mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-01 14:03:56 +08:00
a9762ec78a
Switch the license of all .h files to GPLv3. Switch the license of all .cc files to GPLv3.
1189 lines
35 KiB
C
1189 lines
35 KiB
C
/* Target-dependent code for Morpho mt processor, for GDB.
|
|
|
|
Copyright (C) 2005, 2007 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
/* Contributed by Michael Snyder, msnyder@redhat.com. */
|
|
|
|
#include "defs.h"
|
|
#include "frame.h"
|
|
#include "frame-unwind.h"
|
|
#include "frame-base.h"
|
|
#include "symtab.h"
|
|
#include "dis-asm.h"
|
|
#include "arch-utils.h"
|
|
#include "gdbtypes.h"
|
|
#include "gdb_string.h"
|
|
#include "regcache.h"
|
|
#include "reggroups.h"
|
|
#include "gdbcore.h"
|
|
#include "trad-frame.h"
|
|
#include "inferior.h"
|
|
#include "dwarf2-frame.h"
|
|
#include "infcall.h"
|
|
#include "gdb_assert.h"
|
|
|
|
enum mt_arch_constants
|
|
{
|
|
MT_MAX_STRUCT_SIZE = 16
|
|
};
|
|
|
|
enum mt_gdb_regnums
|
|
{
|
|
MT_R0_REGNUM, /* 32 bit regs. */
|
|
MT_R1_REGNUM,
|
|
MT_1ST_ARGREG = MT_R1_REGNUM,
|
|
MT_R2_REGNUM,
|
|
MT_R3_REGNUM,
|
|
MT_R4_REGNUM,
|
|
MT_LAST_ARGREG = MT_R4_REGNUM,
|
|
MT_R5_REGNUM,
|
|
MT_R6_REGNUM,
|
|
MT_R7_REGNUM,
|
|
MT_R8_REGNUM,
|
|
MT_R9_REGNUM,
|
|
MT_R10_REGNUM,
|
|
MT_R11_REGNUM,
|
|
MT_R12_REGNUM,
|
|
MT_FP_REGNUM = MT_R12_REGNUM,
|
|
MT_R13_REGNUM,
|
|
MT_SP_REGNUM = MT_R13_REGNUM,
|
|
MT_R14_REGNUM,
|
|
MT_RA_REGNUM = MT_R14_REGNUM,
|
|
MT_R15_REGNUM,
|
|
MT_IRA_REGNUM = MT_R15_REGNUM,
|
|
MT_PC_REGNUM,
|
|
|
|
/* Interrupt Enable pseudo-register, exported by SID. */
|
|
MT_INT_ENABLE_REGNUM,
|
|
/* End of CPU regs. */
|
|
|
|
MT_NUM_CPU_REGS,
|
|
|
|
/* Co-processor registers. */
|
|
MT_COPRO_REGNUM = MT_NUM_CPU_REGS, /* 16 bit regs. */
|
|
MT_CPR0_REGNUM,
|
|
MT_CPR1_REGNUM,
|
|
MT_CPR2_REGNUM,
|
|
MT_CPR3_REGNUM,
|
|
MT_CPR4_REGNUM,
|
|
MT_CPR5_REGNUM,
|
|
MT_CPR6_REGNUM,
|
|
MT_CPR7_REGNUM,
|
|
MT_CPR8_REGNUM,
|
|
MT_CPR9_REGNUM,
|
|
MT_CPR10_REGNUM,
|
|
MT_CPR11_REGNUM,
|
|
MT_CPR12_REGNUM,
|
|
MT_CPR13_REGNUM,
|
|
MT_CPR14_REGNUM,
|
|
MT_CPR15_REGNUM,
|
|
MT_BYPA_REGNUM, /* 32 bit regs. */
|
|
MT_BYPB_REGNUM,
|
|
MT_BYPC_REGNUM,
|
|
MT_FLAG_REGNUM,
|
|
MT_CONTEXT_REGNUM, /* 38 bits (treat as array of
|
|
six bytes). */
|
|
MT_MAC_REGNUM, /* 32 bits. */
|
|
MT_Z1_REGNUM, /* 16 bits. */
|
|
MT_Z2_REGNUM, /* 16 bits. */
|
|
MT_ICHANNEL_REGNUM, /* 32 bits. */
|
|
MT_ISCRAMB_REGNUM, /* 32 bits. */
|
|
MT_QSCRAMB_REGNUM, /* 32 bits. */
|
|
MT_OUT_REGNUM, /* 16 bits. */
|
|
MT_EXMAC_REGNUM, /* 32 bits (8 used). */
|
|
MT_QCHANNEL_REGNUM, /* 32 bits. */
|
|
MT_ZI2_REGNUM, /* 16 bits. */
|
|
MT_ZQ2_REGNUM, /* 16 bits. */
|
|
MT_CHANNEL2_REGNUM, /* 32 bits. */
|
|
MT_ISCRAMB2_REGNUM, /* 32 bits. */
|
|
MT_QSCRAMB2_REGNUM, /* 32 bits. */
|
|
MT_QCHANNEL2_REGNUM, /* 32 bits. */
|
|
|
|
/* Number of real registers. */
|
|
MT_NUM_REGS,
|
|
|
|
/* Pseudo-registers. */
|
|
MT_COPRO_PSEUDOREG_REGNUM = MT_NUM_REGS,
|
|
MT_MAC_PSEUDOREG_REGNUM,
|
|
MT_COPRO_PSEUDOREG_ARRAY,
|
|
|
|
MT_COPRO_PSEUDOREG_DIM_1 = 2,
|
|
MT_COPRO_PSEUDOREG_DIM_2 = 8,
|
|
/* The number of pseudo-registers for each coprocessor. These
|
|
include the real coprocessor registers, the pseudo-registe for
|
|
the coprocessor number, and the pseudo-register for the MAC. */
|
|
MT_COPRO_PSEUDOREG_REGS = MT_NUM_REGS - MT_NUM_CPU_REGS + 2,
|
|
/* The register number of the MAC, relative to a given coprocessor. */
|
|
MT_COPRO_PSEUDOREG_MAC_REGNUM = MT_COPRO_PSEUDOREG_REGS - 1,
|
|
|
|
/* Two pseudo-regs ('coprocessor' and 'mac'). */
|
|
MT_NUM_PSEUDO_REGS = 2 + (MT_COPRO_PSEUDOREG_REGS
|
|
* MT_COPRO_PSEUDOREG_DIM_1
|
|
* MT_COPRO_PSEUDOREG_DIM_2)
|
|
};
|
|
|
|
/* Return name of register number specified by REGNUM. */
|
|
|
|
static const char *
|
|
mt_register_name (int regnum)
|
|
{
|
|
static const char *const register_names[] = {
|
|
/* CPU regs. */
|
|
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
|
|
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
|
|
"pc", "IE",
|
|
/* Co-processor regs. */
|
|
"", /* copro register. */
|
|
"cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
|
|
"cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
|
|
"bypa", "bypb", "bypc", "flag", "context", "" /* mac. */ , "z1", "z2",
|
|
