mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-24 02:24:46 +08:00
f664f61842
* som.c (bfd_som_set_subsection_attributes) (bfd_section_from_som_symbol, som_reloc_queue_fix): Fix shadowed variable warnings. * cache.c (close_one): Likewise.
6418 lines
194 KiB
C
6418 lines
194 KiB
C
/* bfd back-end for HP PA-RISC SOM objects.
|
||
Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
|
||
2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
|
||
Free Software Foundation, Inc.
|
||
|
||
Contributed by the Center for Software Science at the
|
||
University of Utah.
|
||
|
||
This file is part of BFD, the Binary File Descriptor library.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
|
||
02110-1301, USA. */
|
||
|
||
#include "alloca-conf.h"
|
||
#include "sysdep.h"
|
||
#include "bfd.h"
|
||
|
||
#if defined (HOST_HPPAHPUX) || defined (HOST_HPPABSD) || defined (HOST_HPPAOSF) || defined(HOST_HPPAMPEIX)
|
||
|
||
#include "libbfd.h"
|
||
#include "som.h"
|
||
#include "safe-ctype.h"
|
||
|
||
#include <sys/param.h>
|
||
#include <signal.h>
|
||
#include <machine/reg.h>
|
||
#include <sys/file.h>
|
||
|
||
static bfd_reloc_status_type hppa_som_reloc
|
||
(bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
|
||
static bfd_boolean som_mkobject (bfd *);
|
||
static bfd_boolean som_is_space (asection *);
|
||
static bfd_boolean som_is_subspace (asection *);
|
||
static int compare_subspaces (const void *, const void *);
|
||
static unsigned long som_compute_checksum (bfd *);
|
||
static bfd_boolean som_build_and_write_symbol_table (bfd *);
|
||
static unsigned int som_slurp_symbol_table (bfd *);
|
||
|
||
/* Magic not defined in standard HP-UX header files until 8.0. */
|
||
|
||
#ifndef CPU_PA_RISC1_0
|
||
#define CPU_PA_RISC1_0 0x20B
|
||
#endif /* CPU_PA_RISC1_0 */
|
||
|
||
#ifndef CPU_PA_RISC1_1
|
||
#define CPU_PA_RISC1_1 0x210
|
||
#endif /* CPU_PA_RISC1_1 */
|
||
|
||
#ifndef CPU_PA_RISC2_0
|
||
#define CPU_PA_RISC2_0 0x214
|
||
#endif /* CPU_PA_RISC2_0 */
|
||
|
||
#ifndef _PA_RISC1_0_ID
|
||
#define _PA_RISC1_0_ID CPU_PA_RISC1_0
|
||
#endif /* _PA_RISC1_0_ID */
|
||
|
||
#ifndef _PA_RISC1_1_ID
|
||
#define _PA_RISC1_1_ID CPU_PA_RISC1_1
|
||
#endif /* _PA_RISC1_1_ID */
|
||
|
||
#ifndef _PA_RISC2_0_ID
|
||
#define _PA_RISC2_0_ID CPU_PA_RISC2_0
|
||
#endif /* _PA_RISC2_0_ID */
|
||
|
||
#ifndef _PA_RISC_MAXID
|
||
#define _PA_RISC_MAXID 0x2FF
|
||
#endif /* _PA_RISC_MAXID */
|
||
|
||
#ifndef _PA_RISC_ID
|
||
#define _PA_RISC_ID(__m_num) \
|
||
(((__m_num) == _PA_RISC1_0_ID) || \
|
||
((__m_num) >= _PA_RISC1_1_ID && (__m_num) <= _PA_RISC_MAXID))
|
||
#endif /* _PA_RISC_ID */
|
||
|
||
/* HIUX in it's infinite stupidity changed the names for several "well
|
||
known" constants. Work around such braindamage. Try the HPUX version
|
||
first, then the HIUX version, and finally provide a default. */
|
||
#ifdef HPUX_AUX_ID
|
||
#define EXEC_AUX_ID HPUX_AUX_ID
|
||
#endif
|
||
|
||
#if !defined (EXEC_AUX_ID) && defined (HIUX_AUX_ID)
|
||
#define EXEC_AUX_ID HIUX_AUX_ID
|
||
#endif
|
||
|
||
#ifndef EXEC_AUX_ID
|
||
#define EXEC_AUX_ID 0
|
||
#endif
|
||
|
||
/* Size (in chars) of the temporary buffers used during fixup and string
|
||
table writes. */
|
||
|
||
#define SOM_TMP_BUFSIZE 8192
|
||
|
||
/* Size of the hash table in archives. */
|
||
#define SOM_LST_HASH_SIZE 31
|
||
|
||
/* Max number of SOMs to be found in an archive. */
|
||
#define SOM_LST_MODULE_LIMIT 1024
|
||
|
||
/* Generic alignment macro. */
|
||
#define SOM_ALIGN(val, alignment) \
|
||
(((val) + (alignment) - 1) &~ ((unsigned long) (alignment) - 1))
|
||
|
||
/* SOM allows any one of the four previous relocations to be reused
|
||
with a "R_PREV_FIXUP" relocation entry. Since R_PREV_FIXUP
|
||
relocations are always a single byte, using a R_PREV_FIXUP instead
|
||
of some multi-byte relocation makes object files smaller.
|
||
|
||
Note one side effect of using a R_PREV_FIXUP is the relocation that
|
||
is being repeated moves to the front of the queue. */
|
||
struct reloc_queue
|
||
{
|
||
unsigned char *reloc;
|
||
unsigned int size;
|
||
} reloc_queue[4];
|
||
|
||
/* This fully describes the symbol types which may be attached to
|
||
an EXPORT or IMPORT directive. Only SOM uses this formation
|
||
(ELF has no need for it). */
|
||
typedef enum
|
||
{
|
||
SYMBOL_TYPE_UNKNOWN,
|
||
SYMBOL_TYPE_ABSOLUTE,
|
||
SYMBOL_TYPE_CODE,
|
||
SYMBOL_TYPE_DATA,
|
||
SYMBOL_TYPE_ENTRY,
|
||
SYMBOL_TYPE_MILLICODE,
|
||
SYMBOL_TYPE_PLABEL,
|
||
SYMBOL_TYPE_PRI_PROG,
|
||
SYMBOL_TYPE_SEC_PROG,
|
||
} pa_symbol_type;
|
||
|
||
struct section_to_type
|
||
{
|
||
char *section;
|
||
char type;
|
||
};
|
||
|
||
/* Assorted symbol information that needs to be derived from the BFD symbol
|
||
and/or the BFD backend private symbol data. */
|
||
struct som_misc_symbol_info
|
||
{
|
||
unsigned int symbol_type;
|
||
unsigned int symbol_scope;
|
||
unsigned int arg_reloc;
|
||
unsigned int symbol_info;
|
||
unsigned int symbol_value;
|
||
unsigned int priv_level;
|
||
unsigned int secondary_def;
|
||
unsigned int is_comdat;
|
||
unsigned int is_common;
|
||
unsigned int dup_common;
|
||
};
|
||
|
||
/* Map SOM section names to POSIX/BSD single-character symbol types.
|
||
|
||
This table includes all the standard subspaces as defined in the
|
||
current "PRO ABI for PA-RISC Systems", $UNWIND$ which for
|
||
some reason was left out, and sections specific to embedded stabs. */
|
||
|
||
static const struct section_to_type stt[] =
|
||
{
|
||
{"$TEXT$", 't'},
|
||
{"$SHLIB_INFO$", 't'},
|
||
{"$MILLICODE$", 't'},
|
||
{"$LIT$", 't'},
|
||
{"$CODE$", 't'},
|
||
{"$UNWIND_START$", 't'},
|
||
{"$UNWIND$", 't'},
|
||
{"$PRIVATE$", 'd'},
|
||
{"$PLT$", 'd'},
|
||
{"$SHLIB_DATA$", 'd'},
|
||
{"$DATA$", 'd'},
|
||
{"$SHORTDATA$", 'g'},
|
||
{"$DLT$", 'd'},
|
||
{"$GLOBAL$", 'g'},
|
||
{"$SHORTBSS$", 's'},
|
||
{"$BSS$", 'b'},
|
||
{"$GDB_STRINGS$", 'N'},
|
||
{"$GDB_SYMBOLS$", 'N'},
|
||
{0, 0}
|
||
};
|
||
|
||
/* About the relocation formatting table...
|
||
|
||
There are 256 entries in the table, one for each possible
|
||
relocation opcode available in SOM. We index the table by
|
||
the relocation opcode. The names and operations are those
|
||
defined by a.out_800 (4).
|
||
|
||
Right now this table is only used to count and perform minimal
|
||
processing on relocation streams so that they can be internalized
|
||
into BFD and symbolically printed by utilities. To make actual use
|
||
of them would be much more difficult, BFD's concept of relocations
|
||
is far too simple to handle SOM relocations. The basic assumption
|
||
that a relocation can be completely processed independent of other
|
||
relocations before an object file is written is invalid for SOM.
|
||
|
||
The SOM relocations are meant to be processed as a stream, they
|
||
specify copying of data from the input section to the output section
|
||
while possibly modifying the data in some manner. They also can
|
||
specify that a variable number of zeros or uninitialized data be
|
||
inserted on in the output segment at the current offset. Some
|
||
relocations specify that some previous relocation be re-applied at
|
||
the current location in the input/output sections. And finally a number
|
||
of relocations have effects on other sections (R_ENTRY, R_EXIT,
|
||
R_UNWIND_AUX and a variety of others). There isn't even enough room
|
||
in the BFD relocation data structure to store enough information to
|
||
perform all the relocations.
|
||
|
||
Each entry in the table has three fields.
|
||
|
||
The first entry is an index into this "class" of relocations. This
|
||
index can then be used as a variable within the relocation itself.
|
||
|
||
The second field is a format string which actually controls processing
|
||
of the relocation. It uses a simple postfix machine to do calculations
|
||
based on variables/constants found in the string and the relocation
|
||
stream.
|
||
|
||
The third field specifys whether or not this relocation may use
|
||
a constant (V) from the previous R_DATA_OVERRIDE rather than a constant
|
||
stored in the instruction.
|
||
|
||
Variables:
|
||
|
||
L = input space byte count
|
||
D = index into class of relocations
|
||
M = output space byte count
|
||
N = statement number (unused?)
|
||
O = stack operation
|
||
R = parameter relocation bits
|
||
S = symbol index
|
||
T = first 32 bits of stack unwind information
|
||
U = second 32 bits of stack unwind information
|
||
V = a literal constant (usually used in the next relocation)
|
||
P = a previous relocation
|
||
|
||
Lower case letters (starting with 'b') refer to following
|
||
bytes in the relocation stream. 'b' is the next 1 byte,
|
||
c is the next 2 bytes, d is the next 3 bytes, etc...
|
||
This is the variable part of the relocation entries that
|
||
makes our life a living hell.
|
||
|
||
numerical constants are also used in the format string. Note
|
||
the constants are represented in decimal.
|
||
|
||
'+', "*" and "=" represents the obvious postfix operators.
|
||
'<' represents a left shift.
|
||
|
||
Stack Operations:
|
||
|
||
Parameter Relocation Bits:
|
||
|
||
Unwind Entries:
|
||
|
||
Previous Relocations: The index field represents which in the queue
|
||
of 4 previous fixups should be re-applied.
|
||
|
||
Literal Constants: These are generally used to represent addend
|
||
parts of relocations when these constants are not stored in the
|
||
fields of the instructions themselves. For example the instruction
|
||
addil foo-$global$-0x1234 would use an override for "0x1234" rather
|
||
than storing it into the addil itself. */
|
||
|
||
struct fixup_format
|
||
{
|
||
int D;
|
||
const char *format;
|
||
};
|
||
|
||
static const struct fixup_format som_fixup_formats[256] =
|
||
{
|
||
/* R_NO_RELOCATION. */
|
||
{ 0, "LD1+4*=" }, /* 0x00 */
|
||
{ 1, "LD1+4*=" }, /* 0x01 */
|
||
{ 2, "LD1+4*=" }, /* 0x02 */
|
||
{ 3, "LD1+4*=" }, /* 0x03 */
|
||
{ 4, "LD1+4*=" }, /* 0x04 */
|
||
{ 5, "LD1+4*=" }, /* 0x05 */
|
||
{ 6, "LD1+4*=" }, /* 0x06 */
|
||
{ 7, "LD1+4*=" }, /* 0x07 */
|
||
{ 8, "LD1+4*=" }, /* 0x08 */
|
||
{ 9, "LD1+4*=" }, /* 0x09 */
|
||
{ 10, "LD1+4*=" }, /* 0x0a */
|
||
{ 11, "LD1+4*=" }, /* 0x0b */
|
||
{ 12, "LD1+4*=" }, /* 0x0c */
|
||
{ 13, "LD1+4*=" }, /* 0x0d */
|
||
{ 14, "LD1+4*=" }, /* 0x0e */
|
||
{ 15, "LD1+4*=" }, /* 0x0f */
|
||
{ 16, "LD1+4*=" }, /* 0x10 */
|
||
{ 17, "LD1+4*=" }, /* 0x11 */
|
||
{ 18, "LD1+4*=" }, /* 0x12 */
|
||
{ 19, "LD1+4*=" }, /* 0x13 */
|
||
{ 20, "LD1+4*=" }, /* 0x14 */
|
||
{ 21, "LD1+4*=" }, /* 0x15 */
|
||
{ 22, "LD1+4*=" }, /* 0x16 */
|
||
{ 23, "LD1+4*=" }, /* 0x17 */
|
||
{ 0, "LD8<b+1+4*=" }, /* 0x18 */
|
||
{ 1, "LD8<b+1+4*=" }, /* 0x19 */
|
||
{ 2, "LD8<b+1+4*=" }, /* 0x1a */
|
||
{ 3, "LD8<b+1+4*=" }, /* 0x1b */
|
||
{ 0, "LD16<c+1+4*=" }, /* 0x1c */
|
||
{ 1, "LD16<c+1+4*=" }, /* 0x1d */
|
||
{ 2, "LD16<c+1+4*=" }, /* 0x1e */
|
||
{ 0, "Ld1+=" }, /* 0x1f */
|
||
/* R_ZEROES. */
|
||
{ 0, "Lb1+4*=" }, /* 0x20 */
|
||
{ 1, "Ld1+=" }, /* 0x21 */
|
||
/* R_UNINIT. */
|
||
{ 0, "Lb1+4*=" }, /* 0x22 */
|
||
{ 1, "Ld1+=" }, /* 0x23 */
|
||
/* R_RELOCATION. */
|
||
{ 0, "L4=" }, /* 0x24 */
|
||
/* R_DATA_ONE_SYMBOL. */
|
||
{ 0, "L4=Sb=" }, /* 0x25 */
|
||
{ 1, "L4=Sd=" }, /* 0x26 */
|
||
/* R_DATA_PLABEL. */
|
||
{ 0, "L4=Sb=" }, /* 0x27 */
|
||
{ 1, "L4=Sd=" }, /* 0x28 */
|
||
/* R_SPACE_REF. */
|
||
{ 0, "L4=" }, /* 0x29 */
|
||
/* R_REPEATED_INIT. */
|
||
{ 0, "L4=Mb1+4*=" }, /* 0x2a */
|
||
{ 1, "Lb4*=Mb1+L*=" }, /* 0x2b */
|
||
{ 2, "Lb4*=Md1+4*=" }, /* 0x2c */
|
||
{ 3, "Ld1+=Me1+=" }, /* 0x2d */
|
||
{ 0, "" }, /* 0x2e */
|
||
{ 0, "" }, /* 0x2f */
|
||
/* R_PCREL_CALL. */
|
||
{ 0, "L4=RD=Sb=" }, /* 0x30 */
|
||
{ 1, "L4=RD=Sb=" }, /* 0x31 */
|
||
{ 2, "L4=RD=Sb=" }, /* 0x32 */
|
||
{ 3, "L4=RD=Sb=" }, /* 0x33 */
|
||
{ 4, "L4=RD=Sb=" }, /* 0x34 */
|
||
{ 5, "L4=RD=Sb=" }, /* 0x35 */
|
||
{ 6, "L4=RD=Sb=" }, /* 0x36 */
|
||
{ 7, "L4=RD=Sb=" }, /* 0x37 */
|
||
{ 8, "L4=RD=Sb=" }, /* 0x38 */
|
||
{ 9, "L4=RD=Sb=" }, /* 0x39 */
|
||
{ 0, "L4=RD8<b+=Sb=" }, /* 0x3a */
|
||
{ 1, "L4=RD8<b+=Sb=" }, /* 0x3b */
|
||
{ 0, "L4=RD8<b+=Sd=" }, /* 0x3c */
|
||
{ 1, "L4=RD8<b+=Sd=" }, /* 0x3d */
|
||
/* R_SHORT_PCREL_MODE. */
|
||
{ 0, "" }, /* 0x3e */
|
||
/* R_LONG_PCREL_MODE. */
|
||
{ 0, "" }, /* 0x3f */
|
||
/* R_ABS_CALL. */
|
||
{ 0, "L4=RD=Sb=" }, /* 0x40 */
|
||
{ 1, "L4=RD=Sb=" }, /* 0x41 */
|
||
{ 2, "L4=RD=Sb=" }, /* 0x42 */
|
||
{ 3, "L4=RD=Sb=" }, /* 0x43 */
|
||
{ 4, "L4=RD=Sb=" }, /* 0x44 */
|
||
{ 5, "L4=RD=Sb=" }, /* 0x45 */
|
||
{ 6, "L4=RD=Sb=" }, /* 0x46 */
|
||
{ 7, "L4=RD=Sb=" }, /* 0x47 */
|
||
{ 8, "L4=RD=Sb=" }, /* 0x48 */
|
||
{ 9, "L4=RD=Sb=" }, /* 0x49 */
|
||
{ 0, "L4=RD8<b+=Sb=" }, /* 0x4a */
|
||
{ 1, "L4=RD8<b+=Sb=" }, /* 0x4b */
|
||
{ 0, "L4=RD8<b+=Sd=" }, /* 0x4c */
|
||
{ 1, "L4=RD8<b+=Sd=" }, /* 0x4d */
|
||
/* R_RESERVED. */
|
||
{ 0, "" }, /* 0x4e */
|
||
{ 0, "" }, /* 0x4f */
|
||
/* R_DP_RELATIVE. */
|
||
{ 0, "L4=SD=" }, /* 0x50 */
|
||
{ 1, "L4=SD=" }, /* 0x51 */
|
||
{ 2, "L4=SD=" }, /* 0x52 */
|
||
{ 3, "L4=SD=" }, /* 0x53 */
|
||
{ 4, "L4=SD=" }, /* 0x54 */
|
||
{ 5, "L4=SD=" }, /* 0x55 */
|
||
{ 6, "L4=SD=" }, /* 0x56 */
|
||
{ 7, "L4=SD=" }, /* 0x57 */
|
||
{ 8, "L4=SD=" }, /* 0x58 */
|
||
{ 9, "L4=SD=" }, /* 0x59 */
|
||
{ 10, "L4=SD=" }, /* 0x5a */
|
||
{ 11, "L4=SD=" }, /* 0x5b */
|
||
{ 12, "L4=SD=" }, /* 0x5c */
|
||
{ 13, "L4=SD=" }, /* 0x5d */
|
||
{ 14, "L4=SD=" }, /* 0x5e */
|
||
{ 15, "L4=SD=" }, /* 0x5f */
|
||
{ 16, "L4=SD=" }, /* 0x60 */
|
||
{ 17, "L4=SD=" }, /* 0x61 */
|
||
{ 18, "L4=SD=" }, /* 0x62 */
|
||
{ 19, "L4=SD=" }, /* 0x63 */
|
||
{ 20, "L4=SD=" }, /* 0x64 */
|
||
{ 21, "L4=SD=" }, /* 0x65 */
|
||
{ 22, "L4=SD=" }, /* 0x66 */
|
||
{ 23, "L4=SD=" }, /* 0x67 */
|
||
{ 24, "L4=SD=" }, /* 0x68 */
|
||
{ 25, "L4=SD=" }, /* 0x69 */
|
||
{ 26, "L4=SD=" }, /* 0x6a */
|
||
{ 27, "L4=SD=" }, /* 0x6b */
|
||
{ 28, "L4=SD=" }, /* 0x6c */
|
||
{ 29, "L4=SD=" }, /* 0x6d */
|
||
{ 30, "L4=SD=" }, /* 0x6e */
|
||
{ 31, "L4=SD=" }, /* 0x6f */
|
||
{ 32, "L4=Sb=" }, /* 0x70 */
|
||
{ 33, "L4=Sd=" }, /* 0x71 */
|
||
/* R_DATA_GPREL. */
|
||
{ 0, "L4=Sd=" }, /* 0x72 */
|
||
/* R_RESERVED. */
|
||
{ 0, "" }, /* 0x73 */
|
||
{ 0, "" }, /* 0x74 */
|
||
{ 0, "" }, /* 0x75 */
|
||
{ 0, "" }, /* 0x76 */
|
||
{ 0, "" }, /* 0x77 */
|
||
/* R_DLT_REL. */
|
||
{ 0, "L4=Sb=" }, /* 0x78 */
|
||
{ 1, "L4=Sd=" }, /* 0x79 */
|
||
/* R_RESERVED. */
|
||
{ 0, "" }, /* 0x7a */
|
||
{ 0, "" }, /* 0x7b */
|
||
{ 0, "" }, /* 0x7c */
|
||
{ 0, "" }, /* 0x7d */
|
||
{ 0, "" }, /* 0x7e */
|
||
{ 0, "" }, /* 0x7f */
|
||
/* R_CODE_ONE_SYMBOL. */
|
||
{ 0, "L4=SD=" }, /* 0x80 */
|
||
{ 1, "L4=SD=" }, /* 0x81 */
|
||
{ 2, "L4=SD=" }, /* 0x82 */
|
||
{ 3, "L4=SD=" }, /* 0x83 */
|
||
{ 4, "L4=SD=" }, /* 0x84 */
|
||
{ 5, "L4=SD=" }, /* 0x85 */
|
||
{ 6, "L4=SD=" }, /* 0x86 */
|
||
{ 7, "L4=SD=" }, /* 0x87 */
|
||
{ 8, "L4=SD=" }, /* 0x88 */
|
||
{ 9, "L4=SD=" }, /* 0x89 */
|
||
{ 10, "L4=SD=" }, /* 0x8q */
|
||
{ 11, "L4=SD=" }, /* 0x8b */
|
||
{ 12, "L4=SD=" }, /* 0x8c */
|
||
{ 13, "L4=SD=" }, /* 0x8d */
|
||
{ 14, "L4=SD=" }, /* 0x8e */
|
||
{ 15, "L4=SD=" }, /* 0x8f */
|
||
{ 16, "L4=SD=" }, /* 0x90 */
|
||
{ 17, "L4=SD=" }, /* 0x91 */
|
||
{ 18, "L4=SD=" }, /* 0x92 */
|
||
{ 19, "L4=SD=" }, /* 0x93 */
|
||
{ 20, "L4=SD=" }, /* 0x94 */
|
||
{ 21, "L4=SD=" }, /* 0x95 */
|
||
{ 22, "L4=SD=" }, /* 0x96 */
|
||
{ 23, "L4=SD=" }, /* 0x97 */
|
||
{ 24, "L4=SD=" }, /* 0x98 */
|
||
{ 25, "L4=SD=" }, /* 0x99 */
|
||
{ 26, "L4=SD=" }, /* 0x9a */
|
||
{ 27, "L4=SD=" }, /* 0x9b */
|
||
{ 28, "L4=SD=" }, /* 0x9c */
|
||
{ 29, "L4=SD=" }, /* 0x9d */
|
||
{ 30, "L4=SD=" }, /* 0x9e */
|
||
{ 31, "L4=SD=" }, /* 0x9f */
|
||
{ 32, "L4=Sb=" }, /* 0xa0 */
|
||
{ 33, "L4=Sd=" }, /* 0xa1 */
|
||
/* R_RESERVED. */
|
||
{ 0, "" }, /* 0xa2 */
|
||
{ 0, "" }, /* 0xa3 */
|
||
{ 0, "" }, /* 0xa4 */
|
||
{ 0, "" }, /* 0xa5 */
|
||
{ 0, "" }, /* 0xa6 */
|
||
{ 0, "" }, /* 0xa7 */
|
||
{ 0, "" }, /* 0xa8 */
|
||
{ 0, "" }, /* 0xa9 */
|
||
{ 0, "" }, /* 0xaa */
|
||
{ 0, "" }, /* 0xab */
|
||
{ 0, "" }, /* 0xac */
|
||
{ 0, "" }, /* 0xad */
|
||
/* R_MILLI_REL. */
|
||
{ 0, "L4=Sb=" }, /* 0xae */
|
||
{ 1, "L4=Sd=" }, /* 0xaf */
