mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-14 12:53:34 +08:00
3acba33923
Replace DEPRECATED_REGISTER_RAW_SIZE with register_size. * rs6000-tdep.c (rs6000_push_dummy_call) (rs6000_extract_return_value): Use register_size. * xstormy16-tdep.c (xstormy16_get_saved_register) (xstormy16_extract_return_value): Ditto. * valops.c (value_assign): Ditto. * v850ice.c (v850ice_fetch_registers, v850ice_store_registers): * v850-tdep.c (v850_extract_return_value): Ditto. * tracepoint.c (collect_symbol): Ditto. * target.c (debug_print_register): Ditto. * stack.c (frame_info): Ditto. * rs6000-nat.c (ARCH64, fetch_register, store_register): Ditto. * rom68k-rom.c (rom68k_supply_one_register): Ditto. * remote.c (struct packet_reg, remote_wait, remote_async_wait) (store_register_using_P): Ditto. * remote-vxmips.c (vx_read_register, vx_write_register): Ditto. * remote-sim.c (gdbsim_fetch_register, gdbsim_store_register): Ditto. * remote-mips.c (mips_wait, mips_fetch_registers): Ditto. * remote-e7000.c (fetch_regs_from_dump, sub2_from_pc): Ditto. * regcache.c (deprecated_read_register_bytes) (deprecated_write_register_bytes, read_register) (write_register): Ditto. * ppc-linux-nat.c (fetch_altivec_register, fetch_register) (supply_vrregset, store_altivec_register, fill_vrregset): Ditto. * monitor.c (monitor_supply_register, monitor_fetch_register) (monitor_store_register): Ditto. * mn10300-tdep.c (mn10300_pop_frame_regular) (mn10300_print_register): Ditto. * mipsv4-nat.c (fill_fpregset): Ditto. * mips-linux-tdep.c (supply_32bit_reg, fill_fpregset) (mips64_fill_fpregset): Ditto. * mi/mi-main.c (register_changed_p, get_register) (mi_cmd_data_write_register_values): Ditto. * lynx-nat.c (fetch_inferior_registers, store_inferior_registers): * irix5-nat.c (fill_gregset, fetch_core_registers): * infrun.c (write_inferior_status_register): Ditto. * infptrace.c (fetch_register, store_register): Ditto. * infcmd.c (default_print_registers_info): Ditto. * ia64-linux-nat.c (COPY_REG, fill_fpregset): Ditto. * ia64-aix-nat.c (COPY_REG, fill_gregset): Ditto. * i386gnu-nat.c (gnu_store_registers, fill): Ditto. * hpux-thread.c (hpux_thread_fetch_registers) (hpux_thread_store_registers): Ditto. * hppah-nat.c (store_inferior_registers, fetch_register): * findvar.c (value_from_register): Ditto. * dve3900-rom.c (fetch_bitmapped_register): * cris-tdep.c (cris_gdbarch_init): Ditto. * alpha-tdep.h: Ditto. * aix-thread.c (pd_enable, fill_sprs64, fill_sprs32): Ditto.
1193 lines
36 KiB
C
1193 lines
36 KiB
C
/* Target-dependent code for GNU/Linux on MIPS processors.
|
|
|
|
Copyright 2001, 2002, 2004 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 59 Temple Place - Suite 330,
|
|
Boston, MA 02111-1307, USA. */
|
|
|
|
#include "defs.h"
|
|
#include "gdbcore.h"
|
|
#include "target.h"
|
|
#include "solib-svr4.h"
|
|
#include "osabi.h"
|
|
#include "mips-tdep.h"
|
|
#include "gdb_string.h"
|
|
#include "gdb_assert.h"
|
|
#include "frame.h"
|
|
#include "trad-frame.h"
|
|
#include "tramp-frame.h"
|
|
|
|
/* Copied from <asm/elf.h>. */
|
|
#define ELF_NGREG 45
|
|
#define ELF_NFPREG 33
|
|
|
|
typedef unsigned char elf_greg_t[4];
|
|
typedef elf_greg_t elf_gregset_t[ELF_NGREG];
|
|
|
|
typedef unsigned char elf_fpreg_t[8];
|
|
typedef elf_fpreg_t elf_fpregset_t[ELF_NFPREG];
|
|
|
|
/* 0 - 31 are integer registers, 32 - 63 are fp registers. */
|
|
#define FPR_BASE 32
|
|
#define PC 64
|
|
#define CAUSE 65
|
|
#define BADVADDR 66
|
|
#define MMHI 67
|
|
#define MMLO 68
|
|
#define FPC_CSR 69
|
|
#define FPC_EIR 70
|
|
|
|
#define EF_REG0 6
|
|
#define EF_REG31 37
|
|
#define EF_LO 38
|
|
#define EF_HI 39
|
|
#define EF_CP0_EPC 40
|
|
#define EF_CP0_BADVADDR 41
|
|
#define EF_CP0_STATUS 42
|
|
#define EF_CP0_CAUSE 43
|
|
|
|
#define EF_SIZE 180
|
|
|
|
/* Figure out where the longjmp will land.