"Ichannel", "Iscramb", "Qscramb", "out", "" /* ex-mac. */ , "Qchannel",
|
|
"zi2", "zq2", "Ichannel2", "Iscramb2", "Qscramb2", "Qchannel2",
|
|
/* Pseudo-registers. */
|
|
"coprocessor", "MAC"
|
|
};
|
|
static const char *array_names[MT_COPRO_PSEUDOREG_REGS
|
|
* MT_COPRO_PSEUDOREG_DIM_1
|
|
* MT_COPRO_PSEUDOREG_DIM_2];
|
|
|
|
if (regnum < 0)
|
|
return "";
|
|
if (regnum < ARRAY_SIZE (register_names))
|
|
return register_names[regnum];
|
|
if (array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY])
|
|
return array_names[regnum - MT_COPRO_PSEUDOREG_ARRAY];
|
|
|
|
{
|
|
char *name;
|
|
const char *stub;
|
|
unsigned dim_1;
|
|
unsigned dim_2;
|
|
unsigned index;
|
|
|
|
regnum -= MT_COPRO_PSEUDOREG_ARRAY;
|
|
index = regnum % MT_COPRO_PSEUDOREG_REGS;
|
|
dim_2 = (regnum / MT_COPRO_PSEUDOREG_REGS) % MT_COPRO_PSEUDOREG_DIM_2;
|
|
dim_1 = ((regnum / MT_COPRO_PSEUDOREG_REGS / MT_COPRO_PSEUDOREG_DIM_2)
|
|
% MT_COPRO_PSEUDOREG_DIM_1);
|
|
|
|
if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
|
|
stub = register_names[MT_MAC_PSEUDOREG_REGNUM];
|
|
else if (index >= MT_NUM_REGS - MT_CPR0_REGNUM)
|
|
stub = "";
|
|
else
|
|
stub = register_names[index + MT_CPR0_REGNUM];
|
|
if (!*stub)
|
|
{
|
|
array_names[regnum] = stub;
|
|
return stub;
|
|
}
|
|
name = xmalloc (30);
|
|
sprintf (name, "copro_%d_%d_%s", dim_1, dim_2, stub);
|
|
array_names[regnum] = name;
|
|
return name;
|
|
}
|
|
}
|
|
|
|
/* Return the type of a coprocessor register. */
|
|
|
|
static struct type *
|
|
mt_copro_register_type (struct gdbarch *arch, int regnum)
|
|
{
|
|
switch (regnum)
|
|
{
|
|
case MT_INT_ENABLE_REGNUM:
|
|
case MT_ICHANNEL_REGNUM:
|
|
case MT_QCHANNEL_REGNUM:
|
|
case MT_ISCRAMB_REGNUM:
|
|
case MT_QSCRAMB_REGNUM:
|
|
return builtin_type_int32;
|
|
case MT_BYPA_REGNUM:
|
|
case MT_BYPB_REGNUM:
|
|
case MT_BYPC_REGNUM:
|
|
case MT_Z1_REGNUM:
|
|
case MT_Z2_REGNUM:
|
|
case MT_OUT_REGNUM:
|
|
case MT_ZI2_REGNUM:
|
|
case MT_ZQ2_REGNUM:
|
|
return builtin_type_int16;
|
|
case MT_EXMAC_REGNUM:
|
|
case MT_MAC_REGNUM:
|
|
return builtin_type_uint32;
|
|
case MT_CONTEXT_REGNUM:
|
|
return builtin_type_long_long;
|
|
case MT_FLAG_REGNUM:
|
|
return builtin_type_unsigned_char;
|
|
default:
|
|
if (regnum >= MT_CPR0_REGNUM && regnum <= MT_CPR15_REGNUM)
|
|
return builtin_type_int16;
|
|
else if (regnum == MT_CPR0_REGNUM + MT_COPRO_PSEUDOREG_MAC_REGNUM)
|
|
{
|
|
if (gdbarch_bfd_arch_info (arch)->mach == bfd_mach_mrisc2
|
|
|| gdbarch_bfd_arch_info (arch)->mach == bfd_mach_ms2)
|
|
return builtin_type_uint64;
|
|
else
|
|
return builtin_type_uint32;
|
|
}
|
|
else
|
|
return builtin_type_uint32;
|
|
}
|
|
}
|
|
|
|
/* Given ARCH and a register number specified by REGNUM, return the
|
|
type of that register. */
|
|
|
|
static struct type *
|
|
mt_register_type (struct gdbarch *arch, int regnum)
|
|
{
|
|
static struct type *void_func_ptr = NULL;
|
|
static struct type *void_ptr = NULL;
|
|
static struct type *copro_type;
|
|
|
|
if (regnum >= 0 && regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS)
|
|
{
|
|
if (void_func_ptr == NULL)
|
|
{
|
|
struct type *temp;
|
|
|
|
void_ptr = lookup_pointer_type (builtin_type_void);
|
|
void_func_ptr =
|
|
lookup_pointer_type (lookup_function_type (builtin_type_void));
|
|
temp = create_range_type (NULL, builtin_type_unsigned_int, 0, 1);
|
|
copro_type = create_array_type (NULL, builtin_type_int16, temp);
|
|
}
|
|
switch (regnum)
|
|
{
|
|
case MT_PC_REGNUM:
|
|
case MT_RA_REGNUM:
|
|
case MT_IRA_REGNUM:
|
|
return void_func_ptr;
|
|
case MT_SP_REGNUM:
|
|
case MT_FP_REGNUM:
|
|
return void_ptr;
|
|
case MT_COPRO_REGNUM:
|
|
case MT_COPRO_PSEUDOREG_REGNUM:
|
|
return copro_type;
|
|
case MT_MAC_PSEUDOREG_REGNUM:
|
|
return mt_copro_register_type (arch,
|
|
MT_CPR0_REGNUM
|
|
+ MT_COPRO_PSEUDOREG_MAC_REGNUM);
|
|
default:
|
|
if (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM)
|
|
return builtin_type_int32;
|
|
else if (regnum < MT_COPRO_PSEUDOREG_ARRAY)
|
|
return mt_copro_register_type (arch, regnum);
|
|
else
|
|
{
|
|
regnum -= MT_COPRO_PSEUDOREG_ARRAY;
|
|
regnum %= MT_COPRO_PSEUDOREG_REGS;
|
|
regnum += MT_CPR0_REGNUM;
|
|
return mt_copro_register_type (arch, regnum);
|
|
}
|
|
}
|
|
}
|
|
internal_error (__FILE__, __LINE__,
|
