binutils-gdb/gdb/objc-exp.y
Elena Zannoni 176620f10b 2003-05-14 Elena Zannoni <ezannoni@redhat.com>
* symtab.h (enum domain_enum): Rename from namespace_enum.
	(UNDEF_DOMAIN, VAR_DOMAIN, STRUCT_DOMAIN, LABEL_DOMAIN,
	VARIABLES_DOMAIN, FUNCTIONS_DOMAIN, TYPES_DOMAIN, METHODS_DOMAIN):
	Rename from UNDEF_NAMESPACE, VAR_NAMESPACE, STRUCT_NAMESPACE,
	LABEL_NAMESPACE, VARIABLES_NAMESPACE, FUNCTIONS_NAMESPACE,
	TYPES_NAMESPACE, METHODS_NAMESPACE.
	(SYMBOL_NAMESPACE): Rename to SYMBOL_DOMAIN.
	(struct symbol, struct partial_symbol): Rename field
	'namespace_enum namespace' to 'domain_enum domain'.
	(PSYMBOL_NAMESPACE): Rename to PSYMBOL_DOMAIN.
	Delete old define kludge for namespace.

	* ada-exp.y, ada-lang.c, ada-lang.h, alpha-tdep.c, arm-tdep.c,
	blockframe.c, c-exp.y, c-valprint.c, coffread.c, dbxread.c,
	dwarf2read.c, dwarfread.c, f-exp.y, gdbtypes.c, gdbtypes.h,
	gnu-v3-abi.c, hppa-tdep.c, hpread.c, jv-exp.y, jv-lang.c,
	language.c, linespec.c, m2-exp.y, m3-nat.c, mdebugread.c,
	mips-tdep.c, nlmread.c, objc-exp.y, objc-lang.c, objfiles.c,
	p-exp.y, p-valprint.c, parse.c, printcmd.c, scm-lang.c, source.c,
	stabsread.c, stack.c, symfile.c, symfile.h, symmisc.c, symtab.c,
	valops.c, values.c, xcoffread.c, xstormy16-tdep.c: Replace all
	occurrences of the above.

2003-05-12  Elena Zannoni  <ezannoni@redhat.com>

	* mi-mi-cmd-stack.c (list_args_or_locals): Rename VAR_NAMESPACE to
	VAR_DOMAIN.
2003-05-14 17:43:20 +00:00

1822 lines
46 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* YACC parser for C expressions, for GDB.
Copyright 1986, 1989, 1990, 1991, 1993, 1994, 2002 Free Software
Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
/* Parse a C expression from text in a string, and return the result
as a struct expression pointer. That structure contains arithmetic
operations in reverse polish, with constants represented by
operations that are followed by special data. See expression.h for
the details of the format. What is important here is that it can
be built up sequentially during the process of parsing; the lower
levels of the tree always come first in the result.
Note that malloc's and realloc's in this file are transformed to
xmalloc and xrealloc respectively by the same sed command in the
makefile that remaps any other malloc/realloc inserted by the
parser generator. Doing this with #defines and trying to control
the interaction with include files (<malloc.h> and <stdlib.h> for
example) just became too messy, particularly when such includes can
be inserted at random times by the parser generator. */
%{
#include "defs.h"
#include "gdb_string.h"
#include <ctype.h>
#include "expression.h"
#include "objc-lang.h" /* For objc language constructs. */
#include "value.h"
#include "parser-defs.h"
#include "language.h"
#include "c-lang.h"
#include "bfd.h" /* Required by objfiles.h. */
#include "symfile.h" /* Required by objfiles.h. */
#include "objfiles.h" /* For have_full_symbols and have_partial_symbols. */
#include "top.h"
#include "completer.h" /* For skip_quoted(). */
#include "block.h"
/* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
etc), as well as gratuitiously global symbol names, so we can have
multiple yacc generated parsers in gdb. Note that these are only
the variables produced by yacc. If other parser generators (bison,
byacc, etc) produce additional global names that conflict at link
time, then those parser generators need to be fixed instead of
adding those names to this list. */
#define yymaxdepth objc_maxdepth
#define yyparse objc_parse
#define yylex objc_lex
#define yyerror objc_error
#define yylval objc_lval
#define yychar objc_char
#define yydebug objc_debug
#define yypact objc_pact
#define yyr1 objc_r1
#define yyr2 objc_r2
#define yydef objc_def
#define yychk objc_chk
#define yypgo objc_pgo
#define yyact objc_act
#define yyexca objc_exca
#define yyerrflag objc_errflag
#define yynerrs objc_nerrs
#define yyps objc_ps
#define yypv objc_pv
#define yys objc_s
#define yy_yys objc_yys
#define yystate objc_state
#define yytmp objc_tmp
#define yyv objc_v
#define yy_yyv objc_yyv
#define yyval objc_val
#define yylloc objc_lloc
#define yyreds objc_reds /* With YYDEBUG defined */
#define yytoks objc_toks /* With YYDEBUG defined */
#define yyname objc_name /* With YYDEBUG defined */
#define yyrule objc_rule /* With YYDEBUG defined */
#define yylhs objc_yylhs
#define yylen objc_yylen
#define yydefred objc_yydefred
#define yydgoto objc_yydgoto
#define yysindex objc_yysindex
#define yyrindex objc_yyrindex
#define yygindex objc_yygindex
#define yytable objc_yytable
#define yycheck objc_yycheck
#ifndef YYDEBUG
#define YYDEBUG 0 /* Default to no yydebug support. */
#endif
int
yyparse PARAMS ((void));
static int
yylex PARAMS ((void));
void
yyerror PARAMS ((char *));
%}
/* Although the yacc "value" of an expression is not used,
since the result is stored in the structure being created,
other node types do have values. */
%union
{
LONGEST lval;
struct {
LONGEST val;
struct type *type;
} typed_val_int;
struct {
DOUBLEST dval;
struct type *type;
} typed_val_float;
struct symbol *sym;
struct type *tval;
struct stoken sval;
struct ttype tsym;
struct symtoken ssym;
int voidval;
struct block *bval;
enum exp_opcode opcode;
struct internalvar *ivar;
struct objc_class_str class;
struct type **tvec;
int *ivec;
}
%{
/* YYSTYPE gets defined by %union. */
static int
parse_number PARAMS ((char *, int, int, YYSTYPE *));
%}
%type <voidval> exp exp1 type_exp start variable qualified_name lcurly
%type <lval> rcurly
%type <tval> type typebase
%type <tvec> nonempty_typelist
/* %type <bval> block */
/* Fancy type parsing. */
%type <voidval> func_mod direct_abs_decl abs_decl
%type <tval> ptype
%type <lval> array_mod
%token <typed_val_int> INT
%token <typed_val_float> FLOAT
/* Both NAME and TYPENAME tokens represent symbols in the input, and
both convey their data as strings. But a TYPENAME is a string that
happens to be defined as a typedef or builtin type name (such as
int or char) and a NAME is any other symbol. Contexts where this
distinction is not important can use the nonterminal "name", which
matches either NAME or TYPENAME. */
%token <sval> STRING
%token <sval> NSSTRING /* ObjC Foundation "NSString" literal */
%token <sval> SELECTOR /* ObjC "@selector" pseudo-operator */
%token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
%token <tsym> TYPENAME
%token <class> CLASSNAME /* ObjC Class name */
%type <sval> name
%type <ssym> name_not_typename
%type <tsym> typename
/* A NAME_OR_INT is a symbol which is not known in the symbol table,
but which would parse as a valid number in the current input radix.
