are in fact the new left
and right quotes we specified. We can use the command @code{p}
(@code{print}) to see their values.
@smallexample
(_GDBP__) @i{p lquote}
$1 = 0x35d40 "<QUOTE>"
(_GDBP__) @i{p rquote}
$2 = 0x35d50 "<UNQUOTE>"
@end smallexample
@noindent
@code{lquote} and @code{rquote} are indeed the new left and right quotes.
Let's look at some context; we can display ten lines of source
surrounding the current line, with the @code{l} (@code{list}) command.
@smallexample
(_GDBP__) @i{l}
533 xfree(rquote);
534
535 lquote = (lq == nil || *lq == '\0') ? def_lquote\
: xstrdup (lq);
536 rquote = (rq == nil || *rq == '\0') ? def_rquote\
: xstrdup (rq);
537
538 len_lquote = strlen(rquote);
539 len_rquote = strlen(lquote);
540 @}
541
542 void
@end smallexample
@noindent
Let's step past the two lines that set @code{len_lquote} and
@code{len_rquote}, and then examine the values of those variables.
@smallexample
(_GDBP__) @i{n}
539 len_rquote = strlen(lquote);
(_GDBP__) @i{n}
540 @}
(_GDBP__) @i{p len_lquote}
$3 = 9
(_GDBP__) @i{p len_rquote}
$4 = 7
@end smallexample
@noindent
That certainly looks wrong, assuming @code{len_lquote} and
@code{len_rquote} are meant to be the lengths of @code{lquote} and
@code{rquote} respectively. Let's try setting them to better values.
We can use the @code{p} command for this, since it'll print the value of
any expression---and that expression can include subroutine calls and
assignments.
@smallexample
(_GDBP__) p len_lquote=strlen(lquote)
$5 = 7
(_GDBP__) p len_rquote=strlen(rquote)
$6 = 9
@end smallexample
@noindent
Let's see if that fixes the problem of using the new quotes with the
@code{m4} built-in @code{defn}. We can allow @code{m4} to continue
executing with the @code{c} (@code{continue}) command, and then try the
example that caused trouble initially:
@smallexample
(_GDBP__) @i{c}
Continuing.
@i{define(baz,defn(<QUOTE>foo<UNQUOTE>))}
baz
0000
@end smallexample
@noindent
Success! The new quotes now work just as well as the default ones. The
problem seems to have been just the two typos defining the wrong
lengths. We'll let @code{m4} exit by giving it an EOF as input.
@smallexample
@i{C-d}
Program exited normally.
@end smallexample
@noindent
The message @samp{Program exited normally.} is from _GDBN__; it
indicates @code{m4} has finished executing. We can end our _GDBN__
session with the _GDBN__ @code{quit} command.
@smallexample
(_GDBP__) @i{quit}
_1__@end smallexample
@node Invocation, Commands, Sample Session, Top
@chapter Getting In and Out of _GDBN__
Type @kbd{gdb} or @kbd{gdb @var{program} @var{core}} to start GDB
and type @kbd{quit} or @kbd{C-d} to exit.
@menu
* Invoking _GDBN__:: Starting _GDBN__
* Leaving _GDBN__:: Leaving _GDBN__
* Shell Commands:: Shell Commands
@end menu
@node Invoking _GDBN__, Leaving _GDBN__, Invocation, Invocation
@section Starting _GDBN__
Invoke _GDBN__ with the shell command @code{_GDBP__}. Once started,
it reads commands from the terminal until you tell it to exit.
You can run @code{_GDBP__} with no arguments or options; but the most
usual way to start _GDBN__ is with one argument or two, specifying an
executable program as the argument:
@example
_GDBP__ @var{program}
@end example
@noindent
You can also start with both an executable program and a core file
specified:
@example
_GDBP__ @var{program} @var{core}
@end example
You can, instead, specify a process ID as a second argument, if you want
to debug a running process:
@example
_GDBP__ @var{program} 1234
@end example
@noindent
would attach _GDBN__ to process @code{1234} (unless you also have a file
named @file{1234}; _GDBN__ does check for a core file first).
@noindent
You can further control how _GDBN__ starts up by using command-line
options. _GDBN__ itself can remind you of the options available.
@noindent
Type
@example
_GDBP__ -help
@end example
@noindent
to display all available options and briefly describe their use
(@samp{_GDBP__ -h} is a shorter equivalent).
All options and command line arguments you give are processed
in sequential order. The order makes a difference when the
@samp{-x} option is used.
@menu
* File Options:: Choosing Files
* Mode Options:: Choosing Modes
_if__(!_GENERIC__)
_include__(gdbinv-m.m4)_dnl__
_fi__(!_GENERIC__)
@end menu
@node File Options, Mode Options, Invoking _GDBN__, Invoking _GDBN__
@subsection Choosing Files
When _GDBN__ starts, it reads any arguments other than options as
specifying an executable file and core file (or process ID). This is
the same as if the arguments were specified by the @samp{-se} and
@samp{-c} options respectively. (_GDBN__ reads the first argument
that does not have an associated option flag as equivalent to the
@samp{-se} option followed by that argument; and the second argument
that does not have an associated option flag, if any, as equivalent to
the @samp{-c} option followed by that argument.)
Many options have both long and short forms; both are shown in the
following list. _GDBN__ also recognizes the long forms if you truncate
them, so long as enough of the option is present to be unambiguous.
(If you prefer, you can flag option arguments with @samp{--} rather
than @samp{-}, though we illustrate the more usual convention.)
@table @code
@item -symbols=@var{file}
@itemx -s @var{file}
Read symbol table from file @var{file}.
@item -exec=@var{file}
@itemx -e @var{file}
Use file @var{file} as the executable file to execute when
appropriate, and for examining pure data in conjunction with a core
dump.
@item -se=@var{file}
Read symbol table from file @var{file} and use it as the executable
file.
@item -core=@var{file}
@itemx -c @var{file}
Use file @var{file} as a core dump to examine.
@item -command=@var{file}
@itemx -x @var{file}
Execute _GDBN__ commands from file @var{file}. @xref{Command Files}.
@item -directory=@var{directory}
@itemx -d @var{directory}
Add @var{directory} to the path to search for source files.
@end table
_if__(!_GENERIC__)
@node Mode Options, Mode Options, File Options, Invoking _GDBN__
_fi__(!_GENERIC__)
_if__(_GENERIC__)
@node Mode Options, , File Options, Invoking _GDBN__
_fi__(_GENERIC__)
You can run _GDBN__ in various alternative modes---for example, in
batch mode or quiet mode.
@subsection Choosing Modes
@table @code
@item -nx
@itemx -n
Do not execute commands from any @file{_GDBINIT__} initialization files.
Normally, the commands in these files are executed after all the
command options and arguments have been processed.
@xref{Command Files}.
@item -quiet
@itemx -q
``Quiet''. Do not print the introductory and copyright messages. These
messages are also suppressed in batch mode.
@item -batch
Run in batch mode. Exit with status @code{0} after processing all the command
files specified with @samp{-x} (and @file{_GDBINIT__}, if not inhibited).
Exit with nonzero status if an error occurs in executing the _GDBN__
commands in the command files.
Batch mode may be useful for running _GDBN__ as a filter, for example to
download and run a program on another computer; in order to make this
more useful, the message
@example
Program exited normally.
@end example
@noindent
(which is ordinarily issued whenever a program running under _GDBN__ control
terminates) is not issued when running in batch mode.
@item -cd=@var{directory}
Run _GDBN__ using @var{directory} as its working directory,
instead of the current directory.
@item -fullname
@itemx -f
Emacs sets this option when it runs _GDBN__ as a subprocess. It tells _GDBN__
to output the full file name and line number in a standard,
recognizable fashion each time a stack frame is displayed (which
includes each time your program stops). This recognizable format looks
like two @samp{\032} characters, followed by the file name, line number
and character position separated by colons, and a newline. The
Emacs-to-_GDBN__ interface program uses the two @samp{\032} characters as
a signal to display the source code for the frame.
@item -b @var{bps}
Set the line speed (baud rate or bits per second) of any serial
interface used by _GDBN__ for remote debugging.
@item -tty=@var{device}
Run using @var{device} for your program's standard input and output.
@c FIXME: kingdon thinks there is more to -tty. Investigate.
@end table
_if__(!_GENERIC__)
_include__(gdbinv-s.m4)
_fi__(!_GENERIC__)
@node Leaving _GDBN__, Shell Commands, Invoking _GDBN__, Invocation
@section Leaving _GDBN__
@cindex exiting _GDBN__
@table @code
@item quit
@kindex quit
@kindex q
To exit _GDBN__, use the @code{quit} command (abbreviated @code{q}), or type
an end-of-file character (usually @kbd{C-d}).
@end table
@cindex interrupt
An interrupt (often @kbd{C-c}) will not exit from _GDBN__, but rather
will terminate the action of any _GDBN__ command that is in progress and
return to _GDBN__ command level. It is safe to type the interrupt
character at any time because _GDBN__ does not allow it to take effect
until a time when it is safe.
If you've been using _GDBN__ to control an attached process or device,
you can release it with the @code{detach} command; @pxref{Attach, ,Debugging an Already-Running Process}..
@node Shell Commands, , Leaving _GDBN__, Invocation
@section Shell Commands
If you need to execute occasional shell commands during your
debugging session, there is no need to leave or suspend _GDBN__; you can
just use the @code{shell} command.
@table @code
@item shell @var{command string}
@kindex shell
@cindex shell escape
Directs _GDBN__ to invoke an inferior shell to execute @var{command
string}. If it exists, the environment variable @code{SHELL} is used
for the name of the shell to run. Otherwise _GDBN__ uses
@code{/bin/sh}.
@end table
The utility @code{make} is often needed in development environments.
You do not have to use the @code{shell} command for this purpose in _GDBN__:
@table @code
@item make @var{make-args}
@kindex make
@cindex calling make
Causes _GDBN__ to execute an inferior @code{make} program with the specified
arguments. This is equivalent to @samp{shell make @var{make-args}}.
@end table
@node Commands, Running, Invocation, Top
@chapter _GDBN__ Commands
You can abbreviate GDB command if that abbreviation is unambiguous;
and you can repeat certain GDB commands by typing just @key{RET}.
@menu
* Command Syntax:: Command Syntax
* Help:: Getting Help
@end menu
@node Command Syntax, Help, Commands, Commands
@section Command Syntax
A _GDBN__ command is a single line of input. There is no limit on how long
it can be. It starts with a command name, which is followed by arguments
whose meaning depends on the command name. For example, the command
@code{step} accepts an argument which is the number of times to step,
as in @samp{step 5}. You can also use the @code{step} command with
no arguments. Some command names do not allow any arguments.
@cindex abbreviation
_GDBN__ command names may always be truncated if that abbreviation is
unambiguous. Other possible command abbreviations are listed in the
documentation for individual commands. In some cases, even ambiguous
abbreviations are allowed; for example, @code{s} is specially defined as
equivalent to @code{step} even though there are other commands whose
names start with @code{s}. You can test abbreviations by using them as
arguments to the @code{help} command.
@cindex repeating commands
@kindex RET
A blank line as input to _GDBN__ (typing just @key{RET}) means to
repeat the previous command. Certain commands (for example, @code{run})
will not repeat this way; these are commands for which unintentional
repetition might cause trouble and which you are unlikely to want to
repeat.
The @code{list} and @code{x} commands, when you repeat them with
@key{RET}, construct new arguments rather than repeating
exactly as typed. This permits easy scanning of source or memory.
_GDBN__ can also use @key{RET} in another way: to partition lengthy
output, in a way similar to the common utility @code{more}
(@pxref{Screen Size}). Since it is easy to press one @key{RET} too many
in this situation, _GDBN__ disables command repetition after any command
that generates this sort of display.
@kindex #
@cindex comment
A line of input starting with @kbd{#} is a comment; it does nothing.
This is useful mainly in command files (@pxref{Command Files}).
@node Help, , Command Syntax, Commands
@section Getting Help
@cindex online documentation
@kindex help
You can always ask _GDBN__ itself for information on its commands, using the
command @code{help}.
@table @code
@item help
@itemx h
@kindex h
You can use @code{help} (abbreviated @code{h}) with no arguments to
display a short list of named classes of commands:
@smallexample
(_GDBP__) help
List of classes of commands:
running -- Running the program
stack -- Examining the stack
data -- Examining data
breakpoints -- Making program stop at certain points
files -- Specifying and examining files
status -- Status inquiries
support -- Support facilities
user-defined -- User-defined commands
aliases -- Aliases of other commands
obscure -- Obscure features
Type "help" followed by a class name for a list of
commands in that class.
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(_GDBP__)
@end smallexample
@item help @var{class}
Using one of the general help classes as an argument, you can get a
list of the individual commands in that class. For example, here is the
help display for the class @code{status}:
@smallexample
(_GDBP__) help status
Status inquiries.
List of commands:
show -- Generic command for showing things set with "set"
info -- Generic command for printing status
Type "help" followed by command name for full
documentation.
Command name abbreviations are allowed if unambiguous.
(_GDBP__)
@end smallexample
@item help @var{command}
With a command name as @code{help} argument, _GDBN__ will display a
short paragraph on how to use that command.
@end table
In addition to @code{help}, you can use the _GDBN__ commands @code{info}
and @code{show} to inquire about the state of your program, or the state
of _GDBN__ itself. Each command supports many topics of inquiry; this
manual introduces each of them in the appropriate context. The listings
under @code{info} and under @code{show} in the Index point to
all the sub-commands. @xref{Index}.
@c @group
@table @code
@item info
@kindex info
@kindex i
This command (abbreviated @code{i}) is for describing the state of your
program; for example, it can list the arguments given to your program
(@code{info args}), the registers currently in use (@code{info
registers}), or the breakpoints you've set (@code{info breakpoints}).
You can get a complete list of the @code{info} sub-commands with
@w{@code{help info}}.
@kindex show
@item show
In contrast, @code{show} is for describing the state of _GDBN__ itself.
You can change most of the things you can @code{show}, by using the
related command @code{set}; for example, you can control what number
system is used for displays with @code{set radix}, or simply inquire
which is currently in use with @code{show radix}.
@kindex info set
To display all the settable parameters and their current
values, you can use @code{show} with no arguments; you may also use
@code{info set}. Both commands produce the same display.
@c FIXME: "info set" violates the rule that "info" is for state of
@c FIXME...program. Ck w/ GNU: "info set" to be called something else,
@c FIXME...or change desc of rule---eg "state of prog and debugging session"?
@end table
@c @end group
Here are three miscellaneous @code{show} subcommands, all of which are
exceptional in lacking corresponding @code{set} commands:
@table @code
@kindex show version
@cindex version number
@item show version
Show what version of _GDBN__ is running. You should include this
information in _GDBN__ bug-reports. If multiple versions of _GDBN__ are
in use at your site, you may occasionally want to make sure what version
of _GDBN__ you are running; as _GDBN__ evolves, new commands are
introduced, and old ones may wither away. The version number is also
announced when you start _GDBN__ with no arguments.
@kindex show copying
@item show copying
Display information about permission for copying _GDBN__.
@kindex show warranty
@item show warranty
Display the GNU ``NO WARRANTY'' statement.
@end table
@node Running, Stopping, Commands, Top
@chapter Running Programs Under _GDBN__
@menu
* Compilation:: Compiling for Debugging
* Starting:: Starting your Program
* Arguments:: Your Program's Arguments
* Environment:: Your Program's Environment
* Working Directory:: Your Program's Working Directory
* Input/Output:: Your Program's Input and Output
* Attach:: Debugging an Already-Running Process
* Kill Process:: Killing the Child Process
@end menu
@node Compilation, Starting, Running, Running
@section Compiling for Debugging
In order to debug a program effectively, you need to generate
debugging information when you compile it. This debugging information
is stored in the object file; it describes the data type of each
variable or function and the correspondence between source line numbers
and addresses in the executable code.
To request debugging information, specify the @samp{-g} option when you run
the compiler.
Many C compilers are unable to handle the @samp{-g} and @samp{-O}
options together. Using those compilers, you cannot generate optimized
executables containing debugging information.
The GNU C compiler supports @samp{-g} with or without @samp{-O}, making it
possible to debug optimized code. We recommend that you @emph{always} use
@samp{-g} whenever you compile a program. You may think your program is
correct, but there is no sense in pushing your luck.
Some things do not work as well with @samp{-g -O} as with just
@samp{-g}, particularly on machines with instruction scheduling. If in
doubt, recompile with @samp{-g} alone, and if this fixes the problem,
please report it as a bug (including a test case!).
Older versions of the GNU C compiler permitted a variant option
@samp{-gg} for debugging information. _GDBN__ no longer supports this
format; if your GNU C compiler has this option, do not use it.
@ignore
@comment As far as I know, there are no cases in which _GDBN__ will
@comment produce strange output in this case. (but no promises).
If your program includes archives made with the @code{ar} program, and
if the object files used as input to @code{ar} were compiled without the
@samp{-g} option and have names longer than 15 characters, _GDBN__ will get
confused reading your program's symbol table. No error message will be
given, but _GDBN__ may behave strangely. The reason for this problem is a
deficiency in the Unix archive file format, which cannot represent file
names longer than 15 characters.
To avoid this problem, compile the archive members with the @samp{-g}
option or use shorter file names. Alternatively, use a version of GNU
@code{ar} dated more recently than August 1989.
@end ignore
@node Starting, Arguments, Compilation, Running
@section Starting your Program
@cindex starting
@cindex running
@table @code
@item run
@itemx r
@kindex run
Use the @code{run} command to start your program under _GDBN__. You
must first specify the program name
_if__(_VXWORKS__)
(except on VxWorks)
_fi__(_VXWORKS__)
with an argument to _GDBN__
(@pxref{Invocation, ,Getting In and Out of _GDBN__}), or using the @code{file} or @code{exec-file}
command (@pxref{Files, ,Commands to Specify Files}).
@refill
@end table
If you are running your program in an execution environment that
supports processes, @code{run} creates an inferior process and makes
that process run your program. (In environments without processes,
@code{run} jumps to the start of your program.)
The execution of a program is affected by certain information it
receives from its superior. _GDBN__ provides ways to specify this
information, which you must do @i{before} starting your program. (You
can change it after starting your program, but such changes will only affect
your program the next time you start it.) This information may be
divided into four categories:
@table @asis
@item The @i{arguments.}
Specify the arguments to give your program as the arguments of the
@code{run} command. If a shell is available on your target, the
shell is used to pass the arguments, so that you may use normal
conventions (such as wildcard expansion or variable substitution)
in describing the arguments. In Unix systems, you can control
which shell is used with the @code{SHELL} environment variable.
@xref{Arguments, ,Your Program's Arguments}.@refill
@item The @i{environment.}
Your program normally inherits its environment from _GDBN__, but you can
use the _GDBN__ commands @code{set environment} and @code{unset
environment} to change parts of the environment that will be given to
your program. @xref{Environment, ,Your Program's Environment}.@refill
@item The @i{working directory.}
Your program inherits its working directory from _GDBN__. You can set
_GDBN__'s working directory with the @code{cd} command in _GDBN__.
@xref{Working Directory, ,Your Program's Working Directory}.
@item The @i{standard input and output.}
Your program normally uses the same device for standard input and
standard output as _GDBN__ is using. You can redirect input and output
in the @code{run} command line, or you can use the @code{tty} command to
set a different device for your program.
@xref{Input/Output, Your Program's Input and Output}.
@cindex pipes
@emph{Warning:} While input and output redirection work, you cannot use
pipes to pass the output of the program you are debugging to another
program; if you attempt this, _GDBN__ is likely to wind up debugging the
wrong program.
@end table
@c FIXME: Rewrite following paragraph, especially its third sentence.
When you issue the @code{run} command, your program begins to
execute immediately. @xref{Stopping, ,Stopping and Continuing}, for
discussion of how to arrange for your program to stop. Once your
program has been started by the @code{run} command (and then stopped),
you may evaluate expressions that involve calls to functions in the
inferior, using the @code{print} or @code{call} commands. @xref{Data,
,Examining Data}.
If the modification time of your symbol file has changed since the
last time _GDBN__ read its symbols, _GDBN__ will discard its symbol
table and re-read it. When it does this, _GDBN__ tries to retain your
current breakpoints.
@node Arguments, Environment, Starting, Running
@section Your Program's Arguments
@cindex arguments (to your program)
The arguments to your program can be specified by the arguments of the
@code{run} command. They are passed to a shell, which expands wildcard
characters and performs redirection of I/O, and thence to your program.
_GDBN__ uses the shell indicated by your environment variable
@code{SHELL} if it exists; otherwise, _GDBN__ uses @code{/bin/sh}.
@code{run} with no arguments uses the same arguments used by the previous
@code{run}, or those set by the @code{set args} command.
@kindex set args
@table @code
@item set args
Specify the arguments to be used the next time your program is run. If
@code{set args} has no arguments, @code{run} will execute your program
with no arguments. Once you have run your program with arguments,
using @code{set args} before the next @code{run} is the only way to run
it again without arguments.
@item show args
@kindex show args
Show the arguments to give your program when it is started.
@end table
@node Environment, Working Directory, Arguments, Running
@section Your Program's Environment
@cindex environment (of your program)
The @dfn{environment} consists of a set of environment variables and
their values. Environment variables conventionally record such things as
your user name, your home directory, your terminal type, and your search
path for programs to run. Usually you set up environment variables with
the shell and they are inherited by all the other programs you run. When
debugging, it can be useful to try running your program with a modified
environment without having to start _GDBN__ over again.
@table @code
@item path @var{directory}
@kindex path
Add @var{directory} to the front of the @code{PATH} environment variable
(the search path for executables), for both _GDBN__ and your program.
You may specify several directory names, separated by @samp{:} or
whitespace. If @var{directory} is already in the path, it is moved to
the front, so it will be searched sooner.
You can use the string @samp{$cwd} to refer to whatever is the current
working directory at the time _GDBN__ searches the path. If you use
@samp{.} instead, it refers to the directory where you executed the
@code{path} command. _GDBN__ fills in the current path where needed in
the @var{directory} argument, before adding it to the search path.
@c 'path' is explicitly nonrepeatable, but RMS points out it is silly to
@c document that, since repeating it would be a no-op.
@item show paths
@kindex show paths
Display the list of search paths for executables (the @code{PATH}
environment variable).
@item show environment @r{[}@var{varname}@r{]}
@kindex show environment
Print the value of environment variable @var{varname} to be given to
your program when it starts. If you do not supply @var{varname},
print the names and values of all environment variables to be given to
your program. You can abbreviate @code{environment} as @code{env}.
@item set environment @var{varname} @r{[}=@r{]} @var{value}
@kindex set environment
Sets environment variable @var{varname} to @var{value}. The value
changes for your program only, not for _GDBN__ itself. @var{value} may
be any string; the values of environment variables are just strings, and
any interpretation is supplied by your program itself. The @var{value}
parameter is optional; if it is eliminated, the variable is set to a
null value.
@c "any string" here does not include leading, trailing
@c blanks. Gnu asks: does anyone care?
For example, this command:
@example
set env USER = foo
@end example
@noindent
tells a Unix program, when subsequently run, that its user is named
@samp{foo}. (The spaces around @samp{=} are used for clarity here; they
are not actually required.)
@item unset environment @var{varname}
@kindex unset environment
Remove variable @var{varname} from the environment to be passed to your
program. This is different from @samp{set env @var{varname} =};
@code{unset environment} removes the variable from the environment,
rather than assigning it an empty value.
@end table
@node Working Directory, Input/Output, Environment, Running
@section Your Program's Working Directory
@cindex working directory (of your program)
Each time you start your program with @code{run}, it inherits its
working directory from the current working directory of _GDBN__. _GDBN__'s
working directory is initially whatever it inherited from its parent
process (typically the shell), but you can specify a new working
directory in _GDBN__ with the @code{cd} command.
The _GDBN__ working directory also serves as a default for the commands
that specify files for _GDBN__ to operate on. @xref{Files, ,Commands to Specify Files}.
@table @code
@item cd @var{directory}
@kindex cd
Set _GDBN__'s working directory to @var{directory}.
@item pwd
@kindex pwd
Print _GDBN__'s working directory.
@end table
@node Input/Output, Attach, Working Directory, Running
@section Your Program's Input and Output
@cindex redirection
@cindex i/o
@cindex terminal
By default, the program you run under _GDBN__ does input and output to
the same terminal that _GDBN__ uses. _GDBN__ switches the terminal to
its own terminal modes to interact with you, but it records the terminal
modes your program was using and switches back to them when you continue
running your program.
@table @code
@item info terminal
@kindex info terminal
Displays _GDBN__'s recorded information about the terminal modes your
program is using.
@end table
You can redirect your program's input and/or output using shell
redirection with the @code{run} command. For example,
_0__@example
run > outfile
_1__@end example
@noindent
starts your program, diverting its output to the file @file{outfile}.
@kindex tty
@cindex controlling terminal
Another way to specify where your program should do input and output is
with the @code{tty} command. This command accepts a file name as
argument, and causes this file to be the default for future @code{run}
commands. It also resets the controlling terminal for the child
process, for future @code{run} commands. For example,
@example
tty /dev/ttyb
@end example
@noindent
directs that processes started with subsequent @code{run} commands
default to do input and output on the terminal @file{/dev/ttyb} and have
that as their controlling terminal.
An explicit redirection in @code{run} overrides the @code{tty} command's
effect on the input/output device, but not its effect on the controlling
terminal.
When you use the @code{tty} command or redirect input in the @code{run}
command, only the input @emph{for your program} is affected. The input
for _GDBN__ still comes from your terminal.
@node Attach, Kill Process, Input/Output, Running
@section Debugging an Already-Running Process
@kindex attach
@cindex attach
@table @code
@item attach @var{process-id}
This command
attaches to a running process---one that was started outside _GDBN__.
(@code{info files} will show your active targets.) The command takes as
argument a process ID. The usual way to find out the process-id of
a Unix process is with the @code{ps} utility, or with the @samp{jobs -l}
shell command.
@code{attach} will not repeat if you press @key{RET} a second time after
executing the command.
@end table
To use @code{attach}, you must be debugging in an environment which
supports processes. You must also have permission to send the process a
signal, and it must have the same effective user ID as the _GDBN__
process.
When using @code{attach}, you should first use the @code{file} command
to specify the program running in the process and load its symbol table.
@xref{Files, ,Commands to Specify Files}.
The first thing _GDBN__ does after arranging to debug the specified
process is to stop it. You can examine and modify an attached process
with all the _GDBN__ commands that are ordinarily available when you start
processes with @code{run}. You can insert breakpoints; you can step and
continue; you can modify storage. If you would rather the process
continue running, you may use the @code{continue} command after
attaching _GDBN__ to the process.
@table @code
@item detach
@kindex detach
When you have finished debugging the attached process, you can use the
@code{detach} command to release it from _GDBN__'s control. Detaching
the process continues its execution. After the @code{detach} command,
that process and _GDBN__ become completely independent once more, and you
are ready to @code{attach} another process or start one with @code{run}.
@code{detach} will not repeat if you press @key{RET} again after
executing the command.
@end table
If you exit _GDBN__ or use the @code{run} command while you have an attached
process, you kill that process. By default, you will be asked for
confirmation if you try to do either of these things; you can control
whether or not you need to confirm by using the @code{set confirm} command
(@pxref{Messages/Warnings, ,Optional Warnings and Messages}).
@node Kill Process, , Attach, Running
@c @group
@section Killing the Child Process
@table @code
@item kill
@kindex kill
Kill the child process in which your program is running under _GDBN__.
@end table
This command is useful if you wish to debug a core dump instead of a
running process. _GDBN__ ignores any core dump file while your program
is running.