|
_("mt_register_type: illegal register number %d"), regnum);
|
|
}
|
|
|
|
/* Return true if register REGNUM is a member of the register group
|
|
specified by GROUP. */
|
|
|
|
static int
|
|
mt_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
|
|
struct reggroup *group)
|
|
{
|
|
/* Groups of registers that can be displayed via "info reg". */
|
|
if (group == all_reggroup)
|
|
return (regnum >= 0
|
|
&& regnum < MT_NUM_REGS + MT_NUM_PSEUDO_REGS
|
|
&& mt_register_name (regnum)[0] != '\0');
|
|
|
|
if (group == general_reggroup)
|
|
return (regnum >= MT_R0_REGNUM && regnum <= MT_R15_REGNUM);
|
|
|
|
if (group == float_reggroup)
|
|
return 0; /* No float regs. */
|
|
|
|
if (group == vector_reggroup)
|
|
return 0; /* No vector regs. */
|
|
|
|
/* For any that are not handled above. */
|
|
return default_register_reggroup_p (gdbarch, regnum, group);
|
|
}
|
|
|
|
/* Return the return value convention used for a given type TYPE.
|
|
Optionally, fetch or set the return value via READBUF or
|
|
WRITEBUF respectively using REGCACHE for the register
|
|
values. */
|
|
|
|
static enum return_value_convention
|
|
mt_return_value (struct gdbarch *gdbarch, struct type *type,
|
|
struct regcache *regcache, gdb_byte *readbuf,
|
|
const gdb_byte *writebuf)
|
|
{
|
|
if (TYPE_LENGTH (type) > 4)
|
|
{
|
|
/* Return values > 4 bytes are returned in memory,
|
|
pointed to by R11. */
|
|
if (readbuf)
|
|
{
|
|
ULONGEST addr;
|
|
|
|
regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
|
|
read_memory (addr, readbuf, TYPE_LENGTH (type));
|
|
}
|
|
|
|
if (writebuf)
|
|
{
|
|
ULONGEST addr;
|
|
|
|
regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &addr);
|
|
write_memory (addr, writebuf, TYPE_LENGTH (type));
|
|
}
|
|
|
|
return RETURN_VALUE_ABI_RETURNS_ADDRESS;
|
|
}
|
|
else
|
|
{
|
|
if (readbuf)
|
|
{
|
|
ULONGEST temp;
|
|
|
|
/* Return values of <= 4 bytes are returned in R11. */
|
|
regcache_cooked_read_unsigned (regcache, MT_R11_REGNUM, &temp);
|
|
store_unsigned_integer (readbuf, TYPE_LENGTH (type), temp);
|
|
}
|
|
|
|
if (writebuf)
|
|
{
|
|
if (TYPE_LENGTH (type) < 4)
|
|
{
|
|
gdb_byte buf[4];
|
|
/* Add leading zeros to the value. */
|
|
memset (buf, 0, sizeof (buf));
|
|
memcpy (buf + sizeof (buf) - TYPE_LENGTH (type),
|
|
writebuf, TYPE_LENGTH (type));
|
|
regcache_cooked_write (regcache, MT_R11_REGNUM, buf);
|
|
}
|
|
else /* (TYPE_LENGTH (type) == 4 */
|
|
regcache_cooked_write (regcache, MT_R11_REGNUM, writebuf);
|
|
}
|
|
|
|
return RETURN_VALUE_REGISTER_CONVENTION;
|
|
}
|
|
}
|
|
|
|
/* If the input address, PC, is in a function prologue, return the
|
|
address of the end of the prologue, otherwise return the input
|
|
address.
|
|
|
|
Note: PC is likely to be the function start, since this function
|
|
is mainly used for advancing a breakpoint to the first line, or
|
|
stepping to the first line when we have stepped into a function
|
|
call. */
|
|
|
|
static CORE_ADDR
|
|
mt_skip_prologue (CORE_ADDR pc)
|
|
{
|
|
CORE_ADDR func_addr = 0, func_end = 0;
|
|
char *func_name;
|
|
unsigned long instr;
|
|
|
|
if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
|
|
{
|
|
struct symtab_and_line sal;
|
|
struct symbol *sym;
|
|
|
|
/* Found a function. */
|
|
sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
|
|
if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
|
|
{
|
|
/* Don't use this trick for assembly source files. */
|
|
sal = find_pc_line (func_addr, 0);
|
|
|
|
if (sal.end && sal.end < func_end)
|
|
{
|
|
/* Found a line number, use it as end of prologue. */
|
|
return sal.end;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* No function symbol, or no line symbol. Use prologue scanning method. */
|
|
for (;; pc += 4)
|
|
{
|
|
instr = read_memory_unsigned_integer (pc, 4);
|
|
if (instr == 0x12000000) /* nop */
|
|
continue;
|
|
if (instr == 0x12ddc000) /* copy sp into fp */
|
|
continue;
|
|
instr >>= 16;
|
|
if (instr == 0x05dd) /* subi sp, sp, imm */
|
|
continue;
|
|
if (instr >= 0x43c0 && instr <= 0x43df) /* push */
|
|
continue;
|
|
/* Not an obvious prologue instruction. */
|
|
break;
|
|
}
|
|
|
|
return pc;
|
|
}
|
|
|
|
/* The breakpoint instruction must be the same size as the smallest
|
|
instruction in the instruction set.
