mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-30 12:43:34 +08:00
2443 lines
73 KiB
C
2443 lines
73 KiB
C
/* Perform non-arithmetic operations on values, for GDB.
|
||
Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "value.h"
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
#include "gdbcore.h"
|
||
#include "target.h"
|
||
#include "demangle.h"
|
||
#include "language.h"
|
||
|
||
#include <errno.h>
|
||
#include "gdb_string.h"
|
||
|
||
/* Default to coercing float to double in function calls only when there is
|
||
no prototype. Otherwise on targets where the debug information is incorrect
|
||
for either the prototype or non-prototype case, we can force it by defining
|
||
COERCE_FLOAT_TO_DOUBLE in the target configuration file. */
|
||
|
||
#ifndef COERCE_FLOAT_TO_DOUBLE
|
||
#define COERCE_FLOAT_TO_DOUBLE (param_type == NULL)
|
||
#endif
|
||
|
||
/* Local functions. */
|
||
|
||
static int typecmp PARAMS ((int staticp, struct type *t1[], value_ptr t2[]));
|
||
|
||
#ifdef CALL_DUMMY
|
||
static CORE_ADDR find_function_addr PARAMS ((value_ptr, struct type **));
|
||
static value_ptr value_arg_coerce PARAMS ((value_ptr, struct type *));
|
||
#endif
|
||
|
||
|
||
#ifndef PUSH_ARGUMENTS
|
||
static CORE_ADDR value_push PARAMS ((CORE_ADDR, value_ptr));
|
||
#endif
|
||
|
||
static value_ptr search_struct_field PARAMS ((char *, value_ptr, int,
|
||
struct type *, int));
|
||
|
||
static value_ptr search_struct_method PARAMS ((char *, value_ptr *,
|
||
value_ptr *,
|
||
int, int *, struct type *));
|
||
|
||
static int check_field_in PARAMS ((struct type *, const char *));
|
||
|
||
static CORE_ADDR allocate_space_in_inferior PARAMS ((int));
|
||
|
||
static value_ptr cast_into_complex PARAMS ((struct type *, value_ptr));
|
||
|
||
#define VALUE_SUBSTRING_START(VAL) VALUE_FRAME(VAL)
|
||
|
||
/* Flag for whether we want to abandon failed expression evals by default. */
|
||
|
||
#if 0
|
||
static int auto_abandon = 0;
|
||
#endif
|
||
|
||
|
||
/* Find the address of function name NAME in the inferior. */
|
||
|
||
value_ptr
|
||
find_function_in_inferior (name)
|
||
char *name;
|
||
{
|
||
register struct symbol *sym;
|
||
sym = lookup_symbol (name, 0, VAR_NAMESPACE, 0, NULL);
|
||
if (sym != NULL)
|
||
{
|
||
if (SYMBOL_CLASS (sym) != LOC_BLOCK)
|
||
{
|
||
error ("\"%s\" exists in this program but is not a function.",
|
||
name);
|
||
}
|
||
return value_of_variable (sym, NULL);
|
||
}
|
||
else
|
||
{
|
||
struct minimal_symbol *msymbol = lookup_minimal_symbol(name, NULL, NULL);
|
||
if (msymbol != NULL)
|
||
{
|
||
struct type *type;
|
||
LONGEST maddr;
|
||
type = lookup_pointer_type (builtin_type_char);
|
||
type = lookup_function_type (type);
|
||
type = lookup_pointer_type (type);
|
||
maddr = (LONGEST) SYMBOL_VALUE_ADDRESS (msymbol);
|
||
return value_from_longest (type, maddr);
|
||
}
|
||
else
|
||
{
|
||
error ("evaluation of this expression requires the program to have a function \"%s\".", name);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Allocate NBYTES of space in the inferior using the inferior's malloc
|
||
and return a value that is a pointer to the allocated space. */
|
||
|
||
value_ptr
|
||
value_allocate_space_in_inferior (len)
|
||
int len;
|
||
{
|
||
value_ptr blocklen;
|
||
register value_ptr val = find_function_in_inferior ("malloc");
|
||
|
||
blocklen = value_from_longest (builtin_type_int, (LONGEST) len);
|
||
val = call_function_by_hand (val, 1, &blocklen);
|
||
if (value_logical_not (val))
|
||
{
|
||
error ("No memory available to program.");
|
||
}
|
||
return val;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
allocate_space_in_inferior (len)
|
||
int len;
|
||
{
|
||
return value_as_long (value_allocate_space_in_inferior (len));
|
||
}
|
||
|
||
/* Cast value ARG2 to type TYPE and return as a value.
|
||
More general than a C cast: accepts any two types of the same length,
|
||
and if ARG2 is an lvalue it can be cast into anything at all. */
|
||
/* In C++, casts may change pointer or object representations. */
|
||
|
||
value_ptr
|
||
value_cast (type, arg2)
|
||
struct type *type;
|
||
register value_ptr arg2;
|
||
{
|
||
register enum type_code code1;
|
||
register enum type_code code2;
|
||
register int scalar;
|
||
struct type *type2;
|
||
|
||
if (VALUE_TYPE (arg2) == type)
|
||
return arg2;
|
||
|
||
CHECK_TYPEDEF (type);
|
||
code1 = TYPE_CODE (type);
|
||
COERCE_REF(arg2);
|
||
type2 = check_typedef (VALUE_TYPE (arg2));
|
||
|
||
/* A cast to an undetermined-length array_type, such as (TYPE [])OBJECT,
|
||
is treated like a cast to (TYPE [N])OBJECT,
|
||
where N is sizeof(OBJECT)/sizeof(TYPE). */
|
||
if (code1 == TYPE_CODE_ARRAY)
|
||
{
|
||
struct type *element_type = TYPE_TARGET_TYPE (type);
|
||
unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
|
||
if (element_length > 0
|
||
&& TYPE_ARRAY_UPPER_BOUND_TYPE (type) == BOUND_CANNOT_BE_DETERMINED)
|
||
{
|
||
struct type *range_type = TYPE_INDEX_TYPE (type);
|
||
int val_length = TYPE_LENGTH (type2);
|
||
LONGEST low_bound, high_bound, new_length;
|
||
if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
|
||
low_bound = 0, high_bound = 0;
|
||
new_length = val_length / element_length;
|
||
if (val_length % element_length != 0)
|
||
warning("array element type size does not divide object size in cast");
|
||
/* FIXME-type-allocation: need a way to free this type when we are
|
||
done with it. */
|
||
range_type = create_range_type ((struct type *) NULL,
|
||
TYPE_TARGET_TYPE (range_type),
|
||
low_bound,
|
||
new_length + low_bound - 1);
|
||
VALUE_TYPE (arg2) = create_array_type ((struct type *) NULL,
|
||
element_type, range_type);
|
||
return arg2;
|
||
}
|
||
}
|
||
|
||
if (current_language->c_style_arrays
|
||
&& TYPE_CODE (type2) == TYPE_CODE_ARRAY)
|
||
arg2 = value_coerce_array (arg2);
|
||
|
||
if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
|
||
arg2 = value_coerce_function (arg2);
|
||
|
||
type2 = check_typedef (VALUE_TYPE (arg2));
|
||
COERCE_VARYING_ARRAY (arg2, type2);
|
||
code2 = TYPE_CODE (type2);
|
||
|
||
if (code1 == TYPE_CODE_COMPLEX)
|
||
return cast_into_complex (type, arg2);
|
||
if (code1 == TYPE_CODE_BOOL || code1 == TYPE_CODE_CHAR)
|
||
code1 = TYPE_CODE_INT;
|
||
if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
|
||
code2 = TYPE_CODE_INT;
|
||
|
||
scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
|
||
|| code2 == TYPE_CODE_ENUM || code2 == TYPE_CODE_RANGE);
|
||
|
||
if ( code1 == TYPE_CODE_STRUCT
|
||
&& code2 == TYPE_CODE_STRUCT
|
||
&& TYPE_NAME (type) != 0)
|
||
{
|
||
/* Look in the type of the source to see if it contains the
|
||
type of the target as a superclass. If so, we'll need to
|
||
offset the object in addition to changing its type. */
|
||
value_ptr v = search_struct_field (type_name_no_tag (type),
|
||
arg2, 0, type2, 1);
|
||
if (v)
|
||
{
|
||
VALUE_TYPE (v) = type;
|
||
return v;
|
||
}
|
||
}
|
||
if (code1 == TYPE_CODE_FLT && scalar)
|
||
return value_from_double (type, value_as_double (arg2));
|
||
else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
|
||
|| code1 == TYPE_CODE_RANGE)
|
||
&& (scalar || code2 == TYPE_CODE_PTR))
|
||
return value_from_longest (type, value_as_long (arg2));
|
||
else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
|
||
{
|
||
if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
|
||
{
|
||
/* Look in the type of the source to see if it contains the
|
||
type of the target as a superclass. If so, we'll need to
|
||
offset the pointer rather than just change its type. */
|
||
struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type));
|
||
struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
|
||
if ( TYPE_CODE (t1) == TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (t2) == TYPE_CODE_STRUCT
|
||
&& TYPE_NAME (t1) != 0) /* if name unknown, can't have supercl */
|
||
{
|
||
value_ptr v = search_struct_field (type_name_no_tag (t1),
|
||
value_ind (arg2), 0, t2, 1);
|
||
if (v)
|
||
{
|
||
v = value_addr (v);
|
||
VALUE_TYPE (v) = type;
|
||
return v;
|
||
}
|
||
}
|
||
/* No superclass found, just fall through to change ptr type. */
|
||
}
|
||
VALUE_TYPE (arg2) = type;
|
||
return arg2;
|
||
}
|
||
else if (chill_varying_type (type))
|
||
{
|
||
struct type *range1, *range2, *eltype1, *eltype2;
|
||
value_ptr val;
|
||
int count1, count2;
|
||
LONGEST low_bound, high_bound;
|
||
char *valaddr, *valaddr_data;
|
||
if (code2 == TYPE_CODE_BITSTRING)
|
||
error ("not implemented: converting bitstring to varying type");
|
||
if ((code2 != TYPE_CODE_ARRAY && code2 != TYPE_CODE_STRING)
|
||
|| (eltype1 = check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, 1))),
|
||
eltype2 = check_typedef (TYPE_TARGET_TYPE (type2)),
|
||
(TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
|
||
/* || TYPE_CODE (eltype1) != TYPE_CODE (eltype2) */ )))
|
||
error ("Invalid conversion to varying type");
|
||
range1 = TYPE_FIELD_TYPE (TYPE_FIELD_TYPE (type, 1), 0);
|
||
range2 = TYPE_FIELD_TYPE (type2, 0);
|
||
if (get_discrete_bounds (range1, &low_bound, &high_bound) < 0)
|
||
count1 = -1;
|
||
else
|
||
count1 = high_bound - low_bound + 1;
|
||
if (get_discrete_bounds (range2, &low_bound, &high_bound) < 0)
|
||
count1 = -1, count2 = 0; /* To force error before */
|
||
else
|
||
count2 = high_bound - low_bound + 1;
|
||
if (count2 > count1)
|
||
error ("target varying type is too small");
|
||
val = allocate_value (type);
|
||
valaddr = VALUE_CONTENTS_RAW (val);
|
||
valaddr_data = valaddr + TYPE_FIELD_BITPOS (type, 1) / 8;
|
||
/* Set val's __var_length field to count2. */
|
||
store_signed_integer (valaddr, TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)),
|
||
count2);
|
||
/* Set the __var_data field to count2 elements copied from arg2. */
|
||
memcpy (valaddr_data, VALUE_CONTENTS (arg2),
|
||
count2 * TYPE_LENGTH (eltype2));
|
||
/* Zero the rest of the __var_data field of val. */
|
||
memset (valaddr_data + count2 * TYPE_LENGTH (eltype2), '\0',
|
||
(count1 - count2) * TYPE_LENGTH (eltype2));
|
||
return val;
|
||
}
|
||
else if (VALUE_LVAL (arg2) == lval_memory)
|
||
{
|
||
return value_at_lazy (type, VALUE_ADDRESS (arg2) + VALUE_OFFSET (arg2),
|
||
VALUE_BFD_SECTION (arg2));
|
||
}
|
||
else if (code1 == TYPE_CODE_VOID)
|
||
{
|
||
return value_zero (builtin_type_void, not_lval);
|
||
}
|
||
else
|
||
{
|
||
error ("Invalid cast.");
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Create a value of type TYPE that is zero, and return it. */
|
||
|
||
value_ptr
|
||
value_zero (type, lv)
|
||
struct type *type;
|
||
enum lval_type lv;
|
||
{
|
||
register value_ptr val = allocate_value (type);
|
||
|
||
memset (VALUE_CONTENTS (val), 0, TYPE_LENGTH (check_typedef (type)));
|
||
VALUE_LVAL (val) = lv;
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Return a value with type TYPE located at ADDR.