E.g. "c" when input_radix==16. Depending on the parse, it will be
turned into a name or into a number. */
%token <ssym> NAME_OR_INT
%token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON
%token TEMPLATE
%token ERROR
/* Special type cases, put in to allow the parser to distinguish
different legal basetypes. */
%token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD
%token <voidval> VARIABLE
%token <opcode> ASSIGN_MODIFY
%left ','
%left ABOVE_COMMA
%right '=' ASSIGN_MODIFY
%right '?'
%left OROR
%left ANDAND
%left '|'
%left '^'
%left '&'
%left EQUAL NOTEQUAL
%left '<' '>' LEQ GEQ
%left LSH RSH
%left '@'
%left '+' '-'
%left '*' '/' '%'
%right UNARY INCREMENT DECREMENT
%right ARROW '.' '[' '('
%token <ssym> BLOCKNAME
%type <bval> block
%left COLONCOLON
%%
start : exp1
| type_exp
;
type_exp: type
{ write_exp_elt_opcode(OP_TYPE);
write_exp_elt_type($1);
write_exp_elt_opcode(OP_TYPE);}
;
/* Expressions, including the comma operator. */
exp1 : exp
| exp1 ',' exp
{ write_exp_elt_opcode (BINOP_COMMA); }
;
/* Expressions, not including the comma operator. */
exp : '*' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_IND); }
;
exp : '&' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_ADDR); }
;
exp : '-' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_NEG); }
;
exp : '!' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_LOGICAL_NOT); }
;
exp : '~' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_COMPLEMENT); }
;
exp : INCREMENT exp %prec UNARY
{ write_exp_elt_opcode (UNOP_PREINCREMENT); }
;
exp : DECREMENT exp %prec UNARY
{ write_exp_elt_opcode (UNOP_PREDECREMENT); }
;
exp : exp INCREMENT %prec UNARY
{ write_exp_elt_opcode (UNOP_POSTINCREMENT); }
;
exp : exp DECREMENT %prec UNARY
{ write_exp_elt_opcode (UNOP_POSTDECREMENT); }
;
exp : SIZEOF exp %prec UNARY
{ write_exp_elt_opcode (UNOP_SIZEOF); }
;
exp : exp ARROW name
{ write_exp_elt_opcode (STRUCTOP_PTR);
write_exp_string ($3);
write_exp_elt_opcode (STRUCTOP_PTR); }
;
exp : exp ARROW qualified_name
{ /* exp->type::name becomes exp->*(&type::name) */
/* Note: this doesn't work if name is a
static member! FIXME */
write_exp_elt_opcode (UNOP_ADDR);
write_exp_elt_opcode (STRUCTOP_MPTR); }
;
exp : exp ARROW '*' exp
{ write_exp_elt_opcode (STRUCTOP_MPTR); }
;
exp : exp '.' name
{ write_exp_elt_opcode (STRUCTOP_STRUCT);
write_exp_string ($3);
write_exp_elt_opcode (STRUCTOP_STRUCT); }
;
exp : exp '.' qualified_name
{ /* exp.type::name becomes exp.*(&type::name) */
/* Note: this doesn't work if name is a
static member! FIXME */
write_exp_elt_opcode (UNOP_ADDR);
write_exp_elt_opcode (STRUCTOP_MEMBER); }
;
exp : exp '.' '*' exp
{ write_exp_elt_opcode (STRUCTOP_MEMBER); }
;
exp : exp '[' exp1 ']'
{ write_exp_elt_opcode (BINOP_SUBSCRIPT); }
;
/*
* The rules below parse ObjC message calls of the form:
* '[' target selector {':' argument}* ']'
*/
exp : '[' TYPENAME
{
CORE_ADDR class;
class = lookup_objc_class (copy_name ($2.stoken));
if (class == 0)
error ("%s is not an ObjC Class",
copy_name ($2.stoken));
write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_int);
write_exp_elt_longcst ((LONGEST) class);
write_exp_elt_opcode (OP_LONG);
start_msglist();
}
msglist ']'
{ write_exp_elt_opcode (OP_OBJC_MSGCALL);
end_msglist();
write_exp_elt_opcode (OP_OBJC_MSGCALL);
}
;
exp : '[' CLASSNAME
{
write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_int);
write_exp_elt_longcst ((LONGEST) $2.class);
write_exp_elt_opcode (OP_LONG);
start_msglist();
}
msglist ']'
{ write_exp_elt_opcode (OP_OBJC_MSGCALL);
end_msglist();
write_exp_elt_opcode (OP_OBJC_MSGCALL);
}
;
exp : '[' exp
{ start_msglist(); }
msglist ']'
{ write_exp_elt_opcode (OP_OBJC_MSGCALL);
end_msglist();
write_exp_elt_opcode (OP_OBJC_MSGCALL);
}
;
msglist : name
{ add_msglist(&$1, 0); }
| msgarglist
;
msgarglist : msgarg
| msgarglist msgarg
;
msgarg : name ':' exp
{ add_msglist(&$1, 1); }
| ':' exp /* Unnamed arg. */
{ add_msglist(0, 1); }
| ',' exp /* Variable number of args. */
{ add_msglist(0, 0); }
;
exp : exp '('
/* This is to save the value of arglist_len
being accumulated by an outer function call. */
{ start_arglist (); }