|
|
We expect the first arg to be a pointer to the jmp_buf structure from
|
|
which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
|
|
is copied into PC. This routine returns 1 on success. */
|
|
|
|
#define MIPS_LINUX_JB_ELEMENT_SIZE 4
|
|
#define MIPS_LINUX_JB_PC 0
|
|
|
|
static int
|
|
mips_linux_get_longjmp_target (CORE_ADDR *pc)
|
|
{
|
|
CORE_ADDR jb_addr;
|
|
char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
|
|
|
|
jb_addr = read_register (A0_REGNUM);
|
|
|
|
if (target_read_memory (jb_addr
|
|
+ MIPS_LINUX_JB_PC * MIPS_LINUX_JB_ELEMENT_SIZE,
|
|
buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
|
return 0;
|
|
|
|
*pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Transform the bits comprising a 32-bit register to the right size
|
|
for regcache_raw_supply(). This is needed when mips_isa_regsize()
|
|
is 8. */
|
|
|
|
static void
|
|
supply_32bit_reg (int regnum, const void *addr)
|
|
{
|
|
char buf[MAX_REGISTER_SIZE];
|
|
store_signed_integer (buf, register_size (current_gdbarch, regnum),
|
|
extract_signed_integer (addr, 4));
|
|
regcache_raw_supply (current_regcache, regnum, buf);
|
|
}
|
|
|
|
/* Unpack an elf_gregset_t into GDB's register cache. */
|
|
|
|
void
|
|
supply_gregset (elf_gregset_t *gregsetp)
|
|
{
|
|
int regi;
|
|
elf_greg_t *regp = *gregsetp;
|
|
char zerobuf[MAX_REGISTER_SIZE];
|
|
|
|
memset (zerobuf, 0, MAX_REGISTER_SIZE);
|
|
|
|
for (regi = EF_REG0; regi <= EF_REG31; regi++)
|
|
supply_32bit_reg ((regi - EF_REG0), (char *)(regp + regi));
|
|
|
|
supply_32bit_reg (mips_regnum (current_gdbarch)->lo,
|
|
(char *)(regp + EF_LO));
|
|
supply_32bit_reg (mips_regnum (current_gdbarch)->hi,
|
|
(char *)(regp + EF_HI));
|
|
|
|
supply_32bit_reg (mips_regnum (current_gdbarch)->pc,
|
|
(char *)(regp + EF_CP0_EPC));
|
|
supply_32bit_reg (mips_regnum (current_gdbarch)->badvaddr,
|
|
(char *)(regp + EF_CP0_BADVADDR));
|
|
supply_32bit_reg (PS_REGNUM, (char *)(regp + EF_CP0_STATUS));
|
|
supply_32bit_reg (mips_regnum (current_gdbarch)->cause,
|
|
(char *)(regp + EF_CP0_CAUSE));
|
|
|
|
/* Fill inaccessible registers with zero. */
|
|
regcache_raw_supply (current_regcache, UNUSED_REGNUM, zerobuf);
|
|
for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
|
|
regcache_raw_supply (current_regcache, regi, zerobuf);
|
|
}
|
|
|
|
/* Pack our registers (or one register) into an elf_gregset_t. */
|
|
|
|
void
|
|
fill_gregset (elf_gregset_t *gregsetp, int regno)
|
|
{
|
|
int regaddr, regi;
|
|
elf_greg_t *regp = *gregsetp;
|
|
void *dst;
|
|
|
|
if (regno == -1)
|
|
{
|
|
memset (regp, 0, sizeof (elf_gregset_t));
|
|
for (regi = 0; regi < 32; regi++)
|
|
fill_gregset (gregsetp, regi);
|
|
fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
|
|
fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
|
|
fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
|
|
fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr);
|
|
fill_gregset (gregsetp, PS_REGNUM);
|
|
fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause);
|
|
|
|
return;
|
|
}
|
|
|
|
if (regno < 32)
|
|
{
|
|
dst = regp + regno + EF_REG0;
|
|
regcache_raw_collect (current_regcache, regno, dst);
|
|
return;
|
|
}
|
|
|
|
if (regno == mips_regnum (current_gdbarch)->lo)
|
|
regaddr = EF_LO;
|
|
else if (regno == mips_regnum (current_gdbarch)->hi)
|
|
regaddr = EF_HI;
|
|
else if (regno == mips_regnum (current_gdbarch)->pc)
|
|
regaddr = EF_CP0_EPC;
|
|
else if (regno == mips_regnum (current_gdbarch)->badvaddr)
|
|
regaddr = EF_CP0_BADVADDR;
|
|
else if (regno == PS_REGNUM)
|
|
regaddr = EF_CP0_STATUS;
|
|
else if (regno == mips_regnum (current_gdbarch)->cause)
|
|
regaddr = EF_CP0_CAUSE;
|
|
else
|
|
regaddr = -1;
|
|
|
|
if (regaddr != -1)
|
|
{
|
|
dst = regp + regaddr;
|
|
regcache_raw_collect (current_regcache, regno, dst);
|
|
}
|
|
}
|
|
|
|
/* Likewise, unpack an elf_fpregset_t. */
|
|
|
|
void
|
|
supply_fpregset (elf_fpregset_t *fpregsetp)
|
|
{
|
|
int regi;
|
|
char zerobuf[MAX_REGISTER_SIZE];
|
|
|
|
memset (zerobuf, 0, MAX_REGISTER_SIZE);
|
|
|
|
for (regi = 0; regi < 32; regi++)
|
|
regcache_raw_supply (current_regcache, FP0_REGNUM + regi,
|
|
(char *)(*fpregsetp + regi));
|
|
|
|
regcache_raw_supply (current_regcache,
|
|
mips_regnum (current_gdbarch)->fp_control_status,
|
|
(char *)(*fpregsetp + 32));
|
|
|
|
/* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
|
|
regcache_raw_supply (current_regcache,
|
|
mips_regnum (current_gdbarch)->fp_implementation_revision,
|
|
zerobuf);
|
|
}
|
|
|
|
/* Likewise, pack one or all floating point registers into an
|
|
elf_fpregset_t. */
|
|
|
|
void
|
|
fill_fpregset (elf_fpregset_t *fpregsetp, int regno)
|
|
{
|
|
char *from, *to;
|
|
|
|
if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
|
|
{
|
|
from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
|
|
to = (char *) (*fpregsetp + regno - FP0_REGNUM);
|
|
memcpy (to, from, register_size (current_gdbarch, regno - FP0_REGNUM));
|
|
}
|
|
else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
|
|
{
|
|
from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
|
|
to = (char *) (*fpregsetp + 32);
|
|
memcpy (to, from, register_size (current_gdbarch, regno));
|
|
}
|
|
else if (regno == -1)
|
|
{
|
|
int regi;
|
|
|
|
for (regi = 0; regi < 32; regi++)
|
|
fill_fpregset (fpregsetp, FP0_REGNUM + regi);
|
|
fill_fpregset(fpregsetp, mips_regnum (current_gdbarch)->fp_control_status);
|
|
}
|
|
}
|
|
|
|
/* Map gdb internal register number to ptrace ``address''.
|
|
These ``addresses'' are normally defined in <asm/ptrace.h>. */
|
|
|
|
static CORE_ADDR
|
|
mips_linux_register_addr (int regno, CORE_ADDR blockend)
|
|
{
|
|
int regaddr;
|
|
|
|
if (regno < 0 || regno >= NUM_REGS)
|
|
error ("Bogon register number %d.", regno);
|
|
|
|
if (regno < 32)
|
|
regaddr = regno;
|
|
else if ((regno >= mips_regnum (current_gdbarch)->fp0)
|
|
&& (regno < mips_regnum (current_gdbarch)->fp0 + 32))
|
|
regaddr = FPR_BASE + (regno - mips_regnum (current_gdbarch)->fp0);
|
|
else if (regno == mips_regnum (current_gdbarch)->pc)
|
|
regaddr = PC;
|
|
else if (regno == mips_regnum (current_gdbarch)->cause)
|
|
regaddr = CAUSE;
|
|
else if (regno == mips_regnum (current_gdbarch)->badvaddr)
|
|
regaddr = BADVADDR;
|
|
else if (regno == mips_regnum (current_gdbarch)->lo)
|
|
regaddr = MMLO;
|
|
else if (regno == mips_regnum (current_gdbarch)->hi)
|
|
regaddr = MMHI;
|
|
else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
|
|
regaddr = FPC_CSR;
|
|
else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
|
|
regaddr = FPC_EIR;
|
|
else
|
|
error ("Unknowable register number %d.", regno);
|
|
|
|
return regaddr;
|
|
}
|
|
|
|
|
|
/* Fetch (and possibly build) an appropriate link_map_offsets
|
|
structure for native GNU/Linux MIPS targets using the struct offsets
|
|
defined in link.h (but without actual reference to that file).