|
||
/* R_CODE_PLABEL. */
|
||
{ 0, "L4=Sb=" }, /* 0xb0 */
|
||
{ 1, "L4=Sd=" }, /* 0xb1 */
|
||
/* R_BREAKPOINT. */
|
||
{ 0, "L4=" }, /* 0xb2 */
|
||
/* R_ENTRY. */
|
||
{ 0, "Te=Ue=" }, /* 0xb3 */
|
||
{ 1, "Uf=" }, /* 0xb4 */
|
||
/* R_ALT_ENTRY. */
|
||
{ 0, "" }, /* 0xb5 */
|
||
/* R_EXIT. */
|
||
{ 0, "" }, /* 0xb6 */
|
||
/* R_BEGIN_TRY. */
|
||
{ 0, "" }, /* 0xb7 */
|
||
/* R_END_TRY. */
|
||
{ 0, "R0=" }, /* 0xb8 */
|
||
{ 1, "Rb4*=" }, /* 0xb9 */
|
||
{ 2, "Rd4*=" }, /* 0xba */
|
||
/* R_BEGIN_BRTAB. */
|
||
{ 0, "" }, /* 0xbb */
|
||
/* R_END_BRTAB. */
|
||
{ 0, "" }, /* 0xbc */
|
||
/* R_STATEMENT. */
|
||
{ 0, "Nb=" }, /* 0xbd */
|
||
{ 1, "Nc=" }, /* 0xbe */
|
||
{ 2, "Nd=" }, /* 0xbf */
|
||
/* R_DATA_EXPR. */
|
||
{ 0, "L4=" }, /* 0xc0 */
|
||
/* R_CODE_EXPR. */
|
||
{ 0, "L4=" }, /* 0xc1 */
|
||
/* R_FSEL. */
|
||
{ 0, "" }, /* 0xc2 */
|
||
/* R_LSEL. */
|
||
{ 0, "" }, /* 0xc3 */
|
||
/* R_RSEL. */
|
||
{ 0, "" }, /* 0xc4 */
|
||
/* R_N_MODE. */
|
||
{ 0, "" }, /* 0xc5 */
|
||
/* R_S_MODE. */
|
||
{ 0, "" }, /* 0xc6 */
|
||
/* R_D_MODE. */
|
||
{ 0, "" }, /* 0xc7 */
|
||
/* R_R_MODE. */
|
||
{ 0, "" }, /* 0xc8 */
|
||
/* R_DATA_OVERRIDE. */
|
||
{ 0, "V0=" }, /* 0xc9 */
|
||
{ 1, "Vb=" }, /* 0xca */
|
||
{ 2, "Vc=" }, /* 0xcb */
|
||
{ 3, "Vd=" }, /* 0xcc */
|
||
{ 4, "Ve=" }, /* 0xcd */
|
||
/* R_TRANSLATED. */
|
||
{ 0, "" }, /* 0xce */
|
||
/* R_AUX_UNWIND. */
|
||
{ 0,"Sd=Ve=Ee=" }, /* 0xcf */
|
||
/* R_COMP1. */
|
||
{ 0, "Ob=" }, /* 0xd0 */
|
||
/* R_COMP2. */
|
||
{ 0, "Ob=Sd=" }, /* 0xd1 */
|
||
/* R_COMP3. */
|
||
{ 0, "Ob=Ve=" }, /* 0xd2 */
|
||
/* R_PREV_FIXUP. */
|
||
{ 0, "P" }, /* 0xd3 */
|
||
{ 1, "P" }, /* 0xd4 */
|
||
{ 2, "P" }, /* 0xd5 */
|
||
{ 3, "P" }, /* 0xd6 */
|
||
/* R_SEC_STMT. */
|
||
{ 0, "" }, /* 0xd7 */
|
||
/* R_N0SEL. */
|
||
{ 0, "" }, /* 0xd8 */
|
||
/* R_N1SEL. */
|
||
{ 0, "" }, /* 0xd9 */
|
||
/* R_LINETAB. */
|
||
{ 0, "Eb=Sd=Ve=" }, /* 0xda */
|
||
/* R_LINETAB_ESC. */
|
||
{ 0, "Eb=Mb=" }, /* 0xdb */
|
||
/* R_LTP_OVERRIDE. */
|
||
{ 0, "" }, /* 0xdc */
|
||
/* R_COMMENT. */
|
||
{ 0, "Ob=Vf=" }, /* 0xdd */
|
||
/* R_RESERVED. */
|
||
{ 0, "" }, /* 0xde */
|
||
{ 0, "" }, /* 0xdf */
|
||
{ 0, "" }, /* 0xe0 */
|
||
{ 0, "" }, /* 0xe1 */
|
||
{ 0, "" }, /* 0xe2 */
|
||
{ 0, "" }, /* 0xe3 */
|
||
{ 0, "" }, /* 0xe4 */
|
||
{ 0, "" }, /* 0xe5 */
|
||
{ 0, "" }, /* 0xe6 */
|
||
{ 0, "" }, /* 0xe7 */
|
||
{ 0, "" }, /* 0xe8 */
|
||
{ 0, "" }, /* 0xe9 */
|
||
{ 0, "" }, /* 0xea */
|
||
{ 0, "" }, /* 0xeb */
|
||
{ 0, "" }, /* 0xec */
|
||
{ 0, "" }, /* 0xed */
|
||
{ 0, "" }, /* 0xee */
|
||
{ 0, "" }, /* 0xef */
|
||
{ 0, "" }, /* 0xf0 */
|
||
{ 0, "" }, /* 0xf1 */
|
||
{ 0, "" }, /* 0xf2 */
|
||
{ 0, "" }, /* 0xf3 */
|
||
{ 0, "" }, /* 0xf4 */
|
||
{ 0, "" }, /* 0xf5 */
|
||
{ 0, "" }, /* 0xf6 */
|
||
{ 0, "" }, /* 0xf7 */
|
||
{ 0, "" }, /* 0xf8 */
|
||
{ 0, "" }, /* 0xf9 */
|
||
{ 0, "" }, /* 0xfa */
|
||
{ 0, "" }, /* 0xfb */
|
||
{ 0, "" }, /* 0xfc */
|
||
{ 0, "" }, /* 0xfd */
|
||
{ 0, "" }, /* 0xfe */
|
||
{ 0, "" }, /* 0xff */
|
||
};
|
||
|
||
static const int comp1_opcodes[] =
|
||
{
|
||
0x00,
|
||
0x40,
|
||
0x41,
|
||
0x42,
|
||
0x43,
|
||
0x44,
|
||
0x45,
|
||
0x46,
|
||
0x47,
|
||
0x48,
|
||
0x49,
|
||
0x4a,
|
||
0x4b,
|
||
0x60,
|
||
0x80,
|
||
0xa0,
|
||
0xc0,
|
||
-1
|
||
};
|
||
|
||
static const int comp2_opcodes[] =
|
||
{
|
||
0x00,
|
||
0x80,
|
||
0x82,
|
||
0xc0,
|
||
-1
|
||
};
|
||
|
||
static const int comp3_opcodes[] =
|
||
{
|
||
0x00,
|
||
0x02,
|
||
-1
|
||
};
|
||
|
||
/* These apparently are not in older versions of hpux reloc.h (hpux7). */
|
||
#ifndef R_DLT_REL
|
||
#define R_DLT_REL 0x78
|
||
#endif
|
||
|
||
#ifndef R_AUX_UNWIND
|
||
#define R_AUX_UNWIND 0xcf
|
||
#endif
|
||
|
||
#ifndef R_SEC_STMT
|
||
#define R_SEC_STMT 0xd7
|
||
#endif
|
||
|
||
/* And these first appeared in hpux10. */
|
||
#ifndef R_SHORT_PCREL_MODE
|
||
#define NO_PCREL_MODES
|
||
#define R_SHORT_PCREL_MODE 0x3e
|
||
#endif
|
||
|
||
#ifndef R_LONG_PCREL_MODE
|
||
#define R_LONG_PCREL_MODE 0x3f
|
||
#endif
|
||
|
||
#ifndef R_N0SEL
|
||
#define R_N0SEL 0xd8
|
||
#endif
|
||
|
||
#ifndef R_N1SEL
|
||
#define R_N1SEL 0xd9
|
||
#endif
|
||
|
||
#ifndef R_LINETAB
|
||
#define R_LINETAB 0xda
|
||
#endif
|
||
|
||
#ifndef R_LINETAB_ESC
|
||
#define R_LINETAB_ESC 0xdb
|
||
#endif
|
||
|
||
#ifndef R_LTP_OVERRIDE
|
||
#define R_LTP_OVERRIDE 0xdc
|
||
#endif
|
||
|
||
#ifndef R_COMMENT
|
||
#define R_COMMENT 0xdd
|
||
#endif
|
||
|
||
#define SOM_HOWTO(TYPE, NAME) \
|
||
HOWTO(TYPE, 0, 0, 32, FALSE, 0, 0, hppa_som_reloc, NAME, FALSE, 0, 0, FALSE)
|
||
|
||
static reloc_howto_type som_hppa_howto_table[] =
|
||
{
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_NO_RELOCATION, "R_NO_RELOCATION"),
|
||
SOM_HOWTO (R_ZEROES, "R_ZEROES"),
|
||
SOM_HOWTO (R_ZEROES, "R_ZEROES"),
|
||
SOM_HOWTO (R_UNINIT, "R_UNINIT"),
|
||
SOM_HOWTO (R_UNINIT, "R_UNINIT"),
|
||
SOM_HOWTO (R_RELOCATION, "R_RELOCATION"),
|
||
SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_DATA_ONE_SYMBOL, "R_DATA_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
|
||
SOM_HOWTO (R_DATA_PLABEL, "R_DATA_PLABEL"),
|
||
SOM_HOWTO (R_SPACE_REF, "R_SPACE_REF"),
|
||
SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
|
||
SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
|
||
SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
|
||
SOM_HOWTO (R_REPEATED_INIT, "REPEATED_INIT"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_PCREL_CALL, "R_PCREL_CALL"),
|
||
SOM_HOWTO (R_SHORT_PCREL_MODE, "R_SHORT_PCREL_MODE"),
|
||
SOM_HOWTO (R_LONG_PCREL_MODE, "R_LONG_PCREL_MODE"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_ABS_CALL, "R_ABS_CALL"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DP_RELATIVE, "R_DP_RELATIVE"),
|
||
SOM_HOWTO (R_DATA_GPREL, "R_DATA_GPREL"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
|
||
SOM_HOWTO (R_DLT_REL, "R_DLT_REL"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_CODE_ONE_SYMBOL, "R_CODE_ONE_SYMBOL"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
|
||
SOM_HOWTO (R_MILLI_REL, "R_MILLI_REL"),
|
||
SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
|
||
SOM_HOWTO (R_CODE_PLABEL, "R_CODE_PLABEL"),
|
||
SOM_HOWTO (R_BREAKPOINT, "R_BREAKPOINT"),
|
||
SOM_HOWTO (R_ENTRY, "R_ENTRY"),
|
||
SOM_HOWTO (R_ENTRY, "R_ENTRY"),
|
||
SOM_HOWTO (R_ALT_ENTRY, "R_ALT_ENTRY"),
|
||
SOM_HOWTO (R_EXIT, "R_EXIT"),
|
||
SOM_HOWTO (R_BEGIN_TRY, "R_BEGIN_TRY"),
|
||
SOM_HOWTO (R_END_TRY, "R_END_TRY"),
|
||
SOM_HOWTO (R_END_TRY, "R_END_TRY"),
|
||
SOM_HOWTO (R_END_TRY, "R_END_TRY"),
|
||
SOM_HOWTO (R_BEGIN_BRTAB, "R_BEGIN_BRTAB"),
|
||
SOM_HOWTO (R_END_BRTAB, "R_END_BRTAB"),
|
||
SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
|
||
SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
|
||
SOM_HOWTO (R_STATEMENT, "R_STATEMENT"),
|
||
SOM_HOWTO (R_DATA_EXPR, "R_DATA_EXPR"),
|
||
SOM_HOWTO (R_CODE_EXPR, "R_CODE_EXPR"),
|
||
SOM_HOWTO (R_FSEL, "R_FSEL"),
|
||
SOM_HOWTO (R_LSEL, "R_LSEL"),
|
||
SOM_HOWTO (R_RSEL, "R_RSEL"),
|
||
SOM_HOWTO (R_N_MODE, "R_N_MODE"),
|
||
SOM_HOWTO (R_S_MODE, "R_S_MODE"),
|
||
SOM_HOWTO (R_D_MODE, "R_D_MODE"),
|
||
SOM_HOWTO (R_R_MODE, "R_R_MODE"),
|
||
SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
|
||
SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
|
||
SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
|
||
SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
|
||
SOM_HOWTO (R_DATA_OVERRIDE, "R_DATA_OVERRIDE"),
|
||
SOM_HOWTO (R_TRANSLATED, "R_TRANSLATED"),
|
||
SOM_HOWTO (R_AUX_UNWIND, "R_AUX_UNWIND"),
|
||
SOM_HOWTO (R_COMP1, "R_COMP1"),
|
||
SOM_HOWTO (R_COMP2, "R_COMP2"),
|
||
SOM_HOWTO (R_COMP3, "R_COMP3"),
|
||
SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
|
||
SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
|
||
SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
|
||
SOM_HOWTO (R_PREV_FIXUP, "R_PREV_FIXUP"),
|
||
SOM_HOWTO (R_SEC_STMT, "R_SEC_STMT"),
|
||
SOM_HOWTO (R_N0SEL, "R_N0SEL"),
|
||
SOM_HOWTO (R_N1SEL, "R_N1SEL"),
|
||
SOM_HOWTO (R_LINETAB, "R_LINETAB"),
|
||
SOM_HOWTO (R_LINETAB_ESC, "R_LINETAB_ESC"),
|
||
SOM_HOWTO (R_LTP_OVERRIDE, "R_LTP_OVERRIDE"),
|
||
SOM_HOWTO (R_COMMENT, "R_COMMENT"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED"),
|
||
SOM_HOWTO (R_RESERVED, "R_RESERVED")
|
||
};
|
||
|
||
/* Initialize the SOM relocation queue. By definition the queue holds
|
||
the last four multibyte fixups. */
|
||
|
||
static void
|
||
som_initialize_reloc_queue (struct reloc_queue *queue)
|
||
{
|
||
queue[0].reloc = NULL;
|
||
queue[0].size = 0;
|
||
queue[1].reloc = NULL;
|
||
queue[1].size = 0;
|
||
queue[2].reloc = NULL;
|
||
queue[2].size = 0;
|
||
queue[3].reloc = NULL;
|
||
queue[3].size = 0;
|
||
}
|
||
|
||
/* Insert a new relocation into the relocation queue. */
|
||
|
||
static void
|
||
som_reloc_queue_insert (unsigned char *p,
|
||
unsigned int size,
|
||
struct reloc_queue *queue)
|
||
{
|
||
queue[3].reloc = queue[2].reloc;
|
||
queue[3].size = queue[2].size;
|
||
queue[2].reloc = queue[1].reloc;
|
||
queue[2].size = queue[1].size;
|
||
queue[1].reloc = queue[0].reloc;
|
||
queue[1].size = queue[0].size;
|
||
queue[0].reloc = p;
|
||
queue[0].size = size;
|
||
}
|
||
|
||
/* When an entry in the relocation queue is reused, the entry moves
|
||
to the front of the queue. */
|
||
|
||
static void
|
||
som_reloc_queue_fix (struct reloc_queue *queue, unsigned int idx)
|
||
{
|
||
if (idx == 0)
|
||
return;
|
||
|
||
if (idx == 1)
|
||
{
|
||
unsigned char *tmp1 = queue[0].reloc;
|
||
unsigned int tmp2 = queue[0].size;
|
||
|
||
queue[0].reloc = queue[1].reloc;
|
||
queue[0].size = queue[1].size;
|
||
queue[1].reloc = tmp1;
|
||
queue[1].size = tmp2;
|
||
return;
|
||
}
|
||
|
||
if (idx == 2)
|
||
{
|
||
unsigned char *tmp1 = queue[0].reloc;
|
||
unsigned int tmp2 = queue[0].size;
|
||
|
||
queue[0].reloc = queue[2].reloc;
|
||
queue[0].size = queue[2].size;
|
||
queue[2].reloc = queue[1].reloc;
|
||
queue[2].size = queue[1].size;
|
||
queue[1].reloc = tmp1;
|
||
queue[1].size = tmp2;
|
||
return;
|
||
}
|
||
|
||
if (idx == 3)
|
||
{
|
||
unsigned char *tmp1 = queue[0].reloc;
|
||
unsigned int tmp2 = queue[0].size;
|
||
|
||
queue[0].reloc = queue[3].reloc;
|
||
queue[0].size = queue[3].size;
|
||
queue[3].reloc = queue[2].reloc;
|
||
queue[3].size = queue[2].size;
|
||
queue[2].reloc = queue[1].reloc;
|
||
queue[2].size = queue[1].size;
|
||
queue[1].reloc = tmp1;
|
||
queue[1].size = tmp2;
|
||
return;
|
||
}
|
||
abort ();
|
||
}
|
||
|
||
/* Search for a particular relocation in the relocation queue. */
|
||
|
||
static int
|
||
som_reloc_queue_find (unsigned char *p,
|
||
unsigned int size,
|
||
struct reloc_queue *queue)
|
||
{
|
||
if (queue[0].reloc && !memcmp (p, queue[0].reloc, size)
|
||
&& size == queue[0].size)
|
||
return 0;
|
||
if (queue[1].reloc && !memcmp (p, queue[1].reloc, size)
|
||
&& size == queue[1].size)
|
||
return 1;
|
||
if (queue[2].reloc && !memcmp (p, queue[2].reloc, size)
|
||
&& size == queue[2].size)
|
||
return 2;
|
||
if (queue[3].reloc && !memcmp (p, queue[3].reloc, size)
|
||
&& size == queue[3].size)
|
||
return 3;
|
||
return -1;
|
||
}
|
||
|
||
static unsigned char *
|
||
try_prev_fixup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
unsigned int *subspace_reloc_sizep,
|
||
unsigned char *p,
|
||
unsigned int size,
|
||
struct reloc_queue *queue)
|
||
{
|
||
int queue_index = som_reloc_queue_find (p, size, queue);
|
||
|
||
if (queue_index != -1)
|
||
{
|
||
/* Found this in a previous fixup. Undo the fixup we
|
||
just built and use R_PREV_FIXUP instead. We saved
|
||
a total of size - 1 bytes in the fixup stream. */
|
||
bfd_put_8 (abfd, R_PREV_FIXUP + queue_index, p);
|
||
p += 1;
|
||
*subspace_reloc_sizep += 1;
|
||
som_reloc_queue_fix (queue, queue_index);
|
||
}
|
||
else
|
||
{
|
||
som_reloc_queue_insert (p, size, queue);
|
||
*subspace_reloc_sizep += size;
|
||
p += size;
|
||
}
|
||
return p;
|
||
}
|
||
|
||
/* Emit the proper R_NO_RELOCATION fixups to map the next SKIP
|
||
bytes without any relocation. Update the size of the subspace
|
||
relocation stream via SUBSPACE_RELOC_SIZE_P; also return the
|
||
current pointer into the relocation stream. */
|
||
|
||
static unsigned char *
|
||
som_reloc_skip (bfd *abfd,
|
||
unsigned int skip,
|
||
unsigned char *p,
|
||
unsigned int *subspace_reloc_sizep,
|
||
struct reloc_queue *queue)
|
||
{
|
||
/* Use a 4 byte R_NO_RELOCATION entry with a maximal value
|
||
then R_PREV_FIXUPs to get the difference down to a
|
||
reasonable size. */
|
||
if (skip >= 0x1000000)
|
||
{
|
||
skip -= 0x1000000;
|
||
bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
|
||
bfd_put_8 (abfd, 0xff, p + 1);
|
||
bfd_put_16 (abfd, (bfd_vma) 0xffff, p + 2);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
|
||
while (skip >= 0x1000000)
|
||
{
|
||
skip -= 0x1000000;
|
||
bfd_put_8 (abfd, R_PREV_FIXUP, p);
|
||
p++;
|
||
*subspace_reloc_sizep += 1;
|
||
/* No need to adjust queue here since we are repeating the
|
||
most recent fixup. */
|
||
}
|
||
}
|
||
|
||
/* The difference must be less than 0x1000000. Use one
|
||
more R_NO_RELOCATION entry to get to the right difference. */
|
||
if ((skip & 3) == 0 && skip <= 0xc0000 && skip > 0)
|
||
{
|
||
/* Difference can be handled in a simple single-byte
|
||
R_NO_RELOCATION entry. */
|
||
if (skip <= 0x60)
|
||
{
|
||
bfd_put_8 (abfd, R_NO_RELOCATION + (skip >> 2) - 1, p);
|
||
*subspace_reloc_sizep += 1;
|
||
p++;
|
||
}
|
||
/* Handle it with a two byte R_NO_RELOCATION entry. */
|
||
else if (skip <= 0x1000)
|
||
{
|
||
bfd_put_8 (abfd, R_NO_RELOCATION + 24 + (((skip >> 2) - 1) >> 8), p);
|
||
bfd_put_8 (abfd, (skip >> 2) - 1, p + 1);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
|
||
}
|
||
/* Handle it with a three byte R_NO_RELOCATION entry. */
|
||
else
|
||
{
|
||
bfd_put_8 (abfd, R_NO_RELOCATION + 28 + (((skip >> 2) - 1) >> 16), p);
|
||
bfd_put_16 (abfd, (bfd_vma) (skip >> 2) - 1, p + 1);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
|
||
}
|
||
}
|
||
/* Ugh. Punt and use a 4 byte entry. */
|
||
else if (skip > 0)
|
||
{
|
||
bfd_put_8 (abfd, R_NO_RELOCATION + 31, p);
|
||
bfd_put_8 (abfd, (skip - 1) >> 16, p + 1);
|
||
bfd_put_16 (abfd, (bfd_vma) skip - 1, p + 2);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
|
||
}
|
||
return p;
|
||
}
|
||
|
||
/* Emit the proper R_DATA_OVERRIDE fixups to handle a nonzero addend
|
||
from a BFD relocation. Update the size of the subspace relocation
|
||
stream via SUBSPACE_RELOC_SIZE_P; also return the current pointer
|
||
into the relocation stream. */
|
||
|
||
static unsigned char *
|
||
som_reloc_addend (bfd *abfd,
|
||
bfd_vma addend,
|
||
unsigned char *p,
|
||
unsigned int *subspace_reloc_sizep,
|
||
struct reloc_queue *queue)
|
||
{
|
||
if (addend + 0x80 < 0x100)
|
||
{
|
||
bfd_put_8 (abfd, R_DATA_OVERRIDE + 1, p);
|
||
bfd_put_8 (abfd, addend, p + 1);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
|
||
}
|
||
else if (addend + 0x8000 < 0x10000)
|
||
{
|
||
bfd_put_8 (abfd, R_DATA_OVERRIDE + 2, p);
|
||
bfd_put_16 (abfd, addend, p + 1);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
|
||
}
|
||
else if (addend + 0x800000 < 0x1000000)
|
||
{
|
||
bfd_put_8 (abfd, R_DATA_OVERRIDE + 3, p);
|
||
bfd_put_8 (abfd, addend >> 16, p + 1);
|
||
bfd_put_16 (abfd, addend, p + 2);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 4, queue);
|
||
}
|
||
else
|
||
{
|
||
bfd_put_8 (abfd, R_DATA_OVERRIDE + 4, p);
|
||
bfd_put_32 (abfd, addend, p + 1);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
|
||
}
|
||
return p;
|
||
}
|
||
|
||
/* Handle a single function call relocation. */
|
||
|
||
static unsigned char *
|
||
som_reloc_call (bfd *abfd,
|
||
unsigned char *p,
|
||
unsigned int *subspace_reloc_sizep,
|
||
arelent *bfd_reloc,
|
||
int sym_num,
|
||
struct reloc_queue *queue)
|
||
{
|
||
int arg_bits = HPPA_R_ARG_RELOC (bfd_reloc->addend);
|
||
int rtn_bits = arg_bits & 0x3;
|
||
int type, done = 0;
|
||
|
||
/* You'll never believe all this is necessary to handle relocations
|
||
for function calls. Having to compute and pack the argument
|
||
relocation bits is the real nightmare.