|
||
|
||
Call value_at only if the data needs to be fetched immediately;
|
||
if we can be 'lazy' and defer the fetch, perhaps indefinately, call
|
||
value_at_lazy instead. value_at_lazy simply records the address of
|
||
the data and sets the lazy-evaluation-required flag. The lazy flag
|
||
is tested in the VALUE_CONTENTS macro, which is used if and when
|
||
the contents are actually required. */
|
||
|
||
value_ptr
|
||
value_at (type, addr, sect)
|
||
struct type *type;
|
||
CORE_ADDR addr;
|
||
asection *sect;
|
||
{
|
||
register value_ptr val;
|
||
|
||
if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
|
||
error ("Attempt to dereference a generic pointer.");
|
||
|
||
val = allocate_value (type);
|
||
|
||
#ifdef GDB_TARGET_IS_D10V
|
||
if (TYPE_TARGET_TYPE(type) && TYPE_CODE(TYPE_TARGET_TYPE(type)) == TYPE_CODE_FUNC)
|
||
{
|
||
int num;
|
||
short snum;
|
||
read_memory (addr, (char *)&snum, 2);
|
||
num = D10V_MAKE_IADDR(snum);
|
||
memcpy( VALUE_CONTENTS_RAW (val), &num, 4);
|
||
}
|
||
else
|
||
#endif
|
||
|
||
read_memory_section (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (type), sect);
|
||
|
||
VALUE_LVAL (val) = lval_memory;
|
||
VALUE_ADDRESS (val) = addr;
|
||
VALUE_BFD_SECTION (val) = sect;
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
|
||
|
||
value_ptr
|
||
value_at_lazy (type, addr, sect)
|
||
struct type *type;
|
||
CORE_ADDR addr;
|
||
asection *sect;
|
||
{
|
||
register value_ptr val;
|
||
|
||
if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
|
||
error ("Attempt to dereference a generic pointer.");
|
||
|
||
val = allocate_value (type);
|
||
|
||
VALUE_LVAL (val) = lval_memory;
|
||
VALUE_ADDRESS (val) = addr;
|
||
VALUE_LAZY (val) = 1;
|
||
VALUE_BFD_SECTION (val) = sect;
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Called only from the VALUE_CONTENTS macro, if the current data for
|
||
a variable needs to be loaded into VALUE_CONTENTS(VAL). Fetches the
|
||
data from the user's process, and clears the lazy flag to indicate
|
||
that the data in the buffer is valid.
|
||
|
||
If the value is zero-length, we avoid calling read_memory, which would
|
||
abort. We mark the value as fetched anyway -- all 0 bytes of it.
|
||
|
||
This function returns a value because it is used in the VALUE_CONTENTS
|
||
macro as part of an expression, where a void would not work. The
|
||
value is ignored. */
|
||
|
||
int
|
||
value_fetch_lazy (val)
|
||
register value_ptr val;
|
||
{
|
||
CORE_ADDR addr = VALUE_ADDRESS (val) + VALUE_OFFSET (val);
|
||
int length = TYPE_LENGTH (VALUE_TYPE (val));
|
||
|
||
#ifdef GDB_TARGET_IS_D10V
|
||
struct type *type = VALUE_TYPE(val);
|
||
if (TYPE_TARGET_TYPE(type) && TYPE_CODE(TYPE_TARGET_TYPE(type)) == TYPE_CODE_FUNC)
|
||
{
|
||
int num;
|
||
short snum;
|
||
read_memory (addr, (char *)&snum, 2);
|
||
num = D10V_MAKE_IADDR(snum);
|
||
memcpy( VALUE_CONTENTS_RAW (val), &num, 4);
|
||
}
|
||
else
|
||
#endif
|
||
|
||
if (length)
|
||
read_memory_section (addr, VALUE_CONTENTS_RAW (val), length,
|
||
VALUE_BFD_SECTION (val));
|
||
VALUE_LAZY (val) = 0;
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* Store the contents of FROMVAL into the location of TOVAL.
|
||
Return a new value with the location of TOVAL and contents of FROMVAL. */
|
||
|
||
value_ptr
|
||
value_assign (toval, fromval)
|
||
register value_ptr toval, fromval;
|
||
{
|
||
register struct type *type;
|
||
register value_ptr val;
|
||
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
||
int use_buffer = 0;
|
||
|
||
if (!toval->modifiable)
|
||
error ("Left operand of assignment is not a modifiable lvalue.");
|
||
|
||
COERCE_REF (toval);
|
||
|
||
type = VALUE_TYPE (toval);
|
||
if (VALUE_LVAL (toval) != lval_internalvar)
|
||
fromval = value_cast (type, fromval);
|
||
else
|
||
COERCE_ARRAY (fromval);
|
||
CHECK_TYPEDEF (type);
|
||
|
||
/* If TOVAL is a special machine register requiring conversion
|
||
of program values to a special raw format,
|
||
convert FROMVAL's contents now, with result in `raw_buffer',
|
||
and set USE_BUFFER to the number of bytes to write. */
|
||
|
||
#ifdef REGISTER_CONVERTIBLE
|
||
if (VALUE_REGNO (toval) >= 0
|
||
&& REGISTER_CONVERTIBLE (VALUE_REGNO (toval)))
|
||
{
|
||
int regno = VALUE_REGNO (toval);
|
||
if (REGISTER_CONVERTIBLE (regno))
|
||
{
|
||
struct type *fromtype = check_typedef (VALUE_TYPE (fromval));
|
||
REGISTER_CONVERT_TO_RAW (fromtype, regno,
|
||
VALUE_CONTENTS (fromval), raw_buffer);
|
||
use_buffer = REGISTER_RAW_SIZE (regno);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
switch (VALUE_LVAL (toval))
|
||
{
|
||
case lval_internalvar:
|
||
set_internalvar (VALUE_INTERNALVAR (toval), fromval);
|
||
return value_copy (VALUE_INTERNALVAR (toval)->value);
|
||
|
||
case lval_internalvar_component:
|
||
set_internalvar_component (VALUE_INTERNALVAR (toval),
|
||
VALUE_OFFSET (toval),
|
||
VALUE_BITPOS (toval),
|
||
VALUE_BITSIZE (toval),
|
||
fromval);
|
||
break;
|
||
|
||
case lval_memory:
|
||
if (VALUE_BITSIZE (toval))
|
||
{
|
||
char buffer[sizeof (LONGEST)];
|
||
/* We assume that the argument to read_memory is in units of
|
||
host chars. FIXME: Is that correct? */
|
||
int len = (VALUE_BITPOS (toval)
|
||
+ VALUE_BITSIZE (toval)
|
||
+ HOST_CHAR_BIT - 1)
|
||
/ HOST_CHAR_BIT;
|
||
|
||
if (len > (int) sizeof (LONGEST))
|
||
error ("Can't handle bitfields which don't fit in a %d bit word.",
|
||
sizeof (LONGEST) * HOST_CHAR_BIT);
|
||
|
||
read_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
||
buffer, len);
|
||
modify_field (buffer, value_as_long (fromval),
|
||
VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
|
||
write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
||
buffer, len);
|
||
}
|
||
else if (use_buffer)
|
||
write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
||
raw_buffer, use_buffer);
|
||
else
|
||
write_memory (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
||
VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
|
||
break;
|
||
|
||
case lval_register:
|
||
if (VALUE_BITSIZE (toval))
|
||
{
|
||
char buffer[sizeof (LONGEST)];
|
||
int len = REGISTER_RAW_SIZE (VALUE_REGNO (toval));
|
||
|
||
if (len > (int) sizeof (LONGEST))
|
||
error ("Can't handle bitfields in registers larger than %d bits.",
|
||
sizeof (LONGEST) * HOST_CHAR_BIT);
|
||
|
||
if (VALUE_BITPOS (toval) + VALUE_BITSIZE (toval)
|
||
> len * HOST_CHAR_BIT)
|
||
/* Getting this right would involve being very careful about
|
||
byte order. */
|
||
error ("\
|
||
Can't handle bitfield which doesn't fit in a single register.");
|
||
|
||
read_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
||
buffer, len);
|
||
modify_field (buffer, value_as_long (fromval),
|
||
VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
|
||
write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
||
buffer, len);
|
||
}
|
||
else if (use_buffer)
|
||
write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
||
raw_buffer, use_buffer);
|
||
else
|
||
{
|
||
/* Do any conversion necessary when storing this type to more
|
||
than one register. */
|
||
#ifdef REGISTER_CONVERT_FROM_TYPE
|
||
memcpy (raw_buffer, VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
|
||
REGISTER_CONVERT_FROM_TYPE(VALUE_REGNO (toval), type, raw_buffer);
|
||
write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
||
raw_buffer, TYPE_LENGTH (type));
|
||
#else
|
||
write_register_bytes (VALUE_ADDRESS (toval) + VALUE_OFFSET (toval),
|
||
VALUE_CONTENTS (fromval), TYPE_LENGTH (type));
|
||
#endif
|
||
}
|
||
/* Assigning to the stack pointer, frame pointer, and other
|
||
(architecture and calling convention specific) registers may
|
||
cause the frame cache to be out of date. We just do this
|
||
on all assignments to registers for simplicity; I doubt the slowdown
|
||
matters. */
|
||
reinit_frame_cache ();
|
||
break;
|
||
|
||
case lval_reg_frame_relative:
|
||
{
|
||
/* value is stored in a series of registers in the frame
|
||
specified by the structure. Copy that value out, modify
|
||
it, and copy it back in. */
|
||
int amount_to_copy = (VALUE_BITSIZE (toval) ? 1 : TYPE_LENGTH (type));
|
||
int reg_size = REGISTER_RAW_SIZE (VALUE_FRAME_REGNUM (toval));
|
||
int byte_offset = VALUE_OFFSET (toval) % reg_size;
|
||
int reg_offset = VALUE_OFFSET (toval) / reg_size;
|
||
int amount_copied;
|
||
|
||
/* Make the buffer large enough in all cases. */
|
||
char *buffer = (char *) alloca (amount_to_copy
|
||
+ sizeof (LONGEST)
|
||
+ MAX_REGISTER_RAW_SIZE);
|
||
|
||
int regno;
|
||
struct frame_info *frame;
|
||
|
||
/* Figure out which frame this is in currently. */
|
||
for (frame = get_current_frame ();
|
||
frame && FRAME_FP (frame) != VALUE_FRAME (toval);
|
||
frame = get_prev_frame (frame))
|
||
;
|
||
|
||
if (!frame)
|
||
error ("Value being assigned to is no longer active.");
|
||
|
||
amount_to_copy += (reg_size - amount_to_copy % reg_size);
|
||
|
||
/* Copy it out. */
|
||
for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
|
||
amount_copied = 0);
|
||
amount_copied < amount_to_copy;
|
||
amount_copied += reg_size, regno++)
|
||
{
|
||
get_saved_register (buffer + amount_copied,
|
||
(int *)NULL, (CORE_ADDR *)NULL,
|
||
frame, regno, (enum lval_type *)NULL);
|
||
}
|
||
|
||
/* Modify what needs to be modified. */
|
||
if (VALUE_BITSIZE (toval))
|
||
modify_field (buffer + byte_offset,
|
||
value_as_long (fromval),
|
||
VALUE_BITPOS (toval), VALUE_BITSIZE (toval));
|
||
else if (use_buffer)
|
||
memcpy (buffer + byte_offset, raw_buffer, use_buffer);
|
||
else
|
||
memcpy (buffer + byte_offset, VALUE_CONTENTS (fromval),
|
||
TYPE_LENGTH (type));
|
||
|
||
/* Copy it back. */
|
||
for ((regno = VALUE_FRAME_REGNUM (toval) + reg_offset,
|
||
amount_copied = 0);
|
||
amount_copied < amount_to_copy;
|
||
amount_copied += reg_size, regno++)
|
||
{
|
||
enum lval_type lval;
|
||
CORE_ADDR addr;
|
||
int optim;
|
||
|
||
/* Just find out where to put it. */
|
||
get_saved_register ((char *)NULL,
|
||
&optim, &addr, frame, regno, &lval);
|
||
|
||
if (optim)
|
||
error ("Attempt to assign to a value that was optimized out.");
|
||
if (lval == lval_memory)
|
||
write_memory (addr, buffer + amount_copied, reg_size);
|
||
else if (lval == lval_register)
|
||
write_register_bytes (addr, buffer + amount_copied, reg_size);
|
||
else
|
||
error ("Attempt to assign to an unmodifiable value.");
|
||
}
|
||
}
|
||
break;
|
||
|
||
|
||
default:
|
||
error ("Left operand of assignment is not an lvalue.");
|
||
}
|
||
|
||
/* If the field does not entirely fill a LONGEST, then zero the sign bits.