|
|
|
|
This makes it possible to access GNU/Linux MIPS shared libraries from a
|
|
GDB that was built on a different host platform (for cross debugging). */
|
|
|
|
static struct link_map_offsets *
|
|
mips_linux_svr4_fetch_link_map_offsets (void)
|
|
{
|
|
static struct link_map_offsets lmo;
|
|
static struct link_map_offsets *lmp = NULL;
|
|
|
|
if (lmp == NULL)
|
|
{
|
|
lmp = &lmo;
|
|
|
|
lmo.r_debug_size = 8; /* The actual size is 20 bytes, but
|
|
this is all we need. */
|
|
lmo.r_map_offset = 4;
|
|
lmo.r_map_size = 4;
|
|
|
|
lmo.link_map_size = 20;
|
|
|
|
lmo.l_addr_offset = 0;
|
|
lmo.l_addr_size = 4;
|
|
|
|
lmo.l_name_offset = 4;
|
|
lmo.l_name_size = 4;
|
|
|
|
lmo.l_next_offset = 12;
|
|
lmo.l_next_size = 4;
|
|
|
|
lmo.l_prev_offset = 16;
|
|
lmo.l_prev_size = 4;
|
|
}
|
|
|
|
return lmp;
|
|
}
|
|
|
|
/* Support for 64-bit ABIs. */
|
|
|
|
/* Copied from <asm/elf.h>. */
|
|
#define MIPS64_ELF_NGREG 45
|
|
#define MIPS64_ELF_NFPREG 33
|
|
|
|
typedef unsigned char mips64_elf_greg_t[8];
|
|
typedef mips64_elf_greg_t mips64_elf_gregset_t[MIPS64_ELF_NGREG];
|
|
|
|
typedef unsigned char mips64_elf_fpreg_t[8];
|
|
typedef mips64_elf_fpreg_t mips64_elf_fpregset_t[MIPS64_ELF_NFPREG];
|
|
|
|
/* 0 - 31 are integer registers, 32 - 63 are fp registers. */
|
|
#define MIPS64_FPR_BASE 32
|
|
#define MIPS64_PC 64
|
|
#define MIPS64_CAUSE 65
|
|
#define MIPS64_BADVADDR 66
|
|
#define MIPS64_MMHI 67
|
|
#define MIPS64_MMLO 68
|
|
#define MIPS64_FPC_CSR 69
|
|
#define MIPS64_FPC_EIR 70
|
|
|
|
#define MIPS64_EF_REG0 0
|
|
#define MIPS64_EF_REG31 31
|
|
#define MIPS64_EF_LO 32
|
|
#define MIPS64_EF_HI 33
|
|
#define MIPS64_EF_CP0_EPC 34
|
|
#define MIPS64_EF_CP0_BADVADDR 35
|
|
#define MIPS64_EF_CP0_STATUS 36
|
|
#define MIPS64_EF_CP0_CAUSE 37
|
|
|
|
#define MIPS64_EF_SIZE 304
|
|
|
|
/* Figure out where the longjmp will land.
|
|
We expect the first arg to be a pointer to the jmp_buf structure from
|
|
which we extract the pc (MIPS_LINUX_JB_PC) that we will land at. The pc
|
|
is copied into PC. This routine returns 1 on success. */
|
|
|
|
/* Details about jmp_buf. */
|
|
|
|
#define MIPS64_LINUX_JB_PC 0
|
|
|
|
static int
|
|
mips64_linux_get_longjmp_target (CORE_ADDR *pc)
|
|
{
|
|
CORE_ADDR jb_addr;
|
|
void *buf = alloca (TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
|
int element_size = TARGET_PTR_BIT == 32 ? 4 : 8;
|
|
|
|
jb_addr = read_register (A0_REGNUM);
|
|
|
|
if (target_read_memory (jb_addr + MIPS64_LINUX_JB_PC * element_size,
|
|
buf, TARGET_PTR_BIT / TARGET_CHAR_BIT))
|
|
return 0;
|
|
|
|
*pc = extract_unsigned_integer (buf, TARGET_PTR_BIT / TARGET_CHAR_BIT);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Unpack an elf_gregset_t into GDB's register cache. */
|
|
|
|
static void
|
|
mips64_supply_gregset (mips64_elf_gregset_t *gregsetp)
|
|
{
|
|
int regi;
|
|
mips64_elf_greg_t *regp = *gregsetp;
|
|
char zerobuf[MAX_REGISTER_SIZE];
|
|
|
|
memset (zerobuf, 0, MAX_REGISTER_SIZE);
|
|
|
|
for (regi = MIPS64_EF_REG0; regi <= MIPS64_EF_REG31; regi++)
|
|
regcache_raw_supply (current_regcache, (regi - MIPS64_EF_REG0),
|
|
(char *)(regp + regi));
|
|
|
|
regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->lo,
|
|
(char *)(regp + MIPS64_EF_LO));
|
|
regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->hi,
|
|
(char *)(regp + MIPS64_EF_HI));
|
|
|
|
regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->pc,
|
|
(char *)(regp + MIPS64_EF_CP0_EPC));
|
|
regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->badvaddr,
|
|
(char *)(regp + MIPS64_EF_CP0_BADVADDR));
|
|
regcache_raw_supply (current_regcache, PS_REGNUM,
|
|
(char *)(regp + MIPS64_EF_CP0_STATUS));
|
|
regcache_raw_supply (current_regcache, mips_regnum (current_gdbarch)->cause,
|
|
(char *)(regp + MIPS64_EF_CP0_CAUSE));
|
|
|
|
/* Fill inaccessible registers with zero. */
|
|
regcache_raw_supply (current_regcache, UNUSED_REGNUM, zerobuf);
|
|
for (regi = FIRST_EMBED_REGNUM; regi < LAST_EMBED_REGNUM; regi++)
|
|
regcache_raw_supply (current_regcache, regi, zerobuf);
|
|
}
|
|
|
|
/* Pack our registers (or one register) into an elf_gregset_t. */
|
|
|
|
static void
|
|
mips64_fill_gregset (mips64_elf_gregset_t *gregsetp, int regno)
|
|
{
|
|
int regaddr, regi;
|
|
mips64_elf_greg_t *regp = *gregsetp;
|
|
void *src, *dst;
|
|
|
|
if (regno == -1)
|
|
{
|
|
memset (regp, 0, sizeof (mips64_elf_gregset_t));
|
|
for (regi = 0; regi < 32; regi++)
|
|
mips64_fill_gregset (gregsetp, regi);
|
|
mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->lo);
|
|
mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->hi);
|
|
mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->pc);
|
|
mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->badvaddr);
|
|
mips64_fill_gregset (gregsetp, PS_REGNUM);
|
|
mips64_fill_gregset (gregsetp, mips_regnum (current_gdbarch)->cause);
|
|
|
|
return;
|
|
}
|
|
|
|
if (regno < 32)
|
|
{
|
|
dst = regp + regno + MIPS64_EF_REG0;
|
|
regcache_raw_collect (current_regcache, regno, dst);
|
|
return;
|
|
}
|
|
|
|
if (regno == mips_regnum (current_gdbarch)->lo)
|
|
regaddr = MIPS64_EF_LO;
|
|
else if (regno == mips_regnum (current_gdbarch)->hi)
|
|
regaddr = MIPS64_EF_HI;
|
|
else if (regno == mips_regnum (current_gdbarch)->pc)
|
|
regaddr = MIPS64_EF_CP0_EPC;
|
|