|
||
|
||
If you're interested in how this works, just forget it. You really
|
||
do not want to know about this braindamage. */
|
||
|
||
/* First see if this can be done with a "simple" relocation. Simple
|
||
relocations have a symbol number < 0x100 and have simple encodings
|
||
of argument relocations. */
|
||
|
||
if (sym_num < 0x100)
|
||
{
|
||
switch (arg_bits)
|
||
{
|
||
case 0:
|
||
case 1:
|
||
type = 0;
|
||
break;
|
||
case 1 << 8:
|
||
case 1 << 8 | 1:
|
||
type = 1;
|
||
break;
|
||
case 1 << 8 | 1 << 6:
|
||
case 1 << 8 | 1 << 6 | 1:
|
||
type = 2;
|
||
break;
|
||
case 1 << 8 | 1 << 6 | 1 << 4:
|
||
case 1 << 8 | 1 << 6 | 1 << 4 | 1:
|
||
type = 3;
|
||
break;
|
||
case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2:
|
||
case 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2 | 1:
|
||
type = 4;
|
||
break;
|
||
default:
|
||
/* Not one of the easy encodings. This will have to be
|
||
handled by the more complex code below. */
|
||
type = -1;
|
||
break;
|
||
}
|
||
if (type != -1)
|
||
{
|
||
/* Account for the return value too. */
|
||
if (rtn_bits)
|
||
type += 5;
|
||
|
||
/* Emit a 2 byte relocation. Then see if it can be handled
|
||
with a relocation which is already in the relocation queue. */
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + type, p);
|
||
bfd_put_8 (abfd, sym_num, p + 1);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 2, queue);
|
||
done = 1;
|
||
}
|
||
}
|
||
|
||
/* If this could not be handled with a simple relocation, then do a hard
|
||
one. Hard relocations occur if the symbol number was too high or if
|
||
the encoding of argument relocation bits is too complex. */
|
||
if (! done)
|
||
{
|
||
/* Don't ask about these magic sequences. I took them straight
|
||
from gas-1.36 which took them from the a.out man page. */
|
||
type = rtn_bits;
|
||
if ((arg_bits >> 6 & 0xf) == 0xe)
|
||
type += 9 * 40;
|
||
else
|
||
type += (3 * (arg_bits >> 8 & 3) + (arg_bits >> 6 & 3)) * 40;
|
||
if ((arg_bits >> 2 & 0xf) == 0xe)
|
||
type += 9 * 4;
|
||
else
|
||
type += (3 * (arg_bits >> 4 & 3) + (arg_bits >> 2 & 3)) * 4;
|
||
|
||
/* Output the first two bytes of the relocation. These describe
|
||
the length of the relocation and encoding style. */
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + 10
|
||
+ 2 * (sym_num >= 0x100) + (type >= 0x100),
|
||
p);
|
||
bfd_put_8 (abfd, type, p + 1);
|
||
|
||
/* Now output the symbol index and see if this bizarre relocation
|
||
just happened to be in the relocation queue. */
|
||
if (sym_num < 0x100)
|
||
{
|
||
bfd_put_8 (abfd, sym_num, p + 2);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 3, queue);
|
||
}
|
||
else
|
||
{
|
||
bfd_put_8 (abfd, sym_num >> 16, p + 2);
|
||
bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
|
||
p = try_prev_fixup (abfd, subspace_reloc_sizep, p, 5, queue);
|
||
}
|
||
}
|
||
return p;
|
||
}
|
||
|
||
/* Return the logarithm of X, base 2, considering X unsigned,
|
||
if X is a power of 2. Otherwise, returns -1. */
|
||
|
||
static int
|
||
exact_log2 (unsigned int x)
|
||
{
|
||
int log = 0;
|
||
|
||
/* Test for 0 or a power of 2. */
|
||
if (x == 0 || x != (x & -x))
|
||
return -1;
|
||
|
||
while ((x >>= 1) != 0)
|
||
log++;
|
||
return log;
|
||
}
|
||
|
||
static bfd_reloc_status_type
|
||
hppa_som_reloc (bfd *abfd ATTRIBUTE_UNUSED,
|
||
arelent *reloc_entry,
|
||
asymbol *symbol_in ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED,
|
||
asection *input_section,
|
||
bfd *output_bfd,
|
||
char **error_message ATTRIBUTE_UNUSED)
|
||
{
|
||
if (output_bfd)
|
||
reloc_entry->address += input_section->output_offset;
|
||
|
||
return bfd_reloc_ok;
|
||
}
|
||
|
||
/* Given a generic HPPA relocation type, the instruction format,
|
||
and a field selector, return one or more appropriate SOM relocations. */
|
||
|
||
int **
|
||
hppa_som_gen_reloc_type (bfd *abfd,
|
||
int base_type,
|
||
int format,
|
||
enum hppa_reloc_field_selector_type_alt field,
|
||
int sym_diff,
|
||
asymbol *sym)
|
||
{
|
||
int *final_type, **final_types;
|
||
|
||
final_types = bfd_alloc (abfd, (bfd_size_type) sizeof (int *) * 6);
|
||
final_type = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
|
||
if (!final_types || !final_type)
|
||
return NULL;
|
||
|
||
/* The field selector may require additional relocations to be
|
||
generated. It's impossible to know at this moment if additional
|
||
relocations will be needed, so we make them. The code to actually
|
||
write the relocation/fixup stream is responsible for removing
|
||
any redundant relocations. */
|
||
switch (field)
|
||
{
|
||
case e_fsel:
|
||
case e_psel:
|
||
case e_lpsel:
|
||
case e_rpsel:
|
||
final_types[0] = final_type;
|
||
final_types[1] = NULL;
|
||
final_types[2] = NULL;
|
||
*final_type = base_type;
|
||
break;
|
||
|
||
case e_tsel:
|
||
case e_ltsel:
|
||
case e_rtsel:
|
||
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
|
||
if (!final_types[0])
|
||
return NULL;
|
||
if (field == e_tsel)
|
||
*final_types[0] = R_FSEL;
|
||
else if (field == e_ltsel)
|
||
*final_types[0] = R_LSEL;
|
||
else
|
||
*final_types[0] = R_RSEL;
|
||
final_types[1] = final_type;
|
||
final_types[2] = NULL;
|
||
*final_type = base_type;
|
||
break;
|
||
|
||
case e_lssel:
|
||
case e_rssel:
|
||
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
|
||
if (!final_types[0])
|
||
return NULL;
|
||
*final_types[0] = R_S_MODE;
|
||
final_types[1] = final_type;
|
||
final_types[2] = NULL;
|
||
*final_type = base_type;
|
||
break;
|
||
|
||
case e_lsel:
|
||
case e_rsel:
|
||
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
|
||
if (!final_types[0])
|
||
return NULL;
|
||
*final_types[0] = R_N_MODE;
|
||
final_types[1] = final_type;
|
||
final_types[2] = NULL;
|
||
*final_type = base_type;
|
||
break;
|
||
|
||
case e_ldsel:
|
||
case e_rdsel:
|
||
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
|
||
if (!final_types[0])
|
||
return NULL;
|
||
*final_types[0] = R_D_MODE;
|
||
final_types[1] = final_type;
|
||
final_types[2] = NULL;
|
||
*final_type = base_type;
|
||
break;
|
||
|
||
case e_lrsel:
|
||
case e_rrsel:
|
||
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
|
||
if (!final_types[0])
|
||
return NULL;
|
||
*final_types[0] = R_R_MODE;
|
||
final_types[1] = final_type;
|
||
final_types[2] = NULL;
|
||
*final_type = base_type;
|
||
break;
|
||
|
||
case e_nsel:
|
||
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
|
||
if (!final_types[0])
|
||
return NULL;
|
||
*final_types[0] = R_N1SEL;
|
||
final_types[1] = final_type;
|
||
final_types[2] = NULL;
|
||
*final_type = base_type;
|
||
break;
|
||
|
||
case e_nlsel:
|
||
case e_nlrsel:
|
||
final_types[0] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
|
||
if (!final_types[0])
|
||
return NULL;
|
||
*final_types[0] = R_N0SEL;
|
||
final_types[1] = bfd_alloc (abfd, (bfd_size_type) sizeof (int));
|
||
if (!final_types[1])
|
||
return NULL;
|
||
if (field == e_nlsel)
|
||
*final_types[1] = R_N_MODE;
|
||
else
|
||
*final_types[1] = R_R_MODE;
|
||
final_types[2] = final_type;
|
||
final_types[3] = NULL;
|
||
*final_type = base_type;
|
||
break;
|
||
|
||
/* FIXME: These two field selectors are not currently supported. */
|
||
case e_ltpsel:
|
||
case e_rtpsel:
|
||
abort ();
|
||
}
|
||
|
||
switch (base_type)
|
||
{
|
||
case R_HPPA:
|
||
/* The difference of two symbols needs *very* special handling. */
|
||
if (sym_diff)
|
||
{
|
||
bfd_size_type amt = sizeof (int);
|
||
|
||
final_types[0] = bfd_alloc (abfd, amt);
|
||
final_types[1] = bfd_alloc (abfd, amt);
|
||
final_types[2] = bfd_alloc (abfd, amt);
|
||
final_types[3] = bfd_alloc (abfd, amt);
|
||
if (!final_types[0] || !final_types[1] || !final_types[2])
|
||
return NULL;
|
||
if (field == e_fsel)
|
||
*final_types[0] = R_FSEL;
|
||
else if (field == e_rsel)
|
||
*final_types[0] = R_RSEL;
|
||
else if (field == e_lsel)
|
||
*final_types[0] = R_LSEL;
|
||
*final_types[1] = R_COMP2;
|
||
*final_types[2] = R_COMP2;
|
||
*final_types[3] = R_COMP1;
|
||
final_types[4] = final_type;
|
||
if (format == 32)
|
||
*final_types[4] = R_DATA_EXPR;
|
||
else
|
||
*final_types[4] = R_CODE_EXPR;
|
||
final_types[5] = NULL;
|
||
break;
|
||
}
|
||
/* PLABELs get their own relocation type. */
|
||
else if (field == e_psel
|
||
|| field == e_lpsel
|
||
|| field == e_rpsel)
|
||
{
|
||
/* A PLABEL relocation that has a size of 32 bits must
|
||
be a R_DATA_PLABEL. All others are R_CODE_PLABELs. */
|
||
if (format == 32)
|
||
*final_type = R_DATA_PLABEL;
|
||
else
|
||
*final_type = R_CODE_PLABEL;
|
||
}
|
||
/* PIC stuff. */
|
||
else if (field == e_tsel
|
||
|| field == e_ltsel
|
||
|| field == e_rtsel)
|
||
*final_type = R_DLT_REL;
|
||
/* A relocation in the data space is always a full 32bits. */
|
||
else if (format == 32)
|
||
{
|
||
*final_type = R_DATA_ONE_SYMBOL;
|
||
|
||
/* If there's no SOM symbol type associated with this BFD
|
||
symbol, then set the symbol type to ST_DATA.
|
||
|
||
Only do this if the type is going to default later when
|
||
we write the object file.
|
||
|
||
This is done so that the linker never encounters an
|
||
R_DATA_ONE_SYMBOL reloc involving an ST_CODE symbol.
|
||
|
||
This allows the compiler to generate exception handling
|
||
tables.
|
||
|
||
Note that one day we may need to also emit BEGIN_BRTAB and
|
||
END_BRTAB to prevent the linker from optimizing away insns
|
||
in exception handling regions. */
|
||
if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
|
||
&& (sym->flags & BSF_SECTION_SYM) == 0
|
||
&& (sym->flags & BSF_FUNCTION) == 0
|
||
&& ! bfd_is_com_section (sym->section))
|
||
som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
|
||
}
|
||
break;
|
||
|
||
case R_HPPA_GOTOFF:
|
||
/* More PLABEL special cases. */
|
||
if (field == e_psel
|
||
|| field == e_lpsel
|
||
|| field == e_rpsel)
|
||
*final_type = R_DATA_PLABEL;
|
||
else if (field == e_fsel && format == 32)
|
||
*final_type = R_DATA_GPREL;
|
||
break;
|
||
|
||
case R_HPPA_COMPLEX:
|
||
/* The difference of two symbols needs *very* special handling. */
|
||
if (sym_diff)
|
||
{
|
||
bfd_size_type amt = sizeof (int);
|
||
|
||
final_types[0] = bfd_alloc (abfd, amt);
|
||
final_types[1] = bfd_alloc (abfd, amt);
|
||
final_types[2] = bfd_alloc (abfd, amt);
|
||
final_types[3] = bfd_alloc (abfd, amt);
|
||
if (!final_types[0] || !final_types[1] || !final_types[2])
|
||
return NULL;
|
||
if (field == e_fsel)
|
||
*final_types[0] = R_FSEL;
|
||
else if (field == e_rsel)
|
||
*final_types[0] = R_RSEL;
|
||
else if (field == e_lsel)
|
||
*final_types[0] = R_LSEL;
|
||
*final_types[1] = R_COMP2;
|
||
*final_types[2] = R_COMP2;
|
||
*final_types[3] = R_COMP1;
|
||
final_types[4] = final_type;
|
||
if (format == 32)
|
||
*final_types[4] = R_DATA_EXPR;
|
||
else
|
||
*final_types[4] = R_CODE_EXPR;
|
||
final_types[5] = NULL;
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
|
||
case R_HPPA_NONE:
|
||
case R_HPPA_ABS_CALL:
|
||
/* Right now we can default all these. */
|
||
break;
|
||
|
||
case R_HPPA_PCREL_CALL:
|
||
{
|
||
#ifndef NO_PCREL_MODES
|
||
/* If we have short and long pcrel modes, then generate the proper
|
||
mode selector, then the pcrel relocation. Redundant selectors
|
||
will be eliminated as the relocs are sized and emitted. */
|
||
bfd_size_type amt = sizeof (int);
|
||
|
||
final_types[0] = bfd_alloc (abfd, amt);
|
||
if (!final_types[0])
|
||
return NULL;
|
||
if (format == 17)
|
||
*final_types[0] = R_SHORT_PCREL_MODE;
|
||
else
|
||
*final_types[0] = R_LONG_PCREL_MODE;
|
||
final_types[1] = final_type;
|
||
final_types[2] = NULL;
|
||
*final_type = base_type;
|
||
#endif
|
||
break;
|
||
}
|
||
}
|
||
return final_types;
|
||
}
|
||
|
||
/* Return the address of the correct entry in the PA SOM relocation
|
||
howto table. */
|
||
|
||
static reloc_howto_type *
|
||
som_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
bfd_reloc_code_real_type code)
|
||
{
|
||
if ((int) code < (int) R_NO_RELOCATION + 255)
|
||
{
|
||
BFD_ASSERT ((int) som_hppa_howto_table[(int) code].type == (int) code);
|
||
return &som_hppa_howto_table[(int) code];
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static reloc_howto_type *
|
||
som_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
|
||
const char *r_name)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0;
|
||
i < sizeof (som_hppa_howto_table) / sizeof (som_hppa_howto_table[0]);
|
||
i++)
|
||
if (som_hppa_howto_table[i].name != NULL
|
||
&& strcasecmp (som_hppa_howto_table[i].name, r_name) == 0)
|
||
return &som_hppa_howto_table[i];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Perform some initialization for an object. Save results of this
|
||
initialization in the BFD. */
|
||
|
||
static const bfd_target *
|
||
som_object_setup (bfd *abfd,
|
||
struct header *file_hdrp,
|
||
struct som_exec_auxhdr *aux_hdrp,
|
||
unsigned long current_offset)
|
||
{
|
||
asection *section;
|
||
|
||
/* som_mkobject will set bfd_error if som_mkobject fails. */
|
||
if (! som_mkobject (abfd))
|
||
return NULL;
|
||
|
||
/* Set BFD flags based on what information is available in the SOM. */
|
||
abfd->flags = BFD_NO_FLAGS;
|
||
if (file_hdrp->symbol_total)
|
||
abfd->flags |= HAS_LINENO | HAS_DEBUG | HAS_SYMS | HAS_LOCALS;
|
||
|
||
switch (file_hdrp->a_magic)
|
||
{
|
||
case DEMAND_MAGIC:
|
||
abfd->flags |= (D_PAGED | WP_TEXT | EXEC_P);
|
||
break;
|
||
case SHARE_MAGIC:
|
||
abfd->flags |= (WP_TEXT | EXEC_P);
|
||
break;
|
||
case EXEC_MAGIC:
|
||
abfd->flags |= (EXEC_P);
|
||
break;
|
||
case RELOC_MAGIC:
|
||
abfd->flags |= HAS_RELOC;
|
||
break;
|
||
#ifdef SHL_MAGIC
|
||
case SHL_MAGIC:
|
||
#endif
|
||
#ifdef DL_MAGIC
|
||
case DL_MAGIC:
|
||
#endif
|
||
abfd->flags |= DYNAMIC;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Save the auxiliary header. */
|
||
obj_som_exec_hdr (abfd) = aux_hdrp;
|
||
|
||
/* Allocate space to hold the saved exec header information. */
|
||
obj_som_exec_data (abfd) = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_exec_data));
|
||
if (obj_som_exec_data (abfd) == NULL)
|
||
return NULL;
|
||
|
||
/* The braindamaged OSF1 linker switched exec_flags and exec_entry!