|
||
If the field is signed, and is negative, then sign extend. */
|
||
if ((VALUE_BITSIZE (toval) > 0)
|
||
&& (VALUE_BITSIZE (toval) < 8 * (int) sizeof (LONGEST)))
|
||
{
|
||
LONGEST fieldval = value_as_long (fromval);
|
||
LONGEST valmask = (((ULONGEST) 1) << VALUE_BITSIZE (toval)) - 1;
|
||
|
||
fieldval &= valmask;
|
||
if (!TYPE_UNSIGNED (type) && (fieldval & (valmask ^ (valmask >> 1))))
|
||
fieldval |= ~valmask;
|
||
|
||
fromval = value_from_longest (type, fieldval);
|
||
}
|
||
|
||
val = value_copy (toval);
|
||
memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS (fromval),
|
||
TYPE_LENGTH (type));
|
||
VALUE_TYPE (val) = type;
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Extend a value VAL to COUNT repetitions of its type. */
|
||
|
||
value_ptr
|
||
value_repeat (arg1, count)
|
||
value_ptr arg1;
|
||
int count;
|
||
{
|
||
register value_ptr val;
|
||
|
||
if (VALUE_LVAL (arg1) != lval_memory)
|
||
error ("Only values in memory can be extended with '@'.");
|
||
if (count < 1)
|
||
error ("Invalid number %d of repetitions.", count);
|
||
|
||
val = allocate_repeat_value (VALUE_TYPE (arg1), count);
|
||
|
||
read_memory (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1),
|
||
VALUE_CONTENTS_RAW (val),
|
||
TYPE_LENGTH (VALUE_TYPE (val)));
|
||
VALUE_LVAL (val) = lval_memory;
|
||
VALUE_ADDRESS (val) = VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1);
|
||
|
||
return val;
|
||
}
|
||
|
||
value_ptr
|
||
value_of_variable (var, b)
|
||
struct symbol *var;
|
||
struct block *b;
|
||
{
|
||
value_ptr val;
|
||
struct frame_info *frame = NULL;
|
||
|
||
if (!b)
|
||
frame = NULL; /* Use selected frame. */
|
||
else if (symbol_read_needs_frame (var))
|
||
{
|
||
frame = block_innermost_frame (b);
|
||
if (!frame)
|
||
if (BLOCK_FUNCTION (b)
|
||
&& SYMBOL_NAME (BLOCK_FUNCTION (b)))
|
||
error ("No frame is currently executing in block %s.",
|
||
SYMBOL_NAME (BLOCK_FUNCTION (b)));
|
||
else
|
||
error ("No frame is currently executing in specified block");
|
||
}
|
||
|
||
val = read_var_value (var, frame);
|
||
if (!val)
|
||
error ("Address of symbol \"%s\" is unknown.", SYMBOL_SOURCE_NAME (var));
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Given a value which is an array, return a value which is a pointer to its
|
||
first element, regardless of whether or not the array has a nonzero lower
|
||
bound.
|
||
|
||
FIXME: A previous comment here indicated that this routine should be
|
||
substracting the array's lower bound. It's not clear to me that this
|
||
is correct. Given an array subscripting operation, it would certainly
|
||
work to do the adjustment here, essentially computing:
|
||
|
||
(&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
|
||
|
||
However I believe a more appropriate and logical place to account for
|
||
the lower bound is to do so in value_subscript, essentially computing:
|
||
|
||
(&array[0] + ((index - lowerbound) * sizeof array[0]))
|
||
|
||
As further evidence consider what would happen with operations other
|
||
than array subscripting, where the caller would get back a value that
|
||
had an address somewhere before the actual first element of the array,
|
||
and the information about the lower bound would be lost because of
|
||
the coercion to pointer type.
|
||
*/
|
||
|
||
value_ptr
|
||
value_coerce_array (arg1)
|
||
value_ptr arg1;
|
||
{
|
||
register struct type *type = check_typedef (VALUE_TYPE (arg1));
|
||
|
||
if (VALUE_LVAL (arg1) != lval_memory)
|
||
error ("Attempt to take address of value not located in memory.");
|
||
|
||
return value_from_longest (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
|
||
(LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
|
||
}
|
||
|
||
/* Given a value which is a function, return a value which is a pointer
|
||
to it. */
|
||
|
||
value_ptr
|
||
value_coerce_function (arg1)
|
||
value_ptr arg1;
|
||
{
|
||
value_ptr retval;
|
||
|
||
if (VALUE_LVAL (arg1) != lval_memory)
|
||
error ("Attempt to take address of value not located in memory.");
|
||
|
||
retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
|
||
(LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
|
||
VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
|
||
return retval;
|
||
}
|
||
|
||
/* Return a pointer value for the object for which ARG1 is the contents. */
|
||
|
||
value_ptr
|
||
value_addr (arg1)
|
||
value_ptr arg1;
|
||
{
|
||
value_ptr retval;
|
||
|
||
struct type *type = check_typedef (VALUE_TYPE (arg1));
|
||
if (TYPE_CODE (type) == TYPE_CODE_REF)
|
||
{
|
||
/* Copy the value, but change the type from (T&) to (T*).
|
||
We keep the same location information, which is efficient,
|
||
and allows &(&X) to get the location containing the reference. */
|
||
value_ptr arg2 = value_copy (arg1);
|
||
VALUE_TYPE (arg2) = lookup_pointer_type (TYPE_TARGET_TYPE (type));
|
||
return arg2;
|
||
}
|
||
if (TYPE_CODE (type) == TYPE_CODE_FUNC)
|
||
return value_coerce_function (arg1);
|
||
|
||
if (VALUE_LVAL (arg1) != lval_memory)
|
||
error ("Attempt to take address of value not located in memory.");
|
||
|
||
retval = value_from_longest (lookup_pointer_type (VALUE_TYPE (arg1)),
|
||
(LONGEST) (VALUE_ADDRESS (arg1) + VALUE_OFFSET (arg1)));
|
||
VALUE_BFD_SECTION (retval) = VALUE_BFD_SECTION (arg1);
|
||
return retval;
|
||
}
|
||
|
||
/* Given a value of a pointer type, apply the C unary * operator to it. */
|
||
|
||
value_ptr
|
||
value_ind (arg1)
|
||
value_ptr arg1;
|
||
{
|
||
struct type *type1;
|
||
COERCE_ARRAY (arg1);
|
||
type1 = check_typedef (VALUE_TYPE (arg1));
|
||
|
||
if (TYPE_CODE (type1) == TYPE_CODE_MEMBER)
|
||
error ("not implemented: member types in value_ind");
|
||
|
||
/* Allow * on an integer so we can cast it to whatever we want.
|
||
This returns an int, which seems like the most C-like thing
|
||
to do. "long long" variables are rare enough that
|
||
BUILTIN_TYPE_LONGEST would seem to be a mistake. */
|
||
if (TYPE_CODE (type1) == TYPE_CODE_INT)
|
||
return value_at (builtin_type_int,
|
||
(CORE_ADDR) value_as_long (arg1),
|
||
VALUE_BFD_SECTION (arg1));
|
||
else if (TYPE_CODE (type1) == TYPE_CODE_PTR)
|
||
return value_at_lazy (TYPE_TARGET_TYPE (type1), value_as_pointer (arg1),
|
||
VALUE_BFD_SECTION (arg1));
|
||
error ("Attempt to take contents of a non-pointer value.");
|
||
return 0; /* For lint -- never reached */
|
||
}
|
||
|
||
/* Pushing small parts of stack frames. */
|
||
|
||
/* Push one word (the size of object that a register holds). */
|
||
|
||
CORE_ADDR
|
||
push_word (sp, word)
|
||
CORE_ADDR sp;
|
||
ULONGEST word;
|
||
{
|
||
register int len = REGISTER_SIZE;
|
||
char buffer[MAX_REGISTER_RAW_SIZE];
|
||
|
||
store_unsigned_integer (buffer, len, word);
|
||
#if 1 INNER_THAN 2
|
||
sp -= len;
|
||
write_memory (sp, buffer, len);
|
||
#else /* stack grows upward */
|
||
write_memory (sp, buffer, len);
|
||
sp += len;
|
||
#endif /* stack grows upward */
|
||
|
||
return sp;
|
||
}
|
||
|
||
/* Push LEN bytes with data at BUFFER. */
|
||
|
||
CORE_ADDR
|
||
push_bytes (sp, buffer, len)
|
||
CORE_ADDR sp;
|
||
char *buffer;
|
||
int len;
|
||
{
|
||
#if 1 INNER_THAN 2
|
||
sp -= len;
|
||
write_memory (sp, buffer, len);
|
||
#else /* stack grows upward */
|
||
write_memory (sp, buffer, len);
|
||
sp += len;
|
||
#endif /* stack grows upward */
|
||
|
||
return sp;
|
||
}
|
||
|
||
/* Push onto the stack the specified value VALUE. */
|
||
|
||
#ifndef PUSH_ARGUMENTS
|
||
|
||
static CORE_ADDR
|
||
value_push (sp, arg)
|
||
register CORE_ADDR sp;
|
||
value_ptr arg;
|
||
{
|
||
register int len = TYPE_LENGTH (VALUE_TYPE (arg));
|
||
|
||
#if 1 INNER_THAN 2
|
||
sp -= len;
|
||
write_memory (sp, VALUE_CONTENTS (arg), len);
|
||
#else /* stack grows upward */
|
||
write_memory (sp, VALUE_CONTENTS (arg), len);
|
||
sp += len;
|
||
#endif /* stack grows upward */
|
||
|
||
return sp;
|
||
}
|
||
|
||
#endif /* !PUSH_ARGUMENTS */
|
||
|
||
#ifdef CALL_DUMMY
|
||
/* Perform the standard coercions that are specified
|
||
for arguments to be passed to C functions.