|
|
|
|
The BP for ms1 is defined as 0x68000000 (BREAK).
|
|
The BP for ms2 is defined as 0x69000000 (illegal) */
|
|
|
|
static const gdb_byte *
|
|
mt_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
|
|
{
|
|
static gdb_byte ms1_breakpoint[] = { 0x68, 0, 0, 0 };
|
|
static gdb_byte ms2_breakpoint[] = { 0x69, 0, 0, 0 };
|
|
|
|
*bp_size = 4;
|
|
if (gdbarch_bfd_arch_info (current_gdbarch)->mach == bfd_mach_ms2)
|
|
return ms2_breakpoint;
|
|
|
|
return ms1_breakpoint;
|
|
}
|
|
|
|
/* Select the correct coprocessor register bank. Return the pseudo
|
|
regnum we really want to read. */
|
|
|
|
static int
|
|
mt_select_coprocessor (struct gdbarch *gdbarch,
|
|
struct regcache *regcache, int regno)
|
|
{
|
|
unsigned index, base;
|
|
gdb_byte copro[4];
|
|
|
|
/* Get the copro pseudo regnum. */
|
|
regcache_raw_read (regcache, MT_COPRO_REGNUM, copro);
|
|
base = (extract_signed_integer (&copro[0], 2) * MT_COPRO_PSEUDOREG_DIM_2
|
|
+ extract_signed_integer (&copro[2], 2));
|
|
|
|
regno -= MT_COPRO_PSEUDOREG_ARRAY;
|
|
index = regno % MT_COPRO_PSEUDOREG_REGS;
|
|
regno /= MT_COPRO_PSEUDOREG_REGS;
|
|
if (base != regno)
|
|
{
|
|
/* Select the correct coprocessor register bank. Invalidate the
|
|
coprocessor register cache. */
|
|
unsigned ix;
|
|
|
|
store_signed_integer (&copro[0], 2, regno / MT_COPRO_PSEUDOREG_DIM_2);
|
|
store_signed_integer (&copro[2], 2, regno % MT_COPRO_PSEUDOREG_DIM_2);
|
|
regcache_raw_write (regcache, MT_COPRO_REGNUM, copro);
|
|
|
|
/* We must flush the cache, as it is now invalid. */
|
|
for (ix = MT_NUM_CPU_REGS; ix != MT_NUM_REGS; ix++)
|
|
regcache_invalidate (regcache, ix);
|
|
}
|
|
|
|
return index;
|
|
}
|
|
|
|
/* Fetch the pseudo registers:
|
|
|
|
There are two regular pseudo-registers:
|
|
1) The 'coprocessor' pseudo-register (which mirrors the
|
|
"real" coprocessor register sent by the target), and
|
|
2) The 'MAC' pseudo-register (which represents the union
|
|
of the original 32 bit target MAC register and the new
|
|
8-bit extended-MAC register).
|
|
|
|
Additionally there is an array of coprocessor registers which track
|
|
the coprocessor registers for each coprocessor. */
|
|
|
|
static void
|
|
mt_pseudo_register_read (struct gdbarch *gdbarch,
|
|
struct regcache *regcache, int regno, gdb_byte *buf)
|
|
{
|
|
switch (regno)
|
|
{
|
|
case MT_COPRO_REGNUM:
|
|
case MT_COPRO_PSEUDOREG_REGNUM:
|
|
regcache_raw_read (regcache, MT_COPRO_REGNUM, buf);
|
|
break;
|
|
case MT_MAC_REGNUM:
|
|
case MT_MAC_PSEUDOREG_REGNUM:
|
|
if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
|
|
{
|
|
ULONGEST oldmac = 0, ext_mac = 0;
|
|
ULONGEST newmac;
|
|
|
|
regcache_cooked_read_unsigned (regcache, MT_MAC_REGNUM, &oldmac);
|
|
regcache_cooked_read_unsigned (regcache, MT_EXMAC_REGNUM, &ext_mac);
|
|
newmac =
|
|
(oldmac & 0xffffffff) | ((long long) (ext_mac & 0xff) << 32);
|
|
store_signed_integer (buf, 8, newmac);
|
|
}
|
|
else
|
|
regcache_raw_read (regcache, MT_MAC_REGNUM, buf);
|
|
break;
|
|
default:
|
|
{
|
|
unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
|
|
|
|
if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
|
|
mt_pseudo_register_read (gdbarch, regcache,
|
|
MT_MAC_PSEUDOREG_REGNUM, buf);
|
|
else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
|
|
regcache_raw_read (regcache, index + MT_CPR0_REGNUM, buf);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Write the pseudo registers:
|
|
|
|
Mt pseudo-registers are stored directly to the target. The
|
|
'coprocessor' register is special, because when it is modified, all
|
|
the other coprocessor regs must be flushed from the reg cache. */
|
|
|
|
static void
|
|
mt_pseudo_register_write (struct gdbarch *gdbarch,
|
|
struct regcache *regcache,
|
|
int regno, const gdb_byte *buf)
|
|
{
|
|
int i;
|
|
|
|
switch (regno)
|
|
{
|
|
case MT_COPRO_REGNUM:
|
|
case MT_COPRO_PSEUDOREG_REGNUM:
|
|
regcache_raw_write (regcache, MT_COPRO_REGNUM, buf);
|
|
for (i = MT_NUM_CPU_REGS; i < MT_NUM_REGS; i++)
|
|
regcache_invalidate (regcache, i);
|
|
break;
|
|
case MT_MAC_REGNUM:
|
|
case MT_MAC_PSEUDOREG_REGNUM:
|
|
if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
|
|
{
|
|
/* The 8-byte MAC pseudo-register must be broken down into two
|
|
32-byte registers. */
|
|
unsigned int oldmac, ext_mac;
|
|
ULONGEST newmac;
|
|
|
|
newmac = extract_unsigned_integer (buf, 8);
|
|
oldmac = newmac & 0xffffffff;
|
|
ext_mac = (newmac >> 32) & 0xff;
|
|
regcache_cooked_write_unsigned (regcache, MT_MAC_REGNUM, oldmac);
|
|
regcache_cooked_write_unsigned (regcache, MT_EXMAC_REGNUM, ext_mac);
|
|
}
|
|
else
|
|
regcache_raw_write (regcache, MT_MAC_REGNUM, buf);