|
||
|
||
We used to identify OSF1 binaries based on NEW_VERSION_ID, but
|
||
apparently the latest HPUX linker is using NEW_VERSION_ID now.
|
||
|
||
It's about time, OSF has used the new id since at least 1992;
|
||
HPUX didn't start till nearly 1995!.
|
||
|
||
The new approach examines the entry field for an executable. If
|
||
it is not 4-byte aligned then it's not a proper code address and
|
||
we guess it's really the executable flags. For a main program,
|
||
we also consider zero to be indicative of a buggy linker, since
|
||
that is not a valid entry point. The entry point for a shared
|
||
library, however, can be zero so we do not consider that to be
|
||
indicative of a buggy linker. */
|
||
if (aux_hdrp)
|
||
{
|
||
int found = 0;
|
||
|
||
for (section = abfd->sections; section; section = section->next)
|
||
{
|
||
bfd_vma entry;
|
||
|
||
if ((section->flags & SEC_CODE) == 0)
|
||
continue;
|
||
entry = aux_hdrp->exec_entry + aux_hdrp->exec_tmem;
|
||
if (entry >= section->vma
|
||
&& entry < section->vma + section->size)
|
||
found = 1;
|
||
}
|
||
if ((aux_hdrp->exec_entry == 0 && !(abfd->flags & DYNAMIC))
|
||
|| (aux_hdrp->exec_entry & 0x3) != 0
|
||
|| ! found)
|
||
{
|
||
bfd_get_start_address (abfd) = aux_hdrp->exec_flags;
|
||
obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_entry;
|
||
}
|
||
else
|
||
{
|
||
bfd_get_start_address (abfd) = aux_hdrp->exec_entry + current_offset;
|
||
obj_som_exec_data (abfd)->exec_flags = aux_hdrp->exec_flags;
|
||
}
|
||
}
|
||
|
||
obj_som_exec_data (abfd)->version_id = file_hdrp->version_id;
|
||
|
||
bfd_default_set_arch_mach (abfd, bfd_arch_hppa, pa10);
|
||
bfd_get_symcount (abfd) = file_hdrp->symbol_total;
|
||
|
||
/* Initialize the saved symbol table and string table to NULL.
|
||
Save important offsets and sizes from the SOM header into
|
||
the BFD. */
|
||
obj_som_stringtab (abfd) = NULL;
|
||
obj_som_symtab (abfd) = NULL;
|
||
obj_som_sorted_syms (abfd) = NULL;
|
||
obj_som_stringtab_size (abfd) = file_hdrp->symbol_strings_size;
|
||
obj_som_sym_filepos (abfd) = file_hdrp->symbol_location + current_offset;
|
||
obj_som_str_filepos (abfd) = (file_hdrp->symbol_strings_location
|
||
+ current_offset);
|
||
obj_som_reloc_filepos (abfd) = (file_hdrp->fixup_request_location
|
||
+ current_offset);
|
||
obj_som_exec_data (abfd)->system_id = file_hdrp->system_id;
|
||
|
||
return abfd->xvec;
|
||
}
|
||
|
||
/* Convert all of the space and subspace info into BFD sections. Each space
|
||
contains a number of subspaces, which in turn describe the mapping between
|
||
regions of the exec file, and the address space that the program runs in.
|
||
BFD sections which correspond to spaces will overlap the sections for the
|
||
associated subspaces. */
|
||
|
||
static bfd_boolean
|
||
setup_sections (bfd *abfd,
|
||
struct header *file_hdr,
|
||
unsigned long current_offset)
|
||
{
|
||
char *space_strings;
|
||
unsigned int space_index, i;
|
||
unsigned int total_subspaces = 0;
|
||
asection **subspace_sections = NULL;
|
||
asection *section;
|
||
bfd_size_type amt;
|
||
|
||
/* First, read in space names. */
|
||
amt = file_hdr->space_strings_size;
|
||
space_strings = bfd_malloc (amt);
|
||
if (!space_strings && amt != 0)
|
||
goto error_return;
|
||
|
||
if (bfd_seek (abfd, current_offset + file_hdr->space_strings_location,
|
||
SEEK_SET) != 0)
|
||
goto error_return;
|
||
if (bfd_bread (space_strings, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
/* Loop over all of the space dictionaries, building up sections. */
|
||
for (space_index = 0; space_index < file_hdr->space_total; space_index++)
|
||
{
|
||
struct space_dictionary_record space;
|
||
struct som_subspace_dictionary_record subspace, save_subspace;
|
||
unsigned int subspace_index;
|
||
asection *space_asect;
|
||
bfd_size_type space_size = 0;
|
||
char *newname;
|
||
|
||
/* Read the space dictionary element. */
|
||
if (bfd_seek (abfd,
|
||
(current_offset + file_hdr->space_location
|
||
+ space_index * sizeof space),
|
||
SEEK_SET) != 0)
|
||
goto error_return;
|
||
amt = sizeof space;
|
||
if (bfd_bread (&space, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
/* Setup the space name string. */
|
||
space.name.n_name = space.name.n_strx + space_strings;
|
||
|
||
/* Make a section out of it. */
|
||
amt = strlen (space.name.n_name) + 1;
|
||
newname = bfd_alloc (abfd, amt);
|
||
if (!newname)
|
||
goto error_return;
|
||
strcpy (newname, space.name.n_name);
|
||
|
||
space_asect = bfd_make_section_anyway (abfd, newname);
|
||
if (!space_asect)
|
||
goto error_return;
|
||
|
||
if (space.is_loadable == 0)
|
||
space_asect->flags |= SEC_DEBUGGING;
|
||
|
||
/* Set up all the attributes for the space. */
|
||
if (! bfd_som_set_section_attributes (space_asect, space.is_defined,
|
||
space.is_private, space.sort_key,
|
||
space.space_number))
|
||
goto error_return;
|
||
|
||
/* If the space has no subspaces, then we're done. */
|
||
if (space.subspace_quantity == 0)
|
||
continue;
|
||
|
||
/* Now, read in the first subspace for this space. */
|
||
if (bfd_seek (abfd,
|
||
(current_offset + file_hdr->subspace_location
|
||
+ space.subspace_index * sizeof subspace),
|
||
SEEK_SET) != 0)
|
||
goto error_return;
|
||
amt = sizeof subspace;
|
||
if (bfd_bread (&subspace, amt, abfd) != amt)
|
||
goto error_return;
|
||
/* Seek back to the start of the subspaces for loop below. */
|
||
if (bfd_seek (abfd,
|
||
(current_offset + file_hdr->subspace_location
|
||
+ space.subspace_index * sizeof subspace),
|
||
SEEK_SET) != 0)
|
||
goto error_return;
|
||
|
||
/* Setup the start address and file loc from the first subspace
|
||
record. */
|
||
space_asect->vma = subspace.subspace_start;
|
||
space_asect->filepos = subspace.file_loc_init_value + current_offset;
|
||
space_asect->alignment_power = exact_log2 (subspace.alignment);
|
||
if (space_asect->alignment_power == (unsigned) -1)
|
||
goto error_return;
|
||
|
||
/* Initialize save_subspace so we can reliably determine if this
|
||
loop placed any useful values into it. */
|
||
memset (&save_subspace, 0, sizeof (save_subspace));
|
||
|
||
/* Loop over the rest of the subspaces, building up more sections. */
|
||
for (subspace_index = 0; subspace_index < space.subspace_quantity;
|
||
subspace_index++)
|
||
{
|
||
asection *subspace_asect;
|
||
|
||
/* Read in the next subspace. */
|
||
amt = sizeof subspace;
|
||
if (bfd_bread (&subspace, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
/* Setup the subspace name string. */
|
||
subspace.name.n_name = subspace.name.n_strx + space_strings;
|
||
|
||
amt = strlen (subspace.name.n_name) + 1;
|
||
newname = bfd_alloc (abfd, amt);
|
||
if (!newname)
|
||
goto error_return;
|
||
strcpy (newname, subspace.name.n_name);
|
||
|
||
/* Make a section out of this subspace. */
|
||
subspace_asect = bfd_make_section_anyway (abfd, newname);
|
||
if (!subspace_asect)
|
||
goto error_return;
|
||
|
||
/* Store private information about the section. */
|
||
if (! bfd_som_set_subsection_attributes (subspace_asect, space_asect,
|
||
subspace.access_control_bits,
|
||
subspace.sort_key,
|
||
subspace.quadrant,
|
||
subspace.is_comdat,
|
||
subspace.is_common,
|
||
subspace.dup_common))
|
||
goto error_return;
|
||
|
||
/* Keep an easy mapping between subspaces and sections.
|
||
Note we do not necessarily read the subspaces in the
|
||
same order in which they appear in the object file.
|
||
|
||
So to make the target index come out correctly, we
|
||
store the location of the subspace header in target
|
||
index, then sort using the location of the subspace
|
||
header as the key. Then we can assign correct
|
||
subspace indices. */
|
||
total_subspaces++;
|
||
subspace_asect->target_index = bfd_tell (abfd) - sizeof (subspace);
|
||
|
||
/* Set SEC_READONLY and SEC_CODE/SEC_DATA as specified
|
||
by the access_control_bits in the subspace header. */
|
||
switch (subspace.access_control_bits >> 4)
|
||
{
|
||
/* Readonly data. */
|
||
case 0x0:
|
||
subspace_asect->flags |= SEC_DATA | SEC_READONLY;
|
||
break;
|
||
|
||
/* Normal data. */
|
||
case 0x1:
|
||
subspace_asect->flags |= SEC_DATA;
|
||
break;
|
||
|
||
/* Readonly code and the gateways.
|
||
Gateways have other attributes which do not map
|
||
into anything BFD knows about. */
|
||
case 0x2:
|
||
case 0x4:
|
||
case 0x5:
|
||
case 0x6:
|
||
case 0x7:
|
||
subspace_asect->flags |= SEC_CODE | SEC_READONLY;
|
||
break;
|
||
|
||
/* dynamic (writable) code. */
|
||
case 0x3:
|
||
subspace_asect->flags |= SEC_CODE;
|
||
break;
|
||
}
|
||
|
||
if (subspace.is_comdat || subspace.is_common || subspace.dup_common)
|
||
subspace_asect->flags |= SEC_LINK_ONCE;
|
||
|
||
if (subspace.subspace_length > 0)
|
||
subspace_asect->flags |= SEC_HAS_CONTENTS;
|
||
|
||
if (subspace.is_loadable)
|
||
subspace_asect->flags |= SEC_ALLOC | SEC_LOAD;
|
||
else
|
||
subspace_asect->flags |= SEC_DEBUGGING;
|
||
|
||
if (subspace.code_only)
|
||
subspace_asect->flags |= SEC_CODE;
|
||
|
||
/* Both file_loc_init_value and initialization_length will
|
||
be zero for a BSS like subspace. */
|
||
if (subspace.file_loc_init_value == 0
|
||
&& subspace.initialization_length == 0)
|
||
subspace_asect->flags &= ~(SEC_DATA | SEC_LOAD | SEC_HAS_CONTENTS);
|
||
|
||
/* This subspace has relocations.
|
||
The fixup_request_quantity is a byte count for the number of
|
||
entries in the relocation stream; it is not the actual number
|
||
of relocations in the subspace. */
|
||
if (subspace.fixup_request_quantity != 0)
|
||
{
|
||
subspace_asect->flags |= SEC_RELOC;
|
||
subspace_asect->rel_filepos = subspace.fixup_request_index;
|
||
som_section_data (subspace_asect)->reloc_size
|
||
= subspace.fixup_request_quantity;
|
||
/* We can not determine this yet. When we read in the
|
||
relocation table the correct value will be filled in. */
|
||
subspace_asect->reloc_count = (unsigned) -1;
|
||
}
|
||
|
||
/* Update save_subspace if appropriate. */
|
||
if (subspace.file_loc_init_value > save_subspace.file_loc_init_value)
|
||
save_subspace = subspace;
|
||
|
||
subspace_asect->vma = subspace.subspace_start;
|
||
subspace_asect->size = subspace.subspace_length;
|
||
subspace_asect->filepos = (subspace.file_loc_init_value
|
||
+ current_offset);
|
||
subspace_asect->alignment_power = exact_log2 (subspace.alignment);
|
||
if (subspace_asect->alignment_power == (unsigned) -1)
|
||
goto error_return;
|
||
|
||
/* Keep track of the accumulated sizes of the sections. */
|
||
space_size += subspace.subspace_length;
|
||
}
|
||
|
||
/* This can happen for a .o which defines symbols in otherwise
|
||
empty subspaces. */
|
||
if (!save_subspace.file_loc_init_value)
|
||
space_asect->size = 0;
|
||
else
|
||
{
|
||
if (file_hdr->a_magic != RELOC_MAGIC)
|
||
{
|
||
/* Setup the size for the space section based upon the info
|
||
in the last subspace of the space. */
|
||
space_asect->size = (save_subspace.subspace_start
|
||
- space_asect->vma
|
||
+ save_subspace.subspace_length);
|
||
}
|
||
else
|
||
{
|
||
/* The subspace_start field is not initialised in relocatable
|
||
only objects, so it cannot be used for length calculations.
|
||
Instead we use the space_size value which we have been
|
||
accumulating. This isn't an accurate estimate since it
|
||
ignores alignment and ordering issues. */
|
||
space_asect->size = space_size;
|
||
}
|
||
}
|
||
}
|
||
/* Now that we've read in all the subspace records, we need to assign
|
||
a target index to each subspace. */
|
||
amt = total_subspaces;
|
||
amt *= sizeof (asection *);
|
||
subspace_sections = bfd_malloc (amt);
|
||
if (subspace_sections == NULL)
|
||
goto error_return;
|
||
|
||
for (i = 0, section = abfd->sections; section; section = section->next)
|
||
{
|
||
if (!som_is_subspace (section))
|
||
continue;
|
||
|
||
subspace_sections[i] = section;
|
||
i++;
|
||
}
|
||
qsort (subspace_sections, total_subspaces,
|
||
sizeof (asection *), compare_subspaces);
|
||
|
||
/* subspace_sections is now sorted in the order in which the subspaces
|
||
appear in the object file. Assign an index to each one now. */
|
||
for (i = 0; i < total_subspaces; i++)
|
||
subspace_sections[i]->target_index = i;
|
||
|
||
if (space_strings != NULL)
|
||
free (space_strings);
|
||
|
||
if (subspace_sections != NULL)
|
||
free (subspace_sections);
|
||
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (space_strings != NULL)
|
||
free (space_strings);
|
||
|
||
if (subspace_sections != NULL)
|
||
free (subspace_sections);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Read in a SOM object and make it into a BFD. */
|
||
|
||
static const bfd_target *
|
||
som_object_p (bfd *abfd)
|
||
{
|
||
struct header file_hdr;
|
||
struct som_exec_auxhdr *aux_hdr_ptr = NULL;
|
||
unsigned long current_offset = 0;
|
||
struct lst_header lst_header;
|
||
struct som_entry som_entry;
|
||
bfd_size_type amt;
|
||
#define ENTRY_SIZE sizeof (struct som_entry)
|
||
|
||
amt = FILE_HDR_SIZE;
|
||
if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
|
||
{
|
||
if (bfd_get_error () != bfd_error_system_call)
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
|
||
if (!_PA_RISC_ID (file_hdr.system_id))
|
||
{
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
|
||
switch (file_hdr.a_magic)
|
||
{
|
||
case RELOC_MAGIC:
|
||
case EXEC_MAGIC:
|
||
case SHARE_MAGIC:
|
||
case DEMAND_MAGIC:
|
||
#ifdef DL_MAGIC
|
||
case DL_MAGIC:
|
||
#endif
|
||
#ifdef SHL_MAGIC
|
||
case SHL_MAGIC:
|
||
#endif
|
||
#ifdef SHARED_MAGIC_CNX
|
||
case SHARED_MAGIC_CNX:
|
||
#endif
|
||
break;
|
||
|
||
#ifdef EXECLIBMAGIC
|
||
case EXECLIBMAGIC:
|
||
/* Read the lst header and determine where the SOM directory begins. */
|
||
|
||
if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
|
||
{
|
||
if (bfd_get_error () != bfd_error_system_call)
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
|
||
amt = SLSTHDR;
|
||
if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
|
||
{
|
||
if (bfd_get_error () != bfd_error_system_call)
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
|
||
/* Position to and read the first directory entry. */
|
||
|
||
if (bfd_seek (abfd, lst_header.dir_loc, SEEK_SET) != 0)
|
||
{
|
||
if (bfd_get_error () != bfd_error_system_call)
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
|
||
amt = ENTRY_SIZE;
|
||
if (bfd_bread ((void *) &som_entry, amt, abfd) != amt)
|
||
{
|
||
if (bfd_get_error () != bfd_error_system_call)
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
|
||
/* Now position to the first SOM. */
|
||
|
||
if (bfd_seek (abfd, som_entry.location, SEEK_SET) != 0)
|
||
{
|
||
if (bfd_get_error () != bfd_error_system_call)
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
|
||
current_offset = som_entry.location;
|
||
|
||
/* And finally, re-read the som header. */
|
||
amt = FILE_HDR_SIZE;
|
||
if (bfd_bread ((void *) &file_hdr, amt, abfd) != amt)
|
||
{
|
||
if (bfd_get_error () != bfd_error_system_call)
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
|
||
break;
|
||
#endif
|
||
|
||
default:
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
|
||
if (file_hdr.version_id != VERSION_ID
|
||
&& file_hdr.version_id != NEW_VERSION_ID)
|
||
{
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
|
||
/* If the aux_header_size field in the file header is zero, then this
|
||
object is an incomplete executable (a .o file). Do not try to read
|
||
a non-existant auxiliary header. */
|
||
if (file_hdr.aux_header_size != 0)
|
||
{
|
||
aux_hdr_ptr = bfd_zalloc (abfd,
|
||
(bfd_size_type) sizeof (*aux_hdr_ptr));
|
||
if (aux_hdr_ptr == NULL)
|
||
return NULL;
|
||
amt = AUX_HDR_SIZE;
|
||
if (bfd_bread ((void *) aux_hdr_ptr, amt, abfd) != amt)
|
||
{
|
||
if (bfd_get_error () != bfd_error_system_call)
|
||
bfd_set_error (bfd_error_wrong_format);
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
if (!setup_sections (abfd, &file_hdr, current_offset))
|
||
{
|
||
/* setup_sections does not bubble up a bfd error code. */
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return NULL;
|
||
}
|
||
|
||
/* This appears to be a valid SOM object. Do some initialization. */
|
||
return som_object_setup (abfd, &file_hdr, aux_hdr_ptr, current_offset);
|
||
}
|
||
|
||
/* Create a SOM object. */
|
||
|
||
static bfd_boolean
|
||
som_mkobject (bfd *abfd)
|
||
{
|
||
/* Allocate memory to hold backend information. */
|
||
abfd->tdata.som_data = bfd_zalloc (abfd, (bfd_size_type) sizeof (struct som_data_struct));