else if (regno == mips_regnum (current_gdbarch)->badvaddr)
|
|
regaddr = MIPS64_EF_CP0_BADVADDR;
|
|
else if (regno == PS_REGNUM)
|
|
regaddr = MIPS64_EF_CP0_STATUS;
|
|
else if (regno == mips_regnum (current_gdbarch)->cause)
|
|
regaddr = MIPS64_EF_CP0_CAUSE;
|
|
else
|
|
regaddr = -1;
|
|
|
|
if (regaddr != -1)
|
|
{
|
|
dst = regp + regaddr;
|
|
regcache_raw_collect (current_regcache, regno, dst);
|
|
}
|
|
}
|
|
|
|
/* Likewise, unpack an elf_fpregset_t. */
|
|
|
|
static void
|
|
mips64_supply_fpregset (mips64_elf_fpregset_t *fpregsetp)
|
|
{
|
|
int regi;
|
|
char zerobuf[MAX_REGISTER_SIZE];
|
|
|
|
memset (zerobuf, 0, MAX_REGISTER_SIZE);
|
|
|
|
for (regi = 0; regi < 32; regi++)
|
|
regcache_raw_supply (current_regcache, FP0_REGNUM + regi,
|
|
(char *)(*fpregsetp + regi));
|
|
|
|
regcache_raw_supply (current_regcache,
|
|
mips_regnum (current_gdbarch)->fp_control_status,
|
|
(char *)(*fpregsetp + 32));
|
|
|
|
/* FIXME: how can we supply FCRIR? The ABI doesn't tell us. */
|
|
regcache_raw_supply (current_regcache,
|
|
mips_regnum (current_gdbarch)->fp_implementation_revision,
|
|
zerobuf);
|
|
}
|
|
|
|
/* Likewise, pack one or all floating point registers into an
|
|
elf_fpregset_t. */
|
|
|
|
static void
|
|
mips64_fill_fpregset (mips64_elf_fpregset_t *fpregsetp, int regno)
|
|
{
|
|
char *from, *to;
|
|
|
|
if ((regno >= FP0_REGNUM) && (regno < FP0_REGNUM + 32))
|
|
{
|
|
from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
|
|
to = (char *) (*fpregsetp + regno - FP0_REGNUM);
|
|
memcpy (to, from, register_size (current_gdbarch, regno - FP0_REGNUM));
|
|
}
|
|
else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
|
|
{
|
|
from = (char *) &deprecated_registers[DEPRECATED_REGISTER_BYTE (regno)];
|
|
to = (char *) (*fpregsetp + 32);
|
|
memcpy (to, from, register_size (current_gdbarch, regno));
|
|
}
|
|
else if (regno == -1)
|
|
{
|
|
int regi;
|
|
|
|
for (regi = 0; regi < 32; regi++)
|
|
mips64_fill_fpregset (fpregsetp, FP0_REGNUM + regi);
|
|
mips64_fill_fpregset(fpregsetp,
|
|
mips_regnum (current_gdbarch)->fp_control_status);
|
|
}
|
|
}
|
|
|
|
|
|
/* Map gdb internal register number to ptrace ``address''.
|
|
These ``addresses'' are normally defined in <asm/ptrace.h>. */
|
|
|
|
static CORE_ADDR
|
|
mips64_linux_register_addr (int regno, CORE_ADDR blockend)
|
|
{
|
|
int regaddr;
|
|
|
|
if (regno < 0 || regno >= NUM_REGS)
|
|
error ("Bogon register number %d.", regno);
|
|
|
|
if (regno < 32)
|
|
regaddr = regno;
|
|
else if ((regno >= mips_regnum (current_gdbarch)->fp0)
|
|
&& (regno < mips_regnum (current_gdbarch)->fp0 + 32))
|
|
regaddr = MIPS64_FPR_BASE + (regno - FP0_REGNUM);
|
|
else if (regno == mips_regnum (current_gdbarch)->pc)
|
|
regaddr = MIPS64_PC;
|
|
else if (regno == mips_regnum (current_gdbarch)->cause)
|
|
regaddr = MIPS64_CAUSE;
|
|
else if (regno == mips_regnum (current_gdbarch)->badvaddr)
|
|
regaddr = MIPS64_BADVADDR;
|
|
else if (regno == mips_regnum (current_gdbarch)->lo)
|
|
regaddr = MIPS64_MMLO;
|
|
else if (regno == mips_regnum (current_gdbarch)->hi)
|
|
regaddr = MIPS64_MMHI;
|
|
else if (regno == mips_regnum (current_gdbarch)->fp_control_status)
|
|
regaddr = MIPS64_FPC_CSR;
|
|
else if (regno == mips_regnum (current_gdbarch)->fp_implementation_revision)
|
|
regaddr = MIPS64_FPC_EIR;
|
|
else
|
|
error ("Unknowable register number %d.", regno);
|
|
|
|
return regaddr;
|
|
}
|
|
|
|
/* Use a local version of this function to get the correct types for
|
|
regsets, until multi-arch core support is ready. */
|
|
|
|
static void
|
|
fetch_core_registers (char *core_reg_sect, unsigned core_reg_size,
|
|
int which, CORE_ADDR reg_addr)
|
|
{
|
|
elf_gregset_t gregset;
|
|
elf_fpregset_t fpregset;
|
|
mips64_elf_gregset_t gregset64;
|
|
mips64_elf_fpregset_t fpregset64;
|
|
|
|
if (which == 0)
|
|
{
|
|
if (core_reg_size == sizeof (gregset))
|
|
{
|
|
memcpy ((char *) &gregset, core_reg_sect, sizeof (gregset));
|
|
supply_gregset (&gregset);
|
|
}
|
|
else if (core_reg_size == sizeof (gregset64))
|
|
{
|
|
memcpy ((char *) &gregset64, core_reg_sect, sizeof (gregset64));
|
|
mips64_supply_gregset (&gregset64);
|
|
}
|
|
else
|
|
{
|
|
warning ("wrong size gregset struct in core file");
|
|
}
|
|
}
|
|
else if (which == 2)
|
|
{
|
|
if (core_reg_size == sizeof (fpregset))
|
|
{
|
|
memcpy ((char *) &fpregset, core_reg_sect, sizeof (fpregset));
|
|
supply_fpregset (&fpregset);
|
|
}
|
|
else if (core_reg_size == sizeof (fpregset64))
|
|
{
|
|
memcpy ((char *) &fpregset64, core_reg_sect, sizeof (fpregset64));
|
|
mips64_supply_fpregset (&fpregset64);
|
|
}
|
|
else
|
|
{
|
|
warning ("wrong size fpregset struct in core file");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Register that we are able to handle ELF file formats using standard
|
|
procfs "regset" structures. */
|
|
|
|
static struct core_fns regset_core_fns =
|
|
{
|
|
bfd_target_elf_flavour, /* core_flavour */
|
|
default_check_format, /* check_format */
|
|
default_core_sniffer, /* core_sniffer */
|
|
fetch_core_registers, /* core_read_registers */
|
|
NULL /* next */
|
|
};
|
|
|
|
/* Fetch (and possibly build) an appropriate link_map_offsets
|
|
structure for native GNU/Linux MIPS targets using the struct offsets
|
|
defined in link.h (but without actual reference to that file).