|
|
break;
|
|
default:
|
|
{
|
|
unsigned index = mt_select_coprocessor (gdbarch, regcache, regno);
|
|
|
|
if (index == MT_COPRO_PSEUDOREG_MAC_REGNUM)
|
|
mt_pseudo_register_write (gdbarch, regcache,
|
|
MT_MAC_PSEUDOREG_REGNUM, buf);
|
|
else if (index < MT_NUM_REGS - MT_CPR0_REGNUM)
|
|
regcache_raw_write (regcache, index + MT_CPR0_REGNUM, buf);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mt_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
|
{
|
|
/* Register size is 4 bytes. */
|
|
return align_down (sp, 4);
|
|
}
|
|
|
|
/* Implements the "info registers" command. When ``all'' is non-zero,
|
|
the coprocessor registers will be printed in addition to the rest
|
|
of the registers. */
|
|
|
|
static void
|
|
mt_registers_info (struct gdbarch *gdbarch,
|
|
struct ui_file *file,
|
|
struct frame_info *frame, int regnum, int all)
|
|
{
|
|
if (regnum == -1)
|
|
{
|
|
int lim;
|
|
|
|
lim = all ? MT_NUM_REGS : MT_NUM_CPU_REGS;
|
|
|
|
for (regnum = 0; regnum < lim; regnum++)
|
|
{
|
|
/* Don't display the Qchannel register since it will be displayed
|
|
along with Ichannel. (See below.) */
|
|
if (regnum == MT_QCHANNEL_REGNUM)
|
|
continue;
|
|
|
|
mt_registers_info (gdbarch, file, frame, regnum, all);
|
|
|
|
/* Display the Qchannel register immediately after Ichannel. */
|
|
if (regnum == MT_ICHANNEL_REGNUM)
|
|
mt_registers_info (gdbarch, file, frame, MT_QCHANNEL_REGNUM, all);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (regnum == MT_EXMAC_REGNUM)
|
|
return;
|
|
else if (regnum == MT_CONTEXT_REGNUM)
|
|
{
|
|
/* Special output handling for 38-bit context register. */
|
|
unsigned char *buff;
|
|
unsigned int *bytes, i, regsize;
|
|
|
|
regsize = register_size (gdbarch, regnum);
|
|
|
|
buff = alloca (regsize);
|
|
bytes = alloca (regsize * sizeof (*bytes));
|
|
|
|
frame_register_read (frame, regnum, buff);
|
|
|
|
fputs_filtered (gdbarch_register_name
|
|
(current_gdbarch, regnum), file);
|
|
print_spaces_filtered (15 - strlen (gdbarch_register_name
|
|
(current_gdbarch, regnum)),
|
|
file);
|
|
fputs_filtered ("0x", file);
|
|
|
|
for (i = 0; i < regsize; i++)
|
|
fprintf_filtered (file, "%02x", (unsigned int)
|
|
extract_unsigned_integer (buff + i, 1));
|
|
fputs_filtered ("\t", file);
|
|
print_longest (file, 'd', 0,
|
|
extract_unsigned_integer (buff, regsize));
|
|
fputs_filtered ("\n", file);
|
|
}
|
|
else if (regnum == MT_COPRO_REGNUM
|
|
|| regnum == MT_COPRO_PSEUDOREG_REGNUM)
|
|
{
|
|
/* Special output handling for the 'coprocessor' register. */
|
|
gdb_byte *buf;
|
|
|
|
buf = alloca (register_size (gdbarch, MT_COPRO_REGNUM));
|
|
frame_register_read (frame, MT_COPRO_REGNUM, buf);
|
|
/* And print. */
|
|
regnum = MT_COPRO_PSEUDOREG_REGNUM;
|
|
fputs_filtered (gdbarch_register_name (current_gdbarch, regnum),
|
|
file);
|
|
print_spaces_filtered (15 - strlen (gdbarch_register_name
|
|
(current_gdbarch, regnum)),
|
|
file);
|
|
val_print (register_type (gdbarch, regnum), buf,
|
|
0, 0, file, 0, 1, 0, Val_no_prettyprint);
|
|
fputs_filtered ("\n", file);
|
|
}
|
|
else if (regnum == MT_MAC_REGNUM || regnum == MT_MAC_PSEUDOREG_REGNUM)
|
|
{
|
|
ULONGEST oldmac, ext_mac, newmac;
|
|
gdb_byte buf[3 * sizeof (LONGEST)];
|
|
|
|
/* Get the two "real" mac registers. */
|
|
frame_register_read (frame, MT_MAC_REGNUM, buf);
|
|
oldmac = extract_unsigned_integer
|
|
(buf, register_size (gdbarch, MT_MAC_REGNUM));
|
|
if (gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_mrisc2
|
|
|| gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_ms2)
|
|
{
|
|
frame_register_read (frame, MT_EXMAC_REGNUM, buf);
|
|
ext_mac = extract_unsigned_integer
|
|
(buf, register_size (gdbarch, MT_EXMAC_REGNUM));
|
|
}
|
|
else
|
|
ext_mac = 0;
|
|
|
|
/* Add them together. */
|
|
newmac = (oldmac & 0xffffffff) + ((ext_mac & 0xff) << 32);
|
|
|
|
/* And print. */
|
|
regnum = MT_MAC_PSEUDOREG_REGNUM;
|
|
fputs_filtered (gdbarch_register_name (current_gdbarch, regnum),
|
|
file);
|
|
print_spaces_filtered (15 - strlen (gdbarch_register_name
|
|
(current_gdbarch, regnum)),
|
|
file);
|
|
fputs_filtered ("0x", file);
|
|
print_longest (file, 'x', 0, newmac);
|
|
fputs_filtered ("\t", file);
|
|
print_longest (file, 'u', 0, newmac);
|
|
fputs_filtered ("\n", file);
|
|
}
|
|
else
|
|
default_print_registers_info (gdbarch, file, frame, regnum, all);
|
|
}
|
|
}
|
|
|
|
/* Set up the callee's arguments for an inferior function call. The
|
|
arguments are pushed on the stack or are placed in registers as
|
|
appropriate. It also sets up the return address (which points to
|
|
the call dummy breakpoint).