|
||
if (abfd->tdata.som_data == NULL)
|
||
return FALSE;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Initialize some information in the file header. This routine makes
|
||
not attempt at doing the right thing for a full executable; it
|
||
is only meant to handle relocatable objects. */
|
||
|
||
static bfd_boolean
|
||
som_prep_headers (bfd *abfd)
|
||
{
|
||
struct header *file_hdr;
|
||
asection *section;
|
||
bfd_size_type amt = sizeof (struct header);
|
||
|
||
/* Make and attach a file header to the BFD. */
|
||
file_hdr = bfd_zalloc (abfd, amt);
|
||
if (file_hdr == NULL)
|
||
return FALSE;
|
||
obj_som_file_hdr (abfd) = file_hdr;
|
||
|
||
if (abfd->flags & (EXEC_P | DYNAMIC))
|
||
{
|
||
/* Make and attach an exec header to the BFD. */
|
||
amt = sizeof (struct som_exec_auxhdr);
|
||
obj_som_exec_hdr (abfd) = bfd_zalloc (abfd, amt);
|
||
if (obj_som_exec_hdr (abfd) == NULL)
|
||
return FALSE;
|
||
|
||
if (abfd->flags & D_PAGED)
|
||
file_hdr->a_magic = DEMAND_MAGIC;
|
||
else if (abfd->flags & WP_TEXT)
|
||
file_hdr->a_magic = SHARE_MAGIC;
|
||
#ifdef SHL_MAGIC
|
||
else if (abfd->flags & DYNAMIC)
|
||
file_hdr->a_magic = SHL_MAGIC;
|
||
#endif
|
||
else
|
||
file_hdr->a_magic = EXEC_MAGIC;
|
||
}
|
||
else
|
||
file_hdr->a_magic = RELOC_MAGIC;
|
||
|
||
/* These fields are optional, and embedding timestamps is not always
|
||
a wise thing to do, it makes comparing objects during a multi-stage
|
||
bootstrap difficult. */
|
||
file_hdr->file_time.secs = 0;
|
||
file_hdr->file_time.nanosecs = 0;
|
||
|
||
file_hdr->entry_space = 0;
|
||
file_hdr->entry_subspace = 0;
|
||
file_hdr->entry_offset = 0;
|
||
file_hdr->presumed_dp = 0;
|
||
|
||
/* Now iterate over the sections translating information from
|
||
BFD sections to SOM spaces/subspaces. */
|
||
for (section = abfd->sections; section != NULL; section = section->next)
|
||
{
|
||
/* Ignore anything which has not been marked as a space or
|
||
subspace. */
|
||
if (!som_is_space (section) && !som_is_subspace (section))
|
||
continue;
|
||
|
||
if (som_is_space (section))
|
||
{
|
||
/* Allocate space for the space dictionary. */
|
||
amt = sizeof (struct space_dictionary_record);
|
||
som_section_data (section)->space_dict = bfd_zalloc (abfd, amt);
|
||
if (som_section_data (section)->space_dict == NULL)
|
||
return FALSE;
|
||
/* Set space attributes. Note most attributes of SOM spaces
|
||
are set based on the subspaces it contains. */
|
||
som_section_data (section)->space_dict->loader_fix_index = -1;
|
||
som_section_data (section)->space_dict->init_pointer_index = -1;
|
||
|
||
/* Set more attributes that were stuffed away in private data. */
|
||
som_section_data (section)->space_dict->sort_key =
|
||
som_section_data (section)->copy_data->sort_key;
|
||
som_section_data (section)->space_dict->is_defined =
|
||
som_section_data (section)->copy_data->is_defined;
|
||
som_section_data (section)->space_dict->is_private =
|
||
som_section_data (section)->copy_data->is_private;
|
||
som_section_data (section)->space_dict->space_number =
|
||
som_section_data (section)->copy_data->space_number;
|
||
}
|
||
else
|
||
{
|
||
/* Allocate space for the subspace dictionary. */
|
||
amt = sizeof (struct som_subspace_dictionary_record);
|
||
som_section_data (section)->subspace_dict = bfd_zalloc (abfd, amt);
|
||
if (som_section_data (section)->subspace_dict == NULL)
|
||
return FALSE;
|
||
|
||
/* Set subspace attributes. Basic stuff is done here, additional
|
||
attributes are filled in later as more information becomes
|
||
available. */
|
||
if (section->flags & SEC_ALLOC)
|
||
som_section_data (section)->subspace_dict->is_loadable = 1;
|
||
|
||
if (section->flags & SEC_CODE)
|
||
som_section_data (section)->subspace_dict->code_only = 1;
|
||
|
||
som_section_data (section)->subspace_dict->subspace_start =
|
||
section->vma;
|
||
som_section_data (section)->subspace_dict->subspace_length =
|
||
section->size;
|
||
som_section_data (section)->subspace_dict->initialization_length =
|
||
section->size;
|
||
som_section_data (section)->subspace_dict->alignment =
|
||
1 << section->alignment_power;
|
||
|
||
/* Set more attributes that were stuffed away in private data. */
|
||
som_section_data (section)->subspace_dict->sort_key =
|
||
som_section_data (section)->copy_data->sort_key;
|
||
som_section_data (section)->subspace_dict->access_control_bits =
|
||
som_section_data (section)->copy_data->access_control_bits;
|
||
som_section_data (section)->subspace_dict->quadrant =
|
||
som_section_data (section)->copy_data->quadrant;
|
||
som_section_data (section)->subspace_dict->is_comdat =
|
||
som_section_data (section)->copy_data->is_comdat;
|
||
som_section_data (section)->subspace_dict->is_common =
|
||
som_section_data (section)->copy_data->is_common;
|
||
som_section_data (section)->subspace_dict->dup_common =
|
||
som_section_data (section)->copy_data->dup_common;
|
||
}
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return TRUE if the given section is a SOM space, FALSE otherwise. */
|
||
|
||
static bfd_boolean
|
||
som_is_space (asection *section)
|
||
{
|
||
/* If no copy data is available, then it's neither a space nor a
|
||
subspace. */
|
||
if (som_section_data (section)->copy_data == NULL)
|
||
return FALSE;
|
||
|
||
/* If the containing space isn't the same as the given section,
|
||
then this isn't a space. */
|
||
if (som_section_data (section)->copy_data->container != section
|
||
&& (som_section_data (section)->copy_data->container->output_section
|
||
!= section))
|
||
return FALSE;
|
||
|
||
/* OK. Must be a space. */
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return TRUE if the given section is a SOM subspace, FALSE otherwise. */
|
||
|
||
static bfd_boolean
|
||
som_is_subspace (asection *section)
|
||
{
|
||
/* If no copy data is available, then it's neither a space nor a
|
||
subspace. */
|
||
if (som_section_data (section)->copy_data == NULL)
|
||
return FALSE;
|
||
|
||
/* If the containing space is the same as the given section,
|
||
then this isn't a subspace. */
|
||
if (som_section_data (section)->copy_data->container == section
|
||
|| (som_section_data (section)->copy_data->container->output_section
|
||
== section))
|
||
return FALSE;
|
||
|
||
/* OK. Must be a subspace. */
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return TRUE if the given space contains the given subspace. It
|
||
is safe to assume space really is a space, and subspace really
|
||
is a subspace. */
|
||
|
||
static bfd_boolean
|
||
som_is_container (asection *space, asection *subspace)
|
||
{
|
||
return (som_section_data (subspace)->copy_data->container == space)
|
||
|| (som_section_data (subspace)->copy_data->container->output_section
|
||
== space);
|
||
}
|
||
|
||
/* Count and return the number of spaces attached to the given BFD. */
|
||
|
||
static unsigned long
|
||
som_count_spaces (bfd *abfd)
|
||
{
|
||
int count = 0;
|
||
asection *section;
|
||
|
||
for (section = abfd->sections; section != NULL; section = section->next)
|
||
count += som_is_space (section);
|
||
|
||
return count;
|
||
}
|
||
|
||
/* Count the number of subspaces attached to the given BFD. */
|
||
|
||
static unsigned long
|
||
som_count_subspaces (bfd *abfd)
|
||
{
|
||
int count = 0;
|
||
asection *section;
|
||
|
||
for (section = abfd->sections; section != NULL; section = section->next)
|
||
count += som_is_subspace (section);
|
||
|
||
return count;
|
||
}
|
||
|
||
/* Return -1, 0, 1 indicating the relative ordering of sym1 and sym2.
|
||
|
||
We desire symbols to be ordered starting with the symbol with the
|
||
highest relocation count down to the symbol with the lowest relocation
|
||
count. Doing so compacts the relocation stream. */
|
||
|
||
static int
|
||
compare_syms (const void *arg1, const void *arg2)
|
||
{
|
||
asymbol **sym1 = (asymbol **) arg1;
|
||
asymbol **sym2 = (asymbol **) arg2;
|
||
unsigned int count1, count2;
|
||
|
||
/* Get relocation count for each symbol. Note that the count
|
||
is stored in the udata pointer for section symbols! */
|
||
if ((*sym1)->flags & BSF_SECTION_SYM)
|
||
count1 = (*sym1)->udata.i;
|
||
else
|
||
count1 = som_symbol_data (*sym1)->reloc_count;
|
||
|
||
if ((*sym2)->flags & BSF_SECTION_SYM)
|
||
count2 = (*sym2)->udata.i;
|
||
else
|
||
count2 = som_symbol_data (*sym2)->reloc_count;
|
||
|
||
/* Return the appropriate value. */
|
||
if (count1 < count2)
|
||
return 1;
|
||
else if (count1 > count2)
|
||
return -1;
|
||
return 0;
|
||
}
|
||
|
||
/* Return -1, 0, 1 indicating the relative ordering of subspace1
|
||
and subspace. */
|
||
|
||
static int
|
||
compare_subspaces (const void *arg1, const void *arg2)
|
||
{
|
||
asection **subspace1 = (asection **) arg1;
|
||
asection **subspace2 = (asection **) arg2;
|
||
|
||
if ((*subspace1)->target_index < (*subspace2)->target_index)
|
||
return -1;
|
||
else if ((*subspace2)->target_index < (*subspace1)->target_index)
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Perform various work in preparation for emitting the fixup stream. */
|
||
|
||
static void
|
||
som_prep_for_fixups (bfd *abfd, asymbol **syms, unsigned long num_syms)
|
||
{
|
||
unsigned long i;
|
||
asection *section;
|
||
asymbol **sorted_syms;
|
||
bfd_size_type amt;
|
||
|
||
/* Most SOM relocations involving a symbol have a length which is
|
||
dependent on the index of the symbol. So symbols which are
|
||
used often in relocations should have a small index. */
|
||
|
||
/* First initialize the counters for each symbol. */
|
||
for (i = 0; i < num_syms; i++)
|
||
{
|
||
/* Handle a section symbol; these have no pointers back to the
|
||
SOM symbol info. So we just use the udata field to hold the
|
||
relocation count. */
|
||
if (som_symbol_data (syms[i]) == NULL
|
||
|| syms[i]->flags & BSF_SECTION_SYM)
|
||
{
|
||
syms[i]->flags |= BSF_SECTION_SYM;
|
||
syms[i]->udata.i = 0;
|
||
}
|
||
else
|
||
som_symbol_data (syms[i])->reloc_count = 0;
|
||
}
|
||
|
||
/* Now that the counters are initialized, make a weighted count
|
||
of how often a given symbol is used in a relocation. */
|
||
for (section = abfd->sections; section != NULL; section = section->next)
|
||
{
|
||
int j;
|
||
|
||
/* Does this section have any relocations? */
|
||
if ((int) section->reloc_count <= 0)
|
||
continue;
|
||
|
||
/* Walk through each relocation for this section. */
|
||
for (j = 1; j < (int) section->reloc_count; j++)
|
||
{
|
||
arelent *reloc = section->orelocation[j];
|
||
int scale;
|
||
|
||
/* A relocation against a symbol in the *ABS* section really
|
||
does not have a symbol. Likewise if the symbol isn't associated
|
||
with any section. */
|
||
if (reloc->sym_ptr_ptr == NULL
|
||
|| bfd_is_abs_section ((*reloc->sym_ptr_ptr)->section))
|
||
continue;
|
||
|
||
/* Scaling to encourage symbols involved in R_DP_RELATIVE
|
||
and R_CODE_ONE_SYMBOL relocations to come first. These
|
||
two relocations have single byte versions if the symbol
|
||
index is very small. */
|
||
if (reloc->howto->type == R_DP_RELATIVE
|
||
|| reloc->howto->type == R_CODE_ONE_SYMBOL)
|
||
scale = 2;
|
||
else
|
||
scale = 1;
|
||
|
||
/* Handle section symbols by storing the count in the udata
|
||
field. It will not be used and the count is very important
|
||
for these symbols. */
|
||
if ((*reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
|
||
{
|
||
(*reloc->sym_ptr_ptr)->udata.i =
|
||
(*reloc->sym_ptr_ptr)->udata.i + scale;
|
||
continue;
|
||
}
|
||
|
||
/* A normal symbol. Increment the count. */
|
||
som_symbol_data (*reloc->sym_ptr_ptr)->reloc_count += scale;
|
||
}
|
||
}
|
||
|
||
/* Sort a copy of the symbol table, rather than the canonical
|
||
output symbol table. */
|
||
amt = num_syms;
|
||
amt *= sizeof (asymbol *);
|
||
sorted_syms = bfd_zalloc (abfd, amt);
|
||
memcpy (sorted_syms, syms, num_syms * sizeof (asymbol *));
|
||
qsort (sorted_syms, num_syms, sizeof (asymbol *), compare_syms);
|
||
obj_som_sorted_syms (abfd) = sorted_syms;
|
||
|
||
/* Compute the symbol indexes, they will be needed by the relocation
|
||
code. */
|
||
for (i = 0; i < num_syms; i++)
|
||
{
|
||
/* A section symbol. Again, there is no pointer to backend symbol
|
||
information, so we reuse the udata field again. */
|
||
if (sorted_syms[i]->flags & BSF_SECTION_SYM)
|
||
sorted_syms[i]->udata.i = i;
|
||
else
|
||
som_symbol_data (sorted_syms[i])->index = i;
|
||
}
|
||
}
|
||
|
||
static bfd_boolean
|
||
som_write_fixups (bfd *abfd,
|
||
unsigned long current_offset,
|
||
unsigned int *total_reloc_sizep)
|
||
{
|
||
unsigned int i, j;
|
||
/* Chunk of memory that we can use as buffer space, then throw
|
||
away. */
|
||
unsigned char tmp_space[SOM_TMP_BUFSIZE];
|
||
unsigned char *p;
|
||
unsigned int total_reloc_size = 0;
|
||
unsigned int subspace_reloc_size = 0;
|
||
unsigned int num_spaces = obj_som_file_hdr (abfd)->space_total;
|
||
asection *section = abfd->sections;
|
||
bfd_size_type amt;
|
||
|
||
memset (tmp_space, 0, SOM_TMP_BUFSIZE);
|
||
p = tmp_space;
|
||
|
||
/* All the fixups for a particular subspace are emitted in a single
|
||
stream. All the subspaces for a particular space are emitted
|
||
as a single stream.
|
||
|
||
So, to get all the locations correct one must iterate through all the
|
||
spaces, for each space iterate through its subspaces and output a
|
||
fixups stream. */
|
||
for (i = 0; i < num_spaces; i++)
|
||
{
|
||
asection *subsection;
|
||
|
||
/* Find a space. */
|
||
while (!som_is_space (section))
|
||
section = section->next;
|
||
|
||
/* Now iterate through each of its subspaces. */
|
||
for (subsection = abfd->sections;
|
||
subsection != NULL;
|
||
subsection = subsection->next)
|
||
{
|
||
int reloc_offset;
|
||
unsigned int current_rounding_mode;
|
||
#ifndef NO_PCREL_MODES
|
||
unsigned int current_call_mode;
|
||
#endif
|
||
|
||
/* Find a subspace of this space. */
|
||
if (!som_is_subspace (subsection)
|
||
|| !som_is_container (section, subsection))
|
||
continue;
|
||
|
||
/* If this subspace does not have real data, then we are
|
||
finished with it. */
|
||
if ((subsection->flags & SEC_HAS_CONTENTS) == 0)
|
||
{
|
||
som_section_data (subsection)->subspace_dict->fixup_request_index
|
||
= -1;
|
||
continue;
|
||
}
|
||
|
||
/* This subspace has some relocations. Put the relocation stream
|
||
index into the subspace record. */
|
||
som_section_data (subsection)->subspace_dict->fixup_request_index
|
||
= total_reloc_size;
|
||
|
||
/* To make life easier start over with a clean slate for
|
||
each subspace. Seek to the start of the relocation stream
|
||
for this subspace in preparation for writing out its fixup
|
||
stream. */
|
||
if (bfd_seek (abfd, current_offset + total_reloc_size, SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
/* Buffer space has already been allocated. Just perform some
|
||
initialization here. */
|
||
p = tmp_space;
|
||
subspace_reloc_size = 0;
|
||
reloc_offset = 0;
|
||
som_initialize_reloc_queue (reloc_queue);
|
||
current_rounding_mode = R_N_MODE;
|
||
#ifndef NO_PCREL_MODES
|
||
current_call_mode = R_SHORT_PCREL_MODE;
|
||
#endif
|
||
|
||
/* Translate each BFD relocation into one or more SOM
|
||
relocations. */
|
||
for (j = 0; j < subsection->reloc_count; j++)
|
||
{
|
||
arelent *bfd_reloc = subsection->orelocation[j];
|
||
unsigned int skip;
|
||
int sym_num;
|
||
|
||
/* Get the symbol number. Remember it's stored in a
|
||
special place for section symbols. */
|
||
if ((*bfd_reloc->sym_ptr_ptr)->flags & BSF_SECTION_SYM)
|
||
sym_num = (*bfd_reloc->sym_ptr_ptr)->udata.i;
|
||
else
|
||
sym_num = som_symbol_data (*bfd_reloc->sym_ptr_ptr)->index;
|
||
|
||
/* If there is not enough room for the next couple relocations,
|
||
then dump the current buffer contents now. Also reinitialize
|
||
the relocation queue.
|
||
|
||
No single BFD relocation could ever translate into more
|
||
than 100 bytes of SOM relocations (20bytes is probably the
|
||
upper limit, but leave lots of space for growth). */
|
||
if (p - tmp_space + 100 > SOM_TMP_BUFSIZE)
|
||
{
|
||
amt = p - tmp_space;
|
||
if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
p = tmp_space;
|
||
som_initialize_reloc_queue (reloc_queue);
|
||
}
|
||
|
||
/* Emit R_NO_RELOCATION fixups to map any bytes which were
|
||
skipped. */
|
||
skip = bfd_reloc->address - reloc_offset;
|
||
p = som_reloc_skip (abfd, skip, p,
|
||
&subspace_reloc_size, reloc_queue);
|
||
|
||
/* Update reloc_offset for the next iteration.