@c @end group
On some operating systems, a program cannot be executed outside _GDBN__
while you have breakpoints set on it inside _GDBN__. You can use the
@code{kill} command in this situation to permit running your program
outside the debugger.
The @code{kill} command is also useful if you wish to recompile and
relink your program, since on many systems it is impossible to modify an
executable file while it is running in a process. In this case, when you
next type @code{run}, _GDBN__ will notice that the file has changed, and
will re-read the symbol table (while trying to preserve your current
breakpoint settings).
@node Stopping, Stack, Running, Top
@chapter Stopping and Continuing
The principal purpose of using a debugger is so that you can stop your
program before it terminates; or so that, if your program runs into
trouble, you can investigate and find out why.
Inside _GDBN__, your program may stop for any of several reasons, such
as a signal, a breakpoint, or reaching a new line after a _GDBN__
command such as @code{step}. You may then examine and change
variables, set new breakpoints or remove old ones, and then continue
execution. Usually, the messages shown by _GDBN__ provide ample
explanation of the status of your program---but you can also explicitly
request this information at any time.
@table @code
@item info program
@kindex info program
Display information about the status of your program: whether it is
running or not, what process it is, and why it stopped.
@end table
@menu
* Breakpoints:: Breakpoints, Watchpoints, and Exceptions
* Continuing and Stepping:: Resuming Execution
* Signals:: Signals
@end menu
@node Breakpoints, Continuing and Stepping, Stopping, Stopping
@section Breakpoints, Watchpoints, and Exceptions
@cindex breakpoints
A @dfn{breakpoint} makes your program stop whenever a certain point in
your program is reached. For each breakpoint, you can add various
conditions to control in finer detail whether your program will stop.
You can set breakpoints with the @code{break} command and its variants
(@pxref{Set Breaks, ,Setting Breakpoints}), to specify the place where
your program should stop by line number, function name or exact address
in your program. In languages with exception handling (such as GNU
C++), you can also set breakpoints where an exception is raised
(@pxref{Exception Handling, ,Breakpoints and Exceptions}).@refill
@cindex watchpoints
A @dfn{watchpoint} is a special breakpoint that stops your program
when the value of an expression changes. You must use a different
command to set watchpoints (@pxref{Set Watchpoints, ,Setting
Watchpoints}), but aside from that, you can manage a watchpoint like
any other breakpoint: you enable, disable, and delete both breakpoints
and watchpoints using the same commands.@refill
Each breakpoint or watchpoint is assigned a number when it is created;
these numbers are successive integers starting with one. In many of the
commands for controlling various features of breakpoints you use the
breakpoint number to say which breakpoint you want to change. Each
breakpoint may be @dfn{enabled} or @dfn{disabled}; if disabled, it has
no effect on your program until you enable it again.
@menu
* Set Breaks:: Setting Breakpoints
* Set Watchpoints:: Setting Watchpoints
* Exception Handling:: Breakpoints and Exceptions
* Delete Breaks:: Deleting Breakpoints
* Disabling:: Disabling Breakpoints
* Conditions:: Break Conditions
* Break Commands:: Breakpoint Command Lists
* Breakpoint Menus:: Breakpoint Menus
* Error in Breakpoints::
@end menu
@node Set Breaks, Set Watchpoints, Breakpoints, Breakpoints
@subsection Setting Breakpoints
@c FIXME LMB what does GDB do if no code on line of breakpt?
@c consider in particular declaration with/without initialization.
@c
@c FIXME 2 is there stuff on this already? break at fun start, already init?
@kindex break
@kindex b
Breakpoints are set with the @code{break} command (abbreviated @code{b}).
You have several ways to say where the breakpoint should go.
@table @code
@item break @var{function}
Set a breakpoint at entry to function @var{function}. When using source
languages that permit overloading of symbols, such as C++,
@var{function} may refer to more than one possible place to break.
@xref{Breakpoint Menus}, for a discussion of that situation.
@item break +@var{offset}
@itemx break -@var{offset}
Set a breakpoint some number of lines forward or back from the position
at which execution stopped in the currently selected frame.
@item break @var{linenum}
Set a breakpoint at line @var{linenum} in the current source file.
That file is the last file whose source text was printed. This
breakpoint will stop your program just before it executes any of the
code on that line.
@item break @var{filename}:@var{linenum}
Set a breakpoint at line @var{linenum} in source file @var{filename}.
@item break @var{filename}:@var{function}
Set a breakpoint at entry to function @var{function} found in file
@var{filename}. Specifying a file name as well as a function name is
superfluous except when multiple files contain similarly named
functions.
@item break *@var{address}
Set a breakpoint at address @var{address}. You can use this to set
breakpoints in parts of your program which do not have debugging
information or source files.
@item break
When called without any arguments, @code{break} sets a breakpoint at
the next instruction to be executed in the selected stack frame
(@pxref{Stack, ,Examining the Stack}). In any selected frame but the
innermost, this will cause your program to stop as soon as control
returns to that frame. This is similar to the effect of a
@code{finish} command in the frame inside the selected frame---except
that @code{finish} does not leave an active breakpoint. If you use
@code{break} without an argument in the innermost frame, _GDBN__ will
stop the next time it reaches the current location; this may be useful
inside loops.@refill
_GDBN__ normally ignores breakpoints when it resumes execution, until at
least one instruction has been executed. If it did not do this, you
would be unable to proceed past a breakpoint without first disabling the
breakpoint. This rule applies whether or not the breakpoint already
existed when your program stopped.
@item break @dots{} if @var{cond}
Set a breakpoint with condition @var{cond}; evaluate the expression
@var{cond} each time the breakpoint is reached, and stop only if the
value is nonzero---that is, if @var{cond} evaluates as true.
@samp{@dots{}} stands for one of the possible arguments described above
(or no argument) specifying where to break. @xref{Conditions, ,Break
Conditions}, for more information on breakpoint conditions.
@item tbreak @var{args}
@kindex tbreak
Set a breakpoint enabled only for one stop. @var{args} are the
same as for the @code{break} command, and the breakpoint is set in the same
way, but the breakpoint is automatically disabled after the first time your
program stops there. @xref{Disabling, ,Disabling Breakpoints}.
@item rbreak @var{regex}
@kindex rbreak
@cindex regular expression
@c FIXME what kind of regexp?
Set breakpoints on all functions matching the regular expression
@var{regex}. This command
sets an unconditional breakpoint on all matches, printing a list of all
breakpoints it set. Once these breakpoints are set, they are treated
just like the breakpoints set with the @code{break} command. They can
be deleted, disabled, made conditional, etc., in the standard ways.
When debugging C++ programs, @code{rbreak} is useful for setting
breakpoints on overloaded functions that are not members of any special
classes.
@kindex info breakpoints
@cindex @code{$_} and @code{info breakpoints}
@item info breakpoints @r{[}@var{n}@r{]}
@item info break @r{[}@var{n}@r{]}
Print a list of all breakpoints (but not watchpoints) set and not
deleted, showing their numbers, where in your program they are, and any
special features in use for them. Disabled breakpoints are included in
the list, but marked as disabled. @code{info break} with a breakpoint
number @var{n} as argument lists only that breakpoint. The
convenience variable @code{$_} and the default examining-address for
the @code{x} command are set to the address of the last breakpoint
listed (@pxref{Memory, ,Examining Memory}). The equivalent command
for watchpoints is @code{info watch}. @end table
_GDBN__ allows you to set any number of breakpoints at the same place
in your program. There is nothing silly or meaningless about this.
When the breakpoints are conditional, this is even useful
(@pxref{Conditions, ,Break Conditions}).
@node Set Watchpoints, Exception Handling, Set Breaks, Breakpoints
@subsection Setting Watchpoints
@cindex setting watchpoints
You can use a watchpoint to stop execution whenever the value of an
expression changes, without having to predict a particular place
where this may happen.
Watchpoints currently execute two orders of magnitude more slowly than
other breakpoints, but this can well be worth it to catch errors where
you have no clue what part of your program is the culprit. Some
processors provide special hardware to support watchpoint evaluation; future
releases of _GDBN__ will use such hardware if it is available.
@table @code
@kindex watch
@item watch @var{expr}
Set a watchpoint for an expression.
@kindex info watchpoints
@item info watchpoints
This command prints a list of watchpoints; it is otherwise similar to
@code{info break}.
@end table
@node Exception Handling, Delete Breaks, Set Watchpoints, Breakpoints
@subsection Breakpoints and Exceptions
@cindex exception handlers
Some languages, such as GNU C++, implement exception handling. You can
use _GDBN__ to examine what caused your program to raise an exception,
and to list the exceptions your program is prepared to handle at a
given point in time.
@table @code
@item catch @var{exceptions}
@kindex catch
You can set breakpoints at active exception handlers by using the
@code{catch} command. @var{exceptions} is a list of names of exceptions
to catch.
@end table
You can use @code{info catch} to list active exception handlers.
@xref{Frame Info, ,Information About a Frame}.
There are currently some limitations to exception handling in _GDBN__.
These will be corrected in a future release.
@itemize @bullet
@item
If you call a function interactively, _GDBN__ normally returns
control to you when the function has finished executing. If the call
raises an exception, however, the call may bypass the mechanism that
returns control to you and cause your program to simply continue
running until it hits a breakpoint, catches a signal that _GDBN__ is
listening for, or exits.
@item
You cannot raise an exception interactively.
@item
You cannot interactively install an exception handler.
@end itemize
@cindex raise exceptions
Sometimes @code{catch} is not the best way to debug exception handling:
if you need to know exactly where an exception is raised, it is better to
stop @emph{before} the exception handler is called, since that way you
can see the stack before any unwinding takes place. If you set a
breakpoint in an exception handler instead, it may not be easy to find
out where the exception was raised.
To stop just before an exception handler is called, you need some
knowledge of the implementation. In the case of GNU C++, exceptions are
raised by calling a library function named @code{__raise_exception}
which has the following ANSI C interface:
@example
/* @var{addr} is where the exception identifier is stored.
ID is the exception identifier. */
void __raise_exception (void **@var{addr}, void *@var{id});
@end example
@noindent
To make the debugger catch all exceptions before any stack
unwinding takes place, set a breakpoint on @code{__raise_exception}
(@pxref{Breakpoints, ,Breakpoints Watchpoints and Exceptions}).
With a conditional breakpoint (@pxref{Conditions, ,Break Conditions})
that depends on the value of @var{id}, you can stop your program when
a specific exception is raised. You can use multiple conditional
breakpoints to stop your program when any of a number of exceptions are
raised.
@node Delete Breaks, Disabling, Exception Handling, Breakpoints
@subsection Deleting Breakpoints
@cindex clearing breakpoints, watchpoints
@cindex deleting breakpoints, watchpoints
It is often necessary to eliminate a breakpoint or watchpoint once it
has done its job and you no longer want your program to stop there. This
is called @dfn{deleting} the breakpoint. A breakpoint that has been
deleted no longer exists; it is forgotten.
With the @code{clear} command you can delete breakpoints according to
where they are in your program. With the @code{delete} command you can
delete individual breakpoints or watchpoints by specifying their
breakpoint numbers.
It is not necessary to delete a breakpoint to proceed past it. _GDBN__
automatically ignores breakpoints on the first instruction to be executed
when you continue execution without changing the execution address.
@table @code
@item clear
@kindex clear
Delete any breakpoints at the next instruction to be executed in the
selected stack frame (@pxref{Selection, ,Selecting a Frame}). When
the innermost frame is selected, this is a good way to delete a
breakpoint where your program just stopped.
@item clear @var{function}
@itemx clear @var{filename}:@var{function}
Delete any breakpoints set at entry to the function @var{function}.
@item clear @var{linenum}
@itemx clear @var{filename}:@var{linenum}
Delete any breakpoints set at or within the code of the specified line.
@item delete @r{[}breakpoints@r{]} @r{[}@var{bnums}@dots{}@r{]}
@cindex delete breakpoints
@kindex delete
@kindex d
Delete the breakpoints or watchpoints of the numbers specified as
arguments. If no argument is specified, delete all breakpoints (_GDBN__
asks confirmation, unless you've @code{set confirm off}). You
can abbreviate this command as @code{d}.
@end table
@node Disabling, Conditions, Delete Breaks, Breakpoints
@subsection Disabling Breakpoints
@cindex disabled breakpoints
@cindex enabled breakpoints
Rather than deleting a breakpoint or watchpoint, you might prefer to
@dfn{disable} it. This makes the breakpoint inoperative as if it had
been deleted, but remembers the information on the breakpoint so that
you can @dfn{enable} it again later.
You disable and enable breakpoints and watchpoints with the
@code{enable} and @code{disable} commands, optionally specifying one or
more breakpoint numbers as arguments. Use @code{info break} or
@code{info watch} to print a list of breakpoints or watchpoints if you
do not know which numbers to use.
A breakpoint or watchpoint can have any of four different states of
enablement:
@itemize @bullet
@item
Enabled. The breakpoint will stop your program. A breakpoint set
with the @code{break} command starts out in this state.
@item
Disabled. The breakpoint has no effect on your program.
@item
Enabled once. The breakpoint will stop your program, but
when it does so it will become disabled. A breakpoint set
with the @code{tbreak} command starts out in this state.
@item
Enabled for deletion. The breakpoint will stop your program, but
immediately after it does so it will be deleted permanently.
@end itemize
You can use the following commands to enable or disable breakpoints and
watchpoints:
@table @code
@item disable @r{[}breakpoints@r{]} @r{[}@var{bnums}@dots{}@r{]}
@kindex disable breakpoints
@kindex disable
@kindex dis
Disable the specified breakpoints---or all breakpoints, if none are
listed. A disabled breakpoint has no effect but is not forgotten. All
options such as ignore-counts, conditions and commands are remembered in
case the breakpoint is enabled again later. You may abbreviate
@code{disable} as @code{dis}.
@item enable @r{[}breakpoints@r{]} @r{[}@var{bnums}@dots{}@r{]}
@kindex enable breakpoints
@kindex enable
Enable the specified breakpoints (or all defined breakpoints). They
become effective once again in stopping your program.
@item enable @r{[}breakpoints@r{]} once @var{bnums}@dots{}
Enable the specified breakpoints temporarily. Each will be disabled
again the next time it stops your program.
@item enable @r{[}breakpoints@r{]} delete @var{bnums}@dots{}
Enable the specified breakpoints to work once and then die. Each of
the breakpoints will be deleted the next time it stops your program.
@end table
Save for a breakpoint set with @code{tbreak} (@pxref{Set Breaks,
,Setting Breakpoints}), breakpoints that you set are initially
enabled; subsequently, they become disabled or enabled only when you
use one of the commands above. (The command @code{until} can set and
delete a breakpoint of its own, but it will not change the state of
your other breakpoints; @pxref{Continuing and Stepping}.)
@node Conditions, Break Commands, Disabling, Breakpoints
@subsection Break Conditions
@cindex conditional breakpoints
@cindex breakpoint conditions
@c FIXME what is scope of break condition expr? Context where wanted?
@c in particular for a watchpoint?
The simplest sort of breakpoint breaks every time your program reaches a
specified place. You can also specify a @dfn{condition} for a
breakpoint. A condition is just a Boolean expression in your
programming language (@pxref{Expressions}). A breakpoint with a condition
evaluates the expression each time your program reaches it, and the
program stops only if the condition is @emph{true}.
This is the converse of using assertions for program validation; in that
situation, you want to stop when the assertion is violated---that is,
when the condition is false. In C, if you want to test an assertion expressed
by the condition @var{assert}, you should set the condition
@samp{! @var{assert}} on the appropriate breakpoint.
Conditions are also accepted for watchpoints; you may not need them,
since a watchpoint is inspecting the value of an expression anyhow---but
it might be simpler, say, to just set a watchpoint on a variable name,
and specify a condition that tests whether the new value is an interesting
one.
Break conditions can have side effects, and may even call functions in
your program. This can be useful, for example, to activate functions
that log program progress, or to use your own print functions to
format special data structures. The effects are completely predictable
unless there is another enabled breakpoint at the same address. (In
that case, _GDBN__ might see the other breakpoint first and stop your
program without checking the condition of this one.) Note that
breakpoint commands are usually more convenient and flexible for the
purpose of performing side effects when a breakpoint is reached
(@pxref{Break Commands, ,Breakpoint Command Lists}).
Break conditions can be specified when a breakpoint is set, by using
@samp{if} in the arguments to the @code{break} command. @xref{Set
Breaks, ,Setting Breakpoints}. They can also be changed at any time
with the @code{condition} command. The @code{watch} command does not
recognize the @code{if} keyword; @code{condition} is the only way to
impose a further condition on a watchpoint.
@table @code
@item condition @var{bnum} @var{expression}
@kindex condition
Specify @var{expression} as the break condition for breakpoint or
watchpoint number @var{bnum}. From now on, this breakpoint will stop
your program only if the value of @var{expression} is true (nonzero, in
C). When you use @code{condition}, _GDBN__ checks @var{expression}
immediately for syntactic correctness, and to determine whether symbols
in it have referents in the context of your breakpoint.
@c FIXME so what does GDB do if there is no referent? Moreover, what
@c about watchpoints?
_GDBN__ does
not actually evaluate @var{expression} at the time the @code{condition}
command is given, however. @xref{Expressions}.
@item condition @var{bnum}
Remove the condition from breakpoint number @var{bnum}. It becomes
an ordinary unconditional breakpoint.
@end table
@cindex ignore count (of breakpoint)
A special case of a breakpoint condition is to stop only when the
breakpoint has been reached a certain number of times. This is so
useful that there is a special way to do it, using the @dfn{ignore
count} of the breakpoint. Every breakpoint has an ignore count, which
is an integer. Most of the time, the ignore count is zero, and
therefore has no effect. But if your program reaches a breakpoint whose
ignore count is positive, then instead of stopping, it just decrements
the ignore count by one and continues. As a result, if the ignore count
value is @var{n}, the breakpoint will not stop the next @var{n} times it
is reached.
@table @code
@item ignore @var{bnum} @var{count}
@kindex ignore
Set the ignore count of breakpoint number @var{bnum} to @var{count}.
The next @var{count} times the breakpoint is reached, your program's
execution will not stop; other than to decrement the ignore count, _GDBN__
takes no action.
To make the breakpoint stop the next time it is reached, specify
a count of zero.
@item continue @var{count}
@itemx c @var{count}
@itemx fg @var{count}
@kindex continue @var{count}
Continue execution of your program, setting the ignore count of the
breakpoint where your program stopped to @var{count} minus one.
Thus, your program will not stop at this breakpoint until the
@var{count}'th time it is reached.
An argument to this command is meaningful only when your program stopped
due to a breakpoint. At other times, the argument to @code{continue} is
ignored.
The synonym @code{fg} is provided purely for convenience, and has
exactly the same behavior as other forms of the command.
@end table
If a breakpoint has a positive ignore count and a condition, the condition
is not checked. Once the ignore count reaches zero, the condition will
be checked.
You could achieve the effect of the ignore count with a condition such
as _0__@w{@samp{$foo-- <= 0}}_1__ using a debugger convenience
variable that is decremented each time. @xref{Convenience Vars,
,Convenience Variables}.@refill
@node Break Commands, Breakpoint Menus, Conditions, Breakpoints
@subsection Breakpoint Command Lists
@cindex breakpoint commands
You can give any breakpoint (or watchpoint) a series of commands to
execute when your program stops due to that breakpoint. For example, you
might want to print the values of certain expressions, or enable other
breakpoints.
@table @code
@item commands @r{[}@var{bnum}@r{]}
@itemx @dots{} @var{command-list} @dots{}
@itemx end
@kindex commands
@kindex end
Specify a list of commands for breakpoint number @var{bnum}. The commands
themselves appear on the following lines. Type a line containing just
@code{end} to terminate the commands.
To remove all commands from a breakpoint, type @code{commands} and
follow it immediately with @code{end}; that is, give no commands.
With no @var{bnum} argument, @code{commands} refers to the last
breakpoint or watchpoint set (not to the breakpoint most recently
encountered).
@end table
Pressing @key{RET} as a means of repeating the last _GDBN__ command is
disabled within a @var{command-list}.
You can use breakpoint commands to start your program up again. Simply
use the @code{continue} command, or @code{step}, or any other command
that resumes execution. Subsequent commands in the command list are
ignored.
@kindex silent
If the first command specified is @code{silent}, the usual message about
stopping at a breakpoint is not printed. This may be desirable for
breakpoints that are to print a specific message and then continue.
If the remaining commands too print nothing, you will see no sign that
the breakpoint was reached at all. @code{silent} is meaningful only
at the beginning of a breakpoint command list.
The commands @code{echo} and @code{output} that allow you to print
precisely controlled output are often useful in silent breakpoints.
@xref{Output, ,Commands for Controlled Output}.
For example, here is how you could use breakpoint commands to print the
value of @code{x} at entry to @code{foo} whenever @code{x} is positive.
_0__@example
break foo if x>0
commands
silent
echo x is\040
output x
echo \n
cont
end
_1__@end example
One application for breakpoint commands is to compensate for one bug so
you can test for another. Put a breakpoint just after the erroneous line
of code, give it a condition to detect the case in which something
erroneous has been done, and give it commands to assign correct values
to any variables that need them. End with the @code{continue} command
so that your program does not stop, and start with the @code{silent}
command so that no output is produced. Here is an example:
@example
break 403
commands
silent
set x = y + 4
cont
end
@end example
@cindex lost output
One deficiency in the operation of automatically continuing breakpoints
under Unix appears when your program uses raw mode for the terminal.
_GDBN__ switches back to its own terminal modes (not raw) before executing
commands, and then must switch back to raw mode when your program is
continued. This causes any pending terminal input to be lost.
@c FIXME: revisit below when GNU sys avail.
@c In the GNU system, this will be fixed by changing the behavior of
@c terminal modes.
Under Unix, you can get around this problem by writing actions into
the breakpoint condition rather than in commands. For example
@example
condition 5 (x = y + 4), 0
@end example
@noindent
specifies a condition expression (@pxref{Expressions}) that will change
@code{x} as needed, then always have the value zero so your program will
not stop. No input is lost here, because _GDBN__ evaluates break
conditions without changing the terminal modes. When you want to have
nontrivial conditions for performing the side effects, the operators
@samp{&&}, @samp{||} and @samp{?@dots{}:} may be useful.
@node Breakpoint Menus, Error in Breakpoints, Break Commands, Breakpoints
@subsection Breakpoint Menus
@cindex overloading
@cindex symbol overloading
Some programming languages (notably C++) permit a single function name
to be defined several times, for application in different contexts.
This is called @dfn{overloading}. When a function name is overloaded,
@samp{break @var{function}} is not enough to tell _GDBN__ where you
want a breakpoint. _GDBN__ offers you a menu of numbered choices for
different possible breakpoints, and waits for your selection with the
prompt @samp{>}. The first two options are always @samp{[0] cancel}
and @samp{[1] all}. Typing @kbd{1} sets a breakpoint at each
definition of @var{function}, and typing @kbd{0} aborts the
@code{break} command without setting any new breakpoints.
For example, the following session excerpt shows an attempt to set a
breakpoint at the overloaded symbol @code{String::after}.
We choose three particular definitions of that function name:
@example
(_GDBP__) b String::after
[0] cancel
[1] all
[2] file:String.cc; line number:867
[3] file:String.cc; line number:860
[4] file:String.cc; line number:875
[5] file:String.cc; line number:853
[6] file:String.cc; line number:846
[7] file:String.cc; line number:735
> 2 4 6
Breakpoint 1 at 0xb26c: file String.cc, line 867.
Breakpoint 2 at 0xb344: file String.cc, line 875.
Breakpoint 3 at 0xafcc: file String.cc, line 846.
Multiple breakpoints were set.
Use the "delete" command to delete unwanted breakpoints.
(_GDBP__)
@end example
@node Error in Breakpoints, , Breakpoint Menus, Breakpoints
@subsection ``Cannot Insert Breakpoints''
@c FIXME: "cannot insert breakpoints" error, v unclear.
@c Q in pending mail to Gilmore. ---pesch@cygnus.com, 26mar91
@c some light may be shed by looking at instances of
@c ONE_PROCESS_WRITETEXT. But error seems possible otherwise
@c too. pesch, 20sep91
Under some operating systems, breakpoints cannot be used in a program if
any other process is running that program. In this situation,
attempting to run or continue a program with a breakpoint causes _GDBN__
to stop the other process.
When this happens, you have three ways to proceed:
@enumerate
@item
Remove or disable the breakpoints, then continue.
@item
Suspend _GDBN__, and copy the file containing your program to a new name.
Resume _GDBN__ and use the @code{exec-file} command to specify that _GDBN__
should run your program under that name. Then start your program again.
@c FIXME: RMS commented here "Show example". Maybe when someone
@c explains the first FIXME: in this section...
@item
Relink your program so that the text segment is nonsharable, using the
linker option @samp{-N}. The operating system limitation may not apply
to nonsharable executables.
@end enumerate
@node Continuing and Stepping, Signals, Breakpoints, Stopping
@section Continuing and Stepping
@cindex stepping
@cindex continuing
@cindex resuming execution
@dfn{Continuing} means resuming program execution until your program
completes normally. In contrast, @dfn{stepping} means executing just
one more ``step'' of your program, where ``step'' may mean either one
line of source code, or one machine instruction (depending on what
particular command you use). Either when continuing
or when stepping, your program may stop even sooner, due to a breakpoint
or to a signal. (If due to a signal, you may want to use @code{handle},
or use @samp{signal 0} to resume execution. @xref{Signals}.)@refill
@table @code
@item continue @r{[}@var{ignore-count}@r{]}
@kindex continue
Resume program execution, at the address where your program last stopped;
any breakpoints set at that address are bypassed. The optional argument
@var{ignore-count} allows you to specify a further number of times to
ignore a breakpoint at this location; its effect is like that of
@code{ignore} (@pxref{Conditions, ,Break Conditions}).
To resume execution at a different place, you can use @code{return}
(@pxref{Returning, ,Returning from a Function}) to go back to the
calling function; or @code{jump} (@pxref{Jumping, ,Continuing at a
Different Address}) to go to an arbitrary location in your program.@refill
@end table
A typical technique for using stepping is to set a breakpoint
(@pxref{Breakpoints, ,Breakpoints Watchpoints and Exceptions}) at the
beginning of the function or the section of your program where a
problem is believed to lie, run your program until it stops at that
breakpoint, and then step through the suspect area, examining the
variables that are interesting, until you see the problem happen.
@table @code
@item step
@kindex step
@kindex s
Continue running your program until control reaches a different source
line, then stop it and return control to _GDBN__. This command is
abbreviated @code{s}.
@quotation
@emph{Warning:} If you use the @code{step} command while control is
within a function that was compiled without debugging information,
execution will proceed until control reaches another function.
@end quotation
@item step @var{count}
Continue running as in @code{step}, but do so @var{count} times. If a
breakpoint is reached or a signal not related to stepping occurs before
@var{count} steps, stepping stops right away.
@item next @r{[}@var{count}@r{]}
@kindex next
@kindex n
Continue to the next source line in the current (innermost) stack frame.
Similar to @code{step}, but any function calls appearing within the line
of code are executed without stopping. Execution stops when control
reaches a different line of code at the stack level which was executing
when the @code{next} command was given. This command is abbreviated
@code{n}.
An argument @var{count} is a repeat count, as for @code{step}.
@code{next} within a function that lacks debugging information acts like
@code{step}, but any function calls appearing within the code of the
function are executed without stopping.
@item finish
@kindex finish
Continue running until just after function in the selected stack frame
returns. Print the returned value (if any).