arglist ')' %prec ARROW
{ write_exp_elt_opcode (OP_FUNCALL);
write_exp_elt_longcst ((LONGEST) end_arglist ());
write_exp_elt_opcode (OP_FUNCALL); }
;
lcurly : '{'
{ start_arglist (); }
;
arglist :
;
arglist : exp
{ arglist_len = 1; }
;
arglist : arglist ',' exp %prec ABOVE_COMMA
{ arglist_len++; }
;
rcurly : '}'
{ $$ = end_arglist () - 1; }
;
exp : lcurly arglist rcurly %prec ARROW
{ write_exp_elt_opcode (OP_ARRAY);
write_exp_elt_longcst ((LONGEST) 0);
write_exp_elt_longcst ((LONGEST) $3);
write_exp_elt_opcode (OP_ARRAY); }
;
exp : lcurly type rcurly exp %prec UNARY
{ write_exp_elt_opcode (UNOP_MEMVAL);
write_exp_elt_type ($2);
write_exp_elt_opcode (UNOP_MEMVAL); }
;
exp : '(' type ')' exp %prec UNARY
{ write_exp_elt_opcode (UNOP_CAST);
write_exp_elt_type ($2);
write_exp_elt_opcode (UNOP_CAST); }
;
exp : '(' exp1 ')'
{ }
;
/* Binary operators in order of decreasing precedence. */
exp : exp '@' exp
{ write_exp_elt_opcode (BINOP_REPEAT); }
;
exp : exp '*' exp
{ write_exp_elt_opcode (BINOP_MUL); }
;
exp : exp '/' exp
{ write_exp_elt_opcode (BINOP_DIV); }
;
exp : exp '%' exp
{ write_exp_elt_opcode (BINOP_REM); }
;
exp : exp '+' exp
{ write_exp_elt_opcode (BINOP_ADD); }
;
exp : exp '-' exp
{ write_exp_elt_opcode (BINOP_SUB); }
;
exp : exp LSH exp
{ write_exp_elt_opcode (BINOP_LSH); }
;
exp : exp RSH exp
{ write_exp_elt_opcode (BINOP_RSH); }
;
exp : exp EQUAL exp
{ write_exp_elt_opcode (BINOP_EQUAL); }
;
exp : exp NOTEQUAL exp
{ write_exp_elt_opcode (BINOP_NOTEQUAL); }
;
exp : exp LEQ exp
{ write_exp_elt_opcode (BINOP_LEQ); }
;
exp : exp GEQ exp
{ write_exp_elt_opcode (BINOP_GEQ); }
;
exp : exp '<' exp
{ write_exp_elt_opcode (BINOP_LESS); }
;
exp : exp '>' exp
{ write_exp_elt_opcode (BINOP_GTR); }
;
exp : exp '&' exp
{ write_exp_elt_opcode (BINOP_BITWISE_AND); }
;
exp : exp '^' exp
{ write_exp_elt_opcode (BINOP_BITWISE_XOR); }
;
exp : exp '|' exp
{ write_exp_elt_opcode (BINOP_BITWISE_IOR); }
;
exp : exp ANDAND exp
{ write_exp_elt_opcode (BINOP_LOGICAL_AND); }
;
exp : exp OROR exp
{ write_exp_elt_opcode (BINOP_LOGICAL_OR); }
;
exp : exp '?' exp ':' exp %prec '?'
{ write_exp_elt_opcode (TERNOP_COND); }
;
exp : exp '=' exp
{ write_exp_elt_opcode (BINOP_ASSIGN); }
;
exp : exp ASSIGN_MODIFY exp
{ write_exp_elt_opcode (BINOP_ASSIGN_MODIFY);
write_exp_elt_opcode ($2);
write_exp_elt_opcode (BINOP_ASSIGN_MODIFY); }
;
exp : INT
{ write_exp_elt_opcode (OP_LONG);
write_exp_elt_type ($1.type);
write_exp_elt_longcst ((LONGEST)($1.val));
write_exp_elt_opcode (OP_LONG); }
;
exp : NAME_OR_INT
{ YYSTYPE val;
parse_number ($1.stoken.ptr, $1.stoken.length, 0, &val);
write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (val.typed_val_int.type);
write_exp_elt_longcst ((LONGEST)val.typed_val_int.val);
write_exp_elt_opcode (OP_LONG);
}
;
exp : FLOAT
{ write_exp_elt_opcode (OP_DOUBLE);
write_exp_elt_type ($1.type);
write_exp_elt_dblcst ($1.dval);
write_exp_elt_opcode (OP_DOUBLE); }
;
exp : variable
;
exp : VARIABLE
/* Already written by write_dollar_variable. */
;
exp : SELECTOR
{
write_exp_elt_opcode (OP_OBJC_SELECTOR);
write_exp_string ($1);
write_exp_elt_opcode (OP_OBJC_SELECTOR); }
;
exp : SIZEOF '(' type ')' %prec UNARY
{ write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_int);
CHECK_TYPEDEF ($3);
write_exp_elt_longcst ((LONGEST) TYPE_LENGTH ($3));
write_exp_elt_opcode (OP_LONG); }
;
exp : STRING
{ /* C strings are converted into array
constants with an explicit null byte
added at the end. Thus the array upper
bound is the string length. There is no
such thing in C as a completely empty
string. */
char *sp = $1.ptr; int count = $1.length;
while (count-- > 0)
{
write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_char);
write_exp_elt_longcst ((LONGEST)(*sp++));
write_exp_elt_opcode (OP_LONG);
}
write_exp_elt_opcode (OP_LONG);
write_exp_elt_type (builtin_type_char);
write_exp_elt_longcst ((LONGEST)'\0');
write_exp_elt_opcode (OP_LONG);
write_exp_elt_opcode (OP_ARRAY);
write_exp_elt_longcst ((LONGEST) 0);
write_exp_elt_longcst ((LONGEST) ($1.length));
write_exp_elt_opcode (OP_ARRAY); }
;
exp : NSSTRING /* ObjC NextStep NSString constant
* of the form '@' '"' string '"'.