|
||
|
||
Many relocations do not consume input bytes. They
|
||
are markers, or set state necessary to perform some
|
||
later relocation. */
|
||
switch (bfd_reloc->howto->type)
|
||
{
|
||
case R_ENTRY:
|
||
case R_ALT_ENTRY:
|
||
case R_EXIT:
|
||
case R_N_MODE:
|
||
case R_S_MODE:
|
||
case R_D_MODE:
|
||
case R_R_MODE:
|
||
case R_FSEL:
|
||
case R_LSEL:
|
||
case R_RSEL:
|
||
case R_COMP1:
|
||
case R_COMP2:
|
||
case R_BEGIN_BRTAB:
|
||
case R_END_BRTAB:
|
||
case R_BEGIN_TRY:
|
||
case R_END_TRY:
|
||
case R_N0SEL:
|
||
case R_N1SEL:
|
||
#ifndef NO_PCREL_MODES
|
||
case R_SHORT_PCREL_MODE:
|
||
case R_LONG_PCREL_MODE:
|
||
#endif
|
||
reloc_offset = bfd_reloc->address;
|
||
break;
|
||
|
||
default:
|
||
reloc_offset = bfd_reloc->address + 4;
|
||
break;
|
||
}
|
||
|
||
/* Now the actual relocation we care about. */
|
||
switch (bfd_reloc->howto->type)
|
||
{
|
||
case R_PCREL_CALL:
|
||
case R_ABS_CALL:
|
||
p = som_reloc_call (abfd, p, &subspace_reloc_size,
|
||
bfd_reloc, sym_num, reloc_queue);
|
||
break;
|
||
|
||
case R_CODE_ONE_SYMBOL:
|
||
case R_DP_RELATIVE:
|
||
/* Account for any addend. */
|
||
if (bfd_reloc->addend)
|
||
p = som_reloc_addend (abfd, bfd_reloc->addend, p,
|
||
&subspace_reloc_size, reloc_queue);
|
||
|
||
if (sym_num < 0x20)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + sym_num, p);
|
||
subspace_reloc_size += 1;
|
||
p += 1;
|
||
}
|
||
else if (sym_num < 0x100)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + 32, p);
|
||
bfd_put_8 (abfd, sym_num, p + 1);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size, p,
|
||
2, reloc_queue);
|
||
}
|
||
else if (sym_num < 0x10000000)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + 33, p);
|
||
bfd_put_8 (abfd, sym_num >> 16, p + 1);
|
||
bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size,
|
||
p, 4, reloc_queue);
|
||
}
|
||
else
|
||
abort ();
|
||
break;
|
||
|
||
case R_DATA_GPREL:
|
||
/* Account for any addend. */
|
||
if (bfd_reloc->addend)
|
||
p = som_reloc_addend (abfd, bfd_reloc->addend, p,
|
||
&subspace_reloc_size, reloc_queue);
|
||
|
||
if (sym_num < 0x10000000)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type, p);
|
||
bfd_put_8 (abfd, sym_num >> 16, p + 1);
|
||
bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size,
|
||
p, 4, reloc_queue);
|
||
}
|
||
else
|
||
abort ();
|
||
break;
|
||
|
||
case R_DATA_ONE_SYMBOL:
|
||
case R_DATA_PLABEL:
|
||
case R_CODE_PLABEL:
|
||
case R_DLT_REL:
|
||
/* Account for any addend using R_DATA_OVERRIDE. */
|
||
if (bfd_reloc->howto->type != R_DATA_ONE_SYMBOL
|
||
&& bfd_reloc->addend)
|
||
p = som_reloc_addend (abfd, bfd_reloc->addend, p,
|
||
&subspace_reloc_size, reloc_queue);
|
||
|
||
if (sym_num < 0x100)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type, p);
|
||
bfd_put_8 (abfd, sym_num, p + 1);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size, p,
|
||
2, reloc_queue);
|
||
}
|
||
else if (sym_num < 0x10000000)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
|
||
bfd_put_8 (abfd, sym_num >> 16, p + 1);
|
||
bfd_put_16 (abfd, (bfd_vma) sym_num, p + 2);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size,
|
||
p, 4, reloc_queue);
|
||
}
|
||
else
|
||
abort ();
|
||
break;
|
||
|
||
case R_ENTRY:
|
||
{
|
||
unsigned int tmp;
|
||
arelent *tmp_reloc = NULL;
|
||
bfd_put_8 (abfd, R_ENTRY, p);
|
||
|
||
/* R_ENTRY relocations have 64 bits of associated
|
||
data. Unfortunately the addend field of a bfd
|
||
relocation is only 32 bits. So, we split up
|
||
the 64bit unwind information and store part in
|
||
the R_ENTRY relocation, and the rest in the R_EXIT
|
||
relocation. */
|
||
bfd_put_32 (abfd, bfd_reloc->addend, p + 1);
|
||
|
||
/* Find the next R_EXIT relocation. */
|
||
for (tmp = j; tmp < subsection->reloc_count; tmp++)
|
||
{
|
||
tmp_reloc = subsection->orelocation[tmp];
|
||
if (tmp_reloc->howto->type == R_EXIT)
|
||
break;
|
||
}
|
||
|
||
if (tmp == subsection->reloc_count)
|
||
abort ();
|
||
|
||
bfd_put_32 (abfd, tmp_reloc->addend, p + 5);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size,
|
||
p, 9, reloc_queue);
|
||
break;
|
||
}
|
||
|
||
case R_N_MODE:
|
||
case R_S_MODE:
|
||
case R_D_MODE:
|
||
case R_R_MODE:
|
||
/* If this relocation requests the current rounding
|
||
mode, then it is redundant. */
|
||
if (bfd_reloc->howto->type != current_rounding_mode)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type, p);
|
||
subspace_reloc_size += 1;
|
||
p += 1;
|
||
current_rounding_mode = bfd_reloc->howto->type;
|
||
}
|
||
break;
|
||
|
||
#ifndef NO_PCREL_MODES
|
||
case R_LONG_PCREL_MODE:
|
||
case R_SHORT_PCREL_MODE:
|
||
if (bfd_reloc->howto->type != current_call_mode)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type, p);
|
||
subspace_reloc_size += 1;
|
||
p += 1;
|
||
current_call_mode = bfd_reloc->howto->type;
|
||
}
|
||
break;
|
||
#endif
|
||
|
||
case R_EXIT:
|
||
case R_ALT_ENTRY:
|
||
case R_FSEL:
|
||
case R_LSEL:
|
||
case R_RSEL:
|
||
case R_BEGIN_BRTAB:
|
||
case R_END_BRTAB:
|
||
case R_BEGIN_TRY:
|
||
case R_N0SEL:
|
||
case R_N1SEL:
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type, p);
|
||
subspace_reloc_size += 1;
|
||
p += 1;
|
||
break;
|
||
|
||
case R_END_TRY:
|
||
/* The end of an exception handling region. The reloc's
|
||
addend contains the offset of the exception handling
|
||
code. */
|
||
if (bfd_reloc->addend == 0)
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type, p);
|
||
else if (bfd_reloc->addend < 1024)
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + 1, p);
|
||
bfd_put_8 (abfd, bfd_reloc->addend / 4, p + 1);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size,
|
||
p, 2, reloc_queue);
|
||
}
|
||
else
|
||
{
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type + 2, p);
|
||
bfd_put_8 (abfd, (bfd_reloc->addend / 4) >> 16, p + 1);
|
||
bfd_put_16 (abfd, bfd_reloc->addend / 4, p + 2);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size,
|
||
p, 4, reloc_queue);
|
||
}
|
||
break;
|
||
|
||
case R_COMP1:
|
||
/* The only time we generate R_COMP1, R_COMP2 and
|
||
R_CODE_EXPR relocs is for the difference of two
|
||
symbols. Hence we can cheat here. */
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type, p);
|
||
bfd_put_8 (abfd, 0x44, p + 1);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size,
|
||
p, 2, reloc_queue);
|
||
break;
|
||
|
||
case R_COMP2:
|
||
/* The only time we generate R_COMP1, R_COMP2 and
|
||
R_CODE_EXPR relocs is for the difference of two
|
||
symbols. Hence we can cheat here. */
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type, p);
|
||
bfd_put_8 (abfd, 0x80, p + 1);
|
||
bfd_put_8 (abfd, sym_num >> 16, p + 2);
|
||
bfd_put_16 (abfd, (bfd_vma) sym_num, p + 3);
|
||
p = try_prev_fixup (abfd, &subspace_reloc_size,
|
||
p, 5, reloc_queue);
|
||
break;
|
||
|
||
case R_CODE_EXPR:
|
||
case R_DATA_EXPR:
|
||
/* The only time we generate R_COMP1, R_COMP2 and
|
||
R_CODE_EXPR relocs is for the difference of two
|
||
symbols. Hence we can cheat here. */
|
||
bfd_put_8 (abfd, bfd_reloc->howto->type, p);
|
||
subspace_reloc_size += 1;
|
||
p += 1;
|
||
break;
|
||
|
||
/* Put a "R_RESERVED" relocation in the stream if
|
||
we hit something we do not understand. The linker
|
||
will complain loudly if this ever happens. */
|
||
default:
|
||
bfd_put_8 (abfd, 0xff, p);
|
||
subspace_reloc_size += 1;
|
||
p += 1;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Last BFD relocation for a subspace has been processed.
|
||
Map the rest of the subspace with R_NO_RELOCATION fixups. */
|
||
p = som_reloc_skip (abfd, subsection->size - reloc_offset,
|
||
p, &subspace_reloc_size, reloc_queue);
|
||
|
||
/* Scribble out the relocations. */
|
||
amt = p - tmp_space;
|
||
if (bfd_bwrite ((void *) tmp_space, amt, abfd) != amt)
|
||
return FALSE;
|
||
p = tmp_space;
|
||
|
||
total_reloc_size += subspace_reloc_size;
|
||
som_section_data (subsection)->subspace_dict->fixup_request_quantity
|
||
= subspace_reloc_size;
|
||
}
|
||
section = section->next;
|
||
}
|
||
*total_reloc_sizep = total_reloc_size;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Write out the space/subspace string table. */
|
||
|
||
static bfd_boolean
|
||
som_write_space_strings (bfd *abfd,
|
||
unsigned long current_offset,
|
||
unsigned int *string_sizep)
|
||
{
|
||
/* Chunk of memory that we can use as buffer space, then throw
|
||
away. */
|
||
size_t tmp_space_size = SOM_TMP_BUFSIZE;
|
||
char *tmp_space = alloca (tmp_space_size);
|
||
char *p = tmp_space;
|
||
unsigned int strings_size = 0;
|
||
asection *section;
|
||
bfd_size_type amt;
|
||
|
||
/* Seek to the start of the space strings in preparation for writing
|
||
them out. */
|
||
if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
/* Walk through all the spaces and subspaces (order is not important)
|
||
building up and writing string table entries for their names. */
|
||
for (section = abfd->sections; section != NULL; section = section->next)
|
||
{
|
||
size_t length;
|
||
|
||
/* Only work with space/subspaces; avoid any other sections
|
||
which might have been made (.text for example). */
|
||
if (!som_is_space (section) && !som_is_subspace (section))
|
||
continue;
|
||
|
||
/* Get the length of the space/subspace name. */
|
||
length = strlen (section->name);
|
||
|
||
/* If there is not enough room for the next entry, then dump the
|
||
current buffer contents now and maybe allocate a larger
|
||
buffer. Each entry will take 4 bytes to hold the string
|
||
length + the string itself + null terminator. */
|
||
if (p - tmp_space + 5 + length > tmp_space_size)
|
||
{
|
||
/* Flush buffer before refilling or reallocating. */
|
||
amt = p - tmp_space;
|
||
if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
/* Reallocate if now empty buffer still too small. */
|
||
if (5 + length > tmp_space_size)
|
||
{
|
||
/* Ensure a minimum growth factor to avoid O(n**2) space
|
||
consumption for n strings. The optimal minimum
|
||
factor seems to be 2, as no other value can guarantee
|
||
wasting less than 50% space. (Note that we cannot
|
||
deallocate space allocated by `alloca' without
|
||
returning from this function.) The same technique is
|
||
used a few more times below when a buffer is
|
||
reallocated. */
|
||
tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
|
||
tmp_space = alloca (tmp_space_size);
|
||
}
|
||
|
||
/* Reset to beginning of the (possibly new) buffer space. */
|
||
p = tmp_space;
|
||
}
|
||
|
||
/* First element in a string table entry is the length of the
|
||
string. Alignment issues are already handled. */
|
||
bfd_put_32 (abfd, (bfd_vma) length, p);
|
||
p += 4;
|
||
strings_size += 4;
|
||
|
||
/* Record the index in the space/subspace records. */
|
||
if (som_is_space (section))
|
||
som_section_data (section)->space_dict->name.n_strx = strings_size;
|
||
else
|
||
som_section_data (section)->subspace_dict->name.n_strx = strings_size;
|
||
|
||
/* Next comes the string itself + a null terminator. */
|
||
strcpy (p, section->name);
|
||
p += length + 1;
|
||
strings_size += length + 1;
|
||
|
||
/* Always align up to the next word boundary. */
|
||
while (strings_size % 4)
|
||
{
|
||
bfd_put_8 (abfd, 0, p);
|
||
p++;
|
||
strings_size++;
|
||
}
|
||
}
|
||
|
||
/* Done with the space/subspace strings. Write out any information
|
||
contained in a partial block. */
|
||
amt = p - tmp_space;
|
||
if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
|
||
return FALSE;
|
||
*string_sizep = strings_size;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Write out the symbol string table. */
|
||
|
||
static bfd_boolean
|
||
som_write_symbol_strings (bfd *abfd,
|
||
unsigned long current_offset,
|
||
asymbol **syms,
|
||
unsigned int num_syms,
|
||
unsigned int *string_sizep,
|
||
COMPUNIT *compilation_unit)
|
||
{
|
||
unsigned int i;
|
||
|
||
/* Chunk of memory that we can use as buffer space, then throw
|
||
away. */
|
||
size_t tmp_space_size = SOM_TMP_BUFSIZE;
|
||
char *tmp_space = alloca (tmp_space_size);
|
||
char *p = tmp_space;
|
||
|
||
unsigned int strings_size = 0;
|
||
char *comp[4];
|
||
bfd_size_type amt;
|
||
|
||
/* This gets a bit gruesome because of the compilation unit. The
|
||
strings within the compilation unit are part of the symbol
|
||
strings, but don't have symbol_dictionary entries. So, manually
|
||
write them and update the compilation unit header. On input, the
|
||
compilation unit header contains local copies of the strings.
|
||
Move them aside. */
|
||
if (compilation_unit)
|
||
{
|
||
comp[0] = compilation_unit->name.n_name;
|
||
comp[1] = compilation_unit->language_name.n_name;
|
||
comp[2] = compilation_unit->product_id.n_name;
|
||
comp[3] = compilation_unit->version_id.n_name;
|
||
}
|
||
|
||
/* Seek to the start of the space strings in preparation for writing
|
||
them out. */
|
||
if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
if (compilation_unit)
|
||
{
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
size_t length = strlen (comp[i]);
|
||
|
||
/* If there is not enough room for the next entry, then dump
|
||
the current buffer contents now and maybe allocate a
|
||
larger buffer. */
|
||
if (p - tmp_space + 5 + length > tmp_space_size)
|
||
{
|
||
/* Flush buffer before refilling or reallocating. */
|
||
amt = p - tmp_space;
|
||
if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
/* Reallocate if now empty buffer still too small. */
|
||
if (5 + length > tmp_space_size)
|
||
{
|
||
/* See alloca above for discussion of new size. */
|
||
tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
|
||
tmp_space = alloca (tmp_space_size);
|
||
}
|
||
|
||
/* Reset to beginning of the (possibly new) buffer
|
||
space. */
|
||
p = tmp_space;
|
||
}
|
||
|
||
/* First element in a string table entry is the length of
|
||
the string. This must always be 4 byte aligned. This is
|
||
also an appropriate time to fill in the string index
|
||
field in the symbol table entry. */
|
||
bfd_put_32 (abfd, (bfd_vma) length, p);
|
||
strings_size += 4;
|
||
p += 4;
|
||
|
||
/* Next comes the string itself + a null terminator. */
|
||
strcpy (p, comp[i]);
|
||
|
||
switch (i)
|
||
{
|
||
case 0:
|
||
obj_som_compilation_unit (abfd)->name.n_strx = strings_size;
|
||
break;
|
||
case 1:
|
||
obj_som_compilation_unit (abfd)->language_name.n_strx =
|
||
strings_size;
|
||
break;
|
||
case 2:
|
||
obj_som_compilation_unit (abfd)->product_id.n_strx =
|
||
strings_size;
|
||
break;
|
||
case 3:
|
||
obj_som_compilation_unit (abfd)->version_id.n_strx =
|
||
strings_size;
|
||
break;
|
||
}
|
||
|
||
p += length + 1;
|
||
strings_size += length + 1;
|
||
|
||
/* Always align up to the next word boundary. */
|
||
while (strings_size % 4)
|
||
{
|
||
bfd_put_8 (abfd, 0, p);
|
||
strings_size++;
|
||
p++;
|
||
}
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < num_syms; i++)
|
||
{
|
||
size_t length = strlen (syms[i]->name);
|
||
|
||
/* If there is not enough room for the next entry, then dump the
|
||
current buffer contents now and maybe allocate a larger buffer. */
|
||
if (p - tmp_space + 5 + length > tmp_space_size)
|
||
{
|
||
/* Flush buffer before refilling or reallocating. */
|
||
amt = p - tmp_space;
|
||
if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
/* Reallocate if now empty buffer still too small. */
|
||
if (5 + length > tmp_space_size)
|
||
{
|
||
/* See alloca above for discussion of new size. */
|
||
tmp_space_size = MAX (2 * tmp_space_size, 5 + length);
|
||
tmp_space = alloca (tmp_space_size);
|
||
}
|
||
|
||
/* Reset to beginning of the (possibly new) buffer space. */
|
||
p = tmp_space;
|
||
}
|
||
|
||
/* First element in a string table entry is the length of the
|
||
string. This must always be 4 byte aligned. This is also
|
||
an appropriate time to fill in the string index field in the
|
||
symbol table entry. */
|
||
bfd_put_32 (abfd, (bfd_vma) length, p);
|
||
strings_size += 4;
|
||
p += 4;
|
||
|
||
/* Next comes the string itself + a null terminator. */
|
||
strcpy (p, syms[i]->name);
|
||
|
||
som_symbol_data (syms[i])->stringtab_offset = strings_size;
|
||
p += length + 1;
|
||
strings_size += length + 1;
|
||
|
||
/* Always align up to the next word boundary. */
|
||
while (strings_size % 4)
|
||
{
|
||
bfd_put_8 (abfd, 0, p);
|
||
strings_size++;
|
||
p++;
|
||
}
|
||
}
|
||
|
||
/* Scribble out any partial block. */
|
||
amt = p - tmp_space;
|
||
if (bfd_bwrite ((void *) &tmp_space[0], amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
*string_sizep = strings_size;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Compute variable information to be placed in the SOM headers,
|
||
space/subspace dictionaries, relocation streams, etc. Begin
|
||
writing parts of the object file. */
|
||
|
||
static bfd_boolean
|
||
som_begin_writing (bfd *abfd)
|
||
{
|
||
unsigned long current_offset = 0;
|
||
unsigned int strings_size = 0;
|
||
unsigned long num_spaces, num_subspaces, i;
|
||
asection *section;
|
||
unsigned int total_subspaces = 0;
|
||
struct som_exec_auxhdr *exec_header = NULL;
|
||
|
||
/* The file header will always be first in an object file,
|
||
everything else can be in random locations. To keep things
|
||
"simple" BFD will lay out the object file in the manner suggested
|
||
by the PRO ABI for PA-RISC Systems. */
|
||
|
||
/* Before any output can really begin offsets for all the major
|
||
portions of the object file must be computed. So, starting
|
||
with the initial file header compute (and sometimes write)
|
||
each portion of the object file. */
|
||
|
||
/* Make room for the file header, it's contents are not complete
|
||
yet, so it can not be written at this time. */
|
||
current_offset += sizeof (struct header);
|
||
|
||
/* Any auxiliary headers will follow the file header. Right now
|
||
we support only the copyright and version headers. */
|
||
obj_som_file_hdr (abfd)->aux_header_location = current_offset;
|
||
obj_som_file_hdr (abfd)->aux_header_size = 0;
|
||
if (abfd->flags & (EXEC_P | DYNAMIC))
|
||
{
|
||
/* Parts of the exec header will be filled in later, so
|
||
delay writing the header itself. Fill in the defaults,
|
||
and write it later. */
|
||
current_offset += sizeof (struct som_exec_auxhdr);
|
||
obj_som_file_hdr (abfd)->aux_header_size
|
||
+= sizeof (struct som_exec_auxhdr);
|
||
exec_header = obj_som_exec_hdr (abfd);
|
||
exec_header->som_auxhdr.type = EXEC_AUX_ID;
|
||
exec_header->som_auxhdr.length = 40;
|
||
}
|
||
if (obj_som_version_hdr (abfd) != NULL)
|
||
{
|
||
bfd_size_type len;
|
||
|
||
if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
/* Write the aux_id structure and the string length. */
|
||
len = sizeof (struct aux_id) + sizeof (unsigned int);
|
||
obj_som_file_hdr (abfd)->aux_header_size += len;
|
||
current_offset += len;
|
||
if (bfd_bwrite ((void *) obj_som_version_hdr (abfd), len, abfd) != len)
|
||
return FALSE;
|
||
|
||
/* Write the version string. */
|
||
len = obj_som_version_hdr (abfd)->header_id.length - sizeof (int);
|
||
obj_som_file_hdr (abfd)->aux_header_size += len;
|
||
current_offset += len;
|
||
if (bfd_bwrite ((void *) obj_som_version_hdr (abfd)->user_string, len, abfd)
|
||
!= len)
|
||
return FALSE;
|
||
}
|
||
|
||
if (obj_som_copyright_hdr (abfd) != NULL)
|
||
{
|
||
bfd_size_type len;
|
||
|
||
if (bfd_seek (abfd, (file_ptr) current_offset, SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
/* Write the aux_id structure and the string length. */
|
||
len = sizeof (struct aux_id) + sizeof (unsigned int);
|
||
obj_som_file_hdr (abfd)->aux_header_size += len;
|
||
current_offset += len;
|
||
if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd), len, abfd) != len)
|
||
return FALSE;
|
||
|
||
/* Write the copyright string. */
|
||
len = obj_som_copyright_hdr (abfd)->header_id.length - sizeof (int);
|
||
obj_som_file_hdr (abfd)->aux_header_size += len;
|
||
current_offset += len;
|
||
if (bfd_bwrite ((void *) obj_som_copyright_hdr (abfd)->copyright, len, abfd)
|
||
!= len)
|
||
return FALSE;
|
||
}
|
||
|
||
/* Next comes the initialization pointers; we have no initialization
|
||
pointers, so current offset does not change. */
|
||
obj_som_file_hdr (abfd)->init_array_location = current_offset;
|
||
obj_som_file_hdr (abfd)->init_array_total = 0;
|
||
|
||
/* Next are the space records. These are fixed length records.
|
||
|
||
Count the number of spaces to determine how much room is needed
|
||
in the object file for the space records.
|
||
|
||
The names of the spaces are stored in a separate string table,
|
||
and the index for each space into the string table is computed
|
||
below. Therefore, it is not possible to write the space headers
|
||
at this time. */
|
||
num_spaces = som_count_spaces (abfd);
|
||
obj_som_file_hdr (abfd)->space_location = current_offset;
|
||
obj_som_file_hdr (abfd)->space_total = num_spaces;
|
||
current_offset += num_spaces * sizeof (struct space_dictionary_record);
|
||
|
||
/* Next are the subspace records. These are fixed length records.
|
||
|
||
Count the number of subspaes to determine how much room is needed
|
||
in the object file for the subspace records.