|
|
|
|
Returns the updated (and aligned) stack pointer. */
|
|
|
|
static CORE_ADDR
|
|
mt_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|
struct regcache *regcache, CORE_ADDR bp_addr,
|
|
int nargs, struct value **args, CORE_ADDR sp,
|
|
int struct_return, CORE_ADDR struct_addr)
|
|
{
|
|
#define wordsize 4
|
|
gdb_byte buf[MT_MAX_STRUCT_SIZE];
|
|
int argreg = MT_1ST_ARGREG;
|
|
int split_param_len = 0;
|
|
int stack_dest = sp;
|
|
int slacklen;
|
|
int typelen;
|
|
int i, j;
|
|
|
|
/* First handle however many args we can fit into MT_1ST_ARGREG thru
|
|
MT_LAST_ARGREG. */
|
|
for (i = 0; i < nargs && argreg <= MT_LAST_ARGREG; i++)
|
|
{
|
|
const gdb_byte *val;
|
|
typelen = TYPE_LENGTH (value_type (args[i]));
|
|
switch (typelen)
|
|
{
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
case 4:
|
|
regcache_cooked_write_unsigned (regcache, argreg++,
|
|
extract_unsigned_integer
|
|
(value_contents (args[i]),
|
|
wordsize));
|
|
break;
|
|
case 8:
|
|
case 12:
|
|
case 16:
|
|
val = value_contents (args[i]);
|
|
while (typelen > 0)
|
|
{
|
|
if (argreg <= MT_LAST_ARGREG)
|
|
{
|
|
/* This word of the argument is passed in a register. */
|
|
regcache_cooked_write_unsigned (regcache, argreg++,
|
|
extract_unsigned_integer
|
|
(val, wordsize));
|
|
typelen -= wordsize;
|
|
val += wordsize;
|
|
}
|
|
else
|
|
{
|
|
/* Remainder of this arg must be passed on the stack
|
|
(deferred to do later). */
|
|
split_param_len = typelen;
|
|
memcpy (buf, val, typelen);
|
|
break; /* No more args can be handled in regs. */
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
/* By reverse engineering of gcc output, args bigger than
|
|
16 bytes go on the stack, and their address is passed
|
|
in the argreg. */
|
|
stack_dest -= typelen;
|
|
write_memory (stack_dest, value_contents (args[i]), typelen);
|
|
regcache_cooked_write_unsigned (regcache, argreg++, stack_dest);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Next, the rest of the arguments go onto the stack, in reverse order. */
|
|
for (j = nargs - 1; j >= i; j--)
|
|
{
|
|
gdb_byte *val;
|
|
|
|
/* Right-justify the value in an aligned-length buffer. */
|
|
typelen = TYPE_LENGTH (value_type (args[j]));
|
|
slacklen = (wordsize - (typelen % wordsize)) % wordsize;
|
|
val = alloca (typelen + slacklen);
|
|
memcpy (val, value_contents (args[j]), typelen);
|
|
memset (val + typelen, 0, slacklen);
|
|
/* Now write this data to the stack. */
|
|
stack_dest -= typelen + slacklen;
|
|
write_memory (stack_dest, val, typelen + slacklen);
|
|
}
|
|
|
|
/* Finally, if a param needs to be split between registers and stack,
|
|
write the second half to the stack now. */
|
|
if (split_param_len != 0)
|
|
{
|
|
stack_dest -= split_param_len;
|
|
write_memory (stack_dest, buf, split_param_len);
|
|
}
|
|
|
|
/* Set up return address (provided to us as bp_addr). */
|
|
regcache_cooked_write_unsigned (regcache, MT_RA_REGNUM, bp_addr);
|
|
|
|
/* Store struct return address, if given. */
|
|
if (struct_return && struct_addr != 0)
|
|
regcache_cooked_write_unsigned (regcache, MT_R11_REGNUM, struct_addr);
|
|
|
|
/* Set aside 16 bytes for the callee to save regs 1-4. */
|
|
stack_dest -= 16;
|
|
|
|
/* Update the stack pointer. */
|
|
regcache_cooked_write_unsigned (regcache, MT_SP_REGNUM, stack_dest);
|
|
|
|
/* And that should do it. Return the new stack pointer. */
|
|
return stack_dest;
|
|
}
|
|
|
|
|
|
/* The 'unwind_cache' data structure. */
|
|
|
|
struct mt_unwind_cache
|
|
{
|
|
/* The previous frame's inner most stack address.
|
|
Used as this frame ID's stack_addr. */
|
|
CORE_ADDR prev_sp;
|
|
CORE_ADDR frame_base;
|
|
int framesize;
|
|
int frameless_p;
|
|
|
|
/* Table indicating the location of each and every register. */
|
|
struct trad_frame_saved_reg *saved_regs;
|
|
};
|
|
|
|
/* Initialize an unwind_cache. Build up the saved_regs table etc. for
|
|
the frame. */
|
|
|
|
static struct mt_unwind_cache *
|
|
mt_frame_unwind_cache (struct frame_info *next_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
struct mt_unwind_cache *info;
|
|
CORE_ADDR next_addr, start_addr, end_addr, prologue_end_addr;
|
|
unsigned long instr, upper_half, delayed_store = 0;
|
|
int regnum, offset;
|
|
ULONGEST sp, fp;
|
|
|
|
if ((*this_prologue_cache))
|
|
return (*this_prologue_cache);
|
|
|
|
gdbarch = get_frame_arch (next_frame);
|
|
info = FRAME_OBSTACK_ZALLOC (struct mt_unwind_cache);
|
|
(*this_prologue_cache) = info;
|
|
|
|
info->prev_sp = 0;
|
|
info->framesize = 0;
|
|
info->frame_base = 0;
|
|
info->frameless_p = 1;
|
|
info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
|
|
|
|
/* Grab the frame-relative values of SP and FP, needed below.