|
|
|
|
This makes it possible to access GNU/Linux MIPS shared libraries from a
|
|
GDB that was built on a different host platform (for cross debugging). */
|
|
|
|
static struct link_map_offsets *
|
|
mips64_linux_svr4_fetch_link_map_offsets (void)
|
|
{
|
|
static struct link_map_offsets lmo;
|
|
static struct link_map_offsets *lmp = NULL;
|
|
|
|
if (lmp == NULL)
|
|
{
|
|
lmp = &lmo;
|
|
|
|
lmo.r_debug_size = 16; /* The actual size is 40 bytes, but
|
|
this is all we need. */
|
|
lmo.r_map_offset = 8;
|
|
lmo.r_map_size = 8;
|
|
|
|
lmo.link_map_size = 40;
|
|
|
|
lmo.l_addr_offset = 0;
|
|
lmo.l_addr_size = 8;
|
|
|
|
lmo.l_name_offset = 8;
|
|
lmo.l_name_size = 8;
|
|
|
|
lmo.l_next_offset = 24;
|
|
lmo.l_next_size = 8;
|
|
|
|
lmo.l_prev_offset = 32;
|
|
lmo.l_prev_size = 8;
|
|
}
|
|
|
|
return lmp;
|
|
}
|
|
|
|
/* Handle for obtaining pointer to the current register_addr() function
|
|
for a given architecture. */
|
|
static struct gdbarch_data *register_addr_data;
|
|
|
|
CORE_ADDR
|
|
register_addr (int regno, CORE_ADDR blockend)
|
|
{
|
|
CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR) =
|
|
gdbarch_data (current_gdbarch, register_addr_data);
|
|
|
|
gdb_assert (register_addr_ptr != 0);
|
|
|
|
return register_addr_ptr (regno, blockend);
|
|
}
|
|
|
|
static void
|
|
set_mips_linux_register_addr (struct gdbarch *gdbarch,
|
|
CORE_ADDR (*register_addr_ptr) (int, CORE_ADDR))
|
|
{
|
|
deprecated_set_gdbarch_data (gdbarch, register_addr_data, register_addr_ptr);
|
|
}
|
|
|
|
static void *
|
|
init_register_addr_data (struct gdbarch *gdbarch)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/* Check the code at PC for a dynamic linker lazy resolution stub. Because
|
|
they aren't in the .plt section, we pattern-match on the code generated
|
|
by GNU ld. They look like this:
|
|
|
|
lw t9,0x8010(gp)
|
|
addu t7,ra
|
|
jalr t9,ra
|
|
addiu t8,zero,INDEX
|
|
|
|
(with the appropriate doubleword instructions for N64). Also return the
|
|
dynamic symbol index used in the last instruction. */
|
|
|
|
static int
|
|
mips_linux_in_dynsym_stub (CORE_ADDR pc, char *name)
|
|
{
|
|
unsigned char buf[28], *p;
|
|
ULONGEST insn, insn1;
|
|
int n64 = (mips_abi (current_gdbarch) == MIPS_ABI_N64);
|
|
|
|
read_memory (pc - 12, buf, 28);
|
|
|
|
if (n64)
|
|
{
|
|
/* ld t9,0x8010(gp) */
|
|
insn1 = 0xdf998010;
|
|
}
|
|
else
|
|
{
|
|
/* lw t9,0x8010(gp) */
|
|
insn1 = 0x8f998010;
|
|
}
|
|
|
|
p = buf + 12;
|
|
while (p >= buf)
|
|
{
|
|
insn = extract_unsigned_integer (p, 4);
|
|
if (insn == insn1)
|
|
break;
|
|
p -= 4;
|
|
}
|
|
if (p < buf)
|
|
return 0;
|
|
|
|
insn = extract_unsigned_integer (p + 4, 4);
|
|
if (n64)
|
|
{
|
|
/* daddu t7,ra */
|
|
if (insn != 0x03e0782d)
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* addu t7,ra */
|
|
if (insn != 0x03e07821)
|
|
return 0;
|
|
}
|
|
|
|
insn = extract_unsigned_integer (p + 8, 4);
|
|
/* jalr t9,ra */
|
|
if (insn != 0x0320f809)
|
|
return 0;
|
|
|
|
insn = extract_unsigned_integer (p + 12, 4);
|
|
if (n64)
|
|
{
|
|
/* daddiu t8,zero,0 */
|
|
if ((insn & 0xffff0000) != 0x64180000)
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
/* addiu t8,zero,0 */
|
|
if ((insn & 0xffff0000) != 0x24180000)
|
|
return 0;
|
|
}
|
|
|
|
return (insn & 0xffff);
|
|
}
|
|
|
|
/* Return non-zero iff PC belongs to the dynamic linker resolution code
|
|
or to a stub. */
|
|
|
|
int
|
|
mips_linux_in_dynsym_resolve_code (CORE_ADDR pc)
|
|
{
|
|
/* Check whether PC is in the dynamic linker. This also checks whether
|
|
it is in the .plt section, which MIPS does not use. */
|
|
if (in_solib_dynsym_resolve_code (pc))
|
|
return 1;
|
|
|
|
/* Pattern match for the stub. It would be nice if there were a more
|
|
efficient way to avoid this check. */
|
|
if (mips_linux_in_dynsym_stub (pc, NULL))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* See the comments for SKIP_SOLIB_RESOLVER at the top of infrun.c,
|
|
and glibc_skip_solib_resolver in glibc-tdep.c. The normal glibc
|
|
implementation of this triggers at "fixup" from the same objfile as
|
|
"_dl_runtime_resolve"; MIPS GNU/Linux can trigger at
|
|
"__dl_runtime_resolve" directly. An unresolved PLT entry will
|
|
point to _dl_runtime_resolve, which will first call
|
|
__dl_runtime_resolve, and then pass control to the resolved
|
|
function. */
|
|
|
|
static CORE_ADDR
|
|
mips_linux_skip_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