Contrast this with the @code{return} command (@pxref{Returning,
,Returning from a Function}).@refill
@item until
@kindex until
@item u
@kindex u
Continue running until a source line past the current line, in the
current stack frame, is reached. This command is used to avoid single
stepping through a loop more than once. It is like the @code{next}
command, except that when @code{until} encounters a jump, it
automatically continues execution until the program counter is greater
than the address of the jump.
This means that when you reach the end of a loop after single stepping
though it, @code{until} will cause your program to continue execution
until the loop is exited. In contrast, a @code{next} command at the end
of a loop will simply step back to the beginning of the loop, which
would force you to step through the next iteration.
@code{until} always stops your program if it attempts to exit the current
stack frame.
@code{until} may produce somewhat counterintuitive results if the order
of machine code does not match the order of the source lines. For
example, in the following excerpt from a debugging session, the @code{f}
(@code{frame}) command shows that execution is stopped at line
@code{206}; yet when we use @code{until}, we get to line @code{195}:
@example
(_GDBP__) f
#0 main (argc=4, argv=0xf7fffae8) at m4.c:206
206 expand_input();
(_GDBP__) until
195 for ( ; argc > 0; NEXTARG) @{
@end example
This happened because, for execution efficiency, the compiler had
generated code for the loop closure test at the end, rather than the
start, of the loop---even though the test in a C @code{for}-loop is
written before the body of the loop. The @code{until} command appeared
to step back to the beginning of the loop when it advanced to this
expression; however, it has not really gone to an earlier
statement---not in terms of the actual machine code.
@code{until} with no argument works by means of single
instruction stepping, and hence is slower than @code{until} with an
argument.
@item until @var{location}
@item u @var{location}
Continue running your program until either the specified location is
reached, or the current stack frame returns. @var{location} is any of
the forms of argument acceptable to @code{break} (@pxref{Set Breaks,
,Setting Breakpoints}). This form of the command uses breakpoints,
and hence is quicker than @code{until} without an argument.@refill
@item stepi
@itemx si
@kindex stepi
@kindex si
Execute one machine instruction, then stop and return to the debugger.
It is often useful to do @samp{display/i $pc} when stepping by machine
instructions. This will cause the next instruction to be executed to
be displayed automatically at each stop. @xref{Auto Display,
,Automatic Display}.
An argument is a repeat count, as in @code{step}.
@item nexti
@itemx ni
@kindex nexti
@kindex ni
Execute one machine instruction, but if it is a function call,
proceed until the function returns.
An argument is a repeat count, as in @code{next}.
@end table
@node Signals, , Continuing and Stepping, Stopping
@section Signals
@cindex signals
A signal is an asynchronous event that can happen in a program. The
operating system defines the possible kinds of signals, and gives each
kind a name and a number. For example, in Unix @code{SIGINT} is the
signal a program gets when you type an interrupt (often @kbd{C-c});
@code{SIGSEGV} is the signal a program gets from referencing a place in
memory far away from all the areas in use; @code{SIGALRM} occurs when
the alarm clock timer goes off (which happens only if your program has
requested an alarm).
@cindex fatal signals
Some signals, including @code{SIGALRM}, are a normal part of the
functioning of your program. Others, such as @code{SIGSEGV}, indicate
errors; these signals are @dfn{fatal} (kill your program immediately) if the
program has not specified in advance some other way to handle the signal.
@code{SIGINT} does not indicate an error in your program, but it is normally
fatal so it can carry out the purpose of the interrupt: to kill the program.
_GDBN__ has the ability to detect any occurrence of a signal in your
program. You can tell _GDBN__ in advance what to do for each kind of
signal.
@cindex handling signals
Normally, _GDBN__ is set up to ignore non-erroneous signals like @code{SIGALRM}
(so as not to interfere with their role in the functioning of your program)
but to stop your program immediately whenever an error signal happens.
You can change these settings with the @code{handle} command.
@table @code
@item info signals
@kindex info signals
Print a table of all the kinds of signals and how _GDBN__ has been told to
handle each one. You can use this to see the signal numbers of all
the defined types of signals.
@item handle @var{signal} @var{keywords}@dots{}
@kindex handle
Change the way _GDBN__ handles signal @var{signal}. @var{signal} can be the
number of a signal or its name (with or without the @samp{SIG} at the
beginning). The @var{keywords} say what change to make.
@end table
@c @group
The keywords allowed by the @code{handle} command can be abbreviated.
Their full names are:
@table @code
@item nostop
_GDBN__ should not stop your program when this signal happens. It may
still print a message telling you that the signal has come in.
@item stop
_GDBN__ should stop your program when this signal happens. This implies
the @code{print} keyword as well.
@item print
_GDBN__ should print a message when this signal happens.
@item noprint
_GDBN__ should not mention the occurrence of the signal at all. This
implies the @code{nostop} keyword as well.
@item pass
_GDBN__ should allow your program to see this signal; your program will be
able to handle the signal, or may be terminated if the signal is fatal
and not handled.
@item nopass
_GDBN__ should not allow your program to see this signal.
@end table
@c @end group
When a signal has been set to stop your program, your program cannot see the
signal until you continue. It will see the signal then, if @code{pass} is
in effect for the signal in question @i{at that time}. In other words,
after _GDBN__ reports a signal, you can use the @code{handle} command with
@code{pass} or @code{nopass} to control whether that signal will be seen by
your program when you later continue it.
You can also use the @code{signal} command to prevent your program from
seeing a signal, or cause it to see a signal it normally would not see,
or to give it any signal at any time. For example, if your program stopped
due to some sort of memory reference error, you might store correct
values into the erroneous variables and continue, hoping to see more
execution; but your program would probably terminate immediately as
a result of the fatal signal once it saw the signal. To prevent this,
you can continue with @samp{signal 0}. @xref{Signaling, ,Giving your
Program a Signal}.
@node Stack, Source, Stopping, Top
@chapter Examining the Stack
When your program has stopped, the first thing you need to know is where it
stopped and how it got there.
@cindex call stack
Each time your program performs a function call, the information about
where in your program the call was made from is saved in a block of data
called a @dfn{stack frame}. The frame also contains the arguments of the
call and the local variables of the function that was called. All the
stack frames are allocated in a region of memory called the @dfn{call
stack}.
When your program stops, the _GDBN__ commands for examining the stack allow you
to see all of this information.
@cindex selected frame
One of the stack frames is @dfn{selected} by _GDBN__ and many _GDBN__ commands
refer implicitly to the selected frame. In particular, whenever you ask
_GDBN__ for the value of a variable in your program, the value is found in the
selected frame. There are special _GDBN__ commands to select whichever frame
you are interested in.
When your program stops, _GDBN__ automatically selects the currently executing
frame and describes it briefly as the @code{frame} command does
(@pxref{Frame Info, ,Information About a Frame}).
@menu
* Frames:: Stack Frames
* Backtrace:: Backtraces
* Selection:: Selecting a Frame
* Frame Info:: Information on a Frame
@end menu
@node Frames, Backtrace, Stack, Stack
@section Stack Frames
@cindex frame
@cindex stack frame
The call stack is divided up into contiguous pieces called @dfn{stack
frames}, or @dfn{frames} for short; each frame is the data associated
with one call to one function. The frame contains the arguments given
to the function, the function's local variables, and the address at
which the function is executing.
@cindex initial frame
@cindex outermost frame
@cindex innermost frame
When your program is started, the stack has only one frame, that of the
function @code{main}. This is called the @dfn{initial} frame or the
@dfn{outermost} frame. Each time a function is called, a new frame is
made. Each time a function returns, the frame for that function invocation
is eliminated. If a function is recursive, there can be many frames for
the same function. The frame for the function in which execution is
actually occurring is called the @dfn{innermost} frame. This is the most
recently created of all the stack frames that still exist.
@cindex frame pointer
Inside your program, stack frames are identified by their addresses. A
stack frame consists of many bytes, each of which has its own address; each
kind of computer has a convention for choosing one of those bytes whose
address serves as the address of the frame. Usually this address is kept
in a register called the @dfn{frame pointer register} while execution is
going on in that frame.
@cindex frame number
_GDBN__ assigns numbers to all existing stack frames, starting with
zero for the innermost frame, one for the frame that called it,
and so on upward. These numbers do not really exist in your program;
they are assigned by _GDBN__ to give you a way of designating stack
frames in _GDBN__ commands.
@cindex frameless execution
Some compilers allow functions to be compiled so that they operate
without stack frames. (For example, the @code{_GCC__} option
@samp{-fomit-frame-pointer} will generate functions without a frame.)
This is occasionally done with heavily used library functions to save
the frame setup time. _GDBN__ has limited facilities for dealing with
these function invocations. If the innermost function invocation has no
stack frame, _GDBN__ will nevertheless regard it as though it had a
separate frame, which is numbered zero as usual, allowing correct
tracing of the function call chain. However, _GDBN__ has no provision
for frameless functions elsewhere in the stack.
@node Backtrace, Selection, Frames, Stack
@section Backtraces
A backtrace is a summary of how your program got where it is. It shows one
line per frame, for many frames, starting with the currently executing
frame (frame zero), followed by its caller (frame one), and on up the
stack.
@table @code
@item backtrace
@itemx bt
@kindex backtrace
@kindex bt
Print a backtrace of the entire stack: one line per frame for all
frames in the stack.
You can stop the backtrace at any time by typing the system interrupt
character, normally @kbd{C-c}.
@item backtrace @var{n}
@itemx bt @var{n}
Similar, but print only the innermost @var{n} frames.
@item backtrace -@var{n}
@itemx bt -@var{n}
Similar, but print only the outermost @var{n} frames.
@end table
@kindex where
@kindex info stack
@kindex info s
The names @code{where} and @code{info stack} (abbreviated @code{info s})
are additional aliases for @code{backtrace}.
Each line in the backtrace shows the frame number and the function name.
The program counter value is also shown---unless you use @code{set
print address off}. The backtrace also shows the source file name and
line number, as well as the arguments to the function. The program
counter value is omitted if it is at the beginning of the code for that
line number.
Here is an example of a backtrace. It was made with the command
@samp{bt 3}, so it shows the innermost three frames.
@smallexample
@group
#0 m4_traceon (obs=0x24eb0, argc=1, argv=0x2b8c8)
at builtin.c:993
#1 0x6e38 in expand_macro (sym=0x2b600) at macro.c:242
#2 0x6840 in expand_token (obs=0x0, t=177664, td=0xf7fffb08)
at macro.c:71
(More stack frames follow...)
@end group
@end smallexample
@noindent
The display for frame zero does not begin with a program counter
value, indicating that your program has stopped at the beginning of the
code for line @code{993} of @code{builtin.c}.
@node Selection, Frame Info, Backtrace, Stack
@section Selecting a Frame
Most commands for examining the stack and other data in your program work on
whichever stack frame is selected at the moment. Here are the commands for
selecting a stack frame; all of them finish by printing a brief description
of the stack frame just selected.
@table @code
@item frame @var{n}
@itemx f @var{n}
@kindex frame
@kindex f
Select frame number @var{n}. Recall that frame zero is the innermost
(currently executing) frame, frame one is the frame that called the
innermost one, and so on. The highest-numbered frame is @code{main}'s
frame.
@item frame @var{addr}
@itemx f @var{addr}
Select the frame at address @var{addr}. This is useful mainly if the
chaining of stack frames has been damaged by a bug, making it
impossible for _GDBN__ to assign numbers properly to all frames. In
addition, this can be useful when your program has multiple stacks and
switches between them.
_if__(_SPARC__)
On the SPARC architecture, @code{frame} needs two addresses to
select an arbitrary frame: a frame pointer and a stack pointer.
@c note to future updaters: this is conditioned on a flag
@c FRAME_SPECIFICATION_DYADIC in the tm-*.h files, currently only used
@c by SPARC, hence the specific attribution. Generalize or list all
@c possibilities if more supported machines start doing this.
_fi__(_SPARC__)
@item up @var{n}
@kindex up
Move @var{n} frames up the stack. For positive numbers @var{n}, this
advances toward the outermost frame, to higher frame numbers, to frames
that have existed longer. @var{n} defaults to one.
@item down @var{n}
@kindex down
@kindex do
Move @var{n} frames down the stack. For positive numbers @var{n}, this
advances toward the innermost frame, to lower frame numbers, to frames
that were created more recently. @var{n} defaults to one. You may
abbreviate @code{down} as @code{do}.
@end table
All of these commands end by printing two lines of output describing the
frame. The first line shows the frame number, the function name, the
arguments, and the source file and line number of execution in that
frame. The second line shows the text of that source line. For
example:
@smallexample
@group
(_GDBP__) up
#1 0x22f0 in main (argc=1, argv=0xf7fffbf4, env=0xf7fffbfc)
at env.c:10
10 read_input_file (argv[i]);
@end group
@end smallexample
After such a printout, the @code{list} command with no arguments will
print ten lines centered on the point of execution in the frame.
@xref{List, ,Printing Source Lines}.
@table @code
@item up-silently @var{n}
@itemx down-silently @var{n}
@kindex down-silently
@kindex up-silently
These two commands are variants of @code{up} and @code{down},
respectively; they differ in that they do their work silently, without
causing display of the new frame. They are intended primarily for use
in _GDBN__ command scripts, where the output might be unnecessary and
distracting.
@end table
@node Frame Info, , Selection, Stack
@section Information About a Frame
There are several other commands to print information about the selected
stack frame.
@table @code
@item frame
@itemx f
When used without any argument, this command does not change which
frame is selected, but prints a brief description of the currently
selected stack frame. It can be abbreviated @code{f}. With an
argument, this command is used to select a stack frame
(@pxref{Selection, ,Selecting a Frame}).
@item info frame
@itemx info f
@kindex info frame
@kindex info f
This command prints a verbose description of the selected stack frame,
including the address of the frame, the addresses of the next frame down
(called by this frame) and the next frame up (caller of this frame), the
language that the source code corresponding to this frame was written in,
the address of the frame's arguments, the program counter saved in it
(the address of execution in the caller frame), and which registers
were saved in the frame. The verbose description is useful when
something has gone wrong that has made the stack format fail to fit
the usual conventions.
@item info frame @var{addr}
@itemx info f @var{addr}
Print a verbose description of the frame at address @var{addr},
without selecting that frame. The selected frame remains unchanged by
this command.
@item info args
@kindex info args
Print the arguments of the selected frame, each on a separate line.
@item info locals
@kindex info locals
Print the local variables of the selected frame, each on a separate
line. These are all variables declared static or automatic within all
program blocks that execution in this frame is currently inside of.
@item info catch
@kindex info catch
@cindex catch exceptions
@cindex exception handlers
Print a list of all the exception handlers that are active in the
current stack frame at the current point of execution. To see other
exception handlers, visit the associated frame (using the @code{up},
@code{down}, or @code{frame} commands); then type @code{info catch}.
@xref{Exception Handling, ,Breakpoints and Exceptions}.@refill
@end table
@node Source, Data, Stack, Top
@chapter Examining Source Files
_GDBN__ can print parts of your program's source, since the debugging
information recorded in your program tells _GDBN__ what source files
were used to build it. When your program stops, _GDBN__ spontaneously
prints the line where it stopped. Likewise, when you select a stack
frame (@pxref{Selection, ,Selecting a Frame}), _GDBN__ prints the line
where execution in that frame has stopped. You can print other
portions of source files by explicit command.@refill
If you use _GDBN__ through its GNU Emacs interface, you may prefer to
use Emacs facilities to view source; @pxref{Emacs, ,Using _GDBN__
under GNU Emacs}.@refill
@menu
* List:: Printing Source Lines
* Search:: Searching Source Files
* Source Path:: Specifying Source Directories
* Machine Code:: Source and Machine Code
@end menu
@node List, Search, Source, Source
@section Printing Source Lines
@kindex list
@kindex l
To print lines from a source file, use the @code{list} command
(abbreviated @code{l}). There are several ways to specify what part
of the file you want to print.
Here are the forms of the @code{list} command most commonly used:
@table @code
@item list @var{linenum}
Print lines centered around line number @var{linenum} in the
current source file.
@item list @var{function}
Print lines centered around the beginning of function
@var{function}.
@item list
Print more lines. If the last lines printed were printed with a
@code{list} command, this prints lines following the last lines
printed; however, if the last line printed was a solitary line printed
as part of displaying a stack frame (@pxref{Stack, ,Examining the
Stack}), this prints lines centered around that line.@refill
@item list -
Print lines just before the lines last printed.
@end table
By default, _GDBN__ prints ten source lines with any of these forms of
the @code{list} command. You can change this using @code{set listsize}:
@table @code
@item set listsize @var{count}
@kindex set listsize
Make the @code{list} command display @var{count} source lines (unless
the @code{list} argument explicitly specifies some other number).
@item show listsize
@kindex show listsize
Display the number of lines that @code{list} will currently display by
default.
@end table
Repeating a @code{list} command with @key{RET} discards the argument,
so it is equivalent to typing just @code{list}. This is more useful
than listing the same lines again. An exception is made for an
argument of @samp{-}; that argument is preserved in repetition so that
each repetition moves up in the source file.
@cindex linespec
In general, the @code{list} command expects you to supply zero, one or two
@dfn{linespecs}. Linespecs specify source lines; there are several ways
of writing them but the effect is always to specify some source line.
Here is a complete description of the possible arguments for @code{list}:
@table @code
@item list @var{linespec}
Print lines centered around the line specified by @var{linespec}.
@item list @var{first},@var{last}
Print lines from @var{first} to @var{last}. Both arguments are
linespecs.
@item list ,@var{last}
Print lines ending with @var{last}.
@item list @var{first},
Print lines starting with @var{first}.
@item list +
Print lines just after the lines last printed.
@item list -
Print lines just before the lines last printed.
@item list
As described in the preceding table.
@end table
Here are the ways of specifying a single source line---all the
kinds of linespec.
@table @code
@item @var{number}
Specifies line @var{number} of the current source file.
When a @code{list} command has two linespecs, this refers to
the same source file as the first linespec.
@item +@var{offset}
Specifies the line @var{offset} lines after the last line printed.
When used as the second linespec in a @code{list} command that has
two, this specifies the line @var{offset} lines down from the
first linespec.
@item -@var{offset}
Specifies the line @var{offset} lines before the last line printed.
@item @var{filename}:@var{number}
Specifies line @var{number} in the source file @var{filename}.
@item @var{function}
@c FIXME: "of the open-brace" is C-centric. When we add other langs...
Specifies the line of the open-brace that begins the body of the
function @var{function}.
@item @var{filename}:@var{function}
Specifies the line of the open-brace that begins the body of the
function @var{function} in the file @var{filename}. You only need the
file name with a function name to avoid ambiguity when there are
identically named functions in different source files.
@item *@var{address}
Specifies the line containing the program address @var{address}.
@var{address} may be any expression.
@end table
@node Search, Source Path, List, Source
@section Searching Source Files
@cindex searching
@kindex reverse-search
There are two commands for searching through the current source file for a
regular expression.
@table @code
@item forward-search @var{regexp}
@itemx search @var{regexp}
@kindex search
@kindex forward-search
The command @samp{forward-search @var{regexp}} checks each line, starting
with the one following the last line listed, for a match for @var{regexp}.
It lists the line that is found. You can abbreviate the command name
as @code{fo}. The synonym @samp{search @var{regexp}} is also supported.
@item reverse-search @var{regexp}
The command @samp{reverse-search @var{regexp}} checks each line, starting
with the one before the last line listed and going backward, for a match
for @var{regexp}. It lists the line that is found. You can abbreviate
this command as @code{rev}.
@end table
@node Source Path, Machine Code, Search, Source
@section Specifying Source Directories
@cindex source path
@cindex directories for source files
Executable programs sometimes do not record the directories of the source
files from which they were compiled, just the names. Even when they do,
the directories could be moved between the compilation and your debugging
session. _GDBN__ has a list of directories to search for source files;
this is called the @dfn{source path}. Each time _GDBN__ wants a source file,
it tries all the directories in the list, in the order they are present
in the list, until it finds a file with the desired name. Note that
the executable search path is @emph{not} used for this purpose. Neither is
the current working directory, unless it happens to be in the source
path.
If _GDBN__ cannot find a source file in the source path, and the object
program records a directory, _GDBN__ tries that directory too. If the
source path is empty, and there is no record of the compilation
directory, _GDBN__ will, as a last resort, look in the current
directory.
Whenever you reset or rearrange the source path, _GDBN__ will clear out
any information it has cached about where source files are found, where
each line is in the file, etc.
@kindex directory
When you start _GDBN__, its source path is empty.
To add other directories, use the @code{directory} command.
@table @code
@item directory @var{dirname} @dots{}
Add directory @var{dirname} to the front of the source path. Several
directory names may be given to this command, separated by @samp{:} or
whitespace. You may specify a directory that is already in the source
path; this moves it forward, so it will be searched sooner.
You can use the string @samp{$cdir} to refer to the compilation
directory (if one is recorded), and @samp{$cwd} to refer to the current
working directory. @samp{$cwd} is not the same as @samp{.}---the former
tracks the current working directory as it changes during your _GDBN__
session, while the latter is immediately expanded to the current
directory at the time you add an entry to the source path.
@item directory
Reset the source path to empty again. This requires confirmation.
@c RET-repeat for @code{directory} is explicitly disabled, but since
@c repeating it would be a no-op we do not say that. (thanks to RMS)
@item show directories
@kindex show directories
Print the source path: show which directories it contains.
@end table
If your source path is cluttered with directories that are no longer of
interest, _GDBN__ may sometimes cause confusion by finding the wrong
versions of source. You can correct the situation as follows:
@enumerate
@item
Use @code{directory} with no argument to reset the source path to empty.
@item
Use @code{directory} with suitable arguments to reinstall the
directories you want in the source path. You can add all the
directories in one command.
@end enumerate
@node Machine Code, , Source Path, Source
@section Source and Machine Code
You can use the command @code{info line} to map source lines to program
addresses (and viceversa), and the command @code{disassemble} to display
a range of addresses as machine instructions.
@table @code
@item info line @var{linespec}
@kindex info line
Print the starting and ending addresses of the compiled code for
source line @var{linespec}. You can specify source lines in any of the
ways understood by the @code{list} command (@pxref{List, ,Printing Source Lines}).
@end table
For example, we can use @code{info line} to inquire on where the object
code for the first line of function @code{m4_changequote} lies:
@smallexample
(_GDBP__) info line m4_changecom
Line 895 of "builtin.c" starts at pc 0x634c and ends at 0x6350.
@end smallexample
@noindent
We can also inquire (using @code{*@var{addr}} as the form for
@var{linespec}) what source line covers a particular address:
@smallexample
(_GDBP__) info line *0x63ff
Line 926 of "builtin.c" starts at pc 0x63e4 and ends at 0x6404.
@end smallexample
@cindex @code{$_} and @code{info line}
After @code{info line}, the default address for the @code{x} command
is changed to the starting address of the line, so that @samp{x/i} is
sufficient to begin examining the machine code (@pxref{Memory,
,Examining Memory}). Also, this address is saved as the value of the
convenience variable @code{$_} (@pxref{Convenience Vars, ,Convenience
Variables}).
@table @code
@kindex disassemble
@item disassemble
This specialized command is provided to dump a range of memory as
machine instructions. The default memory range is the function
surrounding the program counter of the selected frame. A single
argument to this command is a program counter value; the function
surrounding this value will be dumped. Two arguments (separated by one
or more spaces) specify a range of addresses (first inclusive, second
exclusive) to be dumped.
@end table
We can use @code{disassemble} to inspect the object code
range shown in the last @code{info line} example:
@smallexample
(_GDBP__) disas 0x63e4 0x6404
Dump of assembler code from 0x63e4 to 0x6404:
0x63e4 <builtin_init+5340>: ble 0x63f8 <builtin_init+5360>
0x63e8 <builtin_init+5344>: sethi %hi(0x4c00), %o0
0x63ec <builtin_init+5348>: ld [%i1+4], %o0
0x63f0 <builtin_init+5352>: b 0x63fc <builtin_init+5364>
0x63f4 <builtin_init+5356>: ld [%o0+4], %o0
0x63f8 <builtin_init+5360>: or %o0, 0x1a4, %o0
0x63fc <builtin_init+5364>: call 0x9288 <path_search>
0x6400 <builtin_init+5368>: nop
End of assembler dump.
(_GDBP__)
@end smallexample
@node Data, Languages, Source, Top
@chapter Examining Data
@cindex printing data
@cindex examining data
@kindex print
@kindex inspect
@c "inspect" isn't quite a synonym if you are using Epoch, which we do not
@c document because it is nonstandard... Under Epoch it displays in a
@c different window or something like that.
The usual way to examine data in your program is with the @code{print}
command (abbreviated @code{p}), or its synonym @code{inspect}. It
evaluates and prints the value of an expression of the language your
program is written in (@pxref{Languages}).
@table @code
@item print @var{exp}
@itemx print /@var{f} @var{exp}
@var{exp} is an expression (in the source language). By default
the value of @var{exp} is printed in a format appropriate to its data
type; you can choose a different format by specifying @samp{/@var{f}},
where @var{f} is a letter specifying the format; @pxref{Output formats}.
@item print
@itemx print /@var{f}
If you omit @var{exp}, _GDBN__ displays the last value again (from the
@dfn{value history}; @pxref{Value History}). This allows you to
conveniently inspect the same value in an alternative format.
@end table
A more low-level way of examining data is with the @code{x} command.
It examines data in memory at a specified address and prints it in a
specified format. @xref{Memory, ,Examining Memory}.
If you are interested in information about types, or about how the fields
of a struct or class are declared, use the @code{ptype @var{exp}}
command rather than @code{print}. @xref{Symbols}.
@menu
* Expressions:: Expressions
* Variables:: Program Variables
* Arrays:: Artificial Arrays
* Output formats:: Output formats
* Memory:: Examining Memory
* Auto Display:: Automatic Display
* Print Settings:: Print Settings
* Value History:: Value History
* Convenience Vars:: Convenience Variables
* Registers:: Registers
* Floating Point Hardware:: Floating Point Hardware
@end menu
@node Expressions, Variables, Data, Data
@section Expressions
@cindex expressions
@code{print} and many other _GDBN__ commands accept an expression and
compute its value. Any kind of constant, variable or operator defined
by the programming language you are using is legal in an expression in
_GDBN__. This includes conditional expressions, function calls, casts
and string constants. It unfortunately does not include symbols defined
by preprocessor @code{#define} commands.
Because C is so widespread, most of the expressions shown in examples in
this manual are in C. @xref{Languages,, Using _GDBN__ with Different
Languages}, for information on how to use expressions in other
languages.
In this section, we discuss operators that you can use in _GDBN__
expressions regardless of your programming language.
Casts are supported in all languages, not just in C, because it is so
useful to cast a number into a pointer so as to examine a structure
at that address in memory.
@c FIXME: casts supported---Mod2 true?
_GDBN__ supports these operators in addition to those of programming
languages:
@table @code
@item @@
@samp{@@} is a binary operator for treating parts of memory as arrays.
@xref{Arrays}, for more information.
@item ::
@samp{::} allows you to specify a variable in terms of the file or
function where it is defined. @xref{Variables}.
@item @{@var{type}@} @var{addr}
Refers to an object of type @var{type} stored at address @var{addr} in
memory. @var{addr} may be any expression whose value is an integer or
pointer (but parentheses are required around binary operators, just as in
a cast). This construct is allowed regardless of what kind of data is
normally supposed to reside at @var{addr}.@refill
@end table
@node Variables, Arrays, Expressions, Data
@section Program Variables
The most common kind of expression to use is the name of a variable
in your program.
Variables in expressions are understood in the selected stack frame
(@pxref{Selection, ,Selecting a Frame}); they must either be global
(or static) or be visible according to the scope rules of the
programming language from the point of execution in that frame. This
means that in the function
@example
foo (a)
int a;
@{
bar (a);
@{
int b = test ();
bar (b);
@}
@}
@end example
@noindent
the variable @code{a} is usable whenever your program is executing
within the function @code{foo}, but the variable @code{b} is visible
only while your program is executing inside the block in which @code{b}
is declared.