|
||
|
||
If PARAM_TYPE is non-NULL, it is the expected parameter type. */
|
||
|
||
static value_ptr
|
||
value_arg_coerce (arg, param_type)
|
||
value_ptr arg;
|
||
struct type *param_type;
|
||
{
|
||
register struct type *arg_type = check_typedef (VALUE_TYPE (arg));
|
||
register struct type *type
|
||
= param_type ? check_typedef (param_type) : arg_type;
|
||
|
||
switch (TYPE_CODE (type))
|
||
{
|
||
case TYPE_CODE_REF:
|
||
if (TYPE_CODE (arg_type) != TYPE_CODE_REF)
|
||
{
|
||
arg = value_addr (arg);
|
||
VALUE_TYPE (arg) = param_type;
|
||
return arg;
|
||
}
|
||
break;
|
||
case TYPE_CODE_INT:
|
||
case TYPE_CODE_CHAR:
|
||
case TYPE_CODE_BOOL:
|
||
case TYPE_CODE_ENUM:
|
||
if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
|
||
type = builtin_type_int;
|
||
break;
|
||
case TYPE_CODE_FLT:
|
||
/* coerce float to double, unless the function prototype specifies float */
|
||
if (COERCE_FLOAT_TO_DOUBLE)
|
||
{
|
||
if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
|
||
type = builtin_type_double;
|
||
else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
|
||
type = builtin_type_long_double;
|
||
}
|
||
break;
|
||
case TYPE_CODE_FUNC:
|
||
type = lookup_pointer_type (type);
|
||
break;
|
||
case TYPE_CODE_ARRAY:
|
||
if (current_language->c_style_arrays)
|
||
type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
|
||
break;
|
||
case TYPE_CODE_UNDEF:
|
||
case TYPE_CODE_PTR:
|
||
case TYPE_CODE_STRUCT:
|
||
case TYPE_CODE_UNION:
|
||
case TYPE_CODE_VOID:
|
||
case TYPE_CODE_SET:
|
||
case TYPE_CODE_RANGE:
|
||
case TYPE_CODE_STRING:
|
||
case TYPE_CODE_BITSTRING:
|
||
case TYPE_CODE_ERROR:
|
||
case TYPE_CODE_MEMBER:
|
||
case TYPE_CODE_METHOD:
|
||
case TYPE_CODE_COMPLEX:
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return value_cast (type, arg);
|
||
}
|
||
|
||
/* Determine a function's address and its return type from its value.
|
||
Calls error() if the function is not valid for calling. */
|
||
|
||
static CORE_ADDR
|
||
find_function_addr (function, retval_type)
|
||
value_ptr function;
|
||
struct type **retval_type;
|
||
{
|
||
register struct type *ftype = check_typedef (VALUE_TYPE (function));
|
||
register enum type_code code = TYPE_CODE (ftype);
|
||
struct type *value_type;
|
||
CORE_ADDR funaddr;
|
||
|
||
/* If it's a member function, just look at the function
|
||
part of it. */
|
||
|
||
/* Determine address to call. */
|
||
if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
|
||
{
|
||
funaddr = VALUE_ADDRESS (function);
|
||
value_type = TYPE_TARGET_TYPE (ftype);
|
||
}
|
||
else if (code == TYPE_CODE_PTR)
|
||
{
|
||
funaddr = value_as_pointer (function);
|
||
ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
|
||
if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
|
||
|| TYPE_CODE (ftype) == TYPE_CODE_METHOD)
|
||
{
|
||
#ifdef CONVERT_FROM_FUNC_PTR_ADDR
|
||
/* FIXME: This is a workaround for the unusual function
|
||
pointer representation on the RS/6000, see comment
|
||
in config/rs6000/tm-rs6000.h */
|
||
funaddr = CONVERT_FROM_FUNC_PTR_ADDR (funaddr);
|
||
#endif
|
||
value_type = TYPE_TARGET_TYPE (ftype);
|
||
}
|
||
else
|
||
value_type = builtin_type_int;
|
||
}
|
||
else if (code == TYPE_CODE_INT)
|
||
{
|
||
/* Handle the case of functions lacking debugging info.
|
||
Their values are characters since their addresses are char */
|
||
if (TYPE_LENGTH (ftype) == 1)
|
||
funaddr = value_as_pointer (value_addr (function));
|
||
else
|
||
/* Handle integer used as address of a function. */
|
||
funaddr = (CORE_ADDR) value_as_long (function);
|
||
|
||
value_type = builtin_type_int;
|
||
}
|
||
else
|
||
error ("Invalid data type for function to be called.");
|
||
|
||
*retval_type = value_type;
|
||
return funaddr;
|
||
}
|
||
|
||
/* All this stuff with a dummy frame may seem unnecessarily complicated
|
||
(why not just save registers in GDB?). The purpose of pushing a dummy
|
||
frame which looks just like a real frame is so that if you call a
|
||
function and then hit a breakpoint (get a signal, etc), "backtrace"
|
||
will look right. Whether the backtrace needs to actually show the
|
||
stack at the time the inferior function was called is debatable, but
|
||
it certainly needs to not display garbage. So if you are contemplating
|
||
making dummy frames be different from normal frames, consider that. */
|
||
|
||
/* Perform a function call in the inferior.
|
||
ARGS is a vector of values of arguments (NARGS of them).
|
||
FUNCTION is a value, the function to be called.
|
||
Returns a value representing what the function returned.
|
||
May fail to return, if a breakpoint or signal is hit
|
||
during the execution of the function.
|
||
|
||
ARGS is modified to contain coerced values. */
|
||
|
||
value_ptr
|
||
call_function_by_hand (function, nargs, args)
|
||
value_ptr function;
|
||
int nargs;
|
||
value_ptr *args;
|
||
{
|
||
register CORE_ADDR sp;
|
||
register int i;
|
||
CORE_ADDR start_sp;
|
||
/* CALL_DUMMY is an array of words (REGISTER_SIZE), but each word
|
||
is in host byte order. Before calling FIX_CALL_DUMMY, we byteswap it
|
||
and remove any extra bytes which might exist because ULONGEST is
|
||
bigger than REGISTER_SIZE. */
|
||
static ULONGEST dummy[] = CALL_DUMMY;
|
||
char dummy1[REGISTER_SIZE * sizeof dummy / sizeof (ULONGEST)];
|
||
CORE_ADDR old_sp;
|
||
struct type *value_type;
|
||
unsigned char struct_return;
|
||
CORE_ADDR struct_addr = 0;
|
||
struct inferior_status inf_status;
|
||
struct cleanup *old_chain;
|
||
CORE_ADDR funaddr;
|
||
int using_gcc; /* Set to version of gcc in use, or zero if not gcc */
|
||
CORE_ADDR real_pc;
|
||
struct type *ftype = check_typedef (SYMBOL_TYPE (function));
|
||
|
||
if (!target_has_execution)
|
||
noprocess();
|
||
|
||
save_inferior_status (&inf_status, 1);
|
||
old_chain = make_cleanup (restore_inferior_status, &inf_status);
|
||
|
||
/* PUSH_DUMMY_FRAME is responsible for saving the inferior registers
|
||
(and POP_FRAME for restoring them). (At least on most machines)
|
||
they are saved on the stack in the inferior. */
|
||
PUSH_DUMMY_FRAME;
|
||
|
||
old_sp = sp = read_sp ();
|
||
|
||
#if 1 INNER_THAN 2 /* Stack grows down */
|
||
sp -= sizeof dummy1;
|
||
start_sp = sp;
|
||
#else /* Stack grows up */
|
||
start_sp = sp;
|
||
sp += sizeof dummy1;
|
||
#endif
|
||
|
||
funaddr = find_function_addr (function, &value_type);
|
||
CHECK_TYPEDEF (value_type);
|
||
|
||
{
|
||
struct block *b = block_for_pc (funaddr);
|
||
/* If compiled without -g, assume GCC 2. */
|
||
using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
|
||
}
|
||
|
||
/* Are we returning a value using a structure return or a normal
|
||
value return? */
|
||
|
||
struct_return = using_struct_return (function, funaddr, value_type,
|
||
using_gcc);
|
||
|
||
/* Create a call sequence customized for this function
|
||
and the number of arguments for it. */
|
||
for (i = 0; i < (int) (sizeof (dummy) / sizeof (dummy[0])); i++)
|
||
store_unsigned_integer (&dummy1[i * REGISTER_SIZE],
|
||
REGISTER_SIZE,
|
||
(ULONGEST)dummy[i]);
|
||
|
||
#ifdef GDB_TARGET_IS_HPPA
|
||
real_pc = FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
|
||
value_type, using_gcc);
|
||
#else
|
||
FIX_CALL_DUMMY (dummy1, start_sp, funaddr, nargs, args,
|
||
value_type, using_gcc);
|
||
real_pc = start_sp;
|
||
#endif
|
||
|
||
#if CALL_DUMMY_LOCATION == ON_STACK
|
||
write_memory (start_sp, (char *)dummy1, sizeof dummy1);
|
||
#endif /* On stack. */
|
||
|
||
#if CALL_DUMMY_LOCATION == BEFORE_TEXT_END
|
||
/* Convex Unix prohibits executing in the stack segment. */
|
||
/* Hope there is empty room at the top of the text segment. */
|
||
{
|
||
extern CORE_ADDR text_end;
|
||
static checked = 0;
|
||
if (!checked)
|
||
for (start_sp = text_end - sizeof dummy1; start_sp < text_end; ++start_sp)
|
||
if (read_memory_integer (start_sp, 1) != 0)
|
||
error ("text segment full -- no place to put call");
|
||
checked = 1;
|
||
sp = old_sp;
|
||
real_pc = text_end - sizeof dummy1;
|
||
write_memory (real_pc, (char *)dummy1, sizeof dummy1);
|
||
}
|
||
#endif /* Before text_end. */
|
||
|
||
#if CALL_DUMMY_LOCATION == AFTER_TEXT_END
|
||
{
|
||
extern CORE_ADDR text_end;
|
||
int errcode;
|
||
sp = old_sp;
|
||
real_pc = text_end;
|
||
errcode = target_write_memory (real_pc, (char *)dummy1, sizeof dummy1);
|
||
if (errcode != 0)
|
||
error ("Cannot write text segment -- call_function failed");
|
||
}
|
||
#endif /* After text_end. */
|
||
|
||
#if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
|
||
real_pc = funaddr;
|
||
#endif /* At entry point. */
|
||
|
||
#ifdef lint
|
||
sp = old_sp; /* It really is used, for some ifdef's... */
|
||
#endif
|
||
|
||
if (nargs < TYPE_NFIELDS (ftype))
|
||
error ("too few arguments in function call");
|
||
|
||
for (i = nargs - 1; i >= 0; i--)
|
||
{
|
||
struct type *param_type;
|
||
if (TYPE_NFIELDS (ftype) > i)
|
||
param_type = TYPE_FIELD_TYPE (ftype, i);
|
||
else
|
||
param_type = 0;
|
||
args[i] = value_arg_coerce (args[i], param_type);
|
||
}
|
||
|
||
#if defined (REG_STRUCT_HAS_ADDR)
|
||
{
|
||
/* This is a machine like the sparc, where we may need to pass a pointer
|
||
to the structure, not the structure itself. */
|
||
for (i = nargs - 1; i >= 0; i--)
|
||
{
|
||
struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
|
||
if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (arg_type) == TYPE_CODE_UNION
|
||
|| TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
|
||
|| TYPE_CODE (arg_type) == TYPE_CODE_STRING
|
||
|| TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
|
||
|| TYPE_CODE (arg_type) == TYPE_CODE_SET
|
||
|| (TYPE_CODE (arg_type) == TYPE_CODE_FLT
|
||
&& TYPE_LENGTH (arg_type) > 8)
|
||
)
|
||
&& REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
|
||
{
|
||
CORE_ADDR addr;
|
||
int len = TYPE_LENGTH (arg_type);
|
||
#ifdef STACK_ALIGN
|
||
/* MVS 11/22/96: I think at least some of this stack_align code is
|
||