*/
{ write_exp_elt_opcode (OP_OBJC_NSSTRING);
write_exp_string ($1);
write_exp_elt_opcode (OP_OBJC_NSSTRING); }
;
block : BLOCKNAME
{
if ($1.sym != 0)
$$ = SYMBOL_BLOCK_VALUE ($1.sym);
else
{
struct symtab *tem =
lookup_symtab (copy_name ($1.stoken));
if (tem)
$$ = BLOCKVECTOR_BLOCK (BLOCKVECTOR (tem), STATIC_BLOCK);
else
error ("No file or function \"%s\".",
copy_name ($1.stoken));
}
}
;
block : block COLONCOLON name
{ struct symbol *tem
= lookup_symbol (copy_name ($3), $1,
VAR_DOMAIN, (int *) NULL,
(struct symtab **) NULL);
if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
error ("No function \"%s\" in specified context.",
copy_name ($3));
$$ = SYMBOL_BLOCK_VALUE (tem); }
;
variable: block COLONCOLON name
{ struct symbol *sym;
sym = lookup_symbol (copy_name ($3), $1,
VAR_DOMAIN, (int *) NULL,
(struct symtab **) NULL);
if (sym == 0)
error ("No symbol \"%s\" in specified context.",
copy_name ($3));
write_exp_elt_opcode (OP_VAR_VALUE);
/* block_found is set by lookup_symbol. */
write_exp_elt_block (block_found);
write_exp_elt_sym (sym);
write_exp_elt_opcode (OP_VAR_VALUE); }
;
qualified_name: typebase COLONCOLON name
{
struct type *type = $1;
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
&& TYPE_CODE (type) != TYPE_CODE_UNION)
error ("`%s' is not defined as an aggregate type.",
TYPE_NAME (type));
write_exp_elt_opcode (OP_SCOPE);
write_exp_elt_type (type);
write_exp_string ($3);
write_exp_elt_opcode (OP_SCOPE);
}
| typebase COLONCOLON '~' name
{
struct type *type = $1;
struct stoken tmp_token;
if (TYPE_CODE (type) != TYPE_CODE_STRUCT
&& TYPE_CODE (type) != TYPE_CODE_UNION)
error ("`%s' is not defined as an aggregate type.",
TYPE_NAME (type));
if (!STREQ (type_name_no_tag (type), $4.ptr))
error ("invalid destructor `%s::~%s'",
type_name_no_tag (type), $4.ptr);
tmp_token.ptr = (char*) alloca ($4.length + 2);
tmp_token.length = $4.length + 1;
tmp_token.ptr[0] = '~';
memcpy (tmp_token.ptr+1, $4.ptr, $4.length);
tmp_token.ptr[tmp_token.length] = 0;
write_exp_elt_opcode (OP_SCOPE);
write_exp_elt_type (type);
write_exp_string (tmp_token);
write_exp_elt_opcode (OP_SCOPE);
}
;
variable: qualified_name
| COLONCOLON name
{
char *name = copy_name ($2);
struct symbol *sym;
struct minimal_symbol *msymbol;
sym =
lookup_symbol (name, (const struct block *) NULL,
VAR_DOMAIN, (int *) NULL,
(struct symtab **) NULL);
if (sym)
{
write_exp_elt_opcode (OP_VAR_VALUE);
write_exp_elt_block (NULL);
write_exp_elt_sym (sym);
write_exp_elt_opcode (OP_VAR_VALUE);
break;
}
msymbol = lookup_minimal_symbol (name, NULL, NULL);
if (msymbol != NULL)
{
write_exp_msymbol (msymbol,
lookup_function_type (builtin_type_int),
builtin_type_int);
}
else
if (!have_full_symbols () && !have_partial_symbols ())
error ("No symbol table is loaded. Use the \"file\" command.");
else
error ("No symbol \"%s\" in current context.", name);
}
;
variable: name_not_typename
{ struct symbol *sym = $1.sym;
if (sym)
{
if (symbol_read_needs_frame (sym))
{
if (innermost_block == 0 ||
contained_in (block_found,
innermost_block))
innermost_block = block_found;
}
write_exp_elt_opcode (OP_VAR_VALUE);
/* We want to use the selected frame, not
another more inner frame which happens to
be in the same block. */
write_exp_elt_block (NULL);
write_exp_elt_sym (sym);
write_exp_elt_opcode (OP_VAR_VALUE);
}
else if ($1.is_a_field_of_this)
{
/* C++/ObjC: it hangs off of `this'/'self'.
Must not inadvertently convert from a
method call to data ref. */
if (innermost_block == 0 ||
contained_in (block_found, innermost_block))
innermost_block = block_found;
write_exp_elt_opcode (OP_OBJC_SELF);
write_exp_elt_opcode (OP_OBJC_SELF);
write_exp_elt_opcode (STRUCTOP_PTR);
write_exp_string ($1.stoken);
write_exp_elt_opcode (STRUCTOP_PTR);
}
else
{
struct minimal_symbol *msymbol;
register char *arg = copy_name ($1.stoken);
msymbol =
lookup_minimal_symbol (arg, NULL, NULL);
if (msymbol != NULL)
{
write_exp_msymbol (msymbol,
lookup_function_type (builtin_type_int),
builtin_type_int);
}
else if (!have_full_symbols () &&
!have_partial_symbols ())
error ("No symbol table is loaded. Use the \"file\" command.");
else
error ("No symbol \"%s\" in current context.",
copy_name ($1.stoken));
}
}
;
ptype : typebase
/* "const" and "volatile" are curently ignored. A type
qualifier before the type is currently handled in the
typebase rule. The reason for recognizing these here
(shift/reduce conflicts) might be obsolete now that some
pointer to member rules have been deleted. */
| typebase CONST_KEYWORD
| typebase VOLATILE_KEYWORD
| typebase abs_decl
{ $$ = follow_types ($1); }
| typebase CONST_KEYWORD abs_decl
{ $$ = follow_types ($1); }
| typebase VOLATILE_KEYWORD abs_decl
{ $$ = follow_types ($1); }
;
abs_decl: '*'
{ push_type (tp_pointer); $$ = 0; }
| '*' abs_decl
{ push_type (tp_pointer); $$ = $2; }
| '&'
{ push_type (tp_reference); $$ = 0; }
| '&' abs_decl
{ push_type (tp_reference); $$ = $2; }
| direct_abs_decl
;
direct_abs_decl: '(' abs_decl ')'
{ $$ = $2; }
| direct_abs_decl array_mod
{
push_type_int ($2);
push_type (tp_array);
}
| array_mod
{