|
||
|
||
A variety if fields in the subspace record are still unknown at
|
||
this time (index into string table, fixup stream location/size, etc). */
|
||
num_subspaces = som_count_subspaces (abfd);
|
||
obj_som_file_hdr (abfd)->subspace_location = current_offset;
|
||
obj_som_file_hdr (abfd)->subspace_total = num_subspaces;
|
||
current_offset
|
||
+= num_subspaces * sizeof (struct som_subspace_dictionary_record);
|
||
|
||
/* Next is the string table for the space/subspace names. We will
|
||
build and write the string table on the fly. At the same time
|
||
we will fill in the space/subspace name index fields. */
|
||
|
||
/* The string table needs to be aligned on a word boundary. */
|
||
if (current_offset % 4)
|
||
current_offset += (4 - (current_offset % 4));
|
||
|
||
/* Mark the offset of the space/subspace string table in the
|
||
file header. */
|
||
obj_som_file_hdr (abfd)->space_strings_location = current_offset;
|
||
|
||
/* Scribble out the space strings. */
|
||
if (! som_write_space_strings (abfd, current_offset, &strings_size))
|
||
return FALSE;
|
||
|
||
/* Record total string table size in the header and update the
|
||
current offset. */
|
||
obj_som_file_hdr (abfd)->space_strings_size = strings_size;
|
||
current_offset += strings_size;
|
||
|
||
/* Next is the compilation unit. */
|
||
obj_som_file_hdr (abfd)->compiler_location = current_offset;
|
||
obj_som_file_hdr (abfd)->compiler_total = 0;
|
||
if (obj_som_compilation_unit (abfd))
|
||
{
|
||
obj_som_file_hdr (abfd)->compiler_total = 1;
|
||
current_offset += COMPUNITSZ;
|
||
}
|
||
|
||
/* Now compute the file positions for the loadable subspaces, taking
|
||
care to make sure everything stays properly aligned. */
|
||
|
||
section = abfd->sections;
|
||
for (i = 0; i < num_spaces; i++)
|
||
{
|
||
asection *subsection;
|
||
int first_subspace;
|
||
unsigned int subspace_offset = 0;
|
||
|
||
/* Find a space. */
|
||
while (!som_is_space (section))
|
||
section = section->next;
|
||
|
||
first_subspace = 1;
|
||
/* Now look for all its subspaces. */
|
||
for (subsection = abfd->sections;
|
||
subsection != NULL;
|
||
subsection = subsection->next)
|
||
{
|
||
|
||
if (!som_is_subspace (subsection)
|
||
|| !som_is_container (section, subsection)
|
||
|| (subsection->flags & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
/* If this is the first subspace in the space, and we are
|
||
building an executable, then take care to make sure all
|
||
the alignments are correct and update the exec header. */
|
||
if (first_subspace
|
||
&& (abfd->flags & (EXEC_P | DYNAMIC)))
|
||
{
|
||
/* Demand paged executables have each space aligned to a
|
||
page boundary. Sharable executables (write-protected
|
||
text) have just the private (aka data & bss) space aligned
|
||
to a page boundary. Ugh. Not true for HPUX.
|
||
|
||
The HPUX kernel requires the text to always be page aligned
|
||
within the file regardless of the executable's type. */
|
||
if (abfd->flags & (D_PAGED | DYNAMIC)
|
||
|| (subsection->flags & SEC_CODE)
|
||
|| ((abfd->flags & WP_TEXT)
|
||
&& (subsection->flags & SEC_DATA)))
|
||
current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
|
||
|
||
/* Update the exec header. */
|
||
if (subsection->flags & SEC_CODE && exec_header->exec_tfile == 0)
|
||
{
|
||
exec_header->exec_tmem = section->vma;
|
||
exec_header->exec_tfile = current_offset;
|
||
}
|
||
if (subsection->flags & SEC_DATA && exec_header->exec_dfile == 0)
|
||
{
|
||
exec_header->exec_dmem = section->vma;
|
||
exec_header->exec_dfile = current_offset;
|
||
}
|
||
|
||
/* Keep track of exactly where we are within a particular
|
||
space. This is necessary as the braindamaged HPUX
|
||
loader will create holes between subspaces *and*
|
||
subspace alignments are *NOT* preserved. What a crock. */
|
||
subspace_offset = subsection->vma;
|
||
|
||
/* Only do this for the first subspace within each space. */
|
||
first_subspace = 0;
|
||
}
|
||
else if (abfd->flags & (EXEC_P | DYNAMIC))
|
||
{
|
||
/* The braindamaged HPUX loader may have created a hole
|
||
between two subspaces. It is *not* sufficient to use
|
||
the alignment specifications within the subspaces to
|
||
account for these holes -- I've run into at least one
|
||
case where the loader left one code subspace unaligned
|
||
in a final executable.
|
||
|
||
To combat this we keep a current offset within each space,
|
||
and use the subspace vma fields to detect and preserve
|
||
holes. What a crock!
|
||
|
||
ps. This is not necessary for unloadable space/subspaces. */
|
||
current_offset += subsection->vma - subspace_offset;
|
||
if (subsection->flags & SEC_CODE)
|
||
exec_header->exec_tsize += subsection->vma - subspace_offset;
|
||
else
|
||
exec_header->exec_dsize += subsection->vma - subspace_offset;
|
||
subspace_offset += subsection->vma - subspace_offset;
|
||
}
|
||
|
||
subsection->target_index = total_subspaces++;
|
||
/* This is real data to be loaded from the file. */
|
||
if (subsection->flags & SEC_LOAD)
|
||
{
|
||
/* Update the size of the code & data. */
|
||
if (abfd->flags & (EXEC_P | DYNAMIC)
|
||
&& subsection->flags & SEC_CODE)
|
||
exec_header->exec_tsize += subsection->size;
|
||
else if (abfd->flags & (EXEC_P | DYNAMIC)
|
||
&& subsection->flags & SEC_DATA)
|
||
exec_header->exec_dsize += subsection->size;
|
||
som_section_data (subsection)->subspace_dict->file_loc_init_value
|
||
= current_offset;
|
||
subsection->filepos = current_offset;
|
||
current_offset += subsection->size;
|
||
subspace_offset += subsection->size;
|
||
}
|
||
/* Looks like uninitialized data. */
|
||
else
|
||
{
|
||
/* Update the size of the bss section. */
|
||
if (abfd->flags & (EXEC_P | DYNAMIC))
|
||
exec_header->exec_bsize += subsection->size;
|
||
|
||
som_section_data (subsection)->subspace_dict->file_loc_init_value
|
||
= 0;
|
||
som_section_data (subsection)->subspace_dict->
|
||
initialization_length = 0;
|
||
}
|
||
}
|
||
/* Goto the next section. */
|
||
section = section->next;
|
||
}
|
||
|
||
/* Finally compute the file positions for unloadable subspaces.
|
||
If building an executable, start the unloadable stuff on its
|
||
own page. */
|
||
|
||
if (abfd->flags & (EXEC_P | DYNAMIC))
|
||
current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
|
||
|
||
obj_som_file_hdr (abfd)->unloadable_sp_location = current_offset;
|
||
section = abfd->sections;
|
||
for (i = 0; i < num_spaces; i++)
|
||
{
|
||
asection *subsection;
|
||
|
||
/* Find a space. */
|
||
while (!som_is_space (section))
|
||
section = section->next;
|
||
|
||
if (abfd->flags & (EXEC_P | DYNAMIC))
|
||
current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
|
||
|
||
/* Now look for all its subspaces. */
|
||
for (subsection = abfd->sections;
|
||
subsection != NULL;
|
||
subsection = subsection->next)
|
||
{
|
||
|
||
if (!som_is_subspace (subsection)
|
||
|| !som_is_container (section, subsection)
|
||
|| (subsection->flags & SEC_ALLOC) != 0)
|
||
continue;
|
||
|
||
subsection->target_index = total_subspaces++;
|
||
/* This is real data to be loaded from the file. */
|
||
if ((subsection->flags & SEC_LOAD) == 0)
|
||
{
|
||
som_section_data (subsection)->subspace_dict->file_loc_init_value
|
||
= current_offset;
|
||
subsection->filepos = current_offset;
|
||
current_offset += subsection->size;
|
||
}
|
||
/* Looks like uninitialized data. */
|
||
else
|
||
{
|
||
som_section_data (subsection)->subspace_dict->file_loc_init_value
|
||
= 0;
|
||
som_section_data (subsection)->subspace_dict->
|
||
initialization_length = subsection->size;
|
||
}
|
||
}
|
||
/* Goto the next section. */
|
||
section = section->next;
|
||
}
|
||
|
||
/* If building an executable, then make sure to seek to and write
|
||
one byte at the end of the file to make sure any necessary
|
||
zeros are filled in. Ugh. */
|
||
if (abfd->flags & (EXEC_P | DYNAMIC))
|
||
current_offset = SOM_ALIGN (current_offset, PA_PAGESIZE);
|
||
if (bfd_seek (abfd, (file_ptr) current_offset - 1, SEEK_SET) != 0)
|
||
return FALSE;
|
||
if (bfd_bwrite ((void *) "", (bfd_size_type) 1, abfd) != 1)
|
||
return FALSE;
|
||
|
||
obj_som_file_hdr (abfd)->unloadable_sp_size
|
||
= current_offset - obj_som_file_hdr (abfd)->unloadable_sp_location;
|
||
|
||
/* Loader fixups are not supported in any way shape or form. */
|
||
obj_som_file_hdr (abfd)->loader_fixup_location = 0;
|
||
obj_som_file_hdr (abfd)->loader_fixup_total = 0;
|
||
|
||
/* Done. Store the total size of the SOM so far. */
|
||
obj_som_file_hdr (abfd)->som_length = current_offset;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Finally, scribble out the various headers to the disk. */
|
||
|
||
static bfd_boolean
|
||
som_finish_writing (bfd *abfd)
|
||
{
|
||
int num_spaces = som_count_spaces (abfd);
|
||
asymbol **syms = bfd_get_outsymbols (abfd);
|
||
int i, num_syms;
|
||
int subspace_index = 0;
|
||
file_ptr location;
|
||
asection *section;
|
||
unsigned long current_offset;
|
||
unsigned int strings_size, total_reloc_size;
|
||
bfd_size_type amt;
|
||
|
||
/* We must set up the version identifier here as objcopy/strip copy
|
||
private BFD data too late for us to handle this in som_begin_writing. */
|
||
if (obj_som_exec_data (abfd)
|
||
&& obj_som_exec_data (abfd)->version_id)
|
||
obj_som_file_hdr (abfd)->version_id = obj_som_exec_data (abfd)->version_id;
|
||
else
|
||
obj_som_file_hdr (abfd)->version_id = NEW_VERSION_ID;
|
||
|
||
/* Next is the symbol table. These are fixed length records.
|
||
|
||
Count the number of symbols to determine how much room is needed
|
||
in the object file for the symbol table.
|
||
|
||
The names of the symbols are stored in a separate string table,
|
||
and the index for each symbol name into the string table is computed
|
||
below. Therefore, it is not possible to write the symbol table
|
||
at this time.
|
||
|
||
These used to be output before the subspace contents, but they
|
||
were moved here to work around a stupid bug in the hpux linker
|
||
(fixed in hpux10). */
|
||
current_offset = obj_som_file_hdr (abfd)->som_length;
|
||
|
||
/* Make sure we're on a word boundary. */
|
||
if (current_offset % 4)
|
||
current_offset += (4 - (current_offset % 4));
|
||
|
||
num_syms = bfd_get_symcount (abfd);
|
||
obj_som_file_hdr (abfd)->symbol_location = current_offset;
|
||
obj_som_file_hdr (abfd)->symbol_total = num_syms;
|
||
current_offset += num_syms * sizeof (struct symbol_dictionary_record);
|
||
|
||
/* Next are the symbol strings.
|
||
Align them to a word boundary. */
|
||
if (current_offset % 4)
|
||
current_offset += (4 - (current_offset % 4));
|
||
obj_som_file_hdr (abfd)->symbol_strings_location = current_offset;
|
||
|
||
/* Scribble out the symbol strings. */
|
||
if (! som_write_symbol_strings (abfd, current_offset, syms,
|
||
num_syms, &strings_size,
|
||
obj_som_compilation_unit (abfd)))
|
||
return FALSE;
|
||
|
||
/* Record total string table size in header and update the
|
||
current offset. */
|
||
obj_som_file_hdr (abfd)->symbol_strings_size = strings_size;
|
||
current_offset += strings_size;
|
||
|
||
/* Do prep work before handling fixups. */
|
||
som_prep_for_fixups (abfd,
|
||
bfd_get_outsymbols (abfd),
|
||
bfd_get_symcount (abfd));
|
||
|
||
/* At the end of the file is the fixup stream which starts on a
|
||
word boundary. */
|
||
if (current_offset % 4)
|
||
current_offset += (4 - (current_offset % 4));
|
||
obj_som_file_hdr (abfd)->fixup_request_location = current_offset;
|
||
|
||
/* Write the fixups and update fields in subspace headers which
|
||
relate to the fixup stream. */
|
||
if (! som_write_fixups (abfd, current_offset, &total_reloc_size))
|
||
return FALSE;
|
||
|
||
/* Record the total size of the fixup stream in the file header. */
|
||
obj_som_file_hdr (abfd)->fixup_request_total = total_reloc_size;
|
||
|
||
/* Done. Store the total size of the SOM. */
|
||
obj_som_file_hdr (abfd)->som_length = current_offset + total_reloc_size;
|
||
|
||
/* Now that the symbol table information is complete, build and
|
||
write the symbol table. */
|
||
if (! som_build_and_write_symbol_table (abfd))
|
||
return FALSE;
|
||
|
||
/* Subspaces are written first so that we can set up information
|
||
about them in their containing spaces as the subspace is written. */
|
||
|
||
/* Seek to the start of the subspace dictionary records. */
|
||
location = obj_som_file_hdr (abfd)->subspace_location;
|
||
if (bfd_seek (abfd, location, SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
section = abfd->sections;
|
||
/* Now for each loadable space write out records for its subspaces. */
|
||
for (i = 0; i < num_spaces; i++)
|
||
{
|
||
asection *subsection;
|
||
|
||
/* Find a space. */
|
||
while (!som_is_space (section))
|
||
section = section->next;
|
||
|
||
/* Now look for all its subspaces. */
|
||
for (subsection = abfd->sections;
|
||
subsection != NULL;
|
||
subsection = subsection->next)
|
||
{
|
||
|
||
/* Skip any section which does not correspond to a space
|
||
or subspace. Or does not have SEC_ALLOC set (and therefore
|
||
has no real bits on the disk). */
|
||
if (!som_is_subspace (subsection)
|
||
|| !som_is_container (section, subsection)
|
||
|| (subsection->flags & SEC_ALLOC) == 0)
|
||
continue;
|
||
|
||
/* If this is the first subspace for this space, then save
|
||
the index of the subspace in its containing space. Also
|
||
set "is_loadable" in the containing space. */
|
||
|
||
if (som_section_data (section)->space_dict->subspace_quantity == 0)
|
||
{
|
||
som_section_data (section)->space_dict->is_loadable = 1;
|
||
som_section_data (section)->space_dict->subspace_index
|
||
= subspace_index;
|
||
}
|
||
|
||
/* Increment the number of subspaces seen and the number of
|
||
subspaces contained within the current space. */
|
||
subspace_index++;
|
||
som_section_data (section)->space_dict->subspace_quantity++;
|
||
|
||
/* Mark the index of the current space within the subspace's
|
||
dictionary record. */
|
||
som_section_data (subsection)->subspace_dict->space_index = i;
|
||
|
||
/* Dump the current subspace header. */
|
||
amt = sizeof (struct som_subspace_dictionary_record);
|
||
if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
|
||
amt, abfd) != amt)
|
||
return FALSE;
|
||
}
|
||
/* Goto the next section. */
|
||
section = section->next;
|
||
}
|
||
|
||
/* Now repeat the process for unloadable subspaces. */
|
||
section = abfd->sections;
|
||
/* Now for each space write out records for its subspaces. */
|
||
for (i = 0; i < num_spaces; i++)
|
||
{
|
||
asection *subsection;
|
||
|
||
/* Find a space. */
|
||
while (!som_is_space (section))
|
||
section = section->next;
|
||
|
||
/* Now look for all its subspaces. */
|
||
for (subsection = abfd->sections;
|
||
subsection != NULL;
|
||
subsection = subsection->next)
|
||
{
|
||
|
||
/* Skip any section which does not correspond to a space or
|
||
subspace, or which SEC_ALLOC set (and therefore handled
|
||
in the loadable spaces/subspaces code above). */
|
||
|
||
if (!som_is_subspace (subsection)
|
||
|| !som_is_container (section, subsection)
|
||
|| (subsection->flags & SEC_ALLOC) != 0)
|
||
continue;
|
||
|
||
/* If this is the first subspace for this space, then save
|
||
the index of the subspace in its containing space. Clear
|
||
"is_loadable". */
|
||
|
||
if (som_section_data (section)->space_dict->subspace_quantity == 0)
|
||
{
|
||
som_section_data (section)->space_dict->is_loadable = 0;
|
||
som_section_data (section)->space_dict->subspace_index
|
||
= subspace_index;
|
||
}
|
||
|
||
/* Increment the number of subspaces seen and the number of
|
||
subspaces contained within the current space. */
|
||
som_section_data (section)->space_dict->subspace_quantity++;
|
||
subspace_index++;
|
||
|
||
/* Mark the index of the current space within the subspace's
|
||
dictionary record. */
|
||
som_section_data (subsection)->subspace_dict->space_index = i;
|
||
|
||
/* Dump this subspace header. */
|
||
amt = sizeof (struct som_subspace_dictionary_record);
|
||
if (bfd_bwrite ((void *) som_section_data (subsection)->subspace_dict,
|
||
amt, abfd) != amt)
|
||
return FALSE;
|
||
}
|
||
/* Goto the next section. */
|
||
section = section->next;
|
||
}
|
||
|
||
/* All the subspace dictionary records are written, and all the
|
||
fields are set up in the space dictionary records.
|
||
|
||
Seek to the right location and start writing the space
|
||
dictionary records. */
|
||
location = obj_som_file_hdr (abfd)->space_location;
|
||
if (bfd_seek (abfd, location, SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
section = abfd->sections;
|
||
for (i = 0; i < num_spaces; i++)
|
||
{
|
||
/* Find a space. */
|
||
while (!som_is_space (section))
|
||
section = section->next;
|
||
|
||
/* Dump its header. */
|
||
amt = sizeof (struct space_dictionary_record);
|
||
if (bfd_bwrite ((void *) som_section_data (section)->space_dict,
|
||
amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
/* Goto the next section. */
|
||
section = section->next;
|
||
}
|
||
|
||
/* Write the compilation unit record if there is one. */
|
||
if (obj_som_compilation_unit (abfd))
|
||
{
|
||
location = obj_som_file_hdr (abfd)->compiler_location;
|
||
if (bfd_seek (abfd, location, SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
amt = COMPUNITSZ;
|
||
if (bfd_bwrite ((void *) obj_som_compilation_unit (abfd), amt, abfd) != amt)
|
||
return FALSE;
|
||
}
|
||
|
||
/* Setting of the system_id has to happen very late now that copying of
|
||
BFD private data happens *after* section contents are set. */
|
||
if (abfd->flags & (EXEC_P | DYNAMIC))
|
||
obj_som_file_hdr (abfd)->system_id = obj_som_exec_data (abfd)->system_id;
|
||
else if (bfd_get_mach (abfd) == pa20)
|
||
obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC2_0;
|
||
else if (bfd_get_mach (abfd) == pa11)
|
||
obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_1;
|
||
else
|
||
obj_som_file_hdr (abfd)->system_id = CPU_PA_RISC1_0;
|
||
|
||
/* Compute the checksum for the file header just before writing
|
||
the header to disk. */
|
||
obj_som_file_hdr (abfd)->checksum = som_compute_checksum (abfd);
|
||
|
||
/* Only thing left to do is write out the file header. It is always
|
||
at location zero. Seek there and write it. */
|
||
if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0)
|
||
return FALSE;
|
||
amt = sizeof (struct header);
|
||
if (bfd_bwrite ((void *) obj_som_file_hdr (abfd), amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
/* Now write the exec header. */
|
||
if (abfd->flags & (EXEC_P | DYNAMIC))
|
||
{
|
||
long tmp, som_length;
|
||
struct som_exec_auxhdr *exec_header;
|
||
|
||
exec_header = obj_som_exec_hdr (abfd);
|
||
exec_header->exec_entry = bfd_get_start_address (abfd);
|
||
exec_header->exec_flags = obj_som_exec_data (abfd)->exec_flags;
|
||
|
||
/* Oh joys. Ram some of the BSS data into the DATA section
|
||
to be compatible with how the hp linker makes objects
|
||
(saves memory space). */
|
||
tmp = exec_header->exec_dsize;
|
||
tmp = SOM_ALIGN (tmp, PA_PAGESIZE);
|
||
exec_header->exec_bsize -= (tmp - exec_header->exec_dsize);
|
||
if (exec_header->exec_bsize < 0)
|
||
exec_header->exec_bsize = 0;
|
||
exec_header->exec_dsize = tmp;
|
||
|
||
/* Now perform some sanity checks. The idea is to catch bogons now and
|
||
inform the user, instead of silently generating a bogus file. */
|
||
som_length = obj_som_file_hdr (abfd)->som_length;
|
||
if (exec_header->exec_tfile + exec_header->exec_tsize > som_length
|
||
|| exec_header->exec_dfile + exec_header->exec_dsize > som_length)
|
||
{
|
||
bfd_set_error (bfd_error_bad_value);
|
||
return FALSE;
|
||
}
|
||
|
||
if (bfd_seek (abfd, obj_som_file_hdr (abfd)->aux_header_location,
|
||
SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
amt = AUX_HDR_SIZE;
|
||
if (bfd_bwrite ((void *) exec_header, amt, abfd) != amt)
|
||
return FALSE;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Compute and return the checksum for a SOM file header. */
|
||
|
||
static unsigned long
|
||
som_compute_checksum (bfd *abfd)
|
||
{
|
||
unsigned long checksum, count, i;
|
||
unsigned long *buffer = (unsigned long *) obj_som_file_hdr (abfd);
|
||
|
||
checksum = 0;
|
||
count = sizeof (struct header) / sizeof (unsigned long);
|
||
for (i = 0; i < count; i++)
|
||
checksum ^= *(buffer + i);
|
||
|
||
return checksum;
|
||
}
|
||
|
||
static void
|
||
som_bfd_derive_misc_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
|
||
asymbol *sym,
|
||
struct som_misc_symbol_info *info)
|
||
{
|
||
/* Initialize. */
|
||
memset (info, 0, sizeof (struct som_misc_symbol_info));
|
||
|
||
/* The HP SOM linker requires detailed type information about
|
||
all symbols (including undefined symbols!). Unfortunately,
|
||
the type specified in an import/export statement does not
|
||
always match what the linker wants. Severe braindamage. */
|
||
|
||
/* Section symbols will not have a SOM symbol type assigned to
|
||
them yet. Assign all section symbols type ST_DATA. */
|
||
if (sym->flags & BSF_SECTION_SYM)
|
||
info->symbol_type = ST_DATA;
|
||
else
|
||
{
|
||
/* For BFD style common, the linker will choke unless we set the
|
||
type and scope to ST_STORAGE and SS_UNSAT, respectively. */
|
||
if (bfd_is_com_section (sym->section))
|
||
{
|
||
info->symbol_type = ST_STORAGE;
|
||
info->symbol_scope = SS_UNSAT;
|
||
}
|
||
|
||
/* It is possible to have a symbol without an associated
|
||
type. This happens if the user imported the symbol
|
||
without a type and the symbol was never defined
|
||
locally. If BSF_FUNCTION is set for this symbol, then
|
||
assign it type ST_CODE (the HP linker requires undefined
|
||
external functions to have type ST_CODE rather than ST_ENTRY). */
|
||
else if ((som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
|
||
|| som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
|
||
&& bfd_is_und_section (sym->section)
|
||
&& sym->flags & BSF_FUNCTION)
|
||
info->symbol_type = ST_CODE;
|
||
|
||
/* Handle function symbols which were defined in this file.