@cindex variable name conflict
There is an exception: you can refer to a variable or function whose
scope is a single source file even if the current execution point is not
in this file. But it is possible to have more than one such variable or
function with the same name (in different source files). If that happens,
referring to that name has unpredictable effects. If you wish, you can
specify a variable in a particular file, using the colon-colon notation:
@cindex colon-colon
@iftex
@c info cannot cope with a :: index entry, but why deprive hard copy readers?
@kindex ::
@end iftex
@example
@var{file}::@var{variable}
@end example
@noindent
Here @var{file} is the name of the source file whose variable you want.
@cindex C++ scope resolution
This use of @samp{::} is very rarely in conflict with the very similar
use of the same notation in C++. _GDBN__ also supports use of the C++
scope resolution operator in _GDBN__ expressions.
@cindex wrong values
@cindex variable values, wrong
@quotation
@emph{Warning:} Occasionally, a local variable may appear to have the
wrong value at certain points in a function---just after entry to the
function, and just before exit. You may see this problem when you are
stepping by machine instructions. This is because on most machines, it
takes more than one instruction to set up a stack frame (including local
variable definitions); if you are stepping by machine instructions,
variables may appear to have the wrong values until the stack frame is
completely built. On function exit, it usually also takes more than one
machine instruction to destroy a stack frame; after you begin stepping
through that group of instructions, local variable definitions may be
gone.
@end quotation
@node Arrays, Output formats, Variables, Data
@section Artificial Arrays
@cindex artificial array
@kindex @@
It is often useful to print out several successive objects of the
same type in memory; a section of an array, or an array of
dynamically determined size for which only a pointer exists in the
program.
This can be done by constructing an @dfn{artificial array} with the
binary operator @samp{@@}. The left operand of @samp{@@} should be
the first element of the desired array, as an individual object.
The right operand should be the desired length of the array. The result is
an array value whose elements are all of the type of the left argument.
The first element is actually the left argument; the second element
comes from bytes of memory immediately following those that hold the
first element, and so on. Here is an example. If a program says
@example
int *array = (int *) malloc (len * sizeof (int));
@end example
@noindent
you can print the contents of @code{array} with
@example
p *array@@len
@end example
The left operand of @samp{@@} must reside in memory. Array values made
with @samp{@@} in this way behave just like other arrays in terms of
subscripting, and are coerced to pointers when used in expressions.
Artificial arrays most often appear in expressions via the value history
(@pxref{Value History}), after printing one out.)
Sometimes the artificial array mechanism isn't quite enough; in
moderately complex data structures, the elements of interest may not
actually be adjacent---for example, if you are interested in the
values of pointers in an array. One useful work-around in this
situation is to use a convenience variable (@pxref{Convenience Vars,
,Convenience Variables}) as a counter in an expression that prints the
first interesting value, and then repeat that expression via
@key{RET}. For instance, suppose you have an array @code{dtab} of
pointers to structures, and you are interested in the values of a
field @code{fv} in each structure. Here's an example of what you
might type:
@example
set $i = 0
p dtab[$i++]->fv
@key{RET}
@key{RET}
@dots{}
@end example
@node Output formats, Memory, Arrays, Data
@section Output formats
@cindex formatted output
@cindex output formats
By default, _GDBN__ prints a value according to its data type. Sometimes
this is not what you want. For example, you might want to print a number
in hex, or a pointer in decimal. Or you might want to view data in memory
at a certain address as a character string or as an instruction. To do
these things, specify an @dfn{output format} when you print a value.
The simplest use of output formats is to say how to print a value
already computed. This is done by starting the arguments of the
@code{print} command with a slash and a format letter. The format
letters supported are:
@table @code
@item x
Regard the bits of the value as an integer, and print the integer in
hexadecimal.
@item d
Print as integer in signed decimal.
@item u
Print as integer in unsigned decimal.
@item o
Print as integer in octal.
@item t
Print as integer in binary. The letter @samp{t} stands for ``two''.
@item a
Print as an address, both absolute in hex and as an offset from the
nearest preceding symbol. This format can be used to discover where (in
what function) an unknown address is located:
@example
(_GDBP__) p/a 0x54320
_0__$3 = 0x54320 <_initialize_vx+396>_1__
@end example
@item c
Regard as an integer and print it as a character constant.
@item f
Regard the bits of the value as a floating point number and print
using typical floating point syntax.
@end table
For example, to print the program counter in hex (@pxref{Registers}), type
@example
p/x $pc
@end example
@noindent
Note that no space is required before the slash; this is because command
names in _GDBN__ cannot contain a slash.
To reprint the last value in the value history with a different format,
you can use the @code{print} command with just a format and no
expression. For example, @samp{p/x} reprints the last value in hex.
@node Memory, Auto Display, Output formats, Data
@section Examining Memory
@cindex examining memory
@table @code
@kindex x
@item x/@var{nfu} @var{addr}
@itemx x @var{addr}
@itemx x
You can use the command @code{x} (for `examine') to examine memory in
any of several formats, independently of your program's data types.
@var{n}, @var{f}, and @var{u} are all optional parameters to specify how
much memory to display, and how to format it; @var{addr} is an
expression giving the address where you want to start displaying memory.
If you use defaults for @var{nfu}, you need not type the slash @samp{/}.
Several commands set convenient defaults for @var{addr}.
@end table
@var{n}, the repeat count, is a decimal integer; the default is 1. It
specifies how much memory (counting by units @var{u}) to display.
@c This really is **decimal**; unaffected by 'set radix' as of GDB
@c 4.1.2.
@var{f}, the display format, is one of the formats used by @code{print},
or @samp{s} (null-terminated string) or @samp{i} (machine instruction).
The default is @samp{x} (hexadecimal) initially, or the format from the
last time you used either @code{x} or @code{print}.
@var{u}, the unit size, is any of
@table @code
@item b
Bytes.
@item h
Halfwords (two bytes).
@item w
Words (four bytes). This is the initial default.
@item g
Giant words (eight bytes).
@end table
@noindent
Each time you specify a unit size with @code{x}, that size becomes the
default unit the next time you use @code{x}. (For the @samp{s} and
@samp{i} formats, the unit size is ignored and is normally not written.)
@var{addr} is the address where you want _GDBN__ to begin displaying
memory. The expression need not have a pointer value (though it may);
it is always interpreted as an integer address of a byte of memory.
@xref{Expressions} for more information on expressions. The default for
@var{addr} is usually just after the last address examined---but several
other commands also set the default address: @code{info breakpoints} (to
the address of the last breakpoint listed), @code{info line} (to the
starting address of a line), and @code{print} (if you use it to display
a value from memory).
For example, @samp{x/3uh 0x54320} is a request to display three halfwords
(@code{h}) of memory, formatted as unsigned decimal integers (@samp{u}),
starting at address @code{0x54320}. @samp{x/4xw $sp} prints the four
words (@samp{w}) of memory above the stack pointer (here, @samp{$sp};
@pxref{Registers}) in hexadecimal (@samp{x}).
Since the letters indicating unit sizes are all distinct from the
letters specifying output formats, you do not have to remember whether
unit size or format comes first; either order will work. The output
specifications @samp{4xw} and @samp{4wx} mean exactly the same thing.
(However, the count @var{n} must come first; @samp{wx4} will not work.)
Even though the unit size @var{u} is ignored for the formats @samp{s}
and @samp{i}, you might still want to use a count @var{n}; for example,
@samp{3i} specifies that you want to see three machine instructions,
including any operands. The command @code{disassemble} gives an
alternative way of inspecting machine instructions; @pxref{Machine
Code}.
All the defaults for the arguments to @code{x} are designed to make it
easy to continue scanning memory with minimal specifications each time
you use @code{x}. For example, after you've inspected three machine
instructions with @samp{x/3i @var{addr}}, you can inspect the next seven
with just @samp{x/7}. If you use @key{RET} to repeat the @code{x} command,
the repeat count @var{n} is used again; the other arguments default as
for successive uses of @code{x}.
@cindex @code{$_}, @code{$__}, and value history
The addresses and contents printed by the @code{x} command are not saved
in the value history because there is often too much of them and they
would get in the way. Instead, _GDBN__ makes these values available for
subsequent use in expressions as values of the convenience variables
@code{$_} and @code{$__}. After an @code{x} command, the last address
examined is available for use in expressions in the convenience variable
@code{$_}. The contents of that address, as examined, are available in
the convenience variable @code{$__}.
If the @code{x} command has a repeat count, the address and contents saved
are from the last memory unit printed; this is not the same as the last
address printed if several units were printed on the last line of output.
@node Auto Display, Print Settings, Memory, Data
@section Automatic Display
@cindex automatic display
@cindex display of expressions
If you find that you want to print the value of an expression frequently
(to see how it changes), you might want to add it to the @dfn{automatic
display list} so that _GDBN__ will print its value each time your program stops.
Each expression added to the list is given a number to identify it;
to remove an expression from the list, you specify that number.
The automatic display looks like this:
@example
2: foo = 38
3: bar[5] = (struct hack *) 0x3804
@end example
@noindent
showing item numbers, expressions and their current values. As with
displays you request manually using @code{x} or @code{print}, you can
specify the output format you prefer; in fact, @code{display} decides
whether to use @code{print} or @code{x} depending on how elaborate your
format specification is---it uses @code{x} if you specify a unit size,
or one of the two formats (@samp{i} and @samp{s}) that are only
supported by @code{x}; otherwise it uses @code{print}.
@table @code
@item display @var{exp}
@kindex display
Add the expression @var{exp} to the list of expressions to display
each time your program stops. @xref{Expressions}.
@code{display} will not repeat if you press @key{RET} again after using it.
@item display/@var{fmt} @var{exp}
For @var{fmt} specifying only a display format and not a size or
count, add the expression @var{exp} to the auto-display list but
arranges to display it each time in the specified format @var{fmt}.
@xref{Output formats}.
@item display/@var{fmt} @var{addr}
For @var{fmt} @samp{i} or @samp{s}, or including a unit-size or a
number of units, add the expression @var{addr} as a memory address to
be examined each time your program stops. Examining means in effect
doing @samp{x/@var{fmt} @var{addr}}. @xref{Memory, ,Examining Memory}.
@end table
For example, @samp{display/i $pc} can be helpful, to see the machine
instruction about to be executed each time execution stops (@samp{$pc}
is a common name for the program counter; @pxref{Registers}).
@table @code
@item undisplay @var{dnums}@dots{}
@itemx delete display @var{dnums}@dots{}
@kindex delete display
@kindex undisplay
Remove item numbers @var{dnums} from the list of expressions to display.
@code{undisplay} will not repeat if you press @key{RET} after using it.
(Otherwise you would just get the error @samp{No display number @dots{}}.)
@item disable display @var{dnums}@dots{}
@kindex disable display
Disable the display of item numbers @var{dnums}. A disabled display
item is not printed automatically, but is not forgotten. It may be
enabled again later.
@item enable display @var{dnums}@dots{}
@kindex enable display
Enable display of item numbers @var{dnums}. It becomes effective once
again in auto display of its expression, until you specify otherwise.
@item display
Display the current values of the expressions on the list, just as is
done when your program stops.
@item info display
@kindex info display
Print the list of expressions previously set up to display
automatically, each one with its item number, but without showing the
values. This includes disabled expressions, which are marked as such.
It also includes expressions which would not be displayed right now
because they refer to automatic variables not currently available.
@end table
If a display expression refers to local variables, then it does not make
sense outside the lexical context for which it was set up. Such an
expression is disabled when execution enters a context where one of its
variables is not defined. For example, if you give the command
@code{display last_char} while inside a function with an argument
@code{last_char}, then this argument will be displayed while your program
continues to stop inside that function. When it stops elsewhere---where
there is no variable @code{last_char}---display is disabled. The next time
your program stops where @code{last_char} is meaningful, you can enable the
display expression once again.
@node Print Settings, Value History, Auto Display, Data
@section Print Settings
@cindex format options
@cindex print settings
_GDBN__ provides the following ways to control how arrays, structures,
and symbols are printed.
@noindent
These settings are useful for debugging programs in any language:
@table @code
@item set print address
@item set print address on
@kindex set print address
_GDBN__ will print memory addresses showing the location of stack
traces, structure values, pointer values, breakpoints, and so forth,
even when it also displays the contents of those addresses. The default
is on. For example, this is what a stack frame display looks like, with
@code{set print address on}:
@smallexample
(_GDBP__) f
#0 set_quotes (lq=0x34c78 "<<", rq=0x34c88 ">>")
at input.c:530
530 if (lquote != def_lquote)
@end smallexample
@item set print address off
Do not print addresses when displaying their contents. For example,
this is the same stack frame displayed with @code{set print address off}:
@example
(_GDBP__) set print addr off
(_GDBP__) f
#0 set_quotes (lq="<<", rq=">>") at input.c:530
530 if (lquote != def_lquote)
@end example
@item show print address
@kindex show print address
Show whether or not addresses are to be printed.
@item set print array
@itemx set print array on
@kindex set print array
_GDBN__ will pretty print arrays. This format is more convenient to read,
but uses more space. The default is off.
@item set print array off.
Return to compressed format for arrays.
@item show print array
@kindex show print array
Show whether compressed or pretty format is selected for displaying
arrays.
@item set print elements @var{number-of-elements}
@kindex set print elements
If _GDBN__ is printing a large array, it will stop printing after it has
printed the number of elements set by the @code{set print elements} command.
This limit also applies to the display of strings.
@item show print elements
@kindex show print elements
Display the number of elements of a large array that _GDBN__ will print
before losing patience.
@item set print pretty on
@kindex set print pretty
Cause _GDBN__ to print structures in an indented format with one member per
line, like this:
@example
$1 = @{
next = 0x0,
flags = @{
sweet = 1,
sour = 1
@},
meat = 0x54 "Pork"
@}
@end example
@item set print pretty off
Cause _GDBN__ to print structures in a compact format, like this:
@smallexample
$1 = @{next = 0x0, flags = @{sweet = 1, sour = 1@}, meat \
= 0x54 "Pork"@}
@end smallexample
@noindent
This is the default format.
@item show print pretty
@kindex show print pretty
Show which format _GDBN__ will use to print structures.
@item set print sevenbit-strings on
@kindex set print sevenbit-strings
Print using only seven-bit characters; if this option is set,
_GDBN__ will display any eight-bit characters (in strings or character
values) using the notation @code{\}@var{nnn}. For example, @kbd{M-a} is
displayed as @code{\341}.
@item set print sevenbit-strings off
Print using either seven-bit or eight-bit characters, as required. This
is the default.
@item show print sevenbit-strings
@kindex show print sevenbit-strings
Show whether or not _GDBN__ will print only seven-bit characters.
@item set print union on
@kindex set print union
Tell _GDBN__ to print unions which are contained in structures. This is the
default setting.
@item set print union off
Tell _GDBN__ not to print unions which are contained in structures.
@item show print union
@kindex show print union
Ask _GDBN__ whether or not it will print unions which are contained in
structures.
For example, given the declarations
@smallexample
typedef enum @{Tree, Bug@} Species;
typedef enum @{Big_tree, Acorn, Seedling@} Tree_forms;
typedef enum @{Caterpillar, Cocoon, Butterfly@}
Bug_forms;
struct thing @{
Species it;
union @{
Tree_forms tree;
Bug_forms bug;
@} form;
@};
struct thing foo = @{Tree, @{Acorn@}@};
@end smallexample
@noindent
with @code{set print union on} in effect @samp{p foo} would print
@smallexample
$1 = @{it = Tree, form = @{tree = Acorn, bug = Cocoon@}@}
@end smallexample
@noindent
and with @code{set print union off} in effect it would print
@smallexample
$1 = @{it = Tree, form = @{...@}@}
@end smallexample
@end table
@noindent
These settings are of interest when debugging C++ programs:
@table @code
@item set print demangle
@itemx set print demangle on
@kindex set print demangle
Print C++ names in their source form rather than in the mangled form
in which they are passed to the assembler and linker for type-safe linkage.
The default is on.
@item show print demangle
@kindex show print demangle
Show whether C++ names will be printed in mangled or demangled form.
@item set print asm-demangle
@itemx set print asm-demangle on
@kindex set print asm-demangle
Print C++ names in their source form rather than their mangled form, even
in assembler code printouts such as instruction disassemblies.
The default is off.
@item show print asm-demangle
@kindex show print asm-demangle
Show whether C++ names in assembly listings will be printed in mangled
or demangled form.
@item set print object
@itemx set print object on
@kindex set print object
When displaying a pointer to an object, identify the @emph{actual}
(derived) type of the object rather than the @emph{declared} type, using
the virtual function table.
@item set print object off
Display only the declared type of objects, without reference to the
virtual function table. This is the default setting.
@item show print object
@kindex show print object
Show whether actual, or declared, object types will be displayed.
@item set print vtbl
@itemx set print vtbl on
@kindex set print vtbl
Pretty print C++ virtual function tables. The default is off.
@item set print vtbl off
Do not pretty print C++ virtual function tables.
@item show print vtbl
@kindex show print vtbl
Show whether C++ virtual function tables are pretty printed, or not.
@end table
@node Value History, Convenience Vars, Print Settings, Data
@section Value History
@cindex value history
Values printed by the @code{print} command are saved in _GDBN__'s @dfn{value
history} so that you can refer to them in other expressions. Values are
kept until the symbol table is re-read or discarded (for example with
the @code{file} or @code{symbol-file} commands). When the symbol table
changes, the value history is discarded, since the values may contain
pointers back to the types defined in the symbol table.
@cindex @code{$}
@cindex @code{$$}
@cindex history number
The values printed are given @dfn{history numbers} for you to refer to them
by. These are successive integers starting with one. @code{print} shows you
the history number assigned to a value by printing @samp{$@var{num} = }
before the value; here @var{num} is the history number.
To refer to any previous value, use @samp{$} followed by the value's
history number. The way @code{print} labels its output is designed to
remind you of this. Just @code{$} refers to the most recent value in
the history, and @code{$$} refers to the value before that.
@code{$$@var{n}} refers to the @var{n}th value from the end; @code{$$2}
is the value just prior to @code{$$}, @code{$$1} is equivalent to
@code{$$}, and @code{$$0} is equivalent to @code{$}.
For example, suppose you have just printed a pointer to a structure and
want to see the contents of the structure. It suffices to type
@example
p *$
@end example
If you have a chain of structures where the component @code{next} points
to the next one, you can print the contents of the next one with this:
@example
p *$.next
@end example
@noindent
You can print successive links in the chain by repeating this
command---which you can do by just typing @key{RET}.
Note that the history records values, not expressions. If the value of
@code{x} is 4 and you type these commands:
@example
print x
set x=5
@end example
@noindent
then the value recorded in the value history by the @code{print} command
remains 4 even though the value of @code{x} has changed.
@table @code
@kindex show values
@item show values
Print the last ten values in the value history, with their item numbers.
This is like @samp{p@ $$9} repeated ten times, except that @code{show
values} does not change the history.
@item show values @var{n}
Print ten history values centered on history item number @var{n}.
@item show values +
Print ten history values just after the values last printed. If no more
values are available, produces no display.
@end table
Pressing @key{RET} to repeat @code{show values @var{n}} has exactly the
same effect as @samp{show values +}.
@node Convenience Vars, Registers, Value History, Data
@section Convenience Variables
@cindex convenience variables
_GDBN__ provides @dfn{convenience variables} that you can use within
_GDBN__ to hold on to a value and refer to it later. These variables
exist entirely within _GDBN__; they are not part of your program, and
setting a convenience variable has no direct effect on further execution
of your program. That's why you can use them freely.
Convenience variables are prefixed with @samp{$}. Any name preceded by
@samp{$} can be used for a convenience variable, unless it is one of
the predefined machine-specific register names (@pxref{Registers}).
(Value history references, in contrast, are @emph{numbers} preceded
by @samp{$}. @xref{Value History}.)
You can save a value in a convenience variable with an assignment
expression, just as you would set a variable in your program. Example:
@example
set $foo = *object_ptr
@end example
@noindent
would save in @code{$foo} the value contained in the object pointed to by
@code{object_ptr}.
Using a convenience variable for the first time creates it; but its value
is @code{void} until you assign a new value. You can alter the value with
another assignment at any time.
Convenience variables have no fixed types. You can assign a convenience
variable any type of value, including structures and arrays, even if
that variable already has a value of a different type. The convenience
variable, when used as an expression, has the type of its current value.
@table @code
@item show convenience
@kindex show convenience
Print a list of convenience variables used so far, and their values.
Abbreviated @code{show con}.
@end table
One of the ways to use a convenience variable is as a counter to be
incremented or a pointer to be advanced. For example, to print
a field from successive elements of an array of structures:
_0__@example
set $i = 0
print bar[$i++]->contents
@i{@dots{} repeat that command by typing @key{RET}.}
_1__@end example
Some convenience variables are created automatically by _GDBN__ and given
values likely to be useful.
@table @code
@item $_
@kindex $_
The variable @code{$_} is automatically set by the @code{x} command to
the last address examined (@pxref{Memory, ,Examining Memory}). Other
commands which provide a default address for @code{x} to examine also
set @code{$_} to that address; these commands include @code{info line}
and @code{info breakpoint}. The type of @code{$_} is @code{void *}
except when set by the @code{x} command, in which case it is a pointer
to the type of @code{$__}.
@item $__
@kindex $__
The variable @code{$__} is automatically set by the @code{x} command
to the value found in the last address examined. Its type is chosen
to match the format in which the data was printed.
@end table
@node Registers, Floating Point Hardware, Convenience Vars, Data
@section Registers
@cindex registers
You can refer to machine register contents, in expressions, as variables
with names starting with @samp{$}. The names of registers are different
for each machine; use @code{info registers} to see the names used on
your machine.
@table @code
@item info registers
@kindex info registers
Print the names and values of all registers except floating-point
registers (in the selected stack frame).
@item info all-registers
@kindex info all-registers
@cindex floating point registers
Print the names and values of all registers, including floating-point
registers.
@item info registers @var{regname}
Print the relativized value of register @var{regname}. @var{regname}
may be any register name valid on the machine you are using, with
or without the initial @samp{$}.
@end table
_GDBN__ has four ``standard'' register names that are available (in
expressions) on most machines---whenever they do not conflict with an
architecture's canonical mnemonics for registers. The register names
@code{$pc} and @code{$sp} are used for the program counter register and
the stack pointer. @code{$fp} is used for a register that contains a
pointer to the current stack frame, and @code{$ps} is used for a
register that contains the processor status. For example,
you could print the program counter in hex with
@example
p/x $pc
@end example
@noindent
or print the instruction to be executed next with
@example
x/i $pc
@end example
@noindent
or add four to the stack pointer @footnote{This is a way of removing
one word from the stack, on machines where stacks grow downward in
memory (most machines, nowadays). This assumes that the innermost
stack frame is selected; setting @code{$sp} is not allowed when other
stack frames are selected. To pop entire frames off the stack,
regardless of machine architecture, use @code{return};
@pxref{Returning, ,Returning from a Function}.} with@refill
@example
set $sp += 4
@end example
Whenever possible, these four standard register names are available on
your machine even though the machine has different canonical mnemonics,
so long as there is no conflict. The @code{info registers} command
shows the canonical names. For example, on the SPARC, @code{info
registers} displays the processor status register as @code{$psr} but you
can also refer to it as @code{$ps}.
_GDBN__ always considers the contents of an ordinary register as an
integer when the register is examined in this way. Some machines have
special registers which can hold nothing but floating point; these
registers are considered to have floating point values. There is no way
to refer to the contents of an ordinary register as floating point value
(although you can @emph{print} it as a floating point value with
@samp{print/f $@var{regname}}).
Some registers have distinct ``raw'' and ``virtual'' data formats. This
means that the data format in which the register contents are saved by
the operating system is not the same one that your program normally
sees. For example, the registers of the 68881 floating point
coprocessor are always saved in ``extended'' (raw) format, but all C
programs expect to work with ``double'' (virtual) format. In such
cases, _GDBN__ normally works with the virtual format only (the format that
makes sense for your program), but the @code{info registers} command
prints the data in both formats.
Normally, register values are relative to the selected stack frame
(@pxref{Selection, ,Selecting a Frame}). This means that you get the
value that the register would contain if all stack frames farther in
were exited and their saved registers restored. In order to see the
true contents of hardware registers, you must select the innermost
frame (with @samp{frame 0}).
However, _GDBN__ must deduce where registers are saved, from the machine
code generated by your compiler. If some registers are not saved, or if
_GDBN__ is unable to locate the saved registers, the selected stack
frame will make no difference.
@node Floating Point Hardware, , Registers, Data
@section Floating Point Hardware
@cindex floating point
Depending on the host machine architecture, _GDBN__ may be able to give
you more information about the status of the floating point hardware.
@table @code
@item info float
@kindex info float
If available, provides hardware-dependent information about the floating
point unit. The exact contents and layout vary depending on the
floating point chip.
@end table
@c FIXME: this is a cop-out. Try to get examples, explanations. Only
@c FIXME...supported currently on arm's and 386's. Mark properly with
@c FIXME... m4 macros to isolate general statements from hardware-dep,
@c FIXME... at that point.
@node Languages, Symbols, Data, Top
@chapter Using _GDBN__ with Different Languages
@cindex languages
Although programming languages generally have common aspects, they are
rarely expressed in the same manner. For instance, in ANSI C,
dereferencing a pointer @code{p} is accomplished by @code{*p}, but in
Modula-2, it is accomplished by @code{p^}. Values can also be
represented (and displayed) differently. Hex numbers in C are written
like @samp{0x1ae}, while in Modula-2 they appear as @samp{1AEH}.
@cindex working language
Language-specific information is built into _GDBN__ for some languages,
allowing you to express operations like the above in your program's
native language, and allowing _GDBN__ to output values in a manner
consistent with the syntax of your program's native language. The
language you use to build expressions, called the @dfn{working
language}, can be selected manually, or _GDBN__ can set it
automatically.
@menu
* Setting:: Switching between source languages
* Show:: Displaying the language
* Checks:: Type and Range checks
* Support:: Supported languages
@end menu
@node Setting, Show, Languages, Languages
@section Switching between source languages
There are two ways to control the working language---either have _GDBN__
set it automatically, or select it manually yourself. You can use the
@code{set language} command for either purpose. On startup, _GDBN__
defaults to setting the language automatically.
@menu
* Manually:: Setting the working language manually
* Automatically:: Having _GDBN__ infer the source language
@end menu
@node Manually, Automatically, Setting, Setting
@subsection Setting the working language
@kindex set language
To set the language, issue the command @samp{set language @var{lang}},
where @var{lang} is the name of a language: @code{c} or @code{modula-2}.
For a list of the supported languages, type @samp{set language}.
Setting the language manually prevents _GDBN__ from updating the working
language automatically. This can lead to confusion if you try
to debug a program when the working language is not the same as the
source language, when an expression is acceptable to both
languages---but means different things. For instance, if the current
source file were written in C, and _GDBN__ was parsing Modula-2, a
command such as:
@example
print a = b + c
@end example
@noindent
might not have the effect you intended. In C, this means to add
@code{b} and @code{c} and place the result in @code{a}. The result
printed would be the value of @code{a}. In Modula-2, this means to compare
@code{a} to the result of @code{b+c}, yielding a @code{BOOLEAN} value.
If you allow _GDBN__ to set the language automatically, then
you can count on expressions evaluating the same way in your debugging
session and in your program.