push_type_int ($1);
push_type (tp_array);
$$ = 0;
}
| direct_abs_decl func_mod
{ push_type (tp_function); }
| func_mod
{ push_type (tp_function); }
;
array_mod: '[' ']'
{ $$ = -1; }
| '[' INT ']'
{ $$ = $2.val; }
;
func_mod: '(' ')'
{ $$ = 0; }
| '(' nonempty_typelist ')'
{ free ($2); $$ = 0; }
;
/* We used to try to recognize more pointer to member types here, but
that didn't work (shift/reduce conflicts meant that these rules
never got executed). The problem is that
int (foo::bar::baz::bizzle)
is a function type but
int (foo::bar::baz::bizzle::*)
is a pointer to member type. Stroustrup loses again! */
type : ptype
| typebase COLONCOLON '*'
{ $$ = lookup_member_type (builtin_type_int, $1); }
;
typebase /* Implements (approximately): (type-qualifier)* type-specifier. */
: TYPENAME
{ $$ = $1.type; }
| CLASSNAME
{
if ($1.type == NULL)
error ("No symbol \"%s\" in current context.",
copy_name($1.stoken));
else
$$ = $1.type;
}
| INT_KEYWORD
{ $$ = builtin_type_int; }
| LONG
{ $$ = builtin_type_long; }
| SHORT
{ $$ = builtin_type_short; }
| LONG INT_KEYWORD
{ $$ = builtin_type_long; }
| UNSIGNED LONG INT_KEYWORD
{ $$ = builtin_type_unsigned_long; }
| LONG LONG
{ $$ = builtin_type_long_long; }
| LONG LONG INT_KEYWORD
{ $$ = builtin_type_long_long; }
| UNSIGNED LONG LONG
{ $$ = builtin_type_unsigned_long_long; }
| UNSIGNED LONG LONG INT_KEYWORD
{ $$ = builtin_type_unsigned_long_long; }
| SHORT INT_KEYWORD
{ $$ = builtin_type_short; }
| UNSIGNED SHORT INT_KEYWORD
{ $$ = builtin_type_unsigned_short; }
| DOUBLE_KEYWORD
{ $$ = builtin_type_double; }
| LONG DOUBLE_KEYWORD
{ $$ = builtin_type_long_double; }
| STRUCT name
{ $$ = lookup_struct (copy_name ($2),
expression_context_block); }
| CLASS name
{ $$ = lookup_struct (copy_name ($2),
expression_context_block); }
| UNION name
{ $$ = lookup_union (copy_name ($2),
expression_context_block); }
| ENUM name
{ $$ = lookup_enum (copy_name ($2),
expression_context_block); }
| UNSIGNED typename
{ $$ = lookup_unsigned_typename (TYPE_NAME($2.type)); }
| UNSIGNED
{ $$ = builtin_type_unsigned_int; }
| SIGNED_KEYWORD typename
{ $$ = lookup_signed_typename (TYPE_NAME($2.type)); }
| SIGNED_KEYWORD
{ $$ = builtin_type_int; }
| TEMPLATE name '<' type '>'
{ $$ = lookup_template_type(copy_name($2), $4,
expression_context_block);
}
/* "const" and "volatile" are curently ignored. A type
qualifier after the type is handled in the ptype rule. I
think these could be too. */
| CONST_KEYWORD typebase { $$ = $2; }
| VOLATILE_KEYWORD typebase { $$ = $2; }
;
typename: TYPENAME
| INT_KEYWORD
{
$$.stoken.ptr = "int";
$$.stoken.length = 3;
$$.type = builtin_type_int;
}
| LONG
{
$$.stoken.ptr = "long";
$$.stoken.length = 4;
$$.type = builtin_type_long;
}
| SHORT
{
$$.stoken.ptr = "short";
$$.stoken.length = 5;
$$.type = builtin_type_short;
}
;
nonempty_typelist
: type
{ $$ = (struct type **) malloc (sizeof (struct type *) * 2);
$<ivec>$[0] = 1; /* Number of types in vector. */
$$[1] = $1;
}
| nonempty_typelist ',' type
{ int len = sizeof (struct type *) * (++($<ivec>1[0]) + 1);
$$ = (struct type **) realloc ((char *) $1, len);
$$[$<ivec>$[0]] = $3;
}
;
name : NAME { $$ = $1.stoken; }
| BLOCKNAME { $$ = $1.stoken; }
| TYPENAME { $$ = $1.stoken; }
| CLASSNAME { $$ = $1.stoken; }
| NAME_OR_INT { $$ = $1.stoken; }
;
name_not_typename : NAME
| BLOCKNAME
/* These would be useful if name_not_typename was useful, but it is
just a fake for "variable", so these cause reduce/reduce conflicts
because the parser can't tell whether NAME_OR_INT is a
name_not_typename (=variable, =exp) or just an exp. If
name_not_typename was ever used in an lvalue context where only a
name could occur, this might be useful. */
/* | NAME_OR_INT */
;
%%
/* Take care of parsing a number (anything that starts with a digit).
Set yylval and return the token type; update lexptr. LEN is the
number of characters in it. */
/*** Needs some error checking for the float case. ***/
static int
parse_number (p, len, parsed_float, putithere)
register char *p;
register int len;
int parsed_float;
YYSTYPE *putithere;
{
/* FIXME: Shouldn't these be unsigned? We don't deal with negative
values here, and we do kind of silly things like cast to
unsigned. */
register LONGEST n = 0;
register LONGEST prevn = 0;
unsigned LONGEST un;
register int i = 0;
register int c;
register int base = input_radix;
int unsigned_p = 0;
/* Number of "L" suffixes encountered. */
int long_p = 0;
/* We have found a "L" or "U" suffix. */
int found_suffix = 0;
unsigned LONGEST high_bit;
struct type *signed_type;
struct type *unsigned_type;
if (parsed_float)
{
char c;
/* It's a float since it contains a point or an exponent. */
if (sizeof (putithere->typed_val_float.dval) <= sizeof (float))
sscanf (p, "%g", (float *)&putithere->typed_val_float.dval);
else if (sizeof (putithere->typed_val_float.dval) <= sizeof (double))
sscanf (p, "%lg", (double *)&putithere->typed_val_float.dval);
else
{
#ifdef PRINTF_HAS_LONG_DOUBLE
sscanf (p, "%Lg", &putithere->typed_val_float.dval);
#else
/* Scan it into a double, then assign it to the long double.