really broken. Better to let PUSH_ARGUMENTS adjust the stack in
|
||
a target-defined manner. */
|
||
int aligned_len = STACK_ALIGN (len);
|
||
#else
|
||
int aligned_len = len;
|
||
#endif
|
||
#if !(1 INNER_THAN 2)
|
||
/* The stack grows up, so the address of the thing we push
|
||
is the stack pointer before we push it. */
|
||
addr = sp;
|
||
#else
|
||
sp -= aligned_len;
|
||
#endif
|
||
/* Push the structure. */
|
||
write_memory (sp, VALUE_CONTENTS (args[i]), len);
|
||
#if 1 INNER_THAN 2
|
||
/* The stack grows down, so the address of the thing we push
|
||
is the stack pointer after we push it. */
|
||
addr = sp;
|
||
#else
|
||
sp += aligned_len;
|
||
#endif
|
||
/* The value we're going to pass is the address of the thing
|
||
we just pushed. */
|
||
args[i] = value_from_longest (lookup_pointer_type (value_type),
|
||
(LONGEST) addr);
|
||
}
|
||
}
|
||
}
|
||
#endif /* REG_STRUCT_HAS_ADDR. */
|
||
|
||
/* Reserve space for the return structure to be written on the
|
||
stack, if necessary */
|
||
|
||
if (struct_return)
|
||
{
|
||
int len = TYPE_LENGTH (value_type);
|
||
#ifdef STACK_ALIGN
|
||
/* MVS 11/22/96: I think at least some of this stack_align code is
|
||
really broken. Better to let PUSH_ARGUMENTS adjust the stack in
|
||
a target-defined manner. */
|
||
len = STACK_ALIGN (len);
|
||
#endif
|
||
#if 1 INNER_THAN 2
|
||
sp -= len;
|
||
struct_addr = sp;
|
||
#else
|
||
struct_addr = sp;
|
||
sp += len;
|
||
#endif
|
||
}
|
||
|
||
#if defined(STACK_ALIGN) && (1 INNER_THAN 2)
|
||
/* MVS 11/22/96: I think at least some of this stack_align code is
|
||
really broken. Better to let PUSH_ARGUMENTS adjust the stack in
|
||
a target-defined manner. */
|
||
{
|
||
/* If stack grows down, we must leave a hole at the top. */
|
||
int len = 0;
|
||
|
||
for (i = nargs - 1; i >= 0; i--)
|
||
len += TYPE_LENGTH (VALUE_TYPE (args[i]));
|
||
#ifdef CALL_DUMMY_STACK_ADJUST
|
||
len += CALL_DUMMY_STACK_ADJUST;
|
||
#endif
|
||
sp -= STACK_ALIGN (len) - len;
|
||
}
|
||
#endif /* STACK_ALIGN */
|
||
|
||
#ifdef PUSH_ARGUMENTS
|
||
PUSH_ARGUMENTS(nargs, args, sp, struct_return, struct_addr);
|
||
#else /* !PUSH_ARGUMENTS */
|
||
for (i = nargs - 1; i >= 0; i--)
|
||
sp = value_push (sp, args[i]);
|
||
#endif /* !PUSH_ARGUMENTS */
|
||
|
||
#ifdef PUSH_RETURN_ADDRESS /* for targets that use no CALL_DUMMY */
|
||
/* There are a number of targets now which actually don't write any
|
||
CALL_DUMMY instructions into the target, but instead just save the
|
||
machine state, push the arguments, and jump directly to the callee
|
||
function. Since this doesn't actually involve executing a JSR/BSR
|
||
instruction, the return address must be set up by hand, either by
|
||
pushing onto the stack or copying into a return-address register
|
||
as appropriate. Formerly this has been done in PUSH_ARGUMENTS,
|
||
but that's overloading its functionality a bit, so I'm making it
|
||
explicit to do it here. */
|
||
sp = PUSH_RETURN_ADDRESS(real_pc, sp);
|
||
#endif /* PUSH_RETURN_ADDRESS */
|
||
|
||
#if defined(STACK_ALIGN) && !(1 INNER_THAN 2)
|
||
{
|
||
/* If stack grows up, we must leave a hole at the bottom, note
|
||
that sp already has been advanced for the arguments! */
|
||
#ifdef CALL_DUMMY_STACK_ADJUST
|
||
sp += CALL_DUMMY_STACK_ADJUST;
|
||
#endif
|
||
sp = STACK_ALIGN (sp);
|
||
}
|
||
#endif /* STACK_ALIGN */
|
||
|
||
/* XXX This seems wrong. For stacks that grow down we shouldn't do
|
||
anything here! */
|
||
/* MVS 11/22/96: I think at least some of this stack_align code is
|
||
really broken. Better to let PUSH_ARGUMENTS adjust the stack in
|
||
a target-defined manner. */
|
||
#ifdef CALL_DUMMY_STACK_ADJUST
|
||
#if 1 INNER_THAN 2
|
||
sp -= CALL_DUMMY_STACK_ADJUST;
|
||
#endif
|
||
#endif /* CALL_DUMMY_STACK_ADJUST */
|
||
|
||
/* Store the address at which the structure is supposed to be
|
||
written. Note that this (and the code which reserved the space
|
||
above) assumes that gcc was used to compile this function. Since
|
||
it doesn't cost us anything but space and if the function is pcc
|
||
it will ignore this value, we will make that assumption.
|
||
|
||
Also note that on some machines (like the sparc) pcc uses a
|
||
convention like gcc's. */
|
||
|
||
if (struct_return)
|
||
STORE_STRUCT_RETURN (struct_addr, sp);
|
||
|
||
/* Write the stack pointer. This is here because the statements above
|
||
might fool with it. On SPARC, this write also stores the register
|
||
window into the right place in the new stack frame, which otherwise
|
||
wouldn't happen. (See store_inferior_registers in sparc-nat.c.) */
|
||
write_sp (sp);
|
||
|
||
{
|
||
char retbuf[REGISTER_BYTES];
|
||
char *name;
|
||
struct symbol *symbol;
|
||
|
||
name = NULL;
|
||
symbol = find_pc_function (funaddr);
|
||
if (symbol)
|
||
{
|
||
name = SYMBOL_SOURCE_NAME (symbol);
|
||
}
|
||
else
|
||
{
|
||
/* Try the minimal symbols. */
|
||
struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
|
||
|
||
if (msymbol)
|
||
{
|
||
name = SYMBOL_SOURCE_NAME (msymbol);
|
||
}
|
||
}
|
||
if (name == NULL)
|
||
{
|
||
char format[80];
|
||
sprintf (format, "at %s", local_hex_format ());
|
||
name = alloca (80);
|
||
/* FIXME-32x64: assumes funaddr fits in a long. */
|
||
sprintf (name, format, (unsigned long) funaddr);
|
||
}
|
||
|
||
/* Execute the stack dummy routine, calling FUNCTION.
|
||
When it is done, discard the empty frame
|
||
after storing the contents of all regs into retbuf. */
|
||
if (run_stack_dummy (real_pc + CALL_DUMMY_START_OFFSET, retbuf))
|
||
{
|
||
/* We stopped somewhere besides the call dummy. */
|
||
|
||
/* If we did the cleanups, we would print a spurious error message
|
||
(Unable to restore previously selected frame), would write the
|
||
registers from the inf_status (which is wrong), and would do other
|
||
wrong things (like set stop_bpstat to the wrong thing). */
|
||
discard_cleanups (old_chain);
|
||
/* Prevent memory leak. */
|
||
bpstat_clear (&inf_status.stop_bpstat);
|
||
|
||
/* The following error message used to say "The expression
|
||
which contained the function call has been discarded." It
|
||
is a hard concept to explain in a few words. Ideally, GDB
|
||
would be able to resume evaluation of the expression when
|
||
the function finally is done executing. Perhaps someday
|
||
this will be implemented (it would not be easy). */
|
||
|
||
/* FIXME: Insert a bunch of wrap_here; name can be very long if it's
|
||
a C++ name with arguments and stuff. */
|
||
error ("\
|
||
The program being debugged stopped while in a function called from GDB.\n\
|
||
When the function (%s) is done executing, GDB will silently\n\
|
||
stop (instead of continuing to evaluate the expression containing\n\
|
||
the function call).", name);
|
||
}
|
||
|
||
do_cleanups (old_chain);
|
||
|
||
/* Figure out the value returned by the function. */
|
||
return value_being_returned (value_type, retbuf, struct_return);
|
||
}
|
||
}
|
||
#else /* no CALL_DUMMY. */
|
||
value_ptr
|
||
call_function_by_hand (function, nargs, args)
|
||
value_ptr function;
|
||
int nargs;
|
||
value_ptr *args;
|
||
{
|
||
error ("Cannot invoke functions on this machine.");
|
||
}
|
||
#endif /* no CALL_DUMMY. */
|
||
|
||
|
||
/* Create a value for an array by allocating space in the inferior, copying
|
||
the data into that space, and then setting up an array value.
|
||
|
||
The array bounds are set from LOWBOUND and HIGHBOUND, and the array is
|
||
populated from the values passed in ELEMVEC.
|
||
|
||
The element type of the array is inherited from the type of the
|
||
first element, and all elements must have the same size (though we
|
||
don't currently enforce any restriction on their types). */
|
||
|
||
value_ptr
|
||
value_array (lowbound, highbound, elemvec)
|
||
int lowbound;
|
||
int highbound;
|
||
value_ptr *elemvec;
|
||
{
|
||
int nelem;
|
||
int idx;
|
||
unsigned int typelength;
|
||
value_ptr val;
|
||
struct type *rangetype;
|
||
struct type *arraytype;
|
||
CORE_ADDR addr;
|
||
|
||
/* Validate that the bounds are reasonable and that each of the elements
|
||
have the same size. */
|
||
|
||
nelem = highbound - lowbound + 1;
|
||
if (nelem <= 0)
|
||
{
|
||
error ("bad array bounds (%d, %d)", lowbound, highbound);
|
||
}
|
||
typelength = TYPE_LENGTH (VALUE_TYPE (elemvec[0]));
|
||
for (idx = 1; idx < nelem; idx++)
|
||
{
|
||
if (TYPE_LENGTH (VALUE_TYPE (elemvec[idx])) != typelength)
|
||
{
|
||
error ("array elements must all be the same size");
|
||
}
|
||
}
|
||
|
||
rangetype = create_range_type ((struct type *) NULL, builtin_type_int,
|
||
lowbound, highbound);
|
||
arraytype = create_array_type ((struct type *) NULL,
|
||
VALUE_TYPE (elemvec[0]), rangetype);
|
||
|
||
if (!current_language->c_style_arrays)
|
||
{
|
||
val = allocate_value (arraytype);
|
||
for (idx = 0; idx < nelem; idx++)
|
||
{
|
||
memcpy (VALUE_CONTENTS_RAW (val) + (idx * typelength),
|
||
VALUE_CONTENTS (elemvec[idx]),
|
||
typelength);
|
||
}
|
||
VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (elemvec[0]);
|
||
return val;
|
||
}
|
||
|
||
/* Allocate space to store the array in the inferior, and then initialize
|
||
it by copying in each element. FIXME: Is it worth it to create a
|
||
local buffer in which to collect each value and then write all the
|
||
bytes in one operation? */
|
||
|
||
addr = allocate_space_in_inferior (nelem * typelength);
|
||
for (idx = 0; idx < nelem; idx++)
|
||
{
|
||
write_memory (addr + (idx * typelength), VALUE_CONTENTS (elemvec[idx]),
|
||
typelength);
|
||
}
|
||
|
||
/* Create the array type and set up an array value to be evaluated lazily. */
|
||
|
||
val = value_at_lazy (arraytype, addr, VALUE_BFD_SECTION (elemvec[0]));
|
||
return (val);
|
||
}
|
||
|
||
/* Create a value for a string constant by allocating space in the inferior,
|
||
copying the data into that space, and returning the address with type
|
||
TYPE_CODE_STRING. PTR points to the string constant data; LEN is number
|
||
of characters.