@node Automatically, , Manually, Setting
@subsection Having _GDBN__ infer the source language
To have _GDBN__ set the working language automatically, use @samp{set
language local} or @samp{set language auto}. _GDBN__ then infers the
language that a program was written in by looking at the name of its
source files, and examining their extensions:
@table @file
@item *.mod
Modula-2 source file
@item *.c
@itemx *.cc
C or C++ source file.
@end table
This information is recorded for each function or procedure in a source
file. When your program stops in a frame (usually by encountering a
breakpoint), _GDBN__ sets the working language to the language recorded
for the function in that frame. If the language for a frame is unknown
(that is, if the function or block corresponding to the frame was
defined in a source file that does not have a recognized extension), the
current working language is not changed, and _GDBN__ issues a warning.
This may not seem necessary for most programs, which are written
entirely in one source language. However, program modules and libraries
written in one source language can be used by a main program written in
a different source language. Using @samp{set language auto} in this
case frees you from having to set the working language manually.
@node Show, Checks, Setting, Languages
@section Displaying the language
The following commands will help you find out which language is the
working language, and also what language source files were written in.
@kindex show language
@kindex info frame
@kindex info source
@table @code
@item show language
Display the current working language. This is the
language you can use with commands such as @code{print} to
build and compute expressions that may involve variables in your program.
@item info frame
Among the other information listed here (@pxref{Frame Info,,Information
about a Frame}) is the source language for this frame. This is the
language that will become the working language if you ever use an
identifier that is in this frame.
@item info source
Among the other information listed here (@pxref{Symbols,,Examining the
Symbol Table}) is the source language of this source file.
@end table
@node Checks, Support, Show, Languages
@section Type and range Checking
@quotation
@emph{Warning:} In this release, the _GDBN__ commands for type and range
checking are included, but they do not yet have any effect. This
section documents the intended facilities.
@end quotation
@c FIXME remove warning when type/range code added
Some languages are designed to guard you against making seemingly common
errors through a series of compile- and run-time checks. These include
checking the type of arguments to functions and operators, and making
sure mathematical overflows are caught at run time. Checks such as
these help to ensure a program's correctness once it has been compiled
by eliminating type mismatches, and providing active checks for range
errors when your program is running.
_GDBN__ can check for conditions like the above if you wish. Although
_GDBN__ will not check the statements in your program, it can check
expressions entered directly into _GDBN__ for evaluation via the
@code{print} command, for example. As with the working language,
_GDBN__ can also decide whether or not to check automatically based on
your program's source language. @xref{Support,,Supported Languages},
for the default settings of supported languages.@refill
@menu
* Type Checking:: An overview of type checking
* Range Checking:: An overview of range checking
@end menu
@cindex type checking
@cindex checks, type
@node Type Checking, Range Checking, Checks, Checks
@subsection An overview of type checking
Some languages, such as Modula-2, are strongly typed, meaning that the
arguments to operators and functions have to be of the correct type,
otherwise an error occurs. These checks prevent type mismatch
errors from ever causing any run-time problems. For example,
@example
1 + 2 @result{} 3
@error{} 1 + 2.3
@end example
The second example fails because the @code{CARDINAL} 1 is not
type-compatible with the @code{REAL} 2.3.
For expressions you use in _GDBN__ commands, you can tell the _GDBN__
type checker to skip checking; to treat any mismatches as errors and
abandon the expression; or only issue warnings when type mismatches
occur, but evaluate the expression anyway. When you choose the last of
these, _GDBN__ evaluates expressions like the second example above, but
also issues a warning.
Even though you may turn type checking off, other type-based reasons may
prevent _GDBN__ from evaluating an expression. For instance, _GDBN__ does not
know how to add an @code{int} and a @code{struct foo}. These particular
type errors have nothing to do with the language in use, and usually
arise from expressions, such as the one described above, which make
little sense to evaluate anyway.
Each language defines to what degree it is strict about type. For
instance, both Modula-2 and C require the arguments to arithmetical
operators to be numbers. In C, enumerated types and pointers can be
represented as numbers, so that they are valid arguments to mathematical
operators. @xref{Support,,Supported Languages}, for futher
details on specific languages.
_GDBN__ provides some additional commands for controlling the type checker:
@kindex set check
@kindex set check type
@kindex show check type
@table @code
@item set check type auto
Set type checking on or off based on the current working language.
@xref{Support,,Supported Languages}, for the default settings for
each language.
@item set check type on
@itemx set check type off
Set type checking on or off, overriding the default setting for the
current working language. Issue a warning if the setting does not
match the language's default. If any type mismatches occur in
evaluating an expression while typechecking is on, _GDBN__ prints a
message and aborts evaluation of the expression.
@item set check type warn
Cause the type checker to issue warnings, but to always attempt to
evaluate the expression. Evaluating the expression may still
be impossible for other reasons. For example, _GDBN__ cannot add
numbers and structures.
@item show type
Show the current setting of the type checker, and whether or not _GDBN__ is
setting it automatically.
@end table
@cindex range checking
@cindex checks, range
@node Range Checking, , Type Checking, Checks
@subsection An overview of Range Checking
In some languages (such as Modula-2), it is an error to exceed the
bounds of a type; this is enforced with run-time checks. Such range
checking is meant to ensure program correctness by making sure
computations do not overflow, or indices on an array element access do
not exceed the bounds of the array.
For expressions you use in _GDBN__ commands, you can tell _GDBN__ to
ignore range errors; to always treat them as errors and abandon the
expression; or to issue warnings when a range error occurs but evaluate
the expression anyway.
A range error can result from numerical overflow, from exceeding an
array index bound, or when you type in a constant that is not a member
of any type. Some languages, however, do not treat overflows as an
error. In many implementations of C, mathematical overflow causes the
result to ``wrap around'' to lower values---for example, if @var{m} is
the largest integer value, and @var{s} is the smallest, then
@example
@var{m} + 1 @result{} @var{s}
@end example
This, too, is specific to individual languages, and in some cases
specific to individual compilers or machines. @xref{Support,,
Supported Languages}, for further details on specific languages.
_GDBN__ provides some additional commands for controlling the range checker:
@kindex set check
@kindex set check range
@kindex show check range
@table @code
@item set check range auto
Set range checking on or off based on the current working language.
@xref{Support,,Supported Languages}, for the default settings for
each language.
@item set check range on
@itemx set check range off
Set range checking on or off, overriding the default setting for the
current working language. A warning is issued if the setting does not
match the language's default. If a range error occurs, then a message
is printed and evaluation of the expression is aborted.
@item set check range warn
Output messages when the _GDBN__ range checker detects a range error,
but attempt to evaluate the expression anyway. Evaluating the
expression may still be impossible for other reasons, such as accessing
memory that the process does not own (a typical example from many UNIX
systems).
@item show range
Show the current setting of the range checker, and whether or not it is
being set automatically by _GDBN__.
@end table
@node Support, , Checks, Languages
@section Supported Languages
_GDBN__ _GDB_VN__ supports C, C++, and Modula-2. The syntax for C and C++ is
so closely related that _GDBN__ does not distinguish the two. Some
_GDBN__ features may be used in expressions regardless of the language
you use: the _GDBN__ @code{@@} and @code{::} operators, and the
@samp{@{type@}addr} construct (@pxref{Expressions}) can be used with the constructs of
any of the supported languages.
The following sections detail to what degree each of these
source languages is supported by _GDBN__. These sections are
not meant to be language tutorials or references, but serve only as a
reference guide to what the _GDBN__ expression parser will accept, and
what input and output formats should look like for different languages.
There are many good books written on each of these languages; please
look to these for a language reference or tutorial.
@menu
* C:: C and C++
* Modula-2:: Modula-2
@end menu
@node C, Modula-2, Support, Support
@subsection C and C++
@cindex C and C++
@cindex expressions in C or C++
Since C and C++ are so closely related, _GDBN__ does not distinguish
between them when interpreting the expressions recognized in _GDBN__
commands.
@cindex C++
@kindex g++
@cindex GNU C++
The C++ debugging facilities are jointly implemented by the GNU C++
compiler and _GDBN__. Therefore, to debug your C++ code effectively,
you must compile your C++ programs with the GNU C++ compiler,
@code{g++}.
@menu
* C Operators:: C and C++ Operators
* C Constants:: C and C++ Constants
* Cplusplus expressions:: C++ Expressions
* C Defaults:: Default settings for C and C++
* C Checks:: C and C++ Type and Range Checks
* Debugging C:: _GDBN__ and C
* Debugging C plus plus:: Special features for C++
@end menu
@cindex C and C++ operators
@node C Operators, C Constants, C, C
@subsubsection C and C++ Operators
Operators must be defined on values of specific types. For instance,
@code{+} is defined on numbers, but not on structures. Operators are
often defined on groups of types. For the purposes of C and C++, the
following definitions hold:
@itemize @bullet
@item
@emph{Integral types} include @code{int} with any of its storage-class
specifiers, @code{char}, and @code{enum}s.
@item
@emph{Floating-point types} include @code{float} and @code{double}.
@item
@emph{Pointer types} include all types defined as @code{(@var{type}
*)}.
@item
@emph{Scalar types} include all of the above.
@end itemize
@noindent
The following operators are supported. They are listed here
in order of increasing precedence:
@table @code
_0__
@item ,
The comma or sequencing operator. Expressions in a comma-separated list
are evaluated from left to right, with the result of the entire
expression being the last expression evaluated.
@item =
Assignment. The value of an assignment expression is the value
assigned. Defined on scalar types.
@item @var{op}=
Used in an expression of the form @var{a} @var{op}@code{=} @var{b}, and
translated to @var{a} @code{=} @var{a op b}. @var{op}@code{=} and
@code{=} have the same precendence. @var{op} is any one of the
operators @code{|}, @code{^}, @code{&}, @code{<<}, @code{>>}, @code{+},
@code{-}, @code{*}, @code{/}, @code{%}.
@item ?:
The ternary operator. @code{@var{a} ? @var{b} : @var{c}} can be thought
of as: if @var{a} then @var{b} else @var{c}. @var{a} should be of an
integral type.
@item ||
Logical OR. Defined on integral types.
@item &&
Logical AND. Defined on integral types.
@item |
Bitwise OR. Defined on integral types.
@item ^
Bitwise exclusive-OR. Defined on integral types.
@item &
Bitwise AND. Defined on integral types.
@item ==@r{, }!=
Equality and inequality. Defined on scalar types. The value of these
expressions is 0 for false and non-zero for true.
@item <@r{, }>@r{, }<=@r{, }>=
Less than, greater than, less than or equal, greater than or equal.
Defined on scalar types. The value of these expressions is 0 for false
and non-zero for true.
@item <<@r{, }>>
left shift, and right shift. Defined on integral types.
@item @@
The _GDBN__ ``artificial array'' operator (@pxref{Expressions}).
@item +@r{, }-
Addition and subtraction. Defined on integral types, floating-point types and
pointer types.
@item *@r{, }/@r{, }%
Multiplication, division, and modulus. Multiplication and division are
defined on integral and floating-point types. Modulus is defined on
integral types.
@item ++@r{, }--
Increment and decrement. When appearing before a variable, the
operation is performed before the variable is used in an expression;
when appearing after it, the variable's value is used before the
operation takes place.
@item *
Pointer dereferencing. Defined on pointer types. Same precedence as
@code{++}.
@item &
Address operator. Defined on variables. Same precedence as @code{++}.
@item -
Negative. Defined on integral and floating-point types. Same
precedence as @code{++}.
@item !
Logical negation. Defined on integral types. Same precedence as
@code{++}.
@item ~
Bitwise complement operator. Defined on integral types. Same precedence as
@code{++}.
@item .@r{, }->
Structure member, and pointer-to-structure member. For convenience,
_GDBN__ regards the two as equivalent, choosing whether to dereference a
pointer based on the stored type information.
Defined on @code{struct}s and @code{union}s.
@item []
Array indexing. @code{@var{a}[@var{i}]} is defined as
@code{*(@var{a}+@var{i})}. Same precedence as @code{->}.
@item ()
Function parameter list. Same precedence as @code{->}.
@item ::
C++ scope resolution operator. Defined on
@code{struct}, @code{union}, and @code{class} types.
@item ::
The _GDBN__ scope operator (@pxref{Expressions}). Same precedence as
@code{::}, above. _1__
@end table
@cindex C and C++ constants
@node C Constants, Cplusplus expressions, C Operators, C
@subsubsection C and C++ Constants
_GDBN__ allows you to express the constants of C and C++ in the
following ways:
@itemize @bullet
@item
Integer constants are a sequence of digits. Octal constants are
specified by a leading @samp{0} (ie. zero), and hexadecimal constants by
a leading @samp{0x} or @samp{0X}. Constants may also end with an
@samp{l}, specifying that the constant should be treated as a
@code{long} value.
@item
Floating point constants are a sequence of digits, followed by a decimal
point, followed by a sequence of digits, and optionally followed by an
exponent. An exponent is of the form:
@samp{@w{e@r{[[}+@r{]|}-@r{]}@var{nnn}}}, where @var{nnn} is another
sequence of digits. The @samp{+} is optional for positive exponents.
@item
Enumerated constants consist of enumerated identifiers, or their
integral equivalents.
@item
Character constants are a single character surrounded by single quotes
(@code{'}), or a number---the ordinal value of the corresponding character
(usually its @sc{ASCII} value). Within quotes, the single character may
be represented by a letter or by @dfn{escape sequences}, which are of
the form @samp{\@var{nnn}}, where @var{nnn} is the octal representation
of the character's ordinal value; or of the form @samp{\@var{x}}, where
@samp{@var{x}} is a predefined special character---for example,
@samp{\n} for newline.
@item
String constants are a sequence of character constants surrounded
by double quotes (@code{"}).
@item
Pointer constants are an integral value.
@end itemize
@node Cplusplus expressions, C Defaults, C Constants, C
@subsubsection C++ Expressions
@cindex expressions in C++
_GDBN__'s expression handling has the following extensions to
interpret a significant subset of C++ expressions:
@enumerate
@cindex member functions
@item
Member function calls are allowed; you can use expressions like
@example
count = aml->GetOriginal(x, y)
@end example
@kindex this
@cindex namespace in C++
@item
While a member function is active (in the selected stack frame), your
expressions have the same namespace available as the member function;
that is, _GDBN__ allows implicit references to the class instance
pointer @code{this} following the same rules as C++.
@cindex call overloaded functions
@cindex type conversions in C++
@item
You can call overloaded functions; _GDBN__ will resolve the function
call to the right definition, with one restriction---you must use
arguments of the type required by the function that you want to call.
_GDBN__ will not perform conversions requiring constructors or
user-defined type operators.
@cindex reference declarations
@item
_GDBN__ understands variables declared as C++ references; you can use them in
expressions just as you do in C++ source---they are automatically
dereferenced.
In the parameter list shown when _GDBN__ displays a frame, the values of
reference variables are not displayed (unlike other variables); this
avoids clutter, since references are often used for large structures.
The @emph{address} of a reference variable is always shown, unless
you've specified @samp{set print address off}.
@item
_GDBN__ supports the C++ name resolution operator @code{::}---your
expressions can use it just as expressions in your program do. Since
one scope may be defined in another, you can use @code{::} repeatedly if
necessary, for example in an expression like
@samp{@var{scope1}::@var{scope2}::@var{name}}. _GDBN__ also allows
resolving name scope by reference to source files, in both C and C++
debugging; @pxref{Variables}.
@end enumerate
@node C Defaults, C Checks, Cplusplus expressions, C
@subsubsection C and C++ Defaults
@cindex C and C++ defaults
If you allow _GDBN__ to set type and range checking automatically, they
both default to @code{off} whenever the working language changes to
C/C++. This happens regardless of whether you, or _GDBN__,
selected the working language.
If you allow _GDBN__ to set the language automatically, it sets the
working language to C/C++ on entering code compiled from a source file
whose name ends with @file{.c} or @file{.cc}.
@xref{Automatically,,Having _GDBN__ infer the source language}, for
further details.
@node C Checks, Debugging C, C Defaults, C
@subsubsection C and C++ Type and Range Checks
@cindex C and C++ checks
@quotation
@emph{Warning:} in this release, _GDBN__ does not yet perform type or
range checking.
@end quotation
@c FIXME remove warning when type/range checks added
By default, when _GDBN__ parses C or C++ expressions, type checking
is not used. However, if you turn type checking on, _GDBN__ will
consider two variables type equivalent if:
@itemize @bullet
@item
The two variables are structured and have the same structure, union, or
enumerated tag.
@item
Two two variables have the same type name, or types that have been
declared equivalent through @code{typedef}.
@ignore
@c leaving this out because neither J Gilmore nor R Pesch understand it.
@c FIXME--beers?
@item
The two @code{struct}, @code{union}, or @code{enum} variables are
declared in the same declaration. (Note: this may not be true for all C
compilers.)
@end ignore
@end itemize
Range checking, if turned on, is done on mathematical operations. Array
indices are not checked, since they are often used to index a pointer
that is not itself an array.
@node Debugging C, Debugging C plus plus, C Checks, C
@subsubsection _GDBN__ and C
The @code{set print union} and @code{show print union} commands apply to
the @code{union} type. When set to @samp{on}, any @code{union} that is
inside a @code{struct} or @code{class} will also be printed.
Otherwise, it will appear as @samp{@{...@}}.
The @code{@@} operator aids in the debugging of dynamic arrays, formed
with pointers and a memory allocation function. (@pxref{Expressions})
@node Debugging C plus plus, , Debugging C, C
@subsubsection _GDBN__ Commands for C++
@cindex commands for C++
Some _GDBN__ commands are particularly useful with C++, and some are
designed specifically for use with C++. Here is a summary:
@table @code
@cindex break in overloaded functions
@item @r{breakpoint menus}
When you want a breakpoint in a function whose name is overloaded,
_GDBN__'s breakpoint menus help you specify which function definition
you want. @xref{Breakpoint Menus}.
@cindex overloading in C++
@item rbreak @var{regex}
Setting breakpoints using regular expressions is helpful for setting
breakpoints on overloaded functions that are not members of any special
classes.
@xref{Set Breaks, ,Setting Breakpoints}.
@cindex C++ exception handling
@item catch @var{exceptions}
@itemx info catch
Debug C++ exception handling using these commands. @xref{Exception
Handling, ,Breakpoints and Exceptions}. @refill
@cindex inheritance
@item ptype @var{typename}
Print inheritance relationships as well as other information for type
@var{typename}.
@xref{Symbols}.
@cindex C++ symbol display
@item set print demangle
@itemx show print demangle
@itemx set print asm-demangle
@itemx show print asm-demangle
Control whether C++ symbols display in their source form, both when
displaying code as C++ source and when displaying disassemblies.
@xref{Print Settings}.
@item set print object
@itemx show print object
Choose whether to print derived (actual) or declared types of objects.
@xref{Print Settings}.
@item set print vtbl
@itemx show print vtbl
Control the format for printing virtual function tables.
@xref{Print Settings}.
@end table
@node Modula-2, , C, Support
@subsection Modula-2
@cindex Modula-2
The extensions made to _GDBN__ to support Modula-2 support output
from the GNU Modula-2 compiler (which is currently being developed).
Other Modula-2 compilers are not currently supported, and attempting to
debug executables produced by them will most likely result in an error
as _GDBN__ reads in the executable's symbol table.
@cindex expressions in Modula-2
@menu
* M2 Operators:: Built-in operators
* Built-In Func/Proc:: Built-in Functions and Procedures
* M2 Constants:: Modula-2 Constants
* M2 Defaults:: Default settings for Modula-2
* Deviations:: Deviations from standard Modula-2
* M2 Checks:: Modula-2 Type and Range Checks
* M2 Scope:: The scope operators @code{::} and @code{.}
* GDB/M2:: _GDBN__ and Modula-2
@end menu
@node M2 Operators, Built-In Func/Proc, Modula-2, Modula-2
@subsubsection Operators
@cindex Modula-2 operators
Operators must be defined on values of specific types. For instance,
@code{+} is defined on numbers, but not on structures. Operators are
often defined on groups of types. For the purposes of Modula-2, the
following definitions hold:
@itemize @bullet
@item
@emph{Integral types} consist of @code{INTEGER}, @code{CARDINAL}, and
their subranges.
@item
@emph{Character types} consist of @code{CHAR} and its subranges.
@item
@emph{Floating-point types} consist of @code{REAL}.
@item
@emph{Pointer types} consist of anything declared as @code{POINTER TO
@var{type}}.
@item
@emph{Scalar types} consist of all of the above.
@item
@emph{Set types} consist of @code{SET}s and @code{BITSET}s.
@item
@emph{Boolean types} consist of @code{BOOLEAN}.
@end itemize
@noindent
The following operators are supported, and appear in order of
increasing precedence:
@table @code
_0__
@item ,
Function argument or array index separator.
@item :=
Assignment. The value of @var{var} @code{:=} @var{value} is
@var{value}.
@item <@r{, }>
Less than, greater than on integral, floating-point, or enumerated
types.
@item <=@r{, }>=
Less than, greater than, less than or equal to, greater than or equal to
on integral, floating-point and enumerated types, or set inclusion on
set types. Same precedence as @code{<}.
@item =@r{, }<>@r{, }#
Equality and two ways of expressing inequality, valid on scalar types.
Same precedence as @code{<}. In _GDBN__ scripts, only @code{<>} is
available for inequality, since @code{#} conflicts with the script
comment character.
@item IN
Set membership. Defined on set types and the types of their members.
Same precedence as @code{<}.
@item OR
Boolean disjunction. Defined on boolean types.
@item AND@r{, }&
Boolean conjuction. Defined on boolean types.
@item @@
The _GDBN__ ``artificial array'' operator (@pxref{Expressions}).
@item +@r{, }-
Addition and subtraction on integral and floating-point types, or union
and difference on set types.
@item *
Multiplication on integral and floating-point types, or set intersection
on set types.
@item /
Division on floating-point types, or symmetric set difference on set
types. Same precedence as @code{*}.
@item DIV@r{, }MOD
Integer division and remainder. Defined on integral types. Same
precedence as @code{*}.
@item -
Negative. Defined on @code{INTEGER}s and @code{REAL}s.
@item ^
Pointer dereferencing. Defined on pointer types.
@item NOT
Boolean negation. Defined on boolean types. Same precedence as
@code{^}.
@item .
@code{RECORD} field selector. Defined on @code{RECORD}s. Same
precedence as @code{^}.
@item []
Array indexing. Defined on @code{ARRAY}s. Same precedence as @code{^}.
@item ()
Procedure argument list. Defined on @code{PROCEDURE}s. Same precedence
as @code{^}.
@item ::@r{, }.
_GDBN__ and Modula-2 scope operators.
@end table
@quotation
@emph{Warning:} Sets and their operations are not yet supported, so _GDBN__
will treat the use of the operator @code{IN}, or the use of operators
@code{+}, @code{-}, @code{*}, @code{/}, @code{=}, , @code{<>}, @code{#},
@code{<=}, and @code{>=} on sets as an error.
@end quotation
_1__
@cindex Modula-2 built-ins
@node Built-In Func/Proc, M2 Constants, M2 Operators, Modula-2
@subsubsection Built-in Functions and Procedures
Modula-2 also makes available several built-in procedures and functions.
In describing these, the following metavariables are used:
@table @var
@item a
represents an @code{ARRAY} variable.
@item c
represents a @code{CHAR} constant or variable.
@item i
represents a variable or constant of integral type.
@item m
represents an identifier that belongs to a set. Generally used in the
same function with the metavariable @var{s}. The type of @var{s} should
be @code{SET OF @var{mtype}} (where @var{mtype} is the type of @var{m}.
@item n
represents a variable or constant of integral or floating-point type.
@item r
represents a variable or constant of floating-point type.
@item t
represents a type.
@item v
represents a variable.
@item x
represents a variable or constant of one of many types. See the
explanation of the function for details.
@end table
All Modula-2 built-in procedures also return a result, described below.
@table @code
@item ABS(@var{n})
Returns the absolute value of @var{n}.
@item CAP(@var{c})
If @var{c} is a lower case letter, it returns its upper case
equivalent, otherwise it returns its argument
@item CHR(@var{i})
Returns the character whose ordinal value is @var{i}.
@item DEC(@var{v})
Decrements the value in the variable @var{v}. Returns the new value.
@item DEC(@var{v},@var{i})
Decrements the value in the variable @var{v} by @var{i}. Returns the
new value.
@item EXCL(@var{m},@var{s})
Removes the element @var{m} from the set @var{s}. Returns the new
set.
@item FLOAT(@var{i})
Returns the floating point equivalent of the integer @var{i}.
@item HIGH(@var{a})
Returns the index of the last member of @var{a}.
@item INC(@var{v})
Increments the value in the variable @var{v}. Returns the new value.
@item INC(@var{v},@var{i})
Increments the value in the variable @var{v} by @var{i}. Returns the
new value.
@item INCL(@var{m},@var{s})
Adds the element @var{m} to the set @var{s} if it is not already
there. Returns the new set.
@item MAX(@var{t})
Returns the maximum value of the type @var{t}.
@item MIN(@var{t})
Returns the minimum value of the type @var{t}.
@item ODD(@var{i})
Returns boolean TRUE if @var{i} is an odd number.
@item ORD(@var{x})
Returns the ordinal value of its argument. For example, the ordinal
value of a character is its ASCII value (on machines supporting the
ASCII character set). @var{x} must be of an ordered type, which include
integral, character and enumerated types.
@item SIZE(@var{x})
Returns the size of its argument. @var{x} can be a variable or a type.
@item TRUNC(@var{r})
Returns the integral part of @var{r}.
@item VAL(@var{t},@var{i})
Returns the member of the type @var{t} whose ordinal value is @var{i}.
@end table
@quotation
@emph{Warning:} Sets and their operations are not yet supported, so
_GDBN__ will treat the use of procedures @code{INCL} and @code{EXCL} as
an error.
@end quotation
@cindex Modula-2 constants
@node M2 Constants, M2 Defaults, Built-In Func/Proc, Modula-2
@subsubsection Constants
_GDBN__ allows you to express the constants of Modula-2 in the following
ways:
@itemize @bullet
@item
Integer constants are simply a sequence of digits. When used in an
expression, a constant is interpreted to be type-compatible with the
rest of the expression. Hexadecimal integers are specified by a
trailing @samp{H}, and octal integers by a trailing @samp{B}.
@item
Floating point constants appear as a sequence of digits, followed by a
decimal point and another sequence of digits. An optional exponent can
then be specified, in the form @samp{E@r{[}+@r{|}-@r{]}@var{nnn}}, where
@samp{@r{[}+@r{|}-@r{]}@var{nnn}} is the desired exponent. All of the
digits of the floating point constant must be valid decimal (base 10)
digits.
@item
Character constants consist of a single character enclosed by a pair of
like quotes, either single (@code{'}) or double (@code{"}). They may
also be expressed by their ordinal value (their ASCII value, usually)
followed by a @samp{C}.
@item
String constants consist of a sequence of characters enclosed by a pair
of like quotes, either single (@code{'}) or double (@code{"}). Escape
sequences in the style of C are also allowed. @xref{C Constants}, for a
brief explanation of escape sequences.
@item
Enumerated constants consist of an enumerated identifier.
@item
Boolean constants consist of the identifiers @code{TRUE} and
@code{FALSE}.
@item
Pointer constants consist of integral values only.
@item
Set constants are not yet supported.
@end itemize
@node M2 Defaults, Deviations, M2 Constants, Modula-2
@subsubsection Modula-2 Defaults
@cindex Modula-2 defaults
If type and range checking are set automatically by _GDBN__, they
both default to @code{on} whenever the working language changes to
Modula-2. This happens regardless of whether you, or _GDBN__,
selected the working language.