This at least wins with values representable in the range
of doubles. */
double temp;
sscanf (p, "%lg", &temp);
putithere->typed_val_float.dval = temp;
#endif
}
/* See if it has `f' or `l' suffix (float or long double). */
c = tolower (p[len - 1]);
if (c == 'f')
putithere->typed_val_float.type = builtin_type_float;
else if (c == 'l')
putithere->typed_val_float.type = builtin_type_long_double;
else if (isdigit (c) || c == '.')
putithere->typed_val_float.type = builtin_type_double;
else
return ERROR;
return FLOAT;
}
/* Handle base-switching prefixes 0x, 0t, 0d, and 0. */
if (p[0] == '0')
switch (p[1])
{
case 'x':
case 'X':
if (len >= 3)
{
p += 2;
base = 16;
len -= 2;
}
break;
case 't':
case 'T':
case 'd':
case 'D':
if (len >= 3)
{
p += 2;
base = 10;
len -= 2;
}
break;
default:
base = 8;
break;
}
while (len-- > 0)
{
c = *p++;
if (c >= 'A' && c <= 'Z')
c += 'a' - 'A';
if (c != 'l' && c != 'u')
n *= base;
if (c >= '0' && c <= '9')
{
if (found_suffix)
return ERROR;
n += i = c - '0';
}
else
{
if (base > 10 && c >= 'a' && c <= 'f')
{
if (found_suffix)
return ERROR;
n += i = c - 'a' + 10;
}
else if (c == 'l')
{
++long_p;
found_suffix = 1;
}
else if (c == 'u')
{
unsigned_p = 1;
found_suffix = 1;
}
else
return ERROR; /* Char not a digit. */
}
if (i >= base)
return ERROR; /* Invalid digit in this base. */
/* Portably test for overflow (only works for nonzero values, so
make a second check for zero). FIXME: Can't we just make n
and prevn unsigned and avoid this? */
if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
unsigned_p = 1; /* Try something unsigned. */
/* Portably test for unsigned overflow.
FIXME: This check is wrong; for example it doesn't find
overflow on 0x123456789 when LONGEST is 32 bits. */
if (c != 'l' && c != 'u' && n != 0)
{
if ((unsigned_p && (unsigned LONGEST) prevn >= (unsigned LONGEST) n))
error ("Numeric constant too large.");
}
prevn = n;
}
/* An integer constant is an int, a long, or a long long. An L
suffix forces it to be long; an LL suffix forces it to be long
long. If not forced to a larger size, it gets the first type of
the above that it fits in. To figure out whether it fits, we
shift it right and see whether anything remains. Note that we
can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
operation, because many compilers will warn about such a shift
(which always produces a zero result). Sometimes TARGET_INT_BIT
or TARGET_LONG_BIT will be that big, sometimes not. To deal with
the case where it is we just always shift the value more than
once, with fewer bits each time. */
un = (unsigned LONGEST)n >> 2;
if (long_p == 0
&& (un >> (TARGET_INT_BIT - 2)) == 0)
{
high_bit = ((unsigned LONGEST)1) << (TARGET_INT_BIT-1);
/* A large decimal (not hex or octal) constant (between INT_MAX
and UINT_MAX) is a long or unsigned long, according to ANSI,
never an unsigned int, but this code treats it as unsigned
int. This probably should be fixed. GCC gives a warning on
such constants. */
unsigned_type = builtin_type_unsigned_int;
signed_type = builtin_type_int;
}
else if (long_p <= 1
&& (un >> (TARGET_LONG_BIT - 2)) == 0)
{
high_bit = ((unsigned LONGEST)1) << (TARGET_LONG_BIT-1);
unsigned_type = builtin_type_unsigned_long;
signed_type = builtin_type_long;
}
else
{
high_bit = (((unsigned LONGEST)1)
<< (TARGET_LONG_LONG_BIT - 32 - 1)
<< 16
<< 16);
if (high_bit == 0)
/* A long long does not fit in a LONGEST. */
high_bit =
(unsigned LONGEST)1 << (sizeof (LONGEST) * HOST_CHAR_BIT - 1);
unsigned_type = builtin_type_unsigned_long_long;
signed_type = builtin_type_long_long;
}
putithere->typed_val_int.val = n;
/* If the high bit of the worked out type is set then this number
has to be unsigned. */
if (unsigned_p || (n & high_bit))
{
putithere->typed_val_int.type = unsigned_type;
}
else
{
putithere->typed_val_int.type = signed_type;
}
return INT;
}
struct token
{
char *operator;
int token;
enum exp_opcode opcode;
};
static const struct token tokentab3[] =
{
{">>=", ASSIGN_MODIFY, BINOP_RSH},
{"<<=", ASSIGN_MODIFY, BINOP_LSH}
};
static const struct token tokentab2[] =
{
{"+=", ASSIGN_MODIFY, BINOP_ADD},
{"-=", ASSIGN_MODIFY, BINOP_SUB},
{"*=", ASSIGN_MODIFY, BINOP_MUL},
{"/=", ASSIGN_MODIFY, BINOP_DIV},
{"%=", ASSIGN_MODIFY, BINOP_REM},
{"|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR},
{"&=", ASSIGN_MODIFY, BINOP_BITWISE_AND},
{"^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR},
{"++", INCREMENT, BINOP_END},
{"--", DECREMENT, BINOP_END},
{"->", ARROW, BINOP_END},
{"&&", ANDAND, BINOP_END},
{"||", OROR, BINOP_END},
{"::", COLONCOLON, BINOP_END},
{"<<", LSH, BINOP_END},
{">>", RSH, BINOP_END},
{"==", EQUAL, BINOP_END},
{"!=", NOTEQUAL, BINOP_END},
{"<=", LEQ, BINOP_END},
{">=", GEQ, BINOP_END}
};
/* Read one token, getting characters through lexptr. */
static int
yylex ()
{
int c, tokchr;
int namelen;
unsigned int i;
char *tokstart;
char *tokptr;
int tempbufindex;
static char *tempbuf;
static int tempbufsize;
retry:
tokstart = lexptr;
/* See if it is a special token of length 3. */
for (i = 0; i < sizeof tokentab3 / sizeof tokentab3[0]; i++)
if (STREQN (tokstart, tokentab3[i].operator, 3))
{
lexptr += 3;
yylval.opcode = tokentab3[i].opcode;
return tokentab3[i].token;
}
/* See if it is a special token of length 2. */
for (i = 0; i < sizeof tokentab2 / sizeof tokentab2[0]; i++)
if (STREQN (tokstart, tokentab2[i].operator, 2))
{
lexptr += 2;
yylval.opcode = tokentab2[i].opcode;
return tokentab2[i].token;
}
c = 0;
switch (tokchr = *tokstart)
{
case 0:
return 0;
case ' ':
case '\t':
case '\n':
lexptr++;
goto retry;
case '\'':
/* We either have a character constant ('0' or '\177' for
example) or we have a quoted symbol reference ('foo(int,int)'
in C++ for example). */
lexptr++;
c = *lexptr++;
if (c == '\\')
c = parse_escape (&lexptr);
else if (c == '\'')
error ("Empty character constant.");
yylval.typed_val_int.val = c;
yylval.typed_val_int.type = builtin_type_char;
c = *lexptr++;
if (c != '\'')
{
namelen = skip_quoted (tokstart) - tokstart;
if (namelen > 2)
{
lexptr = tokstart + namelen;
if (lexptr[-1] != '\'')
error ("Unmatched single quote.");
namelen -= 2;
tokstart++;
goto tryname;
}
error ("Invalid character constant.");
}
return INT;
case '(':
paren_depth++;
lexptr++;
return '(';
case ')':
if (paren_depth == 0)
return 0;
paren_depth--;
lexptr++;
return ')';
case ',':
if (comma_terminates && paren_depth == 0)
return 0;
lexptr++;
return ',';
case '.':
/* Might be a floating point number. */
if (lexptr[1] < '0' || lexptr[1] > '9')
goto symbol; /* Nope, must be a symbol. */
/* FALL THRU into number case. */
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
/* It's a number. */
int got_dot = 0, got_e = 0, toktype = FLOAT;
/* Initialize toktype to anything other than ERROR. */
register char *p = tokstart;
int hex = input_radix > 10;
int local_radix = input_radix;
if (tokchr == '0' && (p[1] == 'x' || p[1] == 'X'))
{
p += 2;
hex = 1;
local_radix = 16;
}
else if (tokchr == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D'))
{
p += 2;
hex = 0;
local_radix = 10;
}
for (;; ++p)
{
/* This test includes !hex because 'e' is a valid hex digit
and thus does not indicate a floating point number when
the radix is hex. */
if (!hex && (*p == 'e' || *p == 'E'))
if (got_e)
toktype = ERROR; /* Only one 'e' in a float. */
else
got_e = 1;
/* This test does not include !hex, because a '.' always
indicates a decimal floating point number regardless of
the radix. */
else if (*p == '.')