|
||
Note that string types are like array of char types with a lower bound of
|
||
zero and an upper bound of LEN - 1. Also note that the string may contain
|
||
embedded null bytes. */
|
||
|
||
value_ptr
|
||
value_string (ptr, len)
|
||
char *ptr;
|
||
int len;
|
||
{
|
||
value_ptr val;
|
||
int lowbound = current_language->string_lower_bound;
|
||
struct type *rangetype = create_range_type ((struct type *) NULL,
|
||
builtin_type_int,
|
||
lowbound, len + lowbound - 1);
|
||
struct type *stringtype
|
||
= create_string_type ((struct type *) NULL, rangetype);
|
||
CORE_ADDR addr;
|
||
|
||
if (current_language->c_style_arrays == 0)
|
||
{
|
||
val = allocate_value (stringtype);
|
||
memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Allocate space to store the string in the inferior, and then
|
||
copy LEN bytes from PTR in gdb to that address in the inferior. */
|
||
|
||
addr = allocate_space_in_inferior (len);
|
||
write_memory (addr, ptr, len);
|
||
|
||
val = value_at_lazy (stringtype, addr, NULL);
|
||
return (val);
|
||
}
|
||
|
||
value_ptr
|
||
value_bitstring (ptr, len)
|
||
char *ptr;
|
||
int len;
|
||
{
|
||
value_ptr val;
|
||
struct type *domain_type = create_range_type (NULL, builtin_type_int,
|
||
0, len - 1);
|
||
struct type *type = create_set_type ((struct type*) NULL, domain_type);
|
||
TYPE_CODE (type) = TYPE_CODE_BITSTRING;
|
||
val = allocate_value (type);
|
||
memcpy (VALUE_CONTENTS_RAW (val), ptr, TYPE_LENGTH (type));
|
||
return val;
|
||
}
|
||
|
||
/* See if we can pass arguments in T2 to a function which takes arguments
|
||
of types T1. Both t1 and t2 are NULL-terminated vectors. If some
|
||
arguments need coercion of some sort, then the coerced values are written
|
||
into T2. Return value is 0 if the arguments could be matched, or the
|
||
position at which they differ if not.
|
||
|
||
STATICP is nonzero if the T1 argument list came from a
|
||
static member function.
|
||
|
||
For non-static member functions, we ignore the first argument,
|
||
which is the type of the instance variable. This is because we want
|
||
to handle calls with objects from derived classes. This is not
|
||
entirely correct: we should actually check to make sure that a
|
||
requested operation is type secure, shouldn't we? FIXME. */
|
||
|
||
static int
|
||
typecmp (staticp, t1, t2)
|
||
int staticp;
|
||
struct type *t1[];
|
||
value_ptr t2[];
|
||
{
|
||
int i;
|
||
|
||
if (t2 == 0)
|
||
return 1;
|
||
if (staticp && t1 == 0)
|
||
return t2[1] != 0;
|
||
if (t1 == 0)
|
||
return 1;
|
||
if (TYPE_CODE (t1[0]) == TYPE_CODE_VOID) return 0;
|
||
if (t1[!staticp] == 0) return 0;
|
||
for (i = !staticp; t1[i] && TYPE_CODE (t1[i]) != TYPE_CODE_VOID; i++)
|
||
{
|
||
struct type *tt1, *tt2;
|
||
if (! t2[i])
|
||
return i+1;
|
||
tt1 = check_typedef (t1[i]);
|
||
tt2 = check_typedef (VALUE_TYPE(t2[i]));
|
||
if (TYPE_CODE (tt1) == TYPE_CODE_REF
|
||
/* We should be doing hairy argument matching, as below. */
|
||
&& (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1))) == TYPE_CODE (tt2)))
|
||
{
|
||
if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
|
||
t2[i] = value_coerce_array (t2[i]);
|
||
else
|
||
t2[i] = value_addr (t2[i]);
|
||
continue;
|
||
}
|
||
|
||
while (TYPE_CODE (tt1) == TYPE_CODE_PTR
|
||
&& ( TYPE_CODE (tt2) == TYPE_CODE_ARRAY
|
||
|| TYPE_CODE (tt2) == TYPE_CODE_PTR))
|
||
{
|
||
tt1 = check_typedef (TYPE_TARGET_TYPE(tt1));
|
||
tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
|
||
}
|
||
if (TYPE_CODE(tt1) == TYPE_CODE(tt2)) continue;
|
||
/* Array to pointer is a `trivial conversion' according to the ARM. */
|
||
|
||
/* We should be doing much hairier argument matching (see section 13.2
|
||
of the ARM), but as a quick kludge, just check for the same type
|
||
code. */
|
||
if (TYPE_CODE (t1[i]) != TYPE_CODE (VALUE_TYPE (t2[i])))
|
||
return i+1;
|
||
}
|
||
if (!t1[i]) return 0;
|
||
return t2[i] ? i+1 : 0;
|
||
}
|
||
|
||
/* Helper function used by value_struct_elt to recurse through baseclasses.
|
||
Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
|
||
and search in it assuming it has (class) type TYPE.
|
||
If found, return value, else return NULL.
|
||
|
||
If LOOKING_FOR_BASECLASS, then instead of looking for struct fields,
|
||
look for a baseclass named NAME. */
|
||
|
||
static value_ptr
|
||
search_struct_field (name, arg1, offset, type, looking_for_baseclass)
|
||
char *name;
|
||
register value_ptr arg1;
|
||
int offset;
|
||
register struct type *type;
|
||
int looking_for_baseclass;
|
||
{
|
||
int i;
|
||
|
||
CHECK_TYPEDEF (type);
|
||
|
||
if (! looking_for_baseclass)
|
||
for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
|
||
{
|
||
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
||
|
||
if (t_field_name && STREQ (t_field_name, name))
|
||
{
|
||
value_ptr v;
|
||
if (TYPE_FIELD_STATIC (type, i))
|
||
{
|
||
char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, i);
|
||
struct symbol *sym =
|
||
lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
|
||
if (sym == NULL)
|
||
error ("Internal error: could not find physical static variable named %s",
|
||
phys_name);
|
||
v = value_at (TYPE_FIELD_TYPE (type, i),
|
||
SYMBOL_VALUE_ADDRESS (sym), SYMBOL_BFD_SECTION (sym));
|
||
}
|
||
else
|
||
v = value_primitive_field (arg1, offset, i, type);
|
||
if (v == 0)
|
||
error("there is no field named %s", name);
|
||
return v;
|
||
}
|
||
|
||
if (t_field_name
|
||
&& (t_field_name[0] == '\0'
|
||
|| (TYPE_CODE (type) == TYPE_CODE_UNION
|
||
&& STREQ (t_field_name, "else"))))
|
||
{
|
||
struct type *field_type = TYPE_FIELD_TYPE (type, i);
|
||
if (TYPE_CODE (field_type) == TYPE_CODE_UNION
|
||
|| TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
|
||
{
|
||
/* Look for a match through the fields of an anonymous union,
|
||
or anonymous struct. C++ provides anonymous unions.
|
||
|
||
In the GNU Chill implementation of variant record types,
|
||
each <alternative field> has an (anonymous) union type,
|
||
each member of the union represents a <variant alternative>.
|
||
Each <variant alternative> is represented as a struct,
|
||
with a member for each <variant field>. */
|
||
|
||
value_ptr v;
|
||
int new_offset = offset;
|
||
|
||
/* This is pretty gross. In G++, the offset in an anonymous
|
||
union is relative to the beginning of the enclosing struct.
|
||
In the GNU Chill implementation of variant records,
|
||
the bitpos is zero in an anonymous union field, so we
|
||
have to add the offset of the union here. */
|
||
if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
|
||
|| (TYPE_NFIELDS (field_type) > 0
|
||
&& TYPE_FIELD_BITPOS (field_type, 0) == 0))
|
||
new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
|
||
|
||
v = search_struct_field (name, arg1, new_offset, field_type,
|
||
looking_for_baseclass);
|
||
if (v)
|
||
return v;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
||
{
|
||
value_ptr v;
|
||
struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
|
||
/* If we are looking for baseclasses, this is what we get when we
|
||
hit them. But it could happen that the base part's member name
|
||
is not yet filled in. */
|
||
int found_baseclass = (looking_for_baseclass
|
||
&& TYPE_BASECLASS_NAME (type, i) != NULL
|
||
&& STREQ (name, TYPE_BASECLASS_NAME (type, i)));
|
||
|
||
if (BASETYPE_VIA_VIRTUAL (type, i))
|
||
{
|
||
int boffset = VALUE_OFFSET (arg1) + offset;
|
||
boffset = baseclass_offset (type, i,
|
||
VALUE_CONTENTS (arg1) + boffset,
|
||
VALUE_ADDRESS (arg1) + boffset);
|
||
if (boffset == -1)
|
||
error ("virtual baseclass botch");
|
||
if (found_baseclass)
|
||
{
|
||
value_ptr v2 = allocate_value (basetype);
|
||
VALUE_LVAL (v2) = VALUE_LVAL (arg1);
|
||
VALUE_ADDRESS (v2) = VALUE_ADDRESS (arg1);
|
||
VALUE_OFFSET (v2) = VALUE_OFFSET (arg1) + offset + boffset;
|
||
if (VALUE_LAZY (arg1))
|
||
VALUE_LAZY (v2) = 1;
|
||
else
|
||
memcpy (VALUE_CONTENTS_RAW (v2),
|
||
VALUE_CONTENTS_RAW (arg1) + offset + boffset,
|
||
TYPE_LENGTH (basetype));
|
||
return v2;
|
||
}
|
||
v = search_struct_field (name, arg1, offset + boffset,
|
||
TYPE_BASECLASS (type, i),
|
||
looking_for_baseclass);
|
||
}
|
||
else if (found_baseclass)
|
||
v = value_primitive_field (arg1, offset, i, type);
|
||
else
|
||
v = search_struct_field (name, arg1,
|
||
offset + TYPE_BASECLASS_BITPOS (type, i) / 8,
|
||
basetype, looking_for_baseclass);
|
||
if (v) return v;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* Helper function used by value_struct_elt to recurse through baseclasses.
|
||
Look for a field NAME in ARG1. Adjust the address of ARG1 by OFFSET bytes,
|
||
and search in it assuming it has (class) type TYPE.