|
|
{
|
|
struct minimal_symbol *resolver;
|
|
|
|
resolver = lookup_minimal_symbol ("__dl_runtime_resolve", NULL, NULL);
|
|
|
|
if (resolver && SYMBOL_VALUE_ADDRESS (resolver) == pc)
|
|
return frame_pc_unwind (get_current_frame ());
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Signal trampoline support. There are four supported layouts for a
|
|
signal frame: o32 sigframe, o32 rt_sigframe, n32 rt_sigframe, and
|
|
n64 rt_sigframe. We handle them all independently; not the most
|
|
efficient way, but simplest. First, declare all the unwinders. */
|
|
|
|
static void mips_linux_o32_sigframe_init (const struct tramp_frame *self,
|
|
struct frame_info *next_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func);
|
|
|
|
static void mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
|
|
struct frame_info *next_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func);
|
|
|
|
#define MIPS_NR_LINUX 4000
|
|
#define MIPS_NR_N64_LINUX 5000
|
|
#define MIPS_NR_N32_LINUX 6000
|
|
|
|
#define MIPS_NR_sigreturn MIPS_NR_LINUX + 119
|
|
#define MIPS_NR_rt_sigreturn MIPS_NR_LINUX + 193
|
|
#define MIPS_NR_N64_rt_sigreturn MIPS_NR_N64_LINUX + 211
|
|
#define MIPS_NR_N32_rt_sigreturn MIPS_NR_N32_LINUX + 211
|
|
|
|
#define MIPS_INST_LI_V0_SIGRETURN 0x24020000 + MIPS_NR_sigreturn
|
|
#define MIPS_INST_LI_V0_RT_SIGRETURN 0x24020000 + MIPS_NR_rt_sigreturn
|
|
#define MIPS_INST_LI_V0_N64_RT_SIGRETURN 0x24020000 + MIPS_NR_N64_rt_sigreturn
|
|
#define MIPS_INST_LI_V0_N32_RT_SIGRETURN 0x24020000 + MIPS_NR_N32_rt_sigreturn
|
|
#define MIPS_INST_SYSCALL 0x0000000c
|
|
|
|
static const struct tramp_frame mips_linux_o32_sigframe = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ MIPS_INST_LI_V0_SIGRETURN, -1 },
|
|
{ MIPS_INST_SYSCALL, -1 },
|
|
{ TRAMP_SENTINEL_INSN, -1 }
|
|
},
|
|
mips_linux_o32_sigframe_init
|
|
};
|
|
|
|
static const struct tramp_frame mips_linux_o32_rt_sigframe = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ MIPS_INST_LI_V0_RT_SIGRETURN, -1 },
|
|
{ MIPS_INST_SYSCALL, -1 },
|
|
{ TRAMP_SENTINEL_INSN, -1 } },
|
|
mips_linux_o32_sigframe_init
|
|
};
|
|
|
|
static const struct tramp_frame mips_linux_n32_rt_sigframe = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{
|
|
{ MIPS_INST_LI_V0_N32_RT_SIGRETURN, -1 },
|
|
{ MIPS_INST_SYSCALL, -1 },
|
|
{ TRAMP_SENTINEL_INSN, -1 }
|
|
},
|
|
mips_linux_n32n64_sigframe_init
|
|
};
|
|
|
|
static const struct tramp_frame mips_linux_n64_rt_sigframe = {
|
|
SIGTRAMP_FRAME,
|
|
4,
|
|
{ MIPS_INST_LI_V0_N64_RT_SIGRETURN, MIPS_INST_SYSCALL, TRAMP_SENTINEL_INSN },
|
|
mips_linux_n32n64_sigframe_init
|
|
};
|
|
|
|
/* *INDENT-OFF* */
|
|
/* The unwinder for o32 signal frames. The legacy structures look
|
|
like this:
|
|
|
|
struct sigframe {
|
|
u32 sf_ass[4]; [argument save space for o32]
|
|
u32 sf_code[2]; [signal trampoline]
|
|
struct sigcontext sf_sc;
|
|
sigset_t sf_mask;
|
|
};
|
|
|
|
struct sigcontext {
|
|
unsigned int sc_regmask; [Unused]
|
|
unsigned int sc_status;
|
|
unsigned long long sc_pc;
|
|
unsigned long long sc_regs[32];
|
|
unsigned long long sc_fpregs[32];
|
|
unsigned int sc_ownedfp;
|
|
unsigned int sc_fpc_csr;
|
|
unsigned int sc_fpc_eir; [Unused]
|
|
unsigned int sc_used_math;
|
|
unsigned int sc_ssflags; [Unused]
|
|
[Alignment hole of four bytes]
|
|
unsigned long long sc_mdhi;
|
|
unsigned long long sc_mdlo;
|
|
|
|
unsigned int sc_cause; [Unused]
|
|
unsigned int sc_badvaddr; [Unused]
|
|
|
|
unsigned long sc_sigset[4]; [kernel's sigset_t]
|
|
};
|
|
|
|
The RT signal frames look like this:
|
|
|
|
struct rt_sigframe {
|
|
u32 rs_ass[4]; [argument save space for o32]
|
|
u32 rs_code[2] [signal trampoline]
|
|
struct siginfo rs_info;
|
|
struct ucontext rs_uc;
|
|
};
|
|
|
|
struct ucontext {
|
|
unsigned long uc_flags;
|
|
struct ucontext *uc_link;
|
|
stack_t uc_stack;
|
|
[Alignment hole of four bytes]
|
|
struct sigcontext uc_mcontext;
|
|
sigset_t uc_sigmask;
|
|
}; */
|
|
/* *INDENT-ON* */
|
|
|
|
#define SIGFRAME_CODE_OFFSET (4 * 4)
|
|
#define SIGFRAME_SIGCONTEXT_OFFSET (6 * 4)
|
|
|
|
#define RTSIGFRAME_SIGINFO_SIZE 128
|
|
#define STACK_T_SIZE (3 * 4)
|
|
#define UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + STACK_T_SIZE + 4)
|
|
#define RTSIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
|
|
+ RTSIGFRAME_SIGINFO_SIZE \
|
|
+ UCONTEXT_SIGCONTEXT_OFFSET)
|
|
|
|
#define SIGCONTEXT_PC (1 * 8)
|
|
#define SIGCONTEXT_REGS (2 * 8)