|
|
The frame_saved_register function will find them on the
|
|
stack or in the registers as appropriate. */
|
|
frame_unwind_unsigned_register (next_frame, MT_SP_REGNUM, &sp);
|
|
frame_unwind_unsigned_register (next_frame, MT_FP_REGNUM, &fp);
|
|
|
|
start_addr = frame_func_unwind (next_frame, NORMAL_FRAME);
|
|
|
|
/* Return early if GDB couldn't find the function. */
|
|
if (start_addr == 0)
|
|
return info;
|
|
|
|
end_addr = frame_pc_unwind (next_frame);
|
|
prologue_end_addr = skip_prologue_using_sal (start_addr);
|
|
if (end_addr == 0)
|
|
for (next_addr = start_addr; next_addr < end_addr; next_addr += 4)
|
|
{
|
|
instr = get_frame_memory_unsigned (next_frame, next_addr, 4);
|
|
if (delayed_store) /* previous instr was a push */
|
|
{
|
|
upper_half = delayed_store >> 16;
|
|
regnum = upper_half & 0xf;
|
|
offset = delayed_store & 0xffff;
|
|
switch (upper_half & 0xfff0)
|
|
{
|
|
case 0x43c0: /* push using frame pointer */
|
|
info->saved_regs[regnum].addr = offset;
|
|
break;
|
|
case 0x43d0: /* push using stack pointer */
|
|
info->saved_regs[regnum].addr = offset;
|
|
break;
|
|
default: /* lint */
|
|
break;
|
|
}
|
|
delayed_store = 0;
|
|
}
|
|
|
|
switch (instr)
|
|
{
|
|
case 0x12000000: /* NO-OP */
|
|
continue;
|
|
case 0x12ddc000: /* copy sp into fp */
|
|
info->frameless_p = 0; /* Record that the frame pointer is in use. */
|
|
continue;
|
|
default:
|
|
upper_half = instr >> 16;
|
|
if (upper_half == 0x05dd || /* subi sp, sp, imm */
|
|
upper_half == 0x07dd) /* subui sp, sp, imm */
|
|
{
|
|
/* Record the frame size. */
|
|
info->framesize = instr & 0xffff;
|
|
continue;
|
|
}
|
|
if ((upper_half & 0xfff0) == 0x43c0 || /* frame push */
|
|
(upper_half & 0xfff0) == 0x43d0) /* stack push */
|
|
{
|
|
/* Save this instruction, but don't record the
|
|
pushed register as 'saved' until we see the
|
|
next instruction. That's because of deferred stores
|
|
on this target -- GDB won't be able to read the register
|
|
from the stack until one instruction later. */
|
|
delayed_store = instr;
|
|
continue;
|
|
}
|
|
/* Not a prologue instruction. Is this the end of the prologue?
|
|
This is the most difficult decision; when to stop scanning.
|
|
|
|
If we have no line symbol, then the best thing we can do
|
|
is to stop scanning when we encounter an instruction that
|
|
is not likely to be a part of the prologue.
|
|
|
|
But if we do have a line symbol, then we should
|
|
keep scanning until we reach it (or we reach end_addr). */
|
|
|
|
if (prologue_end_addr && (prologue_end_addr > (next_addr + 4)))
|
|
continue; /* Keep scanning, recording saved_regs etc. */
|
|
else
|
|
break; /* Quit scanning: breakpoint can be set here. */
|
|
}
|
|
}
|
|
|
|
/* Special handling for the "saved" address of the SP:
|
|
The SP is of course never saved on the stack at all, so
|
|
by convention what we put here is simply the previous
|
|
_value_ of the SP (as opposed to an address where the
|
|
previous value would have been pushed). This will also
|
|
give us the frame base address. */
|
|
|
|
if (info->frameless_p)
|
|
{
|
|
info->frame_base = sp + info->framesize;
|
|
info->prev_sp = sp + info->framesize;
|
|
}
|
|
else
|
|
{
|
|
info->frame_base = fp + info->framesize;
|
|
info->prev_sp = fp + info->framesize;
|
|
}
|
|
/* Save prev_sp in saved_regs as a value, not as an address. */
|
|
trad_frame_set_value (info->saved_regs, MT_SP_REGNUM, info->prev_sp);
|
|
|
|
/* Now convert frame offsets to actual addresses (not offsets). */
|
|
for (regnum = 0; regnum < MT_NUM_REGS; regnum++)
|
|
if (trad_frame_addr_p (info->saved_regs, regnum))
|
|
info->saved_regs[regnum].addr += info->frame_base - info->framesize;
|
|
|
|
/* The call instruction moves the caller's PC in the callee's RA reg.
|
|
Since this is an unwind, do the reverse. Copy the location of RA
|
|
into PC (the address / regnum) so that a request for PC will be
|
|
converted into a request for the RA. */
|
|
info->saved_regs[MT_PC_REGNUM] = info->saved_regs[MT_RA_REGNUM];
|
|
|
|
return info;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mt_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
ULONGEST pc;
|
|
|
|
frame_unwind_unsigned_register (next_frame, MT_PC_REGNUM, &pc);
|
|
return pc;
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mt_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
ULONGEST sp;
|
|
|
|
frame_unwind_unsigned_register (next_frame, MT_SP_REGNUM, &sp);
|
|
return sp;
|
|
}
|
|
|
|
/* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
|
|
dummy frame. The frame ID's base needs to match the TOS value
|
|
saved by save_dummy_frame_tos(), and the PC match the dummy frame's
|
|
breakpoint. */
|
|
|
|
static struct frame_id
|
|
mt_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
|
{
|
|
return frame_id_build (mt_unwind_sp (gdbarch, next_frame),
|
|
frame_pc_unwind (next_frame));
|
|
}
|
|
|
|
/* Given a GDB frame, determine the address of the calling function's
|
|
frame. This will be used to create a new GDB frame struct. */
|
|
|
|
static void
|
|
mt_frame_this_id (struct frame_info *next_frame,
|
|
void **this_prologue_cache, struct frame_id *this_id)
|
|
{
|
|
struct mt_unwind_cache *info =
|
|
mt_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
|
|
if (!(info == NULL || info->prev_sp == 0))
|
|
(*this_id) = frame_id_build (info->prev_sp,
|
|
frame_func_unwind (next_frame, NORMAL_FRAME));
|
|
|
|
return;
|
|
}
|
|
|
|
static void
|
|
mt_frame_prev_register (struct frame_info *next_frame,
|
|
void **this_prologue_cache,
|
|
int regnum, int *optimizedp,
|
|
enum lval_type *lvalp, CORE_ADDR *addrp,
|
|
int *realnump, gdb_byte *bufferp)
|
|
{
|
|
struct mt_unwind_cache *info =
|
|
mt_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
|
|
trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
|
|
optimizedp, lvalp, addrp, realnump, bufferp);
|
|
}
|
|
|
|
static CORE_ADDR
|
|
mt_frame_base_address (struct frame_info *next_frame,
|
|
void **this_prologue_cache)
|
|
{
|
|
struct mt_unwind_cache *info =
|
|
mt_frame_unwind_cache (next_frame, this_prologue_cache);
|
|
|
|
return info->frame_base;
|
|
}
|
|
|
|
/* This is a shared interface: the 'frame_unwind' object is what's
|
|
returned by the 'sniffer' function, and in turn specifies how to
|
|
get a frame's ID and prev_regs.