|
||
If found, return value, else if name matched and args not return (value)-1,
|
||
else return NULL. */
|
||
|
||
static value_ptr
|
||
search_struct_method (name, arg1p, args, offset, static_memfuncp, type)
|
||
char *name;
|
||
register value_ptr *arg1p, *args;
|
||
int offset, *static_memfuncp;
|
||
register struct type *type;
|
||
{
|
||
int i;
|
||
value_ptr v;
|
||
int name_matched = 0;
|
||
char dem_opname[64];
|
||
|
||
CHECK_TYPEDEF (type);
|
||
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
|
||
{
|
||
char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
|
||
/* FIXME! May need to check for ARM demangling here */
|
||
if (strncmp(t_field_name, "__", 2)==0 ||
|
||
strncmp(t_field_name, "op", 2)==0 ||
|
||
strncmp(t_field_name, "type", 4)==0 )
|
||
{
|
||
if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
|
||
t_field_name = dem_opname;
|
||
else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
|
||
t_field_name = dem_opname;
|
||
}
|
||
if (t_field_name && STREQ (t_field_name, name))
|
||
{
|
||
int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
|
||
struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
|
||
name_matched = 1;
|
||
|
||
if (j > 0 && args == 0)
|
||
error ("cannot resolve overloaded method `%s'", name);
|
||
while (j >= 0)
|
||
{
|
||
if (TYPE_FN_FIELD_STUB (f, j))
|
||
check_stub_method (type, i, j);
|
||
if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
|
||
TYPE_FN_FIELD_ARGS (f, j), args))
|
||
{
|
||
if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
|
||
return value_virtual_fn_field (arg1p, f, j, type, offset);
|
||
if (TYPE_FN_FIELD_STATIC_P (f, j) && static_memfuncp)
|
||
*static_memfuncp = 1;
|
||
v = value_fn_field (arg1p, f, j, type, offset);
|
||
if (v != NULL) return v;
|
||
}
|
||
j--;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
||
{
|
||
int base_offset;
|
||
|
||
if (BASETYPE_VIA_VIRTUAL (type, i))
|
||
{
|
||
base_offset = VALUE_OFFSET (*arg1p) + offset;
|
||
base_offset =
|
||
baseclass_offset (type, i,
|
||
VALUE_CONTENTS (*arg1p) + base_offset,
|
||
VALUE_ADDRESS (*arg1p) + base_offset);
|
||
if (base_offset == -1)
|
||
error ("virtual baseclass botch");
|
||
}
|
||
else
|
||
{
|
||
base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
|
||
}
|
||
v = search_struct_method (name, arg1p, args, base_offset + offset,
|
||
static_memfuncp, TYPE_BASECLASS (type, i));
|
||
if (v == (value_ptr) -1)
|
||
{
|
||
name_matched = 1;
|
||
}
|
||
else if (v)
|
||
{
|
||
/* FIXME-bothner: Why is this commented out? Why is it here? */
|
||
/* *arg1p = arg1_tmp;*/
|
||
return v;
|
||
}
|
||
}
|
||
if (name_matched) return (value_ptr) -1;
|
||
else return NULL;
|
||
}
|
||
|
||
/* Given *ARGP, a value of type (pointer to a)* structure/union,
|
||
extract the component named NAME from the ultimate target structure/union
|
||
and return it as a value with its appropriate type.
|
||
ERR is used in the error message if *ARGP's type is wrong.
|
||
|
||
C++: ARGS is a list of argument types to aid in the selection of
|
||
an appropriate method. Also, handle derived types.
|
||
|
||
STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
|
||
where the truthvalue of whether the function that was resolved was
|
||
a static member function or not is stored.
|
||
|
||
ERR is an error message to be printed in case the field is not found. */
|
||
|
||
value_ptr
|
||
value_struct_elt (argp, args, name, static_memfuncp, err)
|
||
register value_ptr *argp, *args;
|
||
char *name;
|
||
int *static_memfuncp;
|
||
char *err;
|
||
{
|
||
register struct type *t;
|
||
value_ptr v;
|
||
|
||
COERCE_ARRAY (*argp);
|
||
|
||
t = check_typedef (VALUE_TYPE (*argp));
|
||
|
||
/* Follow pointers until we get to a non-pointer. */
|
||
|
||
while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
|
||
{
|
||
*argp = value_ind (*argp);
|
||
/* Don't coerce fn pointer to fn and then back again! */
|
||
if (TYPE_CODE (VALUE_TYPE (*argp)) != TYPE_CODE_FUNC)
|
||
COERCE_ARRAY (*argp);
|
||
t = check_typedef (VALUE_TYPE (*argp));
|
||
}
|
||
|
||
if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
|
||
error ("not implemented: member type in value_struct_elt");
|
||
|
||
if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
||
error ("Attempt to extract a component of a value that is not a %s.", err);
|
||
|
||
/* Assume it's not, unless we see that it is. */
|
||
if (static_memfuncp)
|
||
*static_memfuncp =0;
|
||
|
||
if (!args)
|
||
{
|
||
/* if there are no arguments ...do this... */
|
||
|
||
/* Try as a field first, because if we succeed, there
|
||
is less work to be done. */
|
||
v = search_struct_field (name, *argp, 0, t, 0);
|
||
if (v)
|
||
return v;
|
||
|
||
/* C++: If it was not found as a data field, then try to
|
||
return it as a pointer to a method. */
|
||
|
||
if (destructor_name_p (name, t))
|
||
error ("Cannot get value of destructor");
|
||
|
||
v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
|
||
|
||
if (v == (value_ptr) -1)
|
||
error ("Cannot take address of a method");
|
||
else if (v == 0)
|
||
{
|
||
if (TYPE_NFN_FIELDS (t))
|
||
error ("There is no member or method named %s.", name);
|
||
else
|
||
error ("There is no member named %s.", name);
|
||
}
|
||
return v;
|
||
}
|
||
|
||
if (destructor_name_p (name, t))
|
||
{
|
||
if (!args[1])
|
||
{
|
||
/* Destructors are a special case. */
|
||
int m_index, f_index;
|
||
|
||
v = NULL;
|
||
if (get_destructor_fn_field (t, &m_index, &f_index))
|
||
{
|
||
v = value_fn_field (NULL, TYPE_FN_FIELDLIST1 (t, m_index),
|
||
f_index, NULL, 0);
|
||
}
|
||
if (v == NULL)
|
||
error ("could not find destructor function named %s.", name);
|
||
else
|
||
return v;
|
||
}
|
||
else
|
||
{
|
||
error ("destructor should not have any argument");
|
||
}
|
||
}
|
||
else
|
||
v = search_struct_method (name, argp, args, 0, static_memfuncp, t);
|
||
|
||
if (v == (value_ptr) -1)
|
||
{
|
||
error("Argument list of %s mismatch with component in the structure.", name);
|
||
}
|
||
else if (v == 0)
|
||
{
|
||
/* See if user tried to invoke data as function. If so,
|
||
hand it back. If it's not callable (i.e., a pointer to function),
|
||
gdb should give an error. */
|
||
v = search_struct_field (name, *argp, 0, t, 0);
|
||
}
|
||
|
||
if (!v)
|
||
error ("Structure has no component named %s.", name);
|
||
return v;
|
||
}
|
||
|
||
/* C++: return 1 is NAME is a legitimate name for the destructor
|
||
of type TYPE. If TYPE does not have a destructor, or
|
||
if NAME is inappropriate for TYPE, an error is signaled. */
|
||
int
|
||
destructor_name_p (name, type)
|
||
const char *name;
|
||
const struct type *type;
|
||
{
|
||
/* destructors are a special case. */
|
||
|
||
if (name[0] == '~')
|
||
{
|
||
char *dname = type_name_no_tag (type);
|
||
char *cp = strchr (dname, '<');
|
||
unsigned int len;
|
||
|
||
/* Do not compare the template part for template classes. */
|
||
if (cp == NULL)
|
||
len = strlen (dname);
|
||
else
|
||
len = cp - dname;
|
||
if (strlen (name + 1) != len || !STREQN (dname, name + 1, len))
|
||
error ("name of destructor must equal name of class");
|
||
else
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Helper function for check_field: Given TYPE, a structure/union,
|
||
return 1 if the component named NAME from the ultimate
|
||
target structure/union is defined, otherwise, return 0. */
|
||
|
||
static int
|
||
check_field_in (type, name)
|
||
register struct type *type;
|
||
const char *name;
|
||
{
|
||
register int i;
|
||
|
||
for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
|
||
{
|
||
char *t_field_name = TYPE_FIELD_NAME (type, i);
|
||
if (t_field_name && STREQ (t_field_name, name))
|
||
return 1;
|
||
}
|
||
|
||
/* C++: If it was not found as a data field, then try to
|
||
return it as a pointer to a method. */
|
||
|
||
/* Destructors are a special case. */
|
||
if (destructor_name_p (name, type))
|
||
{
|
||
int m_index, f_index;
|
||
|
||
return get_destructor_fn_field (type, &m_index, &f_index);
|
||
}
|
||
|
||
for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
|
||
{
|
||
if (STREQ (TYPE_FN_FIELDLIST_NAME (type, i), name))
|
||
return 1;
|
||
}
|
||
|
||
for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
|
||
if (check_field_in (TYPE_BASECLASS (type, i), name))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
/* C++: Given ARG1, a value of type (pointer to a)* structure/union,
|
||
return 1 if the component named NAME from the ultimate
|
||
target structure/union is defined, otherwise, return 0. */
|
||
|
||
int
|
||
check_field (arg1, name)
|
||
register value_ptr arg1;
|
||
const char *name;
|
||
{
|
||
register struct type *t;
|
||
|
||
COERCE_ARRAY (arg1);
|
||
|
||
t = VALUE_TYPE (arg1);
|
||
|
||
/* Follow pointers until we get to a non-pointer. */
|
||
|
||
for (;;)
|
||
{
|
||
CHECK_TYPEDEF (t);
|
||
if (TYPE_CODE (t) != TYPE_CODE_PTR && TYPE_CODE (t) != TYPE_CODE_REF)
|
||
break;
|
||
t = TYPE_TARGET_TYPE (t);
|
||
}
|
||
|
||
if (TYPE_CODE (t) == TYPE_CODE_MEMBER)
|
||
error ("not implemented: member type in check_field");
|
||
|
||
if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
||
error ("Internal error: `this' is not an aggregate");
|
||
|
||
return check_field_in (t, name);
|
||
}
|
||
|
||
/* C++: Given an aggregate type CURTYPE, and a member name NAME,
|
||
return the address of this member as a "pointer to member"
|
||
type. If INTYPE is non-null, then it will be the type
|
||
of the member we are looking for. This will help us resolve
|
||
"pointers to member functions". This function is used
|
||
to resolve user expressions of the form "DOMAIN::NAME". */
|
||
|
||
value_ptr
|
||
value_struct_elt_for_reference (domain, offset, curtype, name, intype)
|
||
struct type *domain, *curtype, *intype;
|
||
int offset;
|
||
char *name;
|
||
{
|
||
register struct type *t = curtype;
|
||
register int i;
|
||
value_ptr v;
|
||
|
||
if ( TYPE_CODE (t) != TYPE_CODE_STRUCT
|
||
&& TYPE_CODE (t) != TYPE_CODE_UNION)
|
||
error ("Internal error: non-aggregate type to value_struct_elt_for_reference");
|
||
|
||
for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
|
||
{
|
||
char *t_field_name = TYPE_FIELD_NAME (t, i);
|
||
|
||
if (t_field_name && STREQ (t_field_name, name))
|
||
{
|
||
if (TYPE_FIELD_STATIC (t, i))
|
||
{
|
||
char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (t, i);
|
||
struct symbol *sym =
|
||
lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
|
||
if (sym == NULL)
|
||
error ("Internal error: could not find physical static variable named %s",
|
||
phys_name);
|
||
return value_at (SYMBOL_TYPE (sym),
|
||
SYMBOL_VALUE_ADDRESS (sym),
|
||
SYMBOL_BFD_SECTION (sym));
|
||
}
|
||
if (TYPE_FIELD_PACKED (t, i))
|
||
error ("pointers to bitfield members not allowed");
|
||
|
||
return value_from_longest
|
||
(lookup_reference_type (lookup_member_type (TYPE_FIELD_TYPE (t, i),
|
||
domain)),
|
||
offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
|
||
}
|
||
}
|
||
|
||
/* C++: If it was not found as a data field, then try to
|
||
return it as a pointer to a method. */
|
||
|
||
/* Destructors are a special case. */
|
||
if (destructor_name_p (name, t))
|
||
{
|
||
error ("member pointers to destructors not implemented yet");
|
||
}
|
||
|
||
/* Perform all necessary dereferencing. */
|
||
while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
|
||
intype = TYPE_TARGET_TYPE (intype);
|
||
|
||
for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
|
||
{
|
||
char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
|
||
char dem_opname[64];
|
||
|
||
if (strncmp(t_field_name, "__", 2)==0 ||
|
||
strncmp(t_field_name, "op", 2)==0 ||
|
||
strncmp(t_field_name, "type", 4)==0 )
|
||
{
|
||
if (cplus_demangle_opname(t_field_name, dem_opname, DMGL_ANSI))
|
||
t_field_name = dem_opname;
|
||
else if (cplus_demangle_opname(t_field_name, dem_opname, 0))
|
||
t_field_name = dem_opname;
|
||
}
|
||
if (t_field_name && STREQ (t_field_name, name))
|
||
{
|
||
int j = TYPE_FN_FIELDLIST_LENGTH (t, i);
|
||
struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
|
||
|
||
if (intype == 0 && j > 1)
|
||
error ("non-unique member `%s' requires type instantiation", name);
|
||
if (intype)
|
||
{
|
||
while (j--)
|
||
if (TYPE_FN_FIELD_TYPE (f, j) == intype)
|
||
break;
|
||
if (j < 0)
|
||
error ("no member function matches that type instantiation");
|
||
}
|
||
else
|
||
j = 0;
|
||
|
||
if (TYPE_FN_FIELD_STUB (f, j))
|
||
check_stub_method (t, i, j);
|
||
if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
|
||
{
|
||
return value_from_longest
|
||
(lookup_reference_type
|
||
(lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
|
||
domain)),
|
||
(LONGEST) METHOD_PTR_FROM_VOFFSET (TYPE_FN_FIELD_VOFFSET (f, j)));
|
||
}
|
||
else
|
||
{
|
||
struct symbol *s = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
|
||
0, VAR_NAMESPACE, 0, NULL);
|
||
if (s == NULL)
|
||
{
|
||
v = 0;
|
||
}
|
||
else
|
||
{
|
||
v = read_var_value (s, 0);
|
||
#if 0
|
||
VALUE_TYPE (v) = lookup_reference_type
|
||
(lookup_member_type (TYPE_FN_FIELD_TYPE (f, j),
|
||
domain));
|
||
#endif
|
||
}
|
||
return v;
|
||
}
|
||
}
|
||
}
|
||
for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
|
||
{
|
||
value_ptr v;
|
||
int base_offset;
|
||
|
||
if (BASETYPE_VIA_VIRTUAL (t, i))
|
||
base_offset = 0;
|
||
else
|
||
base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
|
||
v = value_struct_elt_for_reference (domain,
|
||
offset + base_offset,
|
||
TYPE_BASECLASS (t, i),
|
||
name,
|
||
intype);
|
||
if (v)
|
||
return v;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* C++: return the value of the class instance variable, if one exists.