|
|
#define SIGCONTEXT_FPREGS (34 * 8)
|
|
#define SIGCONTEXT_FPCSR (66 * 8 + 4)
|
|
#define SIGCONTEXT_HI (69 * 8)
|
|
#define SIGCONTEXT_LO (70 * 8)
|
|
#define SIGCONTEXT_CAUSE (71 * 8 + 0)
|
|
#define SIGCONTEXT_BADVADDR (71 * 8 + 4)
|
|
|
|
#define SIGCONTEXT_REG_SIZE 8
|
|
|
|
static void
|
|
mips_linux_o32_sigframe_init (const struct tramp_frame *self,
|
|
struct frame_info *next_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
int ireg, reg_position;
|
|
CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
|
|
const struct mips_regnum *regs = mips_regnum (current_gdbarch);
|
|
|
|
if (self == &mips_linux_o32_sigframe)
|
|
sigcontext_base += SIGFRAME_SIGCONTEXT_OFFSET;
|
|
else
|
|
sigcontext_base += RTSIGFRAME_SIGCONTEXT_OFFSET;
|
|
|
|
/* I'm not proud of this hack. Eventually we will have the infrastructure
|
|
to indicate the size of saved registers on a per-frame basis, but
|
|
right now we don't; the kernel saves eight bytes but we only want
|
|
four. */
|
|
if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
|
|
sigcontext_base += 4;
|
|
|
|
#if 0
|
|
trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
|
|
sigcontext_base + SIGCONTEXT_REGS);
|
|
#endif
|
|
|
|
for (ireg = 1; ireg < 32; ireg++)
|
|
trad_frame_set_reg_addr (this_cache, ireg + ZERO_REGNUM + NUM_REGS,
|
|
sigcontext_base + SIGCONTEXT_REGS
|
|
+ ireg * SIGCONTEXT_REG_SIZE);
|
|
|
|
for (ireg = 0; ireg < 32; ireg++)
|
|
trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
|
|
sigcontext_base + SIGCONTEXT_FPREGS
|
|
+ ireg * SIGCONTEXT_REG_SIZE);
|
|
|
|
trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
|
|
sigcontext_base + SIGCONTEXT_PC);
|
|
|
|
trad_frame_set_reg_addr (this_cache, regs->fp_control_status + NUM_REGS,
|
|
sigcontext_base + SIGCONTEXT_FPCSR);
|
|
trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
|
|
sigcontext_base + SIGCONTEXT_HI);
|
|
trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
|
|
sigcontext_base + SIGCONTEXT_LO);
|
|
trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
|
|
sigcontext_base + SIGCONTEXT_CAUSE);
|
|
trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
|
|
sigcontext_base + SIGCONTEXT_BADVADDR);
|
|
|
|
/* Choice of the bottom of the sigframe is somewhat arbitrary. */
|
|
trad_frame_set_id (this_cache,
|
|
frame_id_build (func - SIGFRAME_CODE_OFFSET, func));
|
|
}
|
|
|
|
/* *INDENT-OFF* */
|
|
/* For N32/N64 things look different. There is no non-rt signal frame.
|
|
|
|
struct rt_sigframe_n32 {
|
|
u32 rs_ass[4]; [ argument save space for o32 ]
|
|
u32 rs_code[2]; [ signal trampoline ]
|
|
struct siginfo rs_info;
|
|
struct ucontextn32 rs_uc;
|
|
};
|
|
|
|
struct ucontextn32 {
|
|
u32 uc_flags;
|
|
s32 uc_link;
|
|
stack32_t uc_stack;
|
|
struct sigcontext uc_mcontext;
|
|
sigset_t uc_sigmask; [ mask last for extensibility ]
|
|
};
|
|
|
|
struct rt_sigframe_n32 {
|
|
u32 rs_ass[4]; [ argument save space for o32 ]
|
|
u32 rs_code[2]; [ signal trampoline ]
|
|
struct siginfo rs_info;
|
|
struct ucontext rs_uc;
|
|
};
|
|
|
|
struct ucontext {
|
|
unsigned long uc_flags;
|
|
struct ucontext *uc_link;
|
|
stack_t uc_stack;
|
|
struct sigcontext uc_mcontext;
|
|
sigset_t uc_sigmask; [ mask last for extensibility ]
|
|
};
|
|
|
|
And the sigcontext is different (this is for both n32 and n64):
|
|
|
|
struct sigcontext {
|
|
unsigned long long sc_regs[32];
|
|
unsigned long long sc_fpregs[32];
|
|
unsigned long long sc_mdhi;
|
|
unsigned long long sc_mdlo;
|
|
unsigned long long sc_pc;
|
|
unsigned int sc_status;
|
|
unsigned int sc_fpc_csr;
|
|
unsigned int sc_fpc_eir;
|
|
unsigned int sc_used_math;
|
|
unsigned int sc_cause;
|
|
unsigned int sc_badvaddr;
|
|
}; */
|
|
/* *INDENT-ON* */
|
|
|
|
#define N32_STACK_T_SIZE STACK_T_SIZE
|
|
#define N64_STACK_T_SIZE (2 * 8 + 4)
|
|
#define N32_UCONTEXT_SIGCONTEXT_OFFSET (2 * 4 + N32_STACK_T_SIZE + 4)
|
|
#define N64_UCONTEXT_SIGCONTEXT_OFFSET (2 * 8 + N64_STACK_T_SIZE + 4)
|
|
#define N32_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
|
|
+ RTSIGFRAME_SIGINFO_SIZE \
|
|
+ N32_UCONTEXT_SIGCONTEXT_OFFSET)
|
|
#define N64_SIGFRAME_SIGCONTEXT_OFFSET (SIGFRAME_SIGCONTEXT_OFFSET \
|
|
+ RTSIGFRAME_SIGINFO_SIZE \
|
|
+ N64_UCONTEXT_SIGCONTEXT_OFFSET)
|
|
|
|
#define N64_SIGCONTEXT_REGS (0 * 8)
|
|
#define N64_SIGCONTEXT_FPREGS (32 * 8)
|
|
#define N64_SIGCONTEXT_HI (64 * 8)
|
|
#define N64_SIGCONTEXT_LO (65 * 8)
|
|
#define N64_SIGCONTEXT_PC (66 * 8)