If you allow _GDBN__ to set the language automatically, then entering
code compiled from a file whose name ends with @file{.mod} will set the
working language to Modula-2. @xref{Automatically,,Having _GDBN__ set
the language automatically}, for further details.
@node Deviations, M2 Checks, M2 Defaults, Modula-2
@subsubsection Deviations from Standard Modula-2
@cindex Modula-2, deviations from
A few changes have been made to make Modula-2 programs easier to debug.
This is done primarily via loosening its type strictness:
@itemize @bullet
@item
Unlike in standard Modula-2, pointer constants can be formed by
integers. This allows you to modify pointer variables during
debugging. (In standard Modula-2, the actual address contained in a
pointer variable is hidden from you; it can only be modified
through direct assignment to another pointer variable or expression that
returned a pointer.)
@item
C escape sequences can be used in strings and characters to represent
non-printable characters. _GDBN__ will print out strings with these
escape sequences embedded. Single non-printable characters are
printed using the @samp{CHR(@var{nnn})} format.
@item
The assignment operator (@code{:=}) returns the value of its right-hand
argument.
@item
All built-in procedures both modify @emph{and} return their argument.
@end itemize
@node M2 Checks, M2 Scope, Deviations, Modula-2
@subsubsection Modula-2 Type and Range Checks
@cindex Modula-2 checks
@quotation
@emph{Warning:} in this release, _GDBN__ does not yet perform type or
range checking.
@end quotation
@c FIXME remove warning when type/range checks added
_GDBN__ considers two Modula-2 variables type equivalent if:
@itemize @bullet
@item
They are of types that have been declared equivalent via a @code{TYPE
@var{t1} = @var{t2}} statement
@item
They have been declared on the same line. (Note: This is true of the
GNU Modula-2 compiler, but it may not be true of other compilers.)
@end itemize
As long as type checking is enabled, any attempt to combine variables
whose types are not equivalent is an error.
Range checking is done on all mathematical operations, assignment, array
index bounds, and all built-in functions and procedures.
@node M2 Scope, GDB/M2, M2 Checks, Modula-2
@subsubsection The scope operators @code{::} and @code{.}
@cindex scope
@kindex .
@kindex ::
There are a few subtle differences between the Modula-2 scope operator
(@code{.}) and the _GDBN__ scope operator (@code{::}). The two have
similar syntax:
@example
@var{module} . @var{id}
@var{scope} :: @var{id}
@end example
@noindent
where @var{scope} is the name of a module or a procedure,
@var{module} the name of a module, and @var{id} is any declared
identifier within your program, except another module.
Using the @code{::} operator makes _GDBN__ search the scope
specified by @var{scope} for the identifier @var{id}. If it is not
found in the specified scope, then _GDBN__ will search all scopes
enclosing the one specified by @var{scope}.
Using the @code{.} operator makes _GDBN__ search the current scope for
the identifier specified by @var{id} that was imported from the
definition module specified by @var{module}. With this operator, it is
an error if the identifier @var{id} was not imported from definition
module @var{module}, or if @var{id} is not an identifier in
@var{module}.
@node GDB/M2, , M2 Scope, Modula-2
@subsubsection _GDBN__ and Modula-2
Some _GDBN__ commands have little use when debugging Modula-2 programs.
Five subcommands of @code{set print} and @code{show print} apply
specifically to C and C++: @samp{vtbl}, @samp{demangle},
@samp{asm-demangle}, @samp{object}, and @samp{union}. The first four
apply to C++, and the last to C's @code{union} type, which has no direct
analogue in Modula-2.
The @code{@@} operator (@pxref{Expressions}), while available
while using any language, is not useful with Modula-2. Its
intent is to aid the debugging of @dfn{dynamic arrays}, which cannot be
created in Modula-2 as they can in C or C++. However, because an
address can be specified by an integral constant, the construct
@samp{@{@var{type}@}@var{adrexp}} is still useful. (@pxref{Expressions})
_0__
@cindex @code{#} in Modula-2
In _GDBN__ scripts, the Modula-2 inequality operator @code{#} is
interpreted as the beginning of a comment. Use @code{<>} instead.
_1__
@node Symbols, Altering, Languages, Top
@chapter Examining the Symbol Table
The commands described in this section allow you to inquire about the
symbols (names of variables, functions and types) defined in your
program. This information is inherent in the text of your program and
does not change as your program executes. _GDBN__ finds it in your
program's symbol table, in the file indicated when you started _GDBN__
(@pxref{File Options}), or by one of the file-management commands
(@pxref{Files, ,Commands to Specify Files}).
@table @code
@item info address @var{symbol}
@kindex info address
Describe where the data for @var{symbol} is stored. For a register
variable, this says which register it is kept in. For a non-register
local variable, this prints the stack-frame offset at which the variable
is always stored.
Note the contrast with @samp{print &@var{symbol}}, which does not work
at all for a register variables, and for a stack local variable prints
the exact address of the current instantiation of the variable.
@item whatis @var{exp}
@kindex whatis
Print the data type of expression @var{exp}. @var{exp} is not
actually evaluated, and any side-effecting operations (such as
assignments or function calls) inside it do not take place.
@xref{Expressions}.
@item whatis
Print the data type of @code{$}, the last value in the value history.
@item ptype @var{typename}
@kindex ptype
Print a description of data type @var{typename}. @var{typename} may be
the name of a type, or for C code it may have the form
@samp{struct @var{struct-tag}}, @samp{union @var{union-tag}} or
@samp{enum @var{enum-tag}}.@refill
@item ptype @var{exp}
@itemx ptype
Print a description of the type of expression @var{exp}. @code{ptype}
differs from @code{whatis} by printing a detailed description, instead of just
the name of the type. For example, if your program declares a variable
as
@example
struct complex @{double real; double imag;@} v;
@end example
@noindent
compare the output of the two commands:
@example
(_GDBP__) whatis v
type = struct complex
(_GDBP__) ptype v
type = struct complex @{
double real;
double imag;
@}
@end example
@noindent
As with @code{whatis}, using @code{ptype} without an argument refers to
the type of @code{$}, the last value in the value history.
@item info types @var{regexp}
@itemx info types
@kindex info types
Print a brief description of all types whose name matches @var{regexp}
(or all types in your program, if you supply no argument). Each
complete typename is matched as though it were a complete line; thus,
@samp{i type value} gives information on all types in your program whose
name includes the string @code{value}, but @samp{i type ^value$} gives
information only on types whose complete name is @code{value}.
This command differs from @code{ptype} in two ways: first, like
@code{whatis}, it does not print a detailed description; second, it
lists all source files where a type is defined.
@item info source
@kindex info source
Show the name of the current source file---that is, the source file for
the function containing the current point of execution---and the language
it was written in.
@item info sources
@kindex info sources
Print the names of all source files in your program for which there is
debugging information, organized into two lists: files whose symbols
have already been read, and files whose symbols will be read when needed.
@item info functions
@kindex info functions
Print the names and data types of all defined functions.
@item info functions @var{regexp}
Print the names and data types of all defined functions
whose names contain a match for regular expression @var{regexp}.
Thus, @samp{info fun step} finds all functions whose names
include @code{step}; @samp{info fun ^step} finds those whose names
start with @code{step}.
@item info variables
@kindex info variables
Print the names and data types of all variables that are declared
outside of functions (i.e., excluding local variables).
@item info variables @var{regexp}
Print the names and data types of all variables (except for local
variables) whose names contain a match for regular expression
@var{regexp}.
@ignore
This was never implemented.
@item info methods
@itemx info methods @var{regexp}
@kindex info methods
The @code{info methods} command permits the user to examine all defined
methods within C++ program, or (with the @var{regexp} argument) a
specific set of methods found in the various C++ classes. Many
C++ classes provide a large number of methods. Thus, the output
from the @code{ptype} command can be overwhelming and hard to use. The
@code{info-methods} command filters the methods, printing only those
which match the regular-expression @var{regexp}.
@end ignore
@item printsyms @var{filename}
@itemx printpsyms @var{filename}
@kindex printsyms
@cindex symbol dump
@kindex printsyms
@cindex partial symbol dump
Write a dump of debugging symbol data into the file @var{filename}.
These commands are used to debug the _GDBN__ symbol-reading code. Only
symbols with debugging data are included. If you use @code{printsyms},
_GDBN__ includes all the symbols for which it has already collected full
details: that is, @var{filename} reflects symbols for only those files
whose symbols _GDBN__ has read. You can use the command @code{info
sources} to find out which files these are. If you use
@code{printpsyms}, the dump also shows information about symbols that
_GDBN__ only knows partially---that is, symbols defined in files that
_GDBN__ has skimmed, but not yet read completely. The description of
@code{symbol-file} describes how _GDBN__ reads symbols; both commands
are described under @ref{Files, ,Commands to Specify Files}.
@end table
@node Altering, _GDBN__ Files, Symbols, Top
@chapter Altering Execution
Once you think you have found an error in your program, you might want to
find out for certain whether correcting the apparent error would lead to
correct results in the rest of the run. You can find the answer by
experiment, using the _GDBN__ features for altering execution of the
program.
For example, you can store new values into variables or memory
locations, give your program a signal, restart it at a different address,
or even return prematurely from a function to its caller.
@menu
* Assignment:: Assignment to Variables
* Jumping:: Continuing at a Different Address
* Signaling:: Giving your program a Signal
* Returning:: Returning from a Function
* Calling:: Calling your Program's Functions
* Patching:: Patching your Program
@end menu
@node Assignment, Jumping, Altering, Altering
@section Assignment to Variables
@cindex assignment
@cindex setting variables
To alter the value of a variable, evaluate an assignment expression.
@xref{Expressions}. For example,
@example
print x=4
@end example
@noindent
would store the value 4 into the variable @code{x}, and then print the
value of the assignment expression (which is 4). @xref{Languages}, for
more information on operators in supported languages.
@kindex set variable
@cindex variables, setting
If you are not interested in seeing the value of the assignment, use the
@code{set} command instead of the @code{print} command. @code{set} is
really the same as @code{print} except that the expression's value is not
printed and is not put in the value history (@pxref{Value History}). The
expression is evaluated only for its effects.
If the beginning of the argument string of the @code{set} command
appears identical to a @code{set} subcommand, use the @code{set
variable} command instead of just @code{set}. This command is identical
to @code{set} except for its lack of subcommands. For example, a
program might well have a variable @code{width}---which leads to
an error if we try to set a new value with just @samp{set width=13}, as
we might if @code{set width} didn't happen to be a _GDBN__ command:
@example
(_GDBP__) whatis width
type = double
(_GDBP__) p width
$4 = 13
(_GDBP__) set width=47
Invalid syntax in expression.
@end example
@noindent
The invalid expression, of course, is @samp{=47}. What we can do in
order to actually set our program's variable @code{width} is
@example
(_GDBP__) set var width=47
@end example
_GDBN__ allows more implicit conversions in assignments than C does; you can
freely store an integer value into a pointer variable or vice versa, and
any structure can be converted to any other structure that is the same
length or shorter.
@comment FIXME: how do structs align/pad in these conversions?
@comment /pesch@cygnus.com 18dec1990
To store values into arbitrary places in memory, use the @samp{@{@dots{}@}}
construct to generate a value of specified type at a specified address
(@pxref{Expressions}). For example, @code{@{int@}0x83040} refers
to memory location @code{0x83040} as an integer (which implies a certain size
and representation in memory), and
@example
set @{int@}0x83040 = 4
@end example
@noindent
stores the value 4 into that memory location.
@node Jumping, Signaling, Assignment, Altering
@section Continuing at a Different Address
Ordinarily, when you continue your program, you do so at the place where
it stopped, with the @code{continue} command. You can instead continue at
an address of your own choosing, with the following commands:
@table @code
@item jump @var{linespec}
@kindex jump
Resume execution at line @var{linespec}. Execution will stop
immediately if there is a breakpoint there. @xref{List, ,Printing
Source Lines}, for a description of the different forms of
@var{linespec}.
The @code{jump} command does not change the current stack frame, or
the stack pointer, or the contents of any memory location or any
register other than the program counter. If line @var{linespec} is in
a different function from the one currently executing, the results may
be bizarre if the two functions expect different patterns of arguments or
of local variables. For this reason, the @code{jump} command requests
confirmation if the specified line is not in the function currently
executing. However, even bizarre results are predictable if you are
well acquainted with the machine-language code of your program.
@item jump *@var{address}
Resume execution at the instruction at address @var{address}.
@end table
You can get much the same effect as the @code{jump} command by storing a
new value into the register @code{$pc}. The difference is that this
does not start your program running; it only changes the address where it
@emph{will} run when it is continued. For example,
@example
set $pc = 0x485
@end example
@noindent
causes the next @code{continue} command or stepping command to execute at
address 0x485, rather than at the address where your program stopped.
@xref{Continuing and Stepping}.
The most common occasion to use the @code{jump} command is to back up,
perhaps with more breakpoints set, over a portion of a program that has
already executed, in order to examine its execution in more detail.
@node Signaling, Returning, Jumping, Altering
@c @group
@section Giving your program a Signal
@table @code
@item signal @var{signalnum}
@kindex signal
Resume execution where your program stopped, but give it immediately the
signal number @var{signalnum}.
Alternatively, if @var{signalnum} is zero, continue execution without
giving a signal. This is useful when your program stopped on account of
a signal and would ordinary see the signal when resumed with the
@code{continue} command; @samp{signal 0} causes it to resume without a
signal.
@code{signal} does not repeat when you press @key{RET} a second time
after executing the command.
@end table
@c @end group
@node Returning, Calling, Signaling, Altering
@section Returning from a Function
@table @code
@item return
@itemx return @var{expression}
@cindex returning from a function
@kindex return
You can cancel execution of a function call with the @code{return}
command. If you give an
@var{expression} argument, its value is used as the function's return
value.
@end table
When you use @code{return}, _GDBN__ discards the selected stack frame
(and all frames within it). You can think of this as making the
discarded frame return prematurely. If you wish to specify a value to
be returned, give that value as the argument to @code{return}.
This pops the selected stack frame (@pxref{Selection, ,Selecting a
Frame}), and any other frames inside of it, leaving its caller as the
innermost remaining frame. That frame becomes selected. The
specified value is stored in the registers used for returning values
of functions.
The @code{return} command does not resume execution; it leaves the
program stopped in the state that would exist if the function had just
returned. In contrast, the @code{finish} command
(@pxref{Continuing and Stepping})
resumes execution until the selected stack frame returns naturally.@refill
@node Calling, Patching, Returning, Altering
@section Calling your Program's Functions
@cindex calling functions
@kindex call
@table @code
@item call @var{expr}
Evaluate the expression @var{expr} without displaying @code{void}
returned values.
@end table
You can use this variant of the @code{print} command if you want to
execute a function from your program, but without cluttering the output
with @code{void} returned values. The result is printed and saved in
the value history, if it is not void.
@node Patching, , Calling, Altering
@section Patching your Program
@cindex patching binaries
@cindex writing into executables
@cindex writing into corefiles
By default, _GDBN__ opens the file containing your program's executable
code (or the corefile) read-only. This prevents accidental alterations
to machine code; but it also prevents you from intentionally patching
your program's binary.
If you'd like to be able to patch the binary, you can specify that
explicitly with the @code{set write} command. For example, you might
want to turn on internal debugging flags, or even to make emergency
repairs.
@table @code
@item set write on
@itemx set write off
@kindex set write
If you specify @samp{set write on}, _GDBN__ will open executable and
core files for both reading and writing; if you specify @samp{set write
off} (the default), _GDBN__ will open them read-only.
If you've already loaded a file, you must load it
again (using the @code{exec-file} or @code{core-file} command) after
changing @code{set write}, for your new setting to take effect.
@item show write
@kindex show write
Display whether executable files and core files will be opened for
writing as well as reading.
@end table
@node _GDBN__ Files, Targets, Altering, Top
@chapter _GDBN__'s Files
@menu
* Files:: Commands to Specify Files
* Symbol Errors:: Errors Reading Symbol Files
@end menu
@node Files, Symbol Errors, _GDBN__ Files, _GDBN__ Files
@section Commands to Specify Files
@cindex core dump file
@cindex symbol table
_GDBN__ needs to know the file name of the program to be debugged, both in
order to read its symbol table and in order to start your program. To
debug a core dump of a previous run, _GDBN__ must be told the file name of
the core dump.
The usual way to specify the executable and core dump file names is with
the command arguments given when you start _GDBN__, as discussed in
@pxref{Invocation, ,Getting In and Out of _GDBN__}.
Occasionally it is necessary to change to a different file during a
_GDBN__ session. Or you may run _GDBN__ and forget to specify the files you
want to use. In these situations the _GDBN__ commands to specify new files
are useful.
@table @code
@item file @var{filename}
@cindex executable file
@kindex file
Use @var{filename} as the program to be debugged. It is read for its
symbols and for the contents of pure memory. It is also the program
executed when you use the @code{run} command. If you do not specify a
directory and the file is not found in _GDBN__'s working directory,
_GDBN__ uses the environment variable @code{PATH} as a list of
directories to search, just as the shell does when looking for a program
to run. You can change the value of this variable, for both _GDBN__ and
your program, using the @code{path} command.
@item file
@code{file} with no argument makes _GDBN__ discard any information it
has on both executable file and the symbol table.
@item exec-file @r{[} @var{filename} @r{]}
@kindex exec-file
Specify that the program to be run (but not the symbol table) is found
in @var{filename}. _GDBN__ will search the environment variable @code{PATH}
if necessary to locate your program. Omitting @var{filename} means to
discard information on the executable file.
@item symbol-file @r{[} @var{filename} @r{]}
@kindex symbol-file
Read symbol table information from file @var{filename}. @code{PATH} is
searched when necessary. Use the @code{file} command to get both symbol
table and program to run from the same file.
@code{symbol-file} with no argument clears out _GDBN__'s information on your
program's symbol table.
The @code{symbol-file} command causes _GDBN__ to forget the contents of its
convenience variables, the value history, and all breakpoints and
auto-display expressions. This is because they may contain pointers to
the internal data recording symbols and data types, which are part of
the old symbol table data being discarded inside _GDBN__.
@code{symbol-file} will not repeat if you press @key{RET} again after
executing it once.
On some kinds of object files, the @code{symbol-file} command does not
actually read the symbol table in full right away. Instead, it scans
the symbol table quickly to find which source files and which symbols
are present. The details are read later, one source file at a time,
when they are needed.
The purpose of this two-stage reading strategy is to make _GDBN__ start up
faster. For the most part, it is invisible except for occasional pauses
while the symbol table details for a particular source file are being
read. (The @code{set verbose} command can turn these pauses into
messages if desired. @xref{Messages/Warnings, ,Optional Warnings and
Messages}.)
When the symbol table is stored in COFF format, @code{symbol-file} does
read the symbol table data in full right away. We haven't implemented
the two-stage strategy for COFF yet.
When _GDBN__ is configured for a particular environment, it will
understand debugging information in whatever format is the standard
generated for that environment; you may use either a GNU compiler, or
other compilers that adhere to the local conventions. Best results are
usually obtained from GNU compilers; for example, using @code{_GCC__}
you can generate debugging information for optimized code.
@item core-file @r{[} @var{filename} @r{]}
@kindex core
@kindex core-file
Specify the whereabouts of a core dump file to be used as the ``contents
of memory''. Traditionally, core files contain only some parts of the
address space of the process that generated them; _GDBN__ can access the
executable file itself for other parts.
@code{core-file} with no argument specifies that no core file is
to be used.
Note that the core file is ignored when your program is actually running
under _GDBN__. So, if you have been running your program and you wish to
debug a core file instead, you must kill the subprocess in which the
program is running. To do this, use the @code{kill} command
(@pxref{Kill Process}).
@item load @var{filename}
@kindex load
_if__(_GENERIC__)
Depending on what remote debugging facilities are configured into
_GDBN__, the @code{load} command may be available. Where it exists, it
is meant to make @var{filename} (an executable) available for debugging
on the remote system---by downloading, or dynamic linking, for example.
@code{load} also records @var{filename}'s symbol table in _GDBN__, like
the @code{add-symbol-file} command.
If @code{load} is not available on your _GDBN__, attempting to execute
it gets the error message ``@code{You can't do that when your target is
@dots{}}''
_fi__(_GENERIC__)
_if__(_VXWORKS__)
On VxWorks, @code{load} will dynamically link @var{filename} on the
current target system as well as adding its symbols in _GDBN__.
_fi__(_VXWORKS__)
_if__(_I960__)
@cindex download to Nindy-960
With the Nindy interface to an Intel 960 board, @code{load} will
download @var{filename} to the 960 as well as adding its symbols in
_GDBN__.
_fi__(_I960__)
@code{load} will not repeat if you press @key{RET} again after using it.
@item add-symbol-file @var{filename} @var{address}
@kindex add-symbol-file
@cindex dynamic linking
The @code{add-symbol-file} command reads additional symbol table information
from the file @var{filename}. You would use this command when @var{filename}
has been dynamically loaded (by some other means) into the program that
is running. @var{address} should be the memory address at which the
file has been loaded; _GDBN__ cannot figure this out for itself.
The symbol table of the file @var{filename} is added to the symbol table
originally read with the @code{symbol-file} command. You can use the
@code{add-symbol-file} command any number of times; the new symbol data thus
read keeps adding to the old. To discard all old symbol data instead,
use the @code{symbol-file} command.
@code{add-symbol-file} will not repeat if you press @key{RET} after using it.
@item info files
@itemx info target
@kindex info files
@kindex info target
@code{info files} and @code{info target} are synonymous; both print the
current targets (@pxref{Targets}), including the names of the executable
and core dump files currently in use by _GDBN__, and the files from
which symbols were loaded. The command @code{help targets} lists all
possible targets rather than current ones.
@end table
All file-specifying commands allow both absolute and relative file names
as arguments. _GDBN__ always converts the file name to an absolute path
name and remembers it that way.
@cindex shared libraries
_GDBN__ supports the SunOS shared library format. _GDBN__ automatically
loads symbol definitions from shared libraries when you use the
@code{run} command, or when you examine a core file. (Before you issue
the @code{run} command, _GDBN__ won't understand references to a
function in a shared library, however---unless you are debugging a core
file).
@c FIXME: next _GDBN__ release should permit some refs to undef
@c FIXME...symbols---eg in a break cmd---assuming they're from a shared lib
@table @code
@item info share
@itemx info sharedlibrary
@kindex info sharedlibrary
@kindex info share
Print the names of the shared libraries which are currently loaded.
@item sharedlibrary @var{regex}
@itemx share @var{regex}
@kindex sharedlibrary
@kindex share
This is an obsolescent command; you can use it to explicitly
load shared object library symbols for files matching a UNIX regular
expression, but as with files loaded automatically, it will only load
shared libraries required by your program for a core file or after
typing @code{run}. If @var{regex} is omitted all shared libraries
required by your program are loaded.
@end table
@node Symbol Errors, , Files, _GDBN__ Files
@section Errors Reading Symbol Files
While reading a symbol file, _GDBN__ will occasionally encounter
problems, such as symbol types it does not recognize, or known bugs in
compiler output. By default, _GDBN__ does not notify you of such
problems, since they're relatively common and primarily of interest to
people debugging compilers. If you are interested in seeing information
about ill-constructed symbol tables, you can either ask _GDBN__ to print
only one message about each such type of problem, no matter how many
times the problem occurs; or you can ask _GDBN__ to print more messages,
to see how many times the problems occur, with the @code{set complaints}
command (@pxref{Messages/Warnings, ,Optional Warnings and Messages}).
The messages currently printed, and their meanings, are:
@table @code
@item inner block not inside outer block in @var{symbol}
The symbol information shows where symbol scopes begin and end
(such as at the start of a function or a block of statements). This
error indicates that an inner scope block is not fully contained
in its outer scope blocks.
_GDBN__ circumvents the problem by treating the inner block as if it had
the same scope as the outer block. In the error message, @var{symbol}
may be shown as ``@code{(don't know)}'' if the outer block is not a
function.
@item block at @var{address} out of order
The symbol information for symbol scope blocks should occur in
order of increasing addresses. This error indicates that it does not
do so.
_GDBN__ does not circumvent this problem, and will have trouble locating
symbols in the source file whose symbols being read. (You can often
determine what source file is affected by specifying @code{set verbose
on}. @xref{Messages/Warnings, ,Optional Warnings and Messages}.)
@item bad block start address patched
The symbol information for a symbol scope block has a start address
smaller than the address of the preceding source line. This is known
to occur in the SunOS 4.1.1 (and earlier) C compiler.
_GDBN__ circumvents the problem by treating the symbol scope block as
starting on the previous source line.
@item bad string table offset in symbol @var{n}
@cindex foo
Symbol number @var{n} contains a pointer into the string table which is
larger than the size of the string table.
_GDBN__ circumvents the problem by considering the symbol to have the
name @code{foo}, which may cause other problems if many symbols end up
with this name.
@item unknown symbol type @code{0x@var{nn}}
The symbol information contains new data types that _GDBN__ does not yet
know how to read. @code{0x@var{nn}} is the symbol type of the misunderstood
information, in hexadecimal.
_GDBN__ circumvents the error by ignoring this symbol information. This
will usually allow your program to be debugged, though certain symbols
will not be accessible. If you encounter such a problem and feel like
debugging it, you can debug @code{_GDBP__} with itself, breakpoint on
@code{complain}, then go up to the function @code{read_dbx_symtab} and
examine @code{*bufp} to see the symbol.
@item stub type has NULL name
_GDBN__ could not find the full definition for a struct or class.
@item const/volatile indicator missing (ok if using g++ v1.x), got@dots{}
The symbol information for a C++ member function is missing some
information that recent versions of the compiler should have output
for it.
@item info mismatch between compiler and debugger
_GDBN__ could not parse a type specification output by the compiler.
@end table
@node Targets, Controlling _GDBN__, _GDBN__ Files, Top
@chapter Specifying a Debugging Target
@cindex debugging target
@kindex target
A @dfn{target} is the execution environment occupied by your program.
Often, _GDBN__ runs in the same host environment as your program you are
debugging; in that case, the debugging target is specified as a side
effect when you use the @code{file} or @code{core} commands. When you
need more flexibility---for example, running _GDBN__ on a physically
separate host, or controlling a standalone system over a serial port or
a realtime system over a TCP/IP connection---you can use the
@code{target} command to specify one of the target types configured for
_GDBN__ (@pxref{Target Commands}).
@menu
* Active Targets:: Active Targets
* Target Commands:: Commands for Managing Targets
* Remote:: Remote Debugging
@end menu
@node Active Targets, Target Commands, Targets, Targets
@section Active Targets
@cindex stacking targets
@cindex active targets
@cindex multiple targets
There are three classes of targets: processes, core files, and
executable files. _GDBN__ can work concurrently on up to three active
targets, one in each class. This allows you to (for example) start a
process and inspect its activity without abandoning your work on a core
file.
If, for example, you execute @samp{gdb a.out}, then the executable file
@code{a.out} is the only active target. If you designate a core file as
well---presumably from a prior run that crashed and coredumped---then
_GDBN__ has two active targets and will use them in tandem, looking
first in the corefile target, then in the executable file, to satisfy
requests for memory addresses. (Typically, these two classes of target
are complementary, since core files contain only a program's
read-write memory---variables and so on---plus machine status, while
executable files contain only the program text and initialized data.)
When you type @code{run}, your executable file becomes an active process
target as well. When a process target is active, all _GDBN__ commands
requesting memory addresses refer to that target; addresses in an active
core file or executable file target are obscured while the process
target is active.
Use the @code{core-file}, and @code{exec-file} commands to select a new
core file or executable target (@pxref{Files, ,Commands to Specify Files}). To specify as a target
a process that's already running, use the @code{attach} command
(@pxref{Attach, ,Debugging an Already-Running Process}.).