|
||
Flag COMPLAIN signals an error if the request is made in an
|
||
inappropriate context. */
|
||
|
||
value_ptr
|
||
value_of_this (complain)
|
||
int complain;
|
||
{
|
||
struct symbol *func, *sym;
|
||
struct block *b;
|
||
int i;
|
||
static const char funny_this[] = "this";
|
||
value_ptr this;
|
||
|
||
if (selected_frame == 0)
|
||
if (complain)
|
||
error ("no frame selected");
|
||
else return 0;
|
||
|
||
func = get_frame_function (selected_frame);
|
||
if (!func)
|
||
{
|
||
if (complain)
|
||
error ("no `this' in nameless context");
|
||
else return 0;
|
||
}
|
||
|
||
b = SYMBOL_BLOCK_VALUE (func);
|
||
i = BLOCK_NSYMS (b);
|
||
if (i <= 0)
|
||
if (complain)
|
||
error ("no args, no `this'");
|
||
else return 0;
|
||
|
||
/* Calling lookup_block_symbol is necessary to get the LOC_REGISTER
|
||
symbol instead of the LOC_ARG one (if both exist). */
|
||
sym = lookup_block_symbol (b, funny_this, VAR_NAMESPACE);
|
||
if (sym == NULL)
|
||
{
|
||
if (complain)
|
||
error ("current stack frame not in method");
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
this = read_var_value (sym, selected_frame);
|
||
if (this == 0 && complain)
|
||
error ("`this' argument at unknown address");
|
||
return this;
|
||
}
|
||
|
||
/* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH elements
|
||
long, starting at LOWBOUND. The result has the same lower bound as
|
||
the original ARRAY. */
|
||
|
||
value_ptr
|
||
value_slice (array, lowbound, length)
|
||
value_ptr array;
|
||
int lowbound, length;
|
||
{
|
||
struct type *slice_range_type, *slice_type, *range_type;
|
||
LONGEST lowerbound, upperbound, offset;
|
||
value_ptr slice;
|
||
struct type *array_type;
|
||
array_type = check_typedef (VALUE_TYPE (array));
|
||
COERCE_VARYING_ARRAY (array, array_type);
|
||
if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
|
||
&& TYPE_CODE (array_type) != TYPE_CODE_STRING
|
||
&& TYPE_CODE (array_type) != TYPE_CODE_BITSTRING)
|
||
error ("cannot take slice of non-array");
|
||
range_type = TYPE_INDEX_TYPE (array_type);
|
||
if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
|
||
error ("slice from bad array or bitstring");
|
||
if (lowbound < lowerbound || length < 0
|
||
|| lowbound + length - 1 > upperbound
|
||
/* Chill allows zero-length strings but not arrays. */
|
||
|| (current_language->la_language == language_chill
|
||
&& length == 0 && TYPE_CODE (array_type) == TYPE_CODE_ARRAY))
|
||
error ("slice out of range");
|
||
/* FIXME-type-allocation: need a way to free this type when we are
|
||
done with it. */
|
||
slice_range_type = create_range_type ((struct type*) NULL,
|
||
TYPE_TARGET_TYPE (range_type),
|
||
lowbound, lowbound + length - 1);
|
||
if (TYPE_CODE (array_type) == TYPE_CODE_BITSTRING)
|
||
{
|
||
int i;
|
||
slice_type = create_set_type ((struct type*) NULL, slice_range_type);
|
||
TYPE_CODE (slice_type) = TYPE_CODE_BITSTRING;
|
||
slice = value_zero (slice_type, not_lval);
|
||
for (i = 0; i < length; i++)
|
||
{
|
||
int element = value_bit_index (array_type,
|
||
VALUE_CONTENTS (array),
|
||
lowbound + i);
|
||
if (element < 0)
|
||
error ("internal error accessing bitstring");
|
||
else if (element > 0)
|
||
{
|
||
int j = i % TARGET_CHAR_BIT;
|
||
if (BITS_BIG_ENDIAN)
|
||
j = TARGET_CHAR_BIT - 1 - j;
|
||
VALUE_CONTENTS_RAW (slice)[i / TARGET_CHAR_BIT] |= (1 << j);
|
||
}
|
||
}
|
||
/* We should set the address, bitssize, and bitspos, so the clice
|
||
can be used on the LHS, but that may require extensions to
|
||
value_assign. For now, just leave as a non_lval. FIXME. */
|
||
}
|
||
else
|
||
{
|
||
struct type *element_type = TYPE_TARGET_TYPE (array_type);
|
||
offset
|
||
= (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
|
||
slice_type = create_array_type ((struct type*) NULL, element_type,
|
||
slice_range_type);
|
||
TYPE_CODE (slice_type) = TYPE_CODE (array_type);
|
||
slice = allocate_value (slice_type);
|
||
if (VALUE_LAZY (array))
|
||
VALUE_LAZY (slice) = 1;
|
||
else
|
||
memcpy (VALUE_CONTENTS (slice), VALUE_CONTENTS (array) + offset,
|
||
TYPE_LENGTH (slice_type));
|
||
if (VALUE_LVAL (array) == lval_internalvar)
|
||
VALUE_LVAL (slice) = lval_internalvar_component;
|
||
else
|
||
VALUE_LVAL (slice) = VALUE_LVAL (array);
|
||
VALUE_ADDRESS (slice) = VALUE_ADDRESS (array);
|
||
VALUE_OFFSET (slice) = VALUE_OFFSET (array) + offset;
|
||
}
|
||
return slice;
|
||
}
|
||
|
||
/* Assuming chill_varying_type (VARRAY) is true, return an equivalent
|
||
value as a fixed-length array. */
|
||
|
||
value_ptr
|
||
varying_to_slice (varray)
|
||
value_ptr varray;
|
||
{
|
||
struct type *vtype = check_typedef (VALUE_TYPE (varray));
|
||
LONGEST length = unpack_long (TYPE_FIELD_TYPE (vtype, 0),
|
||
VALUE_CONTENTS (varray)
|
||
+ TYPE_FIELD_BITPOS (vtype, 0) / 8);
|
||
return value_slice (value_primitive_field (varray, 0, 1, vtype), 0, length);
|
||
}
|
||
|
||
/* Create a value for a FORTRAN complex number. Currently most of
|
||
the time values are coerced to COMPLEX*16 (i.e. a complex number
|
||
composed of 2 doubles. This really should be a smarter routine
|
||
that figures out precision inteligently as opposed to assuming
|
||
doubles. FIXME: fmb */
|
||
|
||
value_ptr
|
||
value_literal_complex (arg1, arg2, type)
|
||
value_ptr arg1;
|
||
value_ptr arg2;
|
||
struct type *type;
|
||
{
|
||
register value_ptr val;
|
||
struct type *real_type = TYPE_TARGET_TYPE (type);
|
||
|
||
val = allocate_value (type);
|
||
arg1 = value_cast (real_type, arg1);
|
||
arg2 = value_cast (real_type, arg2);
|
||
|
||
memcpy (VALUE_CONTENTS_RAW (val),
|
||
VALUE_CONTENTS (arg1), TYPE_LENGTH (real_type));
|
||
memcpy (VALUE_CONTENTS_RAW (val) + TYPE_LENGTH (real_type),
|
||
VALUE_CONTENTS (arg2), TYPE_LENGTH (real_type));
|
||
return val;
|
||
}
|
||
|
||
/* Cast a value into the appropriate complex data type. */
|
||
|
||
static value_ptr
|
||
cast_into_complex (type, val)
|
||
struct type *type;
|
||
register value_ptr val;
|
||
{
|
||
struct type *real_type = TYPE_TARGET_TYPE (type);
|
||
if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_COMPLEX)
|
||
{
|
||
struct type *val_real_type = TYPE_TARGET_TYPE (VALUE_TYPE (val));
|
||
value_ptr re_val = allocate_value (val_real_type);
|
||
value_ptr im_val = allocate_value (val_real_type);
|
||
|
||
memcpy (VALUE_CONTENTS_RAW (re_val),
|
||
VALUE_CONTENTS (val), TYPE_LENGTH (val_real_type));
|
||
memcpy (VALUE_CONTENTS_RAW (im_val),
|
||
VALUE_CONTENTS (val) + TYPE_LENGTH (val_real_type),
|
||
TYPE_LENGTH (val_real_type));
|
||
|
||
return value_literal_complex (re_val, im_val, type);
|
||
}
|
||
else if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT
|
||
|| TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT)
|
||
return value_literal_complex (val, value_zero (real_type, not_lval), type);
|
||
else
|
||
error ("cannot cast non-number to complex");
|
||
}
|
||
|
||
void
|
||
_initialize_valops ()
|
||
{
|
||
#if 0
|
||
add_show_from_set
|
||
(add_set_cmd ("abandon", class_support, var_boolean, (char *)&auto_abandon,
|
||
"Set automatic abandonment of expressions upon failure.",
|
||
&setlist),
|
||
&showlist);
|
||
#endif
|
||
}
|