if (got_dot)
toktype = ERROR; /* Only one '.' in a float. */
else
got_dot = 1;
else if (got_e && (p[-1] == 'e' || p[-1] == 'E') &&
(*p == '-' || *p == '+'))
/* This is the sign of the exponent, not the end of the
number. */
continue;
/* Always take decimal digits; parse_number handles radix
error. */
else if (*p >= '0' && *p <= '9')
continue;
/* We will take letters only if hex is true, and only up
to what the input radix would permit. FSF was content
to rely on parse_number to validate; but it leaks. */
else if (*p >= 'a' && *p <= 'z')
{
if (!hex || *p >= ('a' + local_radix - 10))
toktype = ERROR;
}
else if (*p >= 'A' && *p <= 'Z')
{
if (!hex || *p >= ('A' + local_radix - 10))
toktype = ERROR;
}
else break;
}
if (toktype != ERROR)
toktype = parse_number (tokstart, p - tokstart,
got_dot | got_e, &yylval);
if (toktype == ERROR)
{
char *err_copy = (char *) alloca (p - tokstart + 1);
memcpy (err_copy, tokstart, p - tokstart);
err_copy[p - tokstart] = 0;
error ("Invalid number \"%s\".", err_copy);
}
lexptr = p;
return toktype;
}
case '+':
case '-':
case '*':
case '/':
case '%':
case '|':
case '&':
case '^':
case '~':
case '!':
#if 0
case '@': /* Moved out below. */
#endif
case '<':
case '>':
case '[':
case ']':
case '?':
case ':':
case '=':
case '{':
case '}':
symbol:
lexptr++;
return tokchr;
case '@':
if (strncmp(tokstart, "@selector", 9) == 0)
{
tokptr = strchr(tokstart, '(');
if (tokptr == NULL)
{
error ("Missing '(' in @selector(...)");
}
tempbufindex = 0;
tokptr++; /* Skip the '('. */
do {
/* Grow the static temp buffer if necessary, including
allocating the first one on demand. */
if (tempbufindex + 1 >= tempbufsize)
{
tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
}
tempbuf[tempbufindex++] = *tokptr++;
} while ((*tokptr != ')') && (*tokptr != '\0'));
if (*tokptr++ != ')')
{
error ("Missing ')' in @selector(...)");
}
tempbuf[tempbufindex] = '\0';
yylval.sval.ptr = tempbuf;
yylval.sval.length = tempbufindex;
lexptr = tokptr;
return SELECTOR;
}
if (tokstart[1] != '"')
{
lexptr++;
return tokchr;
}
/* ObjC NextStep NSString constant: fall thru and parse like
STRING. */
tokstart++;
case '"':
/* Build the gdb internal form of the input string in tempbuf,
translating any standard C escape forms seen. Note that the
buffer is null byte terminated *only* for the convenience of
debugging gdb itself and printing the buffer contents when
the buffer contains no embedded nulls. Gdb does not depend
upon the buffer being null byte terminated, it uses the
length string instead. This allows gdb to handle C strings
(as well as strings in other languages) with embedded null
bytes. */
tokptr = ++tokstart;
tempbufindex = 0;
do {
/* Grow the static temp buffer if necessary, including
allocating the first one on demand. */
if (tempbufindex + 1 >= tempbufsize)
{
tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
}
switch (*tokptr)
{
case '\0':
case '"':
/* Do nothing, loop will terminate. */
break;
case '\\':
tokptr++;
c = parse_escape (&tokptr);
if (c == -1)
{
continue;
}
tempbuf[tempbufindex++] = c;
break;
default:
tempbuf[tempbufindex++] = *tokptr++;
break;
}
} while ((*tokptr != '"') && (*tokptr != '\0'));
if (*tokptr++ != '"')
{
error ("Unterminated string in expression.");
}
tempbuf[tempbufindex] = '\0'; /* See note above. */
yylval.sval.ptr = tempbuf;
yylval.sval.length = tempbufindex;
lexptr = tokptr;
return (tokchr == '@' ? NSSTRING : STRING);
}
if (!(tokchr == '_' || tokchr == '$' ||
(tokchr >= 'a' && tokchr <= 'z') || (tokchr >= 'A' && tokchr <= 'Z')))
/* We must have come across a bad character (e.g. ';'). */
error ("Invalid character '%c' in expression.", c);
/* It's a name. See how long it is. */
namelen = 0;
for (c = tokstart[namelen];
(c == '_' || c == '$' || (c >= '0' && c <= '9')
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
{
if (c == '<')
{
int i = namelen;
while (tokstart[++i] && tokstart[i] != '>');
if (tokstart[i] == '>')
namelen = i;
}
c = tokstart[++namelen];
}
/* The token "if" terminates the expression and is NOT
removed from the input stream. */
if (namelen == 2 && tokstart[0] == 'i' && tokstart[1] == 'f')
{
return 0;
}
lexptr += namelen;
tryname:
/* Catch specific keywords. Should be done with a data structure. */
switch (namelen)
{
case 8:
if (STREQN (tokstart, "unsigned", 8))
return UNSIGNED;
if (current_language->la_language == language_cplus
&& STREQN (tokstart, "template", 8))
return TEMPLATE;
if (STREQN (tokstart, "volatile", 8))
return VOLATILE_KEYWORD;
break;
case 6:
if (STREQN (tokstart, "struct", 6))
return STRUCT;
if (STREQN (tokstart, "signed", 6))
return SIGNED_KEYWORD;
if (STREQN (tokstart, "sizeof", 6))
return SIZEOF;
if (STREQN (tokstart, "double", 6))
return DOUBLE_KEYWORD;
break;
case 5:
if ((current_language->la_language == language_cplus)
&& STREQN (tokstart, "class", 5))
return CLASS;
if (STREQN (tokstart, "union", 5))
return UNION;
if (STREQN (tokstart, "short", 5))
return SHORT;
if (STREQN (tokstart, "const", 5))
return CONST_KEYWORD;
break;
case 4:
if (STREQN (tokstart, "enum", 4))
return ENUM;
if (STREQN (tokstart, "long", 4))
return LONG;
break;
case 3:
if (STREQN (tokstart, "int", 3))
return INT_KEYWORD;
break;
default:
break;
}
yylval.sval.ptr = tokstart;
yylval.sval.length = namelen;
if (*tokstart == '$')
{
write_dollar_variable (yylval.sval);
return VARIABLE;
}
/* Use token-type BLOCKNAME for symbols that happen to be defined as
functions or symtabs. If this is not so, then ...