@node Target Commands, Remote, Active Targets, Targets
@section Commands for Managing Targets
@table @code
@item target @var{type} @var{parameters}
Connects the _GDBN__ host environment to a target machine or process. A
target is typically a protocol for talking to debugging facilities. You
use the argument @var{type} to specify the type or protocol of the
target machine.
Further @var{parameters} are interpreted by the target protocol, but
typically include things like device names or host names to connect
with, process numbers, and baud rates.
The @code{target} command will not repeat if you press @key{RET} again
after executing the command.
@item help target
@kindex help target
Displays the names of all targets available. To display targets
currently selected, use either @code{info target} or @code{info files}
(@pxref{Files, ,Commands to Specify Files}).
@item help target @var{name}
Describe a particular target, including any parameters necessary to
select it.
@end table
Here are some common targets (available, or not, depending on the _GDBN__
configuration):
@table @code
@item target exec @var{prog}
@kindex target exec
An executable file. @samp{target exec @var{prog}} is the same as
@samp{exec-file @var{prog}}.
@item target core @var{filename}
@kindex target core
A core dump file. @samp{target core @var{filename}} is the same as
@samp{core-file @var{filename}}.
@item target remote @var{dev}
@kindex target remote
Remote serial target in _GDBN__-specific protocol. The argument @var{dev}
specifies what serial device to use for the connection (e.g.
@file{/dev/ttya}). @xref{Remote}.
_if__(_AMD29K__)
@item target amd-eb @var{dev} @var{speed} @var{PROG}
@kindex target amd-eb
@cindex AMD EB29K
Remote PC-resident AMD EB29K board, attached over serial lines.
@var{dev} is the serial device, as for @code{target remote};
@var{speed} allows you to specify the linespeed; and @var{PROG} is the
name of the program to be debugged, as it appears to DOS on the PC.
@xref{EB29K Remote}.
_fi__(_AMD29K__)
_if__(_I960__)
@item target nindy @var{devicename}
@kindex target nindy
An Intel 960 board controlled by a Nindy Monitor. @var{devicename} is
the name of the serial device to use for the connection, e.g.
@file{/dev/ttya}. @xref{i960-Nindy Remote}.
_fi__(_I960__)
_if__(_VXWORKS__)
@item target vxworks @var{machinename}
@kindex target vxworks
A VxWorks system, attached via TCP/IP. The argument @var{machinename}
is the target system's machine name or IP address.
@xref{VxWorks Remote}.
_fi__(_VXWORKS__)
@end table
_if__(_GENERIC__)
Different targets are available on different configurations of _GDBN__; your
configuration may have more or fewer targets.
_fi__(_GENERIC__)
@node Remote, , Target Commands, Targets
@section Remote Debugging
@cindex remote debugging
_if__(_GENERIC__)
@menu
_include__(gdbinv-m.m4)<>_dnl__
@end menu
_fi__(_GENERIC__)
If you are trying to debug a program running on a machine that cannot run
_GDBN__ in the usual way, it is often useful to use remote debugging. For
example, you might use remote debugging on an operating system kernel, or on
a small system which does not have a general purpose operating system
powerful enough to run a full-featured debugger.
Some configurations of _GDBN__ have special serial or TCP/IP interfaces
to make this work with particular debugging targets. In addition,
_GDBN__ comes with a generic serial protocol (specific to _GDBN__, but
not specific to any particular target system) which you can use if you
write the remote stubs---the code that will run on the remote system to
communicate with _GDBN__.
To use the _GDBN__ remote serial protocol, the program to be debugged on
the remote machine needs to contain a debugging stub which talks to
_GDBN__ over the serial line. Several working remote stubs are
distributed with _GDBN__; see the @file{README} file in the _GDBN__
distribution for more information.
For details of this communication protocol, see the comments in the
_GDBN__ source file @file{remote.c}.
To start remote debugging, first run _GDBN__ and specify as an executable file
the program that is running in the remote machine. This tells _GDBN__ how
to find your program's symbols and the contents of its pure text. Then
establish communication using the @code{target remote} command with a device
name as an argument. For example:
@example
target remote /dev/ttyb
@end example
@noindent
if the serial line is connected to the device named @file{/dev/ttyb}. This
will stop the remote machine if it is not already stopped.
Now you can use all the usual commands to examine and change data and to
step and continue the remote program.
To resume the remote program and stop debugging it, use the @code{detach}
command.
Other remote targets may be available in your
configuration of _GDBN__; use @code{help targets} to list them.
_if__(_GENERIC__)
@c Text on starting up GDB in various specific cases; it goes up front
@c in manuals configured for any of those particular situations, here
@c otherwise.
_include__(gdbinv-s.m4)
_fi__(_GENERIC__)
@node Controlling _GDBN__, Sequences, Targets, Top
@chapter Controlling _GDBN__
You can alter many aspects of _GDBN__'s interaction with you by using
the @code{set} command. For commands controlling how _GDBN__ displays
data, @pxref{Print Settings}; other settings are described here.
@menu
* Prompt:: Prompt
* Editing:: Command Editing
* History:: Command History
* Screen Size:: Screen Size
* Numbers:: Numbers
* Messages/Warnings:: Optional Warnings and Messages
@end menu
@node Prompt, Editing, Controlling _GDBN__, Controlling _GDBN__
@section Prompt
@cindex prompt
_GDBN__ indicates its readiness to read a command by printing a string
called the @dfn{prompt}. This string is normally @samp{(_GDBP__)}. You
can change the prompt string with the @code{set prompt} command. For
instance, when debugging _GDBN__ with _GDBN__, it is useful to change
the prompt in one of the _GDBN__<>s so that you can always tell which
one you are talking to.
@table @code
@item set prompt @var{newprompt}
@kindex set prompt
Directs _GDBN__ to use @var{newprompt} as its prompt string henceforth.
@kindex show prompt
@item show prompt
Prints a line of the form: @samp{Gdb's prompt is: @var{your-prompt}}
@end table
@node Editing, History, Prompt, Controlling _GDBN__
@section Command Editing
@cindex readline
@cindex command line editing
_GDBN__ reads its input commands via the @dfn{readline} interface. This
GNU library provides consistent behavior for programs which provide a
command line interface to the user. Advantages are @code{emacs}-style
or @code{vi}-style inline editing of commands, @code{csh}-like history
substitution, and a storage and recall of command history across
debugging sessions.
You may control the behavior of command line editing in _GDBN__ with the
command @code{set}.
@table @code
@kindex set editing
@cindex editing
@item set editing
@itemx set editing on
Enable command line editing (enabled by default).
@item set editing off
Disable command line editing.
@kindex show editing
@item show editing
Show whether command line editing is enabled.
@end table
@node History, Screen Size, Editing, Controlling _GDBN__
@section Command History
@table @code
@cindex history substitution
@cindex history file
@kindex set history filename
@item set history filename @var{fname}
Set the name of the _GDBN__ command history file to @var{fname}. This is
the file from which _GDBN__ will read an initial command history
list or to which it will write this list when it exits. This list is
accessed through history expansion or through the history
command editing characters listed below. This file defaults to the
value of the environment variable @code{GDBHISTFILE}, or to
@file{./.gdb_history} if this variable is not set.
@cindex history save
@kindex set history save
@item set history save
@itemx set history save on
Record command history in a file, whose name may be specified with the
@code{set history filename} command. By default, this option is disabled.
@item set history save off
Stop recording command history in a file.
@cindex history size
@kindex set history size
@item set history size @var{size}
Set the number of commands which _GDBN__ will keep in its history list.
This defaults to the value of the environment variable
@code{HISTSIZE}, or to 256 if this variable is not set.
@end table
@cindex history expansion
History expansion assigns special meaning to the character @kbd{!}.
@iftex
(@pxref{Event Designators}.)
@end iftex
Since @kbd{!} is also the logical not operator in C, history expansion
is off by default. If you decide to enable history expansion with the
@code{set history expansion on} command, you may sometimes need to
follow @kbd{!} (when it is used as logical not, in an expression) with
a space or a tab to prevent it from being expanded. The readline
history facilities will not attempt substitution on the strings
@kbd{!=} and @kbd{!(}, even when history expansion is enabled.
The commands to control history expansion are:
@table @code
@kindex set history expansion
@item set history expansion on
@itemx set history expansion
Enable history expansion. History expansion is off by default.
@item set history expansion off
Disable history expansion.
The readline code comes with more complete documentation of
editing and history expansion features. Users unfamiliar with @code{emacs}
or @code{vi} may wish to read it.
@iftex
@xref{Command Line Editing}.
@end iftex
@c @group
@kindex show history
@item show history
@itemx show history filename
@itemx show history save
@itemx show history size
@itemx show history expansion
These commands display the state of the _GDBN__ history parameters.
@code{show history} by itself displays all four states.
@c @end group
@end table
@table @code
@kindex show commands
@item show commands
Display the last ten commands in the command history.
@item show commands @var{n}
Print ten commands centered on command number @var{n}.
@item show commands +
Print ten commands just after the commands last printed.
@end table
@node Screen Size, Numbers, History, Controlling _GDBN__
@section Screen Size
@cindex size of screen
@cindex pauses in output
Certain commands to _GDBN__ may produce large amounts of information
output to the screen. To help you read all of it, _GDBN__ pauses and
asks you for input at the end of each page of output. Type @key{RET}
when you want to continue the output. _GDBN__ also uses the screen
width setting to determine when to wrap lines of output. Depending on
what is being printed, it tries to break the line at a readable place,
rather than simply letting it overflow onto the following line.
Normally _GDBN__ knows the size of the screen from the termcap data base
together with the value of the @code{TERM} environment variable and the
@code{stty rows} and @code{stty cols} settings. If this is not correct,
you can override it with the @code{set height} and @code{set
width} commands:
@table @code
@item set height @var{lpp}
@itemx show height
@itemx set width @var{cpl}
@itemx show width
@kindex set height
@kindex set width
@kindex show width
@kindex show height
These @code{set} commands specify a screen height of @var{lpp} lines and
a screen width of @var{cpl} characters. The associated @code{show}
commands display the current settings.
If you specify a height of zero lines, _GDBN__ will not pause during output
no matter how long the output is. This is useful if output is to a file
or to an editor buffer.
@end table
@node Numbers, Messages/Warnings, Screen Size, Controlling _GDBN__
@section Numbers
@cindex number representation
@cindex entering numbers
You can always enter numbers in octal, decimal, or hexadecimal in _GDBN__ by
the usual conventions: octal numbers begin with @samp{0}, decimal
numbers end with @samp{.}, and hexadecimal numbers begin with @samp{0x}.
Numbers that begin with none of these are, by default, entered in base
10; likewise, the default display for numbers---when no particular
format is specified---is base 10. You can change the default base for
both input and output with the @code{set radix} command.
@table @code
@kindex set radix
@item set radix @var{base}
Set the default base for numeric input and display. Supported choices
for @var{base} are decimal 2, 8, 10, 16. @var{base} must itself be
specified either unambiguously or using the current default radix; for
example, any of
@example
set radix 1010
set radix 012
set radix 10.
set radix 0xa
@end example
@noindent
will set the base to decimal. On the other hand, @samp{set radix 10}
will leave the radix unchanged no matter what it was.
@kindex show radix
@item show radix
Display the current default base for numeric input and display.
@end table
@node Messages/Warnings, , Numbers, Controlling _GDBN__
@section Optional Warnings and Messages
By default, _GDBN__ is silent about its inner workings. If you are running
on a slow machine, you may want to use the @code{set verbose} command.
It will make _GDBN__ tell you when it does a lengthy internal operation, so
you won't think it has crashed.
Currently, the messages controlled by @code{set verbose} are those which
announce that the symbol table for a source file is being read
(@pxref{Files, ,Commands to Specify Files}, in the description of the command
@code{symbol-file}).
@c The following is the right way to do it, but emacs 18.55 does not support
@c @ref, and neither the emacs lisp manual version of texinfmt or makeinfo
@c is released.
@ignore
see @code{symbol-file} in @ref{Files, ,Commands to Specify Files}).
@end ignore
@table @code
@kindex set verbose
@item set verbose on
Enables _GDBN__'s output of certain informational messages.
@item set verbose off
Disables _GDBN__'s output of certain informational messages.
@kindex show verbose
@item show verbose
Displays whether @code{set verbose} is on or off.
@end table
By default, if _GDBN__ encounters bugs in the symbol table of an object
file, it is silent; but if you are debugging a compiler, you may find
this information useful (@pxref{Symbol Errors}).
@table @code
@kindex set complaints
@item set complaints @var{limit}
Permits _GDBN__ to output @var{limit} complaints about each type of unusual
symbols before becoming silent about the problem. Set @var{limit} to
zero to suppress all complaints; set it to a large number to prevent
complaints from being suppressed.
@kindex show complaints
@item show complaints
Displays how many symbol complaints _GDBN__ is permitted to produce.
@end table
By default, _GDBN__ is cautious, and asks what sometimes seem to be a
lot of stupid questions to confirm certain commands. For example, if
you try to run a program which is already running:
@example
(_GDBP__) run
The program being debugged has been started already.
Start it from the beginning? (y or n)
@end example
If you are willing to unflinchingly face the consequences of your own
commands, you can disable this ``feature'':
@table @code
@kindex set confirm
@cindex flinching
@cindex confirmation
@cindex stupid questions
@item set confirm off
Disables confirmation requests.
@item set confirm on
Enables confirmation requests (the default).
@item show confirm
@kindex show confirm
Displays state of confirmation requests.
@end table
@c FIXME this does not really belong here. But where *does* it belong?
@cindex reloading symbols
Some systems allow individual object files that make up your program to
be replaced without stopping and restarting your program.
_if__(_VXWORKS__)
For example, in VxWorks you can simply recompile a defective object file
and keep on running.
_fi__(_VXWORKS__)
If you are running on one of these systems, you can allow _GDBN__ to
reload the symbols for automatically relinked modules:@refill
@table @code
@kindex set symbol-reloading
@item set symbol-reloading on
Replace symbol definitions for the corresponding source file when an
object file with a particular name is seen again.
@item set symbol-reloading off
Do Not replace symbol definitions when re-encountering object files of
the same name. This is the default state; if you are not running on a
system that permits automatically relinking modules, you should leave
@code{symbol-reloading} off, since otherwise _GDBN__ may discard symbols
when linking large programs, that may contain several modules (from
different directories or libraries) with the same name.
@item show symbol-reloading
Show the current @code{on} or @code{off} setting.
@end table
@node Sequences, Emacs, Controlling _GDBN__, Top
@chapter Canned Sequences of Commands
Aside from breakpoint commands (@pxref{Break Commands, ,Breakpoint
Command Lists}), _GDBN__ provides two ways to store sequences of
commands for execution as a unit: user-defined commands and command
files.@refill
@menu
* Define:: User-Defined Commands
* Command Files:: Command Files
* Output:: Commands for Controlled Output
@end menu
@node Define, Command Files, Sequences, Sequences
@section User-Defined Commands
@cindex user-defined command
A @dfn{user-defined command} is a sequence of _GDBN__ commands to which you
assign a new name as a command. This is done with the @code{define}
command.
@table @code
@item define @var{commandname}
@kindex define
Define a command named @var{commandname}. If there is already a command
by that name, you are asked to confirm that you want to redefine it.
The definition of the command is made up of other _GDBN__ command lines,
which are given following the @code{define} command. The end of these
commands is marked by a line containing @code{end}.
@item document @var{commandname}
@kindex document
Give documentation to the user-defined command @var{commandname}. The
command @var{commandname} must already be defined. This command reads
lines of documentation just as @code{define} reads the lines of the
command definition, ending with @code{end}. After the @code{document}
command is finished, @code{help} on command @var{commandname} will print
the documentation you have specified.
You may use the @code{document} command again to change the
documentation of a command. Redefining the command with @code{define}
does not change the documentation.
@item help user-defined
@kindex help user-defined
List all user-defined commands, with the first line of the documentation
(if any) for each.
@item info user
@itemx info user @var{commandname}
@kindex info user
Display the _GDBN__ commands used to define @var{commandname} (but not its
documentation). If no @var{commandname} is given, display the
definitions for all user-defined commands.
@end table
User-defined commands do not take arguments. When they are executed, the
commands of the definition are not printed. An error in any command
stops execution of the user-defined command.
Commands that would ask for confirmation if used interactively proceed
without asking when used inside a user-defined command. Many _GDBN__ commands
that normally print messages to say what they are doing omit the messages
when used in a user-defined command.
@node Command Files, Output, Define, Sequences
@section Command Files
@cindex command files
A command file for _GDBN__ is a file of lines that are _GDBN__ commands. Comments
(lines starting with @kbd{#}) may also be included. An empty line in a
command file does nothing; it does not mean to repeat the last command, as
it would from the terminal.
@cindex init file
@cindex @file{_GDBINIT__}
When you start _GDBN__, it automatically executes commands from its
@dfn{init files}. These are files named @file{_GDBINIT__}. _GDBN__
reads the init file (if any) in your home directory and then the init
file (if any) in the current working directory. (The init files are not
executed if you use the @samp{-nx} option; @pxref{Mode Options}.) You
can also request the execution of a command file with the @code{source}
command:
@table @code
@item source @var{filename}
@kindex source
Execute the command file @var{filename}.
@end table
The lines in a command file are executed sequentially. They are not
printed as they are executed. An error in any command terminates execution
of the command file.
Commands that would ask for confirmation if used interactively proceed
without asking when used in a command file. Many _GDBN__ commands that
normally print messages to say what they are doing omit the messages
when called from command files.
@node Output, , Command Files, Sequences
@section Commands for Controlled Output
During the execution of a command file or a user-defined command, normal
_GDBN__ output is suppressed; the only output that appears is what is
explicitly printed by the commands in the definition. This section
describes three commands useful for generating exactly the output you
want.
@table @code
@item echo @var{text}
@kindex echo
@c I do not consider backslash-space a standard C escape sequence
@c because it is not in ANSI.
Print @var{text}. Nonprinting characters can be included in @var{text}
using C escape sequences, such as @samp{\n} to print a newline. @b{No
newline will be printed unless you specify one.} In addition to the
standard C escape sequences, a backslash followed by a space stands for a
space. This is useful for outputting a string with spaces at the
beginning or the end, since leading and trailing spaces are otherwise
trimmed from all arguments. Thus, to print @samp{@ and foo =@ }, use the
command @samp{echo \@ and foo = \@ }.
@c FIXME? '@ ' works in tex and info, but confuses texi2roff[-2].
A backslash at the end of @var{text} can be used, as in C, to continue
the command onto subsequent lines. For example,
@example
echo This is some text\n\
which is continued\n\
onto several lines.\n
@end example
produces the same output as
@example
echo This is some text\n
echo which is continued\n
echo onto several lines.\n
@end example
@item output @var{expression}
@kindex output
Print the value of @var{expression} and nothing but that value: no
newlines, no @samp{$@var{nn} = }. The value is not entered in the
value history either. @xref{Expressions} for more information on
expressions.
@item output/@var{fmt} @var{expression}
Print the value of @var{expression} in format @var{fmt}. You can use
the same formats as for @code{print}; @pxref{Output formats}, for more
information.
@item printf @var{string}, @var{expressions}@dots{}
@kindex printf
Print the values of the @var{expressions} under the control of
@var{string}. The @var{expressions} are separated by commas and may
be either numbers or pointers. Their values are printed as specified
by @var{string}, exactly as if your program were to execute
@example
printf (@var{string}, @var{expressions}@dots{});
@end example
For example, you can print two values in hex like this:
@example
printf "foo, bar-foo = 0x%x, 0x%x\n", foo, bar-foo
@end example
The only backslash-escape sequences that you can use in the format
string are the simple ones that consist of backslash followed by a
letter.
@end table
@node Emacs, _GDBN__ Bugs, Sequences, Top
@chapter Using _GDBN__ under GNU Emacs
@cindex emacs
A special interface allows you to use GNU Emacs to view (and
edit) the source files for the program you are debugging with
_GDBN__.
To use this interface, use the command @kbd{M-x gdb} in Emacs. Give the
executable file you want to debug as an argument. This command starts
_GDBN__ as a subprocess of Emacs, with input and output through a newly
created Emacs buffer.
Using _GDBN__ under Emacs is just like using _GDBN__ normally except for two
things:
@itemize @bullet
@item
All ``terminal'' input and output goes through the Emacs buffer.
@end itemize
This applies both to _GDBN__ commands and their output, and to the input
and output done by the program you are debugging.
This is useful because it means that you can copy the text of previous
commands and input them again; you can even use parts of the output
in this way.
All the facilities of Emacs' Shell mode are available for interacting
with your program. In particular, you can send signals the usual
way---for example, @kbd{C-c C-c} for an interrupt, @kbd{C-c C-z} for a
stop.
@itemize @bullet
@item
_GDBN__ displays source code through Emacs.
@end itemize
Each time _GDBN__ displays a stack frame, Emacs automatically finds the
source file for that frame and puts an arrow (_0__@samp{=>}_1__) at the
left margin of the current line. Emacs uses a separate buffer for
source display, and splits the window to show both your _GDBN__ session
and the source.
Explicit _GDBN__ @code{list} or search commands still produce output as
usual, but you probably will have no reason to use them.
@quotation
@emph{Warning:} If the directory where your program resides is not your
current directory, it can be easy to confuse Emacs about the location of
the source files, in which case the auxiliary display buffer will not
appear to show your source. _GDBN__ can find programs by searching your
environment's @code{PATH} variable, so the _GDBN__ input and output
session will proceed normally; but Emacs does not get enough information
back from _GDBN__ to locate the source files in this situation. To
avoid this problem, either start _GDBN__ mode from the directory where
your program resides, or specify a full path name when prompted for the
@kbd{M-x gdb} argument.
A similar confusion can result if you use the _GDBN__ @code{file} command to
switch to debugging a program in some other location, from an existing
_GDBN__ buffer in Emacs.
@end quotation
By default, @kbd{M-x gdb} calls the program called @file{gdb}. If
you need to call _GDBN__ by a different name (for example, if you keep
several configurations around, with different names) you can set the
Emacs variable @code{gdb-command-name}; for example,
@example
(setq gdb-command-name "mygdb")
@end example
@noindent
(preceded by @kbd{ESC ESC}, or typed in the @code{*scratch*} buffer, or
in your @file{.emacs} file) will make Emacs call the program named
``@code{mygdb}'' instead.
In the _GDBN__ I/O buffer, you can use these special Emacs commands in
addition to the standard Shell mode commands:
@table @kbd
@item C-h m
Describe the features of Emacs' _GDBN__ Mode.
@item M-s
Execute to another source line, like the _GDBN__ @code{step} command; also
update the display window to show the current file and location.
@item M-n
Execute to next source line in this function, skipping all function
calls, like the _GDBN__ @code{next} command. Then update the display window
to show the current file and location.
@item M-i
Execute one instruction, like the _GDBN__ @code{stepi} command; update
display window accordingly.
@item M-x gdb-nexti
Execute to next instruction, using the _GDBN__ @code{nexti} command; update
display window accordingly.
@item C-c C-f
Execute until exit from the selected stack frame, like the _GDBN__
@code{finish} command.
@item M-c
Continue execution of your program, like the _GDBN__ @code{continue}
command.
@emph{Warning:} In Emacs v19, this command is @kbd{C-c C-p}.
@item M-u
Go up the number of frames indicated by the numeric argument
(@pxref{Arguments, , Numeric Arguments, emacs, The GNU Emacs Manual}),
like the _GDBN__ @code{up} command.
@emph{Warning:} In Emacs v19, this command is @kbd{C-c C-u}.@refill
@item M-d
Go down the number of frames indicated by the numeric argument, like the
_GDBN__ @code{down} command.
@emph{Warning:} In Emacs v19, this command is @kbd{C-c C-d}.
@item C-x &
Read the number where the cursor is positioned, and insert it at the end
of the _GDBN__ I/O buffer. For example, if you wish to disassemble code
around an address that was displayed earlier, type @kbd{disassemble};
then move the cursor to the address display, and pick up the
argument for @code{disassemble} by typing @kbd{C-x &}.
You can customize this further on the fly by defining elements of the list
@code{gdb-print-command}; once it is defined, you can format or
otherwise process numbers picked up by @kbd{C-x &} before they are
inserted. A numeric argument to @kbd{C-x &} will both indicate that you
wish special formatting, and act as an index to pick an element of the
list. If the list element is a string, the number to be inserted is
formatted using the Emacs function @code{format}; otherwise the number
is passed as an argument to the corresponding list element.
@end table
In any source file, the Emacs command @kbd{C-x SPC} (@code{gdb-break})
tells _GDBN__ to set a breakpoint on the source line point is on.
If you accidentally delete the source-display buffer, an easy way to get
it back is to type the command @code{f} in the _GDBN__ buffer, to
request a frame display; when you run under Emacs, this will recreate
the source buffer if necessary to show you the context of the current
frame.
The source files displayed in Emacs are in ordinary Emacs buffers
which are visiting the source files in the usual way. You can edit
the files with these buffers if you wish; but keep in mind that _GDBN__
communicates with Emacs in terms of line numbers. If you add or
delete lines from the text, the line numbers that _GDBN__ knows will cease
to correspond properly to the code.
@c The following dropped because Epoch is nonstandard. Reactivate
@c if/when v19 does something similar. ---pesch@cygnus.com 19dec1990
@ignore
@kindex emacs epoch environment
@kindex epoch
@kindex inspect
Version 18 of Emacs has a built-in window system called the @code{epoch}
environment. Users of this environment can use a new command,
@code{inspect} which performs identically to @code{print} except that
each value is printed in its own window.
@end ignore
@node _GDBN__ Bugs, Renamed Commands, Emacs, Top
@chapter Reporting Bugs in _GDBN__
@cindex Bugs in _GDBN__
@cindex Reporting Bugs in _GDBN__
Your bug reports play an essential role in making _GDBN__ reliable.
Reporting a bug may help you by bringing a solution to your problem, or it
may not. But in any case the principal function of a bug report is to help
the entire community by making the next version of _GDBN__ work better. Bug
reports are your contribution to the maintenance of _GDBN__.
In order for a bug report to serve its purpose, you must include the
information that enables us to fix the bug.
@menu
* Bug Criteria:: Have You Found a Bug?
* Bug Reporting:: How to Report Bugs
@end menu
@node Bug Criteria, Bug Reporting, _GDBN__ Bugs, _GDBN__ Bugs
@section Have You Found a Bug?
@cindex Bug Criteria
If you are not sure whether you have found a bug, here are some guidelines:
@itemize @bullet
@item
@cindex Fatal Signal
@cindex Core Dump
If the debugger gets a fatal signal, for any input whatever, that is a
_GDBN__ bug. Reliable debuggers never crash.
@item
@cindex error on Valid Input
If _GDBN__ produces an error message for valid input, that is a bug.
@item
@cindex Invalid Input
If _GDBN__ does not produce an error message for invalid input,
that is a bug. However, you should note that your idea of
``invalid input'' might be our idea of ``an extension'' or ``support
for traditional practice''.
@item
If you are an experienced user of debugging tools, your suggestions
for improvement of _GDBN__ are welcome in any case.
@end itemize
@node Bug Reporting, , Bug Criteria, _GDBN__ Bugs
@section How to Report Bugs
@cindex Bug Reports
@cindex _GDBN__ Bugs, Reporting
A number of companies and individuals offer support for GNU products.
If you obtained _GDBN__ from a support organization, we recommend you
contact that organization first.
Contact information for many support companies and individuals is
available in the file @file{etc/SERVICE} in the GNU Emacs distribution.