|
|
|
|
This exports the 'prev_register' and 'this_id' methods. */
|
|
|
|
static const struct frame_unwind mt_frame_unwind = {
|
|
NORMAL_FRAME,
|
|
mt_frame_this_id,
|
|
mt_frame_prev_register
|
|
};
|
|
|
|
/* The sniffer is a registered function that identifies our family of
|
|
frame unwind functions (this_id and prev_register). */
|
|
|
|
static const struct frame_unwind *
|
|
mt_frame_sniffer (struct frame_info *next_frame)
|
|
{
|
|
return &mt_frame_unwind;
|
|
}
|
|
|
|
/* Another shared interface: the 'frame_base' object specifies how to
|
|
unwind a frame and secure the base addresses for frame objects
|
|
(locals, args). */
|
|
|
|
static struct frame_base mt_frame_base = {
|
|
&mt_frame_unwind,
|
|
mt_frame_base_address,
|
|
mt_frame_base_address,
|
|
mt_frame_base_address
|
|
};
|
|
|
|
static struct gdbarch *
|
|
mt_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
|
|
{
|
|
struct gdbarch *gdbarch;
|
|
|
|
/* Find a candidate among the list of pre-declared architectures. */
|
|
arches = gdbarch_list_lookup_by_info (arches, &info);
|
|
if (arches != NULL)
|
|
return arches->gdbarch;
|
|
|
|
/* None found, create a new architecture from the information
|
|
provided. */
|
|
gdbarch = gdbarch_alloc (&info, NULL);
|
|
|
|
set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
|
|
set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
|
|
set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
|
|
|
|
set_gdbarch_register_name (gdbarch, mt_register_name);
|
|
set_gdbarch_num_regs (gdbarch, MT_NUM_REGS);
|
|
set_gdbarch_num_pseudo_regs (gdbarch, MT_NUM_PSEUDO_REGS);
|
|
set_gdbarch_pc_regnum (gdbarch, MT_PC_REGNUM);
|
|
set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
|
|
set_gdbarch_pseudo_register_read (gdbarch, mt_pseudo_register_read);
|
|
set_gdbarch_pseudo_register_write (gdbarch, mt_pseudo_register_write);
|
|
set_gdbarch_skip_prologue (gdbarch, mt_skip_prologue);
|
|
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
|
|
set_gdbarch_breakpoint_from_pc (gdbarch, mt_breakpoint_from_pc);
|
|
set_gdbarch_decr_pc_after_break (gdbarch, 0);
|
|
set_gdbarch_frame_args_skip (gdbarch, 0);
|
|
set_gdbarch_print_insn (gdbarch, print_insn_mt);
|
|
set_gdbarch_register_type (gdbarch, mt_register_type);
|
|
set_gdbarch_register_reggroup_p (gdbarch, mt_register_reggroup_p);
|
|
|
|
set_gdbarch_return_value (gdbarch, mt_return_value);
|
|
set_gdbarch_sp_regnum (gdbarch, MT_SP_REGNUM);
|
|
|
|
set_gdbarch_frame_align (gdbarch, mt_frame_align);
|
|
|
|
set_gdbarch_print_registers_info (gdbarch, mt_registers_info);
|
|
|
|
set_gdbarch_push_dummy_call (gdbarch, mt_push_dummy_call);
|
|
|
|
/* Target builtin data types. */
|
|
set_gdbarch_short_bit (gdbarch, 16);
|
|
set_gdbarch_int_bit (gdbarch, 32);
|
|
set_gdbarch_long_bit (gdbarch, 32);
|
|
set_gdbarch_long_long_bit (gdbarch, 64);
|
|
set_gdbarch_float_bit (gdbarch, 32);
|
|
set_gdbarch_double_bit (gdbarch, 64);
|
|
set_gdbarch_long_double_bit (gdbarch, 64);
|
|
set_gdbarch_ptr_bit (gdbarch, 32);
|
|
|
|
/* Register the DWARF 2 sniffer first, and then the traditional prologue
|
|
based sniffer. */
|
|
frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
|
|
frame_unwind_append_sniffer (gdbarch, mt_frame_sniffer);
|
|
frame_base_set_default (gdbarch, &mt_frame_base);
|
|
|
|
/* Register the 'unwind_pc' method. */
|
|
set_gdbarch_unwind_pc (gdbarch, mt_unwind_pc);
|
|
set_gdbarch_unwind_sp (gdbarch, mt_unwind_sp);
|
|
|
|
/* Methods for saving / extracting a dummy frame's ID.
|
|
The ID's stack address must match the SP value returned by
|
|
PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
|
|
set_gdbarch_unwind_dummy_id (gdbarch, mt_unwind_dummy_id);
|
|
|
|
return gdbarch;
|
|
}
|
|
|
|
void
|
|
_initialize_mt_tdep (void)
|
|
{
|
|
register_gdbarch_init (bfd_arch_mt, mt_gdbarch_init);
|
|
}
|