Use token-type TYPENAME for symbols that happen to be defined
currently as names of types; NAME for other symbols.
The caller is not constrained to care about the distinction. */
{
char *tmp = copy_name (yylval.sval);
struct symbol *sym;
int is_a_field_of_this = 0, *need_this;
int hextype;
if (current_language->la_language == language_cplus ||
current_language->la_language == language_objc)
need_this = &is_a_field_of_this;
else
need_this = (int *) NULL;
sym = lookup_symbol (tmp, expression_context_block,
VAR_DOMAIN,
need_this,
(struct symtab **) NULL);
/* Call lookup_symtab, not lookup_partial_symtab, in case there
are no psymtabs (coff, xcoff, or some future change to blow
away the psymtabs once symbols are read). */
if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK) ||
lookup_symtab (tmp))
{
yylval.ssym.sym = sym;
yylval.ssym.is_a_field_of_this = is_a_field_of_this;
return BLOCKNAME;
}
if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
{
#if 1
/* Despite the following flaw, we need to keep this code
enabled. Because we can get called from
check_stub_method, if we don't handle nested types then
it screws many operations in any program which uses
nested types. */
/* In "A::x", if x is a member function of A and there
happens to be a type (nested or not, since the stabs
don't make that distinction) named x, then this code
incorrectly thinks we are dealing with nested types
rather than a member function. */
char *p;
char *namestart;
struct symbol *best_sym;
/* Look ahead to detect nested types. This probably should
be done in the grammar, but trying seemed to introduce a
lot of shift/reduce and reduce/reduce conflicts. It's
possible that it could be done, though. Or perhaps a
non-grammar, but less ad hoc, approach would work well. */
/* Since we do not currently have any way of distinguishing
a nested type from a non-nested one (the stabs don't tell
us whether a type is nested), we just ignore the
containing type. */
p = lexptr;
best_sym = sym;
while (1)
{
/* Skip whitespace. */
while (*p == ' ' || *p == '\t' || *p == '\n')
++p;
if (*p == ':' && p[1] == ':')
{
/* Skip the `::'. */
p += 2;
/* Skip whitespace. */
while (*p == ' ' || *p == '\t' || *p == '\n')
++p;
namestart = p;
while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
|| (*p >= 'a' && *p <= 'z')
|| (*p >= 'A' && *p <= 'Z'))
++p;
if (p != namestart)
{
struct symbol *cur_sym;
/* As big as the whole rest of the expression,
which is at least big enough. */
char *ncopy = alloca (strlen (tmp) +
strlen (namestart) + 3);
char *tmp1;
tmp1 = ncopy;
memcpy (tmp1, tmp, strlen (tmp));
tmp1 += strlen (tmp);
memcpy (tmp1, "::", 2);
tmp1 += 2;
memcpy (tmp1, namestart, p - namestart);
tmp1[p - namestart] = '\0';
cur_sym = lookup_symbol (ncopy,
expression_context_block,
VAR_DOMAIN, (int *) NULL,
(struct symtab **) NULL);
if (cur_sym)
{
if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
{
best_sym = cur_sym;
lexptr = p;
}
else
break;
}
else
break;
}
else
break;
}
else
break;
}
yylval.tsym.type = SYMBOL_TYPE (best_sym);
#else /* not 0 */
yylval.tsym.type = SYMBOL_TYPE (sym);
#endif /* not 0 */
return TYPENAME;
}
if ((yylval.tsym.type = lookup_primitive_typename (tmp)) != 0)
return TYPENAME;
/* See if it's an ObjC classname. */
if (!sym)
{
CORE_ADDR Class = lookup_objc_class(tmp);
if (Class)
{
extern struct symbol *lookup_struct_typedef();
yylval.class.class = Class;
if ((sym = lookup_struct_typedef (tmp,
expression_context_block,
1)))
yylval.class.type = SYMBOL_TYPE (sym);
return CLASSNAME;
}
}
/* Input names that aren't symbols but ARE valid hex numbers,
when the input radix permits them, can be names or numbers
depending on the parse. Note we support radixes > 16 here. */
if (!sym &&
((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10) ||
(tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
{
YYSTYPE newlval; /* Its value is ignored. */
hextype = parse_number (tokstart, namelen, 0, &newlval);
if (hextype == INT)
{
yylval.ssym.sym = sym;
yylval.ssym.is_a_field_of_this = is_a_field_of_this;
return NAME_OR_INT;
}
}
/* Any other kind of symbol. */
yylval.ssym.sym = sym;
yylval.ssym.is_a_field_of_this = is_a_field_of_this;
return NAME;
}
}
void
yyerror (msg)
char *msg;
{
if (*lexptr == '\0')
error("A %s near end of expression.", (msg ? msg : "error"));
else
error ("A %s in expression, near `%s'.", (msg ? msg : "error"),
lexptr);
}