In any event, we also recommend that you send bug reports for _GDBN__ to one
of these addresses:
@example
bug-gdb@@prep.ai.mit.edu
@{ucbvax|mit-eddie|uunet@}!prep.ai.mit.edu!bug-gdb
@end example
@strong{Do not send bug reports to @samp{info-gdb}, or to
@samp{help-gdb}, or to any newsgroups.} Most users of _GDBN__ do not want to
receive bug reports. Those that do, have arranged to receive @samp{bug-gdb}.
The mailing list @samp{bug-gdb} has a newsgroup @samp{gnu.gdb.bug} which
serves as a repeater. The mailing list and the newsgroup carry exactly
the same messages. Often people think of posting bug reports to the
newsgroup instead of mailing them. This appears to work, but it has one
problem which can be crucial: a newsgroup posting often lacks a mail
path back to the sender. Thus, if we need to ask for more information,
we may be unable to reach you. For this reason, it is better to send
bug reports to the mailing list.
As a last resort, send bug reports on paper to:
@example
GNU Debugger Bugs
Free Software Foundation
545 Tech Square
Cambridge, MA 02139
@end example
The fundamental principle of reporting bugs usefully is this:
@strong{report all the facts}. If you are not sure whether to state a
fact or leave it out, state it!
Often people omit facts because they think they know what causes the
problem and assume that some details do not matter. Thus, you might
assume that the name of the variable you use in an example does not matter.
Well, probably it does not, but one cannot be sure. Perhaps the bug is a
stray memory reference which happens to fetch from the location where that
name is stored in memory; perhaps, if the name were different, the contents
of that location would fool the debugger into doing the right thing despite
the bug. Play it safe and give a specific, complete example. That is the
easiest thing for you to do, and the most helpful.
Keep in mind that the purpose of a bug report is to enable us to fix
the bug if it is new to us. It isn't as important what happens if
the bug is already known. Therefore, always write your bug reports on
the assumption that the bug has not been reported previously.
Sometimes people give a few sketchy facts and ask, ``Does this ring a
bell?'' Those bug reports are useless, and we urge everyone to
@emph{refuse to respond to them} except to chide the sender to report
bugs properly.
To enable us to fix the bug, you should include all these things:
@itemize @bullet
@item
The version of _GDBN__. _GDBN__ announces it if you start with no
arguments; you can also print it at any time using @code{show version}.
Without this, we won't know whether there is any point in looking for
the bug in the current version of _GDBN__.
@item
The type of machine you are using, and the operating system name and
version number.
@item
What compiler (and its version) was used to compile _GDBN__---e.g.
``_GCC__-1.37.1''.
@item
What compiler (and its version) was used to compile the program you
are debugging---e.g. ``_GCC__-1.37.1''.
@item
The command arguments you gave the compiler to compile your example and
observe the bug. For example, did you use @samp{-O}? To guarantee
you won't omit something important, list them all. A copy of the
Makefile (or the output from make) is sufficient.
If we were to try to guess the arguments, we would probably guess wrong
and then we might not encounter the bug.
@item
A complete input script, and all necessary source files, that will
reproduce the bug.
@item
A description of what behavior you observe that you believe is
incorrect. For example, ``It gets a fatal signal.''
Of course, if the bug is that _GDBN__ gets a fatal signal, then we will
certainly notice it. But if the bug is incorrect output, we might not
notice unless it is glaringly wrong. We are human, after all. You
might as well not give us a chance to make a mistake.
Even if the problem you experience is a fatal signal, you should still
say so explicitly. Suppose something strange is going on, such as,
your copy of _GDBN__ is out of synch, or you have encountered a
bug in the C library on your system. (This has happened!) Your copy
might crash and ours would not. If you told us to expect a crash,
then when ours fails to crash, we would know that the bug was not
happening for us. If you had not told us to expect a crash, then we
would not be able to draw any conclusion from our observations.
@item
If you wish to suggest changes to the _GDBN__ source, send us context
diffs. If you even discuss something in the _GDBN__ source, refer to
it by context, not by line number.
The line numbers in our development sources won't match those in your
sources. Your line numbers would convey no useful information to us.
@end itemize
Here are some things that are not necessary:
@itemize @bullet
@item
A description of the envelope of the bug.
Often people who encounter a bug spend a lot of time investigating
which changes to the input file will make the bug go away and which
changes will not affect it.
This is often time consuming and not very useful, because the way we
will find the bug is by running a single example under the debugger
with breakpoints, not by pure deduction from a series of examples.
We recommend that you save your time for something else.
Of course, if you can find a simpler example to report @emph{instead}
of the original one, that is a convenience for us. Errors in the
output will be easier to spot, running under the debugger will take
less time, etc.
However, simplification is not vital; if you do not want to do this,
report the bug anyway and send us the entire test case you used.
@item
A patch for the bug.
A patch for the bug does help us if it is a good one. But do not omit
the necessary information, such as the test case, on the assumption that
a patch is all we need. We might see problems with your patch and decide
to fix the problem another way, or we might not understand it at all.
Sometimes with a program as complicated as _GDBN__ it is very hard to
construct an example that will make the program follow a certain path
through the code. If you do not send us the example, we won't be able
to construct one, so we won't be able to verify that the bug is fixed.
And if we cannot understand what bug you are trying to fix, or why your
patch should be an improvement, we won't install it. A test case will
help us to understand.
@item
A guess about what the bug is or what it depends on.
Such guesses are usually wrong. Even we cannot guess right about such
things without first using the debugger to find the facts.
@end itemize
@iftex
@c appendices describing GNU readline. Distributed with readline code.
@include rluser.texinfo
@include inc-hist.texi
@end iftex
@node Renamed Commands, Installing _GDBN__, _GDBN__ Bugs, Top
@appendix Renamed Commands
The following commands were renamed in _GDBN__ 4.0, in order to make the
command set as a whole more consistent and easier to use and remember:
@kindex add-syms
@kindex delete environment
@kindex info copying
@kindex info convenience
@kindex info directories
@kindex info editing
@kindex info history
@kindex info targets
@kindex info values
@kindex info version
@kindex info warranty
@kindex set addressprint
@kindex set arrayprint
@kindex set prettyprint
@kindex set screen-height
@kindex set screen-width
@kindex set unionprint
@kindex set vtblprint
@kindex set demangle
@kindex set asm-demangle
@kindex set sevenbit-strings
@kindex set array-max
@kindex set caution
@kindex set history write
@kindex show addressprint
@kindex show arrayprint
@kindex show prettyprint
@kindex show screen-height
@kindex show screen-width
@kindex show unionprint
@kindex show vtblprint
@kindex show demangle
@kindex show asm-demangle
@kindex show sevenbit-strings
@kindex show array-max
@kindex show caution
@kindex show history write
@kindex unset
@c TEXI2ROFF-KILL
@ifinfo
@c END TEXI2ROFF-KILL
@example
OLD COMMAND NEW COMMAND
@c TEXI2ROFF-KILL
--------------- -------------------------------
@c END TEXI2ROFF-KILL
add-syms add-symbol-file
delete environment unset environment
info convenience show convenience
info copying show copying
info directories show directories
info editing show commands
info history show values
info targets help target
info values show values
info version show version
info warranty show warranty
set/show addressprint set/show print address
set/show array-max set/show print elements
set/show arrayprint set/show print array
set/show asm-demangle set/show print asm-demangle
set/show caution set/show confirm
set/show demangle set/show print demangle
set/show history write set/show history save
set/show prettyprint set/show print pretty
set/show screen-height set/show height
set/show screen-width set/show width
set/show sevenbit-strings set/show print sevenbit-strings
set/show unionprint set/show print union
set/show vtblprint set/show print vtbl
unset [No longer an alias for delete]
@end example
@c TEXI2ROFF-KILL
@end ifinfo
@tex
\vskip \parskip\vskip \baselineskip
\halign{\tt #\hfil &\qquad#&\tt #\hfil\cr
{\bf Old Command} &&{\bf New Command}\cr
add-syms &&add-symbol-file\cr
delete environment &&unset environment\cr
info convenience &&show convenience\cr
info copying &&show copying\cr
info directories &&show directories \cr
info editing &&show commands\cr
info history &&show values\cr
info targets &&help target\cr
info values &&show values\cr
info version &&show version\cr
info warranty &&show warranty\cr
set{\rm / }show addressprint &&set{\rm / }show print address\cr
set{\rm / }show array-max &&set{\rm / }show print elements\cr
set{\rm / }show arrayprint &&set{\rm / }show print array\cr
set{\rm / }show asm-demangle &&set{\rm / }show print asm-demangle\cr
set{\rm / }show caution &&set{\rm / }show confirm\cr
set{\rm / }show demangle &&set{\rm / }show print demangle\cr
set{\rm / }show history write &&set{\rm / }show history save\cr
set{\rm / }show prettyprint &&set{\rm / }show print pretty\cr
set{\rm / }show screen-height &&set{\rm / }show height\cr
set{\rm / }show screen-width &&set{\rm / }show width\cr
set{\rm / }show sevenbit-strings &&set{\rm / }show print sevenbit-strings\cr
set{\rm / }show unionprint &&set{\rm / }show print union\cr
set{\rm / }show vtblprint &&set{\rm / }show print vtbl\cr
\cr
unset &&\rm(No longer an alias for delete)\cr
}
@end tex
@c END TEXI2ROFF-KILL
@node Installing _GDBN__, Copying, Renamed Commands, Top
@appendix Installing _GDBN__
@cindex configuring _GDBN__
@cindex installation
_GDBN__ comes with a @code{configure} script that automates the process
of preparing _GDBN__ for installation; you can then use @code{make} to
build the @code{_GDBP__} program.
The _GDBP__ distribution includes all the source code you need for
_GDBP__ in a single directory @file{gdb-_GDB_VN__}. That directory in turn
contains:
@table @code
@item gdb-_GDB_VN__/configure @r{(and supporting files)}
script for configuring _GDBN__ and all its supporting libraries.
@item gdb-_GDB_VN__/gdb
the source specific to _GDBN__ itself
@item gdb-_GDB_VN__/bfd
source for the Binary File Descriptor Library
@item gdb-_GDB_VN__/include
GNU include files
@item gdb-_GDB_VN__/libiberty
source for the @samp{-liberty} free software library
@item gdb-_GDB_VN__/readline
source for the GNU command-line interface
@end table
@noindent
It is most convenient to run @code{configure} from the @file{gdb-_GDB_VN__}
directory. The simplest way to configure and build _GDBN__ is the
following:
@example
cd gdb-_GDB_VN__
./configure @var{host}
make
@end example
@noindent
where @var{host} is something like @samp{sun4} or @samp{decstation}, that
identifies the platform where _GDBN__ will run. This builds the three
libraries @file{bfd}, @file{readline}, and @file{libiberty}, then
@code{gdb} itself. The configured source files, and the binaries, are
left in the corresponding source directories.
@code{configure} is a Bourne-shell (@code{/bin/sh}) script; if your
system does not recognize this automatically when you run a different
shell, you may need to run @code{sh} on it explicitly:
@samp{sh configure @var{host}}.
You can @emph{run} the @code{configure} script from any of the
subordinate directories in the _GDBN__ distribution (if you only want to
configure that subdirectory); but be sure to specify a path to it. For
example, to configure only the @code{bfd} subdirectory,
@example
@group
cd gdb-_GDB_VN__/bfd
../configure @var{host}
@end group
@end example
You can install @code{_GDBP__} anywhere; it has no hardwired paths.
Simply copy @code{gdb/gdb} to the desired directory.
@comment What about installing the man pages, info files, etc?
However, you should make sure that the shell on your path (named by the
@samp{SHELL} environment variable) is publicly readable; some systems
refuse to let _GDBN__ debug child processes whose programs are not
readable, and _GDBN__ uses the shell to start your program.
@menu
* Subdirectories:: Configuration subdirectories
* Config Names:: Specifying names for hosts and targets
* configure Options:: Summary of options for configure
* Formatting Documentation:: How to format and print _GDBN__ documentation
@end menu
@node Subdirectories, Config Names, Installing _GDBN__, Installing _GDBN__
@section Configuration Subdirectories
If you want to run _GDBN__ versions for several host or target machines,
you'll need a different _GDBP__ compiled for each combination of host
and target. @code{configure} is designed to make this easy by allowing
you to generate each configuration in a separate subdirectory. If your
@code{make} program handles the @samp{VPATH} feature (GNU @code{make}
does), running @code{make} in each of these directories then builds the
_GDBP__ program specified there.
@code{configure} creates these subdirectories for you when you
simultaneously specify several configurations; but it is a good habit
even for a single configuration. You can specify the use of
subdirectories using the @samp{+subdirs} option (abbreviated
@samp{+sub}). For example, you can build _GDBN__ this way on a Sun 4 as
follows:
@example
@group
cd gdb-_GDB_VN__
./configure +sub sun4
cd H-sun4/T-sun4
make
@end group
@end example
When @code{configure} uses subdirectories to build programs or
libraries, it creates nested directories
@file{H-@var{host}/T-@var{target}}. @code{configure} uses these two
directory levels because _GDBN__ can be configured for cross-compiling:
_GDBN__ can run on one machine (the host) while debugging programs that
run on another machine (the target). You specify cross-debugging
targets by giving the @samp{+target=@var{target}} option to
@code{configure}. Specifying only hosts still gives you two levels of
subdirectory for each host, with the same configuration suffix on both;
that is, if you give any number of hosts but no targets, _GDBN__ will be
configured for native debugging on each host. On the other hand,
whenever you specify both hosts and targets on the same command line,
@code{configure} creates all combinations of the hosts and targets you
list.@refill
If you run @code{configure} from a directory (notably,
@file{gdb-_GDB_VN__}) that contains source directories for multiple
libraries or programs, @code{configure} creates the
@file{H-@var{host}/T-@var{target}} subdirectories in each library or
program's source directory. For example, typing:
@example
cd gdb-_GDB_VN__
configure sun4 +target=vxworks960
@end example
@noindent
creates the following directories:
@example
gdb-_GDB_VN__/H-sun4/T-vxworks960
gdb-_GDB_VN__/bfd/H-sun4/T-vxworks960
gdb-_GDB_VN__/gdb/H-sun4/T-vxworks960
gdb-_GDB_VN__/libiberty/H-sun4/T-vxworks960
gdb-_GDB_VN__/readline/H-sun4/T-vxworks960
@end example
When you run @code{make} to build a program or library, you must run it
in a configured directory. If you made a single configuration,
without subdirectories, run @code{make} in the source directory.
If you have @file{H-@var{host}/T-@var{target}} subdirectories,
run @code{make} in those subdirectories.
The @code{Makefile} generated by @code{configure} for each source
directory runs recursively, so that typing @code{make} in
@file{gdb-_GDB_VN__} (or in a
@file{gdb-_GDB_VN__/H-@var{host}/T-@var{target}} subdirectory) builds
all the required libraries, then _GDBN__.@refill
When you have multiple hosts or targets configured, you can run
@code{make} on them in parallel (for example, if they are NFS-mounted on
each of the hosts); they will not interfere with each other.
You can also use the @samp{+objdir=@var{altroot}} option to have the
configured files placed in a parallel directory structure rather than
alongside the source files; @pxref{configure Options}.
@node Config Names, configure Options, Subdirectories, Installing _GDBN__
@section Specifying Names for Hosts and Targets
The specifications used for hosts and targets in the @code{configure}
script are based on a three-part naming scheme, but some short predefined
aliases are also supported. The full naming scheme encodes three pieces
of information in the following pattern:
@example
@var{architecture}-@var{vendor}-@var{os}
@end example
For example, you can use the alias @code{sun4} as a @var{host} argument
or in a @code{+target=@var{target}} option, but the equivalent full name
is @samp{sparc-sun-sunos4}.
The following table shows all the architectures, hosts, and OS prefixes
that @code{configure} recognizes in _GDBN__ _GDB_VN__. Entries in the ``OS
prefix'' column ending in a @samp{*} may be followed by a release number.
@c TEXI2ROFF-KILL
@ifinfo
@c END TEXI2ROFF-KILL
@example
ARCHITECTURE VENDOR OS prefix
@c TEXI2ROFF-KILL
------------+--------------------------+---------------------------
@c END TEXI2ROFF-KILL
| |
580 | altos hp | aix* msdos*
a29k | amd ibm | amigados newsos*
alliant | amdahl intel | aout nindy*
arm | aout isi | bout osf*
c1 | apollo little | bsd* sco*
c2 | att mips | coff sunos*
cray2 | bcs motorola | ctix* svr4
h8300 | bout ncr | dgux* sym*
i386 | bull next | dynix* sysv*
i860 | cbm nyu | ebmon ultrix*
i960 | coff sco | esix* unicos*
m68000 | convergent sequent | hds unos*
m68k | convex sgi | hpux* uts
m88k | cray sony | irix* v88r*
mips | dec sun | isc* vms*
ns32k | encore unicom | kern vxworks*
pyramid | gould utek | mach*
romp | hitachi wrs |
rs6000 | |
sparc | |
tahoe | |
tron | |
vax | |
xmp | |
ymp | |
@end example
@c TEXI2ROFF-KILL
@end ifinfo
@tex
%\vskip\parskip
\vskip \baselineskip
\hfil\vbox{\offinterlineskip
\halign{\strut\tt #\hfil\ &\vrule#&\strut\ \tt #\hfil\ &\strut\ \tt #\hfil
\ &\vrule#&\strut\ \tt #\hfil\ &\strut\ \tt #\hfil \cr
{\bf Architecture} &&{\bf Vendor} &&&{\bf OS prefix}\cr
\multispan7\hrulefill\cr
580 && altos & hp && aix* & msdos* \cr
a29k && amd & ibm && amigados & newsos* \cr
alliant && amdahl & intel && aout & nindy* \cr
arm && aout & isi && bout & osf* \cr
c1 && apollo & little && bsd* & sco* \cr
c2 && att & mips && coff & sunos* \cr
cray2 && bcs & motorola && ctix* & svr4 \cr
h8300 && bout & ncr && dgux* & sym* \cr
i386 && bull & next && dynix* & sysv* \cr
i860 && cbm & nyu && ebmon & ultrix* \cr
i960 && coff & sco && esix* & unicos* \cr
m68000 && convergent& sequent && hds & unos* \cr
m68k && convex & sgi && hpux* & uts \cr
m88k && cray & sony && irix* & v88r* \cr
mips && dec & sun && isc* & vms* \cr
ns32k && encore & unicom && kern & vxworks* \cr
pyramid && gould & utek && mach* & \cr
romp && hitachi & wrs && & \cr
rs6000 && & && & \cr
sparc && & && & \cr
tahoe && & && & \cr
tron && & && & \cr
vax && & && & \cr
xmp && & && & \cr
ymp && & && & \cr
}\hfil}
@end tex
@c END TEXI2ROFF-KILL
@quotation
@emph{Warning:} @code{configure} can represent a very large number of
combinations of architecture, vendor, and OS. There is by no means
support available for all possible combinations!
@end quotation
The @code{configure} script accompanying _GDBN__ _GDB_VN__ does not provide
any query facility to list all supported host and target names or
aliases. @code{configure} calls the Bourne shell script
@code{config.sub} to map abbreviations to full names; you can read the
script, if you wish, or you can use it to test your guesses on
abbreviations---for example:
@example
% sh config.sub sun4
sparc-sun-sunos4
% sh config.sub sun3
m68k-sun-sunos4
% sh config.sub decstation
mips-dec-ultrix
% sh config.sub hp300bsd
m68k-hp-bsd
% sh config.sub i386v
i386-none-sysv
% sh config.sub i486v
*** Configuration "i486v" not recognized
@end example
@noindent
@code{config.sub} is also distributed in the directory @file{gdb-_GDB_VN__}.
@node configure Options, Formatting Documentation, Config Names, Installing _GDBN__
@section @code{configure} Options
Here is a summary of all the @code{configure} options and arguments that
you might use for building _GDBN__:
@example
configure @r{[}+destdir=@var{dir}@r{]} @r{[}+subdirs@r{]}
@r{[}+objdir=@var{altroot}@r{]} @r{[}+norecursion@r{]} @r{[}+rm@r{]}
@r{[}+target=@var{target}@dots{}@r{]} @var{host}@dots{}
@end example
@noindent
You may introduce options with the character @samp{-} rather than
@samp{+} if you prefer; but you may abbreviate option names if you use
@samp{+}.
@table @code
@item +destdir=@var{dir}
@var{dir} is an installation directory @emph{path prefix}. After you
configure with this option, @code{make install} will install _GDBN__ as
@file{@var{dir}/bin/_GDBP__}, and the libraries in @file{@var{dir}/lib}.
If you specify @samp{+destdir=/usr/local}, for example, @code{make
install} creates @file{/usr/local/bin/gdb}.@refill
@item +subdirs
Write configuration specific files in subdirectories of the form
@example
H-@var{host}/T-@var{target}
@end example
@noindent
(and configure the @code{Makefile} to generate object code in
subdirectories of this form as well). Without this option, if you
specify only one configuration for _GDBN__, @code{configure} will use
the same directory for source, configured files, and binaries. This
option is used automatically if you specify more than one @var{host} or
more than one @samp{+target=@var{target}} option on the @code{configure}
command line.
@item +norecursion
Configure only the directory where @code{configure} is executed; do not
propagate configuration to subdirectories.
@item +objdir=@var{altroot}
@var{altroot} is an alternative directory used as the root for
configured files. @code{configure} will create directories under
@var{altroot} in parallel to the source directories. If you use
@samp{+objdir=@var{altroot}} with @samp{+subdirs}, @code{configure} also
builds the @samp{H-@var{host}/T-@var{target}} subdirectories in the
directory tree rooted in @var{altroot}.
@item +rm
Remove the configuration that the other arguments specify.
@c This does not work (yet if ever). FIXME.
@c @item +parse=@var{lang} @dots{}
@c Configure the _GDBN__ expression parser to parse the listed languages.
@c @samp{all} configures _GDBN__ for all supported languages. To get a
@c list of all supported languages, omit the argument. Without this
@c option, _GDBN__ is configured to parse all supported languages.
@item +target=@var{target} @dots{}
Configure _GDBN__ for cross-debugging programs running on each specified
@var{target}. You may specify as many @samp{+target} options as you
wish. Without this option, _GDBN__ is configured to debug programs that
run on the same machine (@var{host}) as _GDBN__ itself.
There is no convenient way to generate a list of all available targets.
@item @var{host} @dots{}
Configure _GDBN__ to run on each specified @var{host}. You may specify as
many host names as you wish.
There is no convenient way to generate a list of all available hosts.
@end table
@noindent
@code{configure} accepts other options, for compatibility with
configuring other GNU tools recursively; but these are the only
options that affect _GDBN__ or its supporting libraries.
@node Formatting Documentation, , configure Options, Installing _GDBN__
@section Formatting the Documentation
@cindex _GDBN__ reference card
@cindex reference card
The _GDBN__ _GDB_VN__ release includes an already-formatted reference card,
ready for printing on a PostScript printer, as @file{gdb-_GDB_VN__/gdb/refcard.ps}.
It uses the most common PostScript fonts: the Times family, Courier, and
Symbol. If you have a PostScript printer, you can print the reference
card by just sending @file{refcard.ps} to the printer.
The release also includes the online Info version of this manual already
formatted: the main Info file is @file{gdb-_GDB_VN__/gdb/gdb.info}, and it
refers to subordinate files matching @samp{gdb.info*} in the same
directory.
If you want to make these Info files yourself from the _GDBN__ manual's
source, you need the GNU @code{makeinfo} program. Once you have it, you
can type
@example
cd gdb-_GDB_VN__/gdb
make gdb.info
@end example
@noindent
to make the Info file.
If you want to format and print copies of the manual, you need several
things:
@itemize @bullet
@item
@TeX{}, the public domain typesetting program written by Donald Knuth,
must be installed on your system and available through your execution
path.
@item
@file{gdb-_GDB_VN__/texinfo}: @TeX{} macros defining the GNU
Documentation Format.
@item
@emph{A @sc{dvi} output program.} @TeX{} does not actually make marks on
paper; it produces output files called @sc{dvi} files. If your system
has @TeX{} installed, chances are it has a program for printing out
these files; one popular example is @code{dvips}, which can print
@sc{dvi} files on PostScript printers.
@end itemize
@noindent
Once you have these things, you can type
@example
cd gdb-_GDB_VN__/gdb
make gdb.dvi
@end example
@noindent
to format the text of this manual, and print it with the usual output
method for @TeX{} @sc{dvi} files at your site.
If you want to print the reference card, but do not have a PostScript
printer, or you want to use Computer Modern fonts instead,
you can still print it if you have @TeX{}. Format the reference card by typing
@example
cd gdb-_GDB_VN__/gdb
make refcard.dvi
@end example
@noindent
The _GDBN__ reference card is designed to print in landscape mode on US
``letter'' size paper; that is, on a sheet 11 inches wide by 8.5 inches
high. You will need to specify this form of printing as an option to
your @sc{dvi} output program.
@node Copying, Index, Installing _GDBN__, Top
@unnumbered GNU GENERAL PUBLIC LICENSE
@center Version 2, June 1991
@display
Copyright @copyright{} 1989, 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
@end display
@unnumberedsec Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software---to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
@iftex
@unnumberedsec TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
@end iftex
@ifinfo
@center TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
@end ifinfo
@enumerate
@item
This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The ``Program'', below,
refers to any such program or work, and a ``work based on the Program''
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term ``modification''.) Each licensee is addressed as ``you''.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
@item
You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
@item
You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
@alphaenumerate
@item
You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
@item
You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
@item
If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
@end alphaenumerate
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
@item
You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
@alphaenumerate
@item
Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
@item
Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
@item
Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
@end alphaenumerate
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
@item
You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
@item
You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
@item
Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
@item
If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
@item
If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
@item
The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and ``any
later version'', you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
@item
If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
@iftex
@heading NO WARRANTY
@end iftex
@ifinfo
@center NO WARRANTY
@end ifinfo
@item
BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
@item
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
@end enumerate
@iftex
@heading END OF TERMS AND CONDITIONS
@end iftex
@ifinfo
@center END OF TERMS AND CONDITIONS
@end ifinfo
@page
@unnumberedsec Applying These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the ``copyright'' line and a pointer to where the full notice is found.
@smallexample
@var{one line to give the program's name and an idea of what it does.}
Copyright (C) 19@var{yy} @var{name of author}
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the
Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA.
@end smallexample
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
@smallexample
Gnomovision version 69, Copyright (C) 19@var{yy} @var{name of author}
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type `show w'. This is free software, and you are welcome
to redistribute it under certain conditions; type `show c'
for details.
@end smallexample
The hypothetical commands @samp{show w} and @samp{show c} should show
the appropriate parts of the General Public License. Of course, the
commands you use may be called something other than @samp{show w} and
@samp{show c}; they could even be mouse-clicks or menu items---whatever
suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a ``copyright disclaimer'' for the program, if
necessary. Here is a sample; alter the names:
@smallexample
Yoyodyne, Inc., hereby disclaims all copyright interest in
the program `Gnomovision' (which makes passes at compilers)
written by James Hacker.
@var{signature of Ty Coon}, 1 April 1989
Ty Coon, President of Vice
@end smallexample
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.
@node Index, , Copying, Top
@unnumbered Index
@printindex cp
@tex
% I think something like @colophon should be in texinfo. In the
% meantime:
\long\def\colophon{\hbox to0pt{}\vfill
\centerline{The body of this manual is set in}
\centerline{\fontname\tenrm,}
\centerline{with headings in {\bf\fontname\tenbf}}
\centerline{and examples in {\tt\fontname\tentt}.}
\centerline{{\it\fontname\tenit\/},}
\centerline{{\bf\fontname\tenbf}, and}
\centerline{{\sl\fontname\tensl\/}}
\centerline{are used for emphasis.}\vfill}
\page\colophon
% Blame: pesch@cygnus.com, 1991.
@end tex
@contents
@bye