|
|
#define N64_SIGCONTEXT_FPCSR (67 * 8 + 1 * 4)
|
|
#define N64_SIGCONTEXT_FIR (67 * 8 + 2 * 4)
|
|
#define N64_SIGCONTEXT_CAUSE (67 * 8 + 4 * 4)
|
|
#define N64_SIGCONTEXT_BADVADDR (67 * 8 + 5 * 4)
|
|
|
|
#define N64_SIGCONTEXT_REG_SIZE 8
|
|
|
|
static void
|
|
mips_linux_n32n64_sigframe_init (const struct tramp_frame *self,
|
|
struct frame_info *next_frame,
|
|
struct trad_frame_cache *this_cache,
|
|
CORE_ADDR func)
|
|
{
|
|
int ireg, reg_position;
|
|
CORE_ADDR sigcontext_base = func - SIGFRAME_CODE_OFFSET;
|
|
const struct mips_regnum *regs = mips_regnum (current_gdbarch);
|
|
|
|
if (self == &mips_linux_n32_rt_sigframe)
|
|
sigcontext_base += N32_SIGFRAME_SIGCONTEXT_OFFSET;
|
|
else
|
|
sigcontext_base += N64_SIGFRAME_SIGCONTEXT_OFFSET;
|
|
|
|
#if 0
|
|
trad_frame_set_reg_addr (this_cache, ORIG_ZERO_REGNUM + NUM_REGS,
|
|
sigcontext_base + N64_SIGCONTEXT_REGS);
|
|
#endif
|
|
|
|
for (ireg = 1; ireg < 32; ireg++)
|
|
trad_frame_set_reg_addr (this_cache, ireg + ZERO_REGNUM + NUM_REGS,
|
|
sigcontext_base + N64_SIGCONTEXT_REGS
|
|
+ ireg * N64_SIGCONTEXT_REG_SIZE);
|
|
|
|
for (ireg = 0; ireg < 32; ireg++)
|
|
trad_frame_set_reg_addr (this_cache, ireg + regs->fp0 + NUM_REGS,
|
|
sigcontext_base + N64_SIGCONTEXT_FPREGS
|
|
+ ireg * N64_SIGCONTEXT_REG_SIZE);
|
|
|
|
trad_frame_set_reg_addr (this_cache, regs->pc + NUM_REGS,
|
|
sigcontext_base + N64_SIGCONTEXT_PC);
|
|
|
|
trad_frame_set_reg_addr (this_cache, regs->fp_control_status + NUM_REGS,
|
|
sigcontext_base + N64_SIGCONTEXT_FPCSR);
|
|
trad_frame_set_reg_addr (this_cache, regs->hi + NUM_REGS,
|
|
sigcontext_base + N64_SIGCONTEXT_HI);
|
|
trad_frame_set_reg_addr (this_cache, regs->lo + NUM_REGS,
|
|
sigcontext_base + N64_SIGCONTEXT_LO);
|
|
trad_frame_set_reg_addr (this_cache, regs->cause + NUM_REGS,
|
|
sigcontext_base + N64_SIGCONTEXT_CAUSE);
|
|
trad_frame_set_reg_addr (this_cache, regs->badvaddr + NUM_REGS,
|
|
sigcontext_base + N64_SIGCONTEXT_BADVADDR);
|
|
|
|
/* Choice of the bottom of the sigframe is somewhat arbitrary. */
|
|
trad_frame_set_id (this_cache,
|
|
frame_id_build (func - SIGFRAME_CODE_OFFSET, func));
|
|
}
|
|
|
|
/* Initialize one of the GNU/Linux OS ABIs. */
|
|
|
|
static void
|
|
mips_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
|
{
|
|
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
|
enum mips_abi abi = mips_abi (gdbarch);
|
|
|
|
switch (abi)
|
|
{
|
|
case MIPS_ABI_O32:
|
|
set_gdbarch_get_longjmp_target (gdbarch,
|
|
mips_linux_get_longjmp_target);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, mips_linux_svr4_fetch_link_map_offsets);
|
|
set_mips_linux_register_addr (gdbarch, mips_linux_register_addr);
|
|
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_sigframe);
|
|
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_o32_rt_sigframe);
|
|
break;
|
|
case MIPS_ABI_N32:
|
|
set_gdbarch_get_longjmp_target (gdbarch,
|
|
mips_linux_get_longjmp_target);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, mips_linux_svr4_fetch_link_map_offsets);
|
|
set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
|
|
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n32_rt_sigframe);
|
|
break;
|
|
case MIPS_ABI_N64:
|
|
set_gdbarch_get_longjmp_target (gdbarch,
|
|
mips64_linux_get_longjmp_target);
|
|
set_solib_svr4_fetch_link_map_offsets
|
|
(gdbarch, mips64_linux_svr4_fetch_link_map_offsets);
|
|
set_mips_linux_register_addr (gdbarch, mips64_linux_register_addr);
|
|
tramp_frame_prepend_unwinder (gdbarch, &mips_linux_n64_rt_sigframe);
|
|
break;
|
|
default:
|
|
internal_error (__FILE__, __LINE__, "can't handle ABI");
|
|
break;
|
|
}
|
|
|
|
set_gdbarch_skip_solib_resolver (gdbarch, mips_linux_skip_resolver);
|
|
|
|
/* This overrides the MIPS16 stub support from mips-tdep. But no
|
|
one uses MIPS16 on GNU/Linux yet, so this isn't much of a loss. */
|
|
set_gdbarch_in_solib_call_trampoline (gdbarch, mips_linux_in_dynsym_stub);
|
|
}
|
|
|
|
void
|
|
_initialize_mips_linux_tdep (void)
|
|
{
|
|
const struct bfd_arch_info *arch_info;
|
|
|
|
register_addr_data =
|
|
gdbarch_data_register_post_init (init_register_addr_data);
|
|
|
|
for (arch_info = bfd_lookup_arch (bfd_arch_mips, 0);
|
|
arch_info != NULL;
|
|
arch_info = arch_info->next)
|
|
{
|
|
gdbarch_register_osabi (bfd_arch_mips, arch_info->mach, GDB_OSABI_LINUX,
|
|
mips_linux_init_abi);
|
|
}
|
|
|
|
deprecated_add_core_fns (®set_core_fns);
|
|
}
|