|
||
They should have type ST_ENTRY. Also retrieve the argument
|
||
relocation bits from the SOM backend information. */
|
||
else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ENTRY
|
||
|| (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE
|
||
&& (sym->flags & BSF_FUNCTION))
|
||
|| (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN
|
||
&& (sym->flags & BSF_FUNCTION)))
|
||
{
|
||
info->symbol_type = ST_ENTRY;
|
||
info->arg_reloc = som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc;
|
||
info->priv_level= som_symbol_data (sym)->tc_data.ap.hppa_priv_level;
|
||
}
|
||
|
||
/* For unknown symbols set the symbol's type based on the symbol's
|
||
section (ST_DATA for DATA sections, ST_CODE for CODE sections). */
|
||
else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_UNKNOWN)
|
||
{
|
||
if (bfd_is_abs_section (sym->section))
|
||
info->symbol_type = ST_ABSOLUTE;
|
||
else if (sym->section->flags & SEC_CODE)
|
||
info->symbol_type = ST_CODE;
|
||
else
|
||
info->symbol_type = ST_DATA;
|
||
}
|
||
|
||
/* From now on it's a very simple mapping. */
|
||
else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_ABSOLUTE)
|
||
info->symbol_type = ST_ABSOLUTE;
|
||
else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_CODE)
|
||
info->symbol_type = ST_CODE;
|
||
else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_DATA)
|
||
info->symbol_type = ST_DATA;
|
||
else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_MILLICODE)
|
||
info->symbol_type = ST_MILLICODE;
|
||
else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PLABEL)
|
||
info->symbol_type = ST_PLABEL;
|
||
else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_PRI_PROG)
|
||
info->symbol_type = ST_PRI_PROG;
|
||
else if (som_symbol_data (sym)->som_type == SYMBOL_TYPE_SEC_PROG)
|
||
info->symbol_type = ST_SEC_PROG;
|
||
}
|
||
|
||
/* Now handle the symbol's scope. Exported data which is not
|
||
in the common section has scope SS_UNIVERSAL. Note scope
|
||
of common symbols was handled earlier! */
|
||
if (bfd_is_com_section (sym->section))
|
||
;
|
||
else if (bfd_is_und_section (sym->section))
|
||
info->symbol_scope = SS_UNSAT;
|
||
else if (sym->flags & (BSF_EXPORT | BSF_WEAK))
|
||
info->symbol_scope = SS_UNIVERSAL;
|
||
/* Anything else which is not in the common section has scope
|
||
SS_LOCAL. */
|
||
else
|
||
info->symbol_scope = SS_LOCAL;
|
||
|
||
/* Now set the symbol_info field. It has no real meaning
|
||
for undefined or common symbols, but the HP linker will
|
||
choke if it's not set to some "reasonable" value. We
|
||
use zero as a reasonable value. */
|
||
if (bfd_is_com_section (sym->section)
|
||
|| bfd_is_und_section (sym->section)
|
||
|| bfd_is_abs_section (sym->section))
|
||
info->symbol_info = 0;
|
||
/* For all other symbols, the symbol_info field contains the
|
||
subspace index of the space this symbol is contained in. */
|
||
else
|
||
info->symbol_info = sym->section->target_index;
|
||
|
||
/* Set the symbol's value. */
|
||
info->symbol_value = sym->value + sym->section->vma;
|
||
|
||
/* The secondary_def field is for "weak" symbols. */
|
||
if (sym->flags & BSF_WEAK)
|
||
info->secondary_def = TRUE;
|
||
else
|
||
info->secondary_def = FALSE;
|
||
|
||
/* The is_comdat, is_common and dup_common fields provide various
|
||
flavors of common.
|
||
|
||
For data symbols, setting IS_COMMON provides Fortran style common
|
||
(duplicate definitions and overlapped initialization). Setting both
|
||
IS_COMMON and DUP_COMMON provides Cobol style common (duplicate
|
||
definitions as long as they are all the same length). In a shared
|
||
link data symbols retain their IS_COMMON and DUP_COMMON flags.
|
||
An IS_COMDAT data symbol is similar to a IS_COMMON | DUP_COMMON
|
||
symbol except in that it loses its IS_COMDAT flag in a shared link.
|
||
|
||
For code symbols, IS_COMDAT and DUP_COMMON have effect. Universal
|
||
DUP_COMMON code symbols are not exported from shared libraries.
|
||
IS_COMDAT symbols are exported but they lose their IS_COMDAT flag.
|
||
|
||
We take a simplified approach to setting the is_comdat, is_common
|
||
and dup_common flags in symbols based on the flag settings of their
|
||
subspace. This avoids having to add directives like `.comdat' but
|
||
the linker behavior is probably undefined if there is more than one
|
||
universal symbol (comdat key sysmbol) in a subspace.
|
||
|
||
The behavior of these flags is not well documentmented, so there
|
||
may be bugs and some surprising interactions with other flags. */
|
||
if (som_section_data (sym->section)
|
||
&& som_section_data (sym->section)->subspace_dict
|
||
&& info->symbol_scope == SS_UNIVERSAL
|
||
&& (info->symbol_type == ST_ENTRY
|
||
|| info->symbol_type == ST_CODE
|
||
|| info->symbol_type == ST_DATA))
|
||
{
|
||
info->is_comdat
|
||
= som_section_data (sym->section)->subspace_dict->is_comdat;
|
||
info->is_common
|
||
= som_section_data (sym->section)->subspace_dict->is_common;
|
||
info->dup_common
|
||
= som_section_data (sym->section)->subspace_dict->dup_common;
|
||
}
|
||
}
|
||
|
||
/* Build and write, in one big chunk, the entire symbol table for
|
||
this BFD. */
|
||
|
||
static bfd_boolean
|
||
som_build_and_write_symbol_table (bfd *abfd)
|
||
{
|
||
unsigned int num_syms = bfd_get_symcount (abfd);
|
||
file_ptr symtab_location = obj_som_file_hdr (abfd)->symbol_location;
|
||
asymbol **bfd_syms = obj_som_sorted_syms (abfd);
|
||
struct symbol_dictionary_record *som_symtab = NULL;
|
||
unsigned int i;
|
||
bfd_size_type symtab_size;
|
||
|
||
/* Compute total symbol table size and allocate a chunk of memory
|
||
to hold the symbol table as we build it. */
|
||
symtab_size = num_syms;
|
||
symtab_size *= sizeof (struct symbol_dictionary_record);
|
||
som_symtab = bfd_zmalloc (symtab_size);
|
||
if (som_symtab == NULL && symtab_size != 0)
|
||
goto error_return;
|
||
|
||
/* Walk over each symbol. */
|
||
for (i = 0; i < num_syms; i++)
|
||
{
|
||
struct som_misc_symbol_info info;
|
||
|
||
/* This is really an index into the symbol strings table.
|
||
By the time we get here, the index has already been
|
||
computed and stored into the name field in the BFD symbol. */
|
||
som_symtab[i].name.n_strx = som_symbol_data(bfd_syms[i])->stringtab_offset;
|
||
|
||
/* Derive SOM information from the BFD symbol. */
|
||
som_bfd_derive_misc_symbol_info (abfd, bfd_syms[i], &info);
|
||
|
||
/* Now use it. */
|
||
som_symtab[i].symbol_type = info.symbol_type;
|
||
som_symtab[i].symbol_scope = info.symbol_scope;
|
||
som_symtab[i].arg_reloc = info.arg_reloc;
|
||
som_symtab[i].symbol_info = info.symbol_info;
|
||
som_symtab[i].xleast = 3;
|
||
som_symtab[i].symbol_value = info.symbol_value | info.priv_level;
|
||
som_symtab[i].secondary_def = info.secondary_def;
|
||
som_symtab[i].is_comdat = info.is_comdat;
|
||
som_symtab[i].is_common = info.is_common;
|
||
som_symtab[i].dup_common = info.dup_common;
|
||
}
|
||
|
||
/* Everything is ready, seek to the right location and
|
||
scribble out the symbol table. */
|
||
if (bfd_seek (abfd, symtab_location, SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
if (bfd_bwrite ((void *) som_symtab, symtab_size, abfd) != symtab_size)
|
||
goto error_return;
|
||
|
||
if (som_symtab != NULL)
|
||
free (som_symtab);
|
||
return TRUE;
|
||
error_return:
|
||
if (som_symtab != NULL)
|
||
free (som_symtab);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Write an object in SOM format. */
|
||
|
||
static bfd_boolean
|
||
som_write_object_contents (bfd *abfd)
|
||
{
|
||
if (! abfd->output_has_begun)
|
||
{
|
||
/* Set up fixed parts of the file, space, and subspace headers.
|
||
Notify the world that output has begun. */
|
||
som_prep_headers (abfd);
|
||
abfd->output_has_begun = TRUE;
|
||
/* Start writing the object file. This include all the string
|
||
tables, fixup streams, and other portions of the object file. */
|
||
som_begin_writing (abfd);
|
||
}
|
||
|
||
return som_finish_writing (abfd);
|
||
}
|
||
|
||
/* Read and save the string table associated with the given BFD. */
|
||
|
||
static bfd_boolean
|
||
som_slurp_string_table (bfd *abfd)
|
||
{
|
||
char *stringtab;
|
||
bfd_size_type amt;
|
||
|
||
/* Use the saved version if its available. */
|
||
if (obj_som_stringtab (abfd) != NULL)
|
||
return TRUE;
|
||
|
||
/* I don't think this can currently happen, and I'm not sure it should
|
||
really be an error, but it's better than getting unpredictable results
|
||
from the host's malloc when passed a size of zero. */
|
||
if (obj_som_stringtab_size (abfd) == 0)
|
||
{
|
||
bfd_set_error (bfd_error_no_symbols);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Allocate and read in the string table. */
|
||
amt = obj_som_stringtab_size (abfd);
|
||
stringtab = bfd_zmalloc (amt);
|
||
if (stringtab == NULL)
|
||
return FALSE;
|
||
|
||
if (bfd_seek (abfd, obj_som_str_filepos (abfd), SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
if (bfd_bread (stringtab, amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
/* Save our results and return success. */
|
||
obj_som_stringtab (abfd) = stringtab;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the amount of data (in bytes) required to hold the symbol
|
||
table for this object. */
|
||
|
||
static long
|
||
som_get_symtab_upper_bound (bfd *abfd)
|
||
{
|
||
if (!som_slurp_symbol_table (abfd))
|
||
return -1;
|
||
|
||
return (bfd_get_symcount (abfd) + 1) * sizeof (asymbol *);
|
||
}
|
||
|
||
/* Convert from a SOM subspace index to a BFD section. */
|
||
|
||
static asection *
|
||
bfd_section_from_som_symbol (bfd *abfd, struct symbol_dictionary_record *symbol)
|
||
{
|
||
asection *section;
|
||
|
||
/* The meaning of the symbol_info field changes for functions
|
||
within executables. So only use the quick symbol_info mapping for
|
||
incomplete objects and non-function symbols in executables. */
|
||
if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
|
||
|| (symbol->symbol_type != ST_ENTRY
|
||
&& symbol->symbol_type != ST_PRI_PROG
|
||
&& symbol->symbol_type != ST_SEC_PROG
|
||
&& symbol->symbol_type != ST_MILLICODE))
|
||
{
|
||
int idx = symbol->symbol_info;
|
||
|
||
for (section = abfd->sections; section != NULL; section = section->next)
|
||
if (section->target_index == idx && som_is_subspace (section))
|
||
return section;
|
||
}
|
||
else
|
||
{
|
||
unsigned int value = symbol->symbol_value;
|
||
|
||
/* For executables we will have to use the symbol's address and
|
||
find out what section would contain that address. Yuk. */
|
||
for (section = abfd->sections; section; section = section->next)
|
||
if (value >= section->vma
|
||
&& value <= section->vma + section->size
|
||
&& som_is_subspace (section))
|
||
return section;
|
||
}
|
||
|
||
/* Could be a symbol from an external library (such as an OMOS
|
||
shared library). Don't abort. */
|
||
return bfd_abs_section_ptr;
|
||
}
|
||
|
||
/* Read and save the symbol table associated with the given BFD. */
|
||
|
||
static unsigned int
|
||
som_slurp_symbol_table (bfd *abfd)
|
||
{
|
||
int symbol_count = bfd_get_symcount (abfd);
|
||
int symsize = sizeof (struct symbol_dictionary_record);
|
||
char *stringtab;
|
||
struct symbol_dictionary_record *buf = NULL, *bufp, *endbufp;
|
||
som_symbol_type *sym, *symbase;
|
||
bfd_size_type amt;
|
||
|
||
/* Return saved value if it exists. */
|
||
if (obj_som_symtab (abfd) != NULL)
|
||
goto successful_return;
|
||
|
||
/* Special case. This is *not* an error. */
|
||
if (symbol_count == 0)
|
||
goto successful_return;
|
||
|
||
if (!som_slurp_string_table (abfd))
|
||
goto error_return;
|
||
|
||
stringtab = obj_som_stringtab (abfd);
|
||
|
||
amt = symbol_count;
|
||
amt *= sizeof (som_symbol_type);
|
||
symbase = bfd_zmalloc (amt);
|
||
if (symbase == NULL)
|
||
goto error_return;
|
||
|
||
/* Read in the external SOM representation. */
|
||
amt = symbol_count;
|
||
amt *= symsize;
|
||
buf = bfd_malloc (amt);
|
||
if (buf == NULL && amt != 0)
|
||
goto error_return;
|
||
if (bfd_seek (abfd, obj_som_sym_filepos (abfd), SEEK_SET) != 0)
|
||
goto error_return;
|
||
if (bfd_bread (buf, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
/* Iterate over all the symbols and internalize them. */
|
||
endbufp = buf + symbol_count;
|
||
for (bufp = buf, sym = symbase; bufp < endbufp; ++bufp)
|
||
{
|
||
/* I don't think we care about these. */
|
||
if (bufp->symbol_type == ST_SYM_EXT
|
||
|| bufp->symbol_type == ST_ARG_EXT)
|
||
continue;
|
||
|
||
/* Set some private data we care about. */
|
||
if (bufp->symbol_type == ST_NULL)
|
||
som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
|
||
else if (bufp->symbol_type == ST_ABSOLUTE)
|
||
som_symbol_data (sym)->som_type = SYMBOL_TYPE_ABSOLUTE;
|
||
else if (bufp->symbol_type == ST_DATA)
|
||
som_symbol_data (sym)->som_type = SYMBOL_TYPE_DATA;
|
||
else if (bufp->symbol_type == ST_CODE)
|
||
som_symbol_data (sym)->som_type = SYMBOL_TYPE_CODE;
|
||
else if (bufp->symbol_type == ST_PRI_PROG)
|
||
som_symbol_data (sym)->som_type = SYMBOL_TYPE_PRI_PROG;
|
||
else if (bufp->symbol_type == ST_SEC_PROG)
|
||
som_symbol_data (sym)->som_type = SYMBOL_TYPE_SEC_PROG;
|
||
else if (bufp->symbol_type == ST_ENTRY)
|
||
som_symbol_data (sym)->som_type = SYMBOL_TYPE_ENTRY;
|
||
else if (bufp->symbol_type == ST_MILLICODE)
|
||
som_symbol_data (sym)->som_type = SYMBOL_TYPE_MILLICODE;
|
||
else if (bufp->symbol_type == ST_PLABEL)
|
||
som_symbol_data (sym)->som_type = SYMBOL_TYPE_PLABEL;
|
||
else
|
||
som_symbol_data (sym)->som_type = SYMBOL_TYPE_UNKNOWN;
|
||
som_symbol_data (sym)->tc_data.ap.hppa_arg_reloc = bufp->arg_reloc;
|
||
|
||
/* Some reasonable defaults. */
|
||
sym->symbol.the_bfd = abfd;
|
||
sym->symbol.name = bufp->name.n_strx + stringtab;
|
||
sym->symbol.value = bufp->symbol_value;
|
||
sym->symbol.section = 0;
|
||
sym->symbol.flags = 0;
|
||
|
||
switch (bufp->symbol_type)
|
||
{
|
||
case ST_ENTRY:
|
||
case ST_MILLICODE:
|
||
sym->symbol.flags |= BSF_FUNCTION;
|
||
som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
|
||
sym->symbol.value & 0x3;
|
||
sym->symbol.value &= ~0x3;
|
||
break;
|
||
|
||
case ST_STUB:
|
||
case ST_CODE:
|
||
case ST_PRI_PROG:
|
||
case ST_SEC_PROG:
|
||
som_symbol_data (sym)->tc_data.ap.hppa_priv_level =
|
||
sym->symbol.value & 0x3;
|
||
sym->symbol.value &= ~0x3;
|
||
/* If the symbol's scope is SS_UNSAT, then these are
|
||
undefined function symbols. */
|
||
if (bufp->symbol_scope == SS_UNSAT)
|
||
sym->symbol.flags |= BSF_FUNCTION;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Handle scoping and section information. */
|
||
switch (bufp->symbol_scope)
|
||
{
|
||
/* symbol_info field is undefined for SS_EXTERNAL and SS_UNSAT symbols,
|
||
so the section associated with this symbol can't be known. */
|
||
case SS_EXTERNAL:
|
||
if (bufp->symbol_type != ST_STORAGE)
|
||
sym->symbol.section = bfd_und_section_ptr;
|
||
else
|
||
sym->symbol.section = bfd_com_section_ptr;
|
||
sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
|
||
break;
|
||
|
||
case SS_UNSAT:
|
||
if (bufp->symbol_type != ST_STORAGE)
|
||
sym->symbol.section = bfd_und_section_ptr;
|
||
else
|
||
sym->symbol.section = bfd_com_section_ptr;
|
||
break;
|
||
|
||
case SS_UNIVERSAL:
|
||
sym->symbol.flags |= (BSF_EXPORT | BSF_GLOBAL);
|
||
sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
|
||
sym->symbol.value -= sym->symbol.section->vma;
|
||
break;
|
||
|
||
case SS_LOCAL:
|
||
sym->symbol.flags |= BSF_LOCAL;
|
||
sym->symbol.section = bfd_section_from_som_symbol (abfd, bufp);
|
||
sym->symbol.value -= sym->symbol.section->vma;
|
||
break;
|
||
}
|
||
|
||
/* Check for a weak symbol. */
|
||
if (bufp->secondary_def)
|
||
sym->symbol.flags |= BSF_WEAK;
|
||
|
||
/* Mark section symbols and symbols used by the debugger.
|
||
Note $START$ is a magic code symbol, NOT a section symbol. */
|
||
if (sym->symbol.name[0] == '$'
|
||
&& sym->symbol.name[strlen (sym->symbol.name) - 1] == '$'
|
||
&& !strcmp (sym->symbol.name, sym->symbol.section->name))
|
||
sym->symbol.flags |= BSF_SECTION_SYM;
|
||
else if (CONST_STRNEQ (sym->symbol.name, "L$0\002"))
|
||
{
|
||
sym->symbol.flags |= BSF_SECTION_SYM;
|
||
sym->symbol.name = sym->symbol.section->name;
|
||
}
|
||
else if (CONST_STRNEQ (sym->symbol.name, "L$0\001"))
|
||
sym->symbol.flags |= BSF_DEBUGGING;
|
||
|
||
/* Note increment at bottom of loop, since we skip some symbols
|
||
we can not include it as part of the for statement. */
|
||
sym++;
|
||
}
|
||
|
||
/* We modify the symbol count to record the number of BFD symbols we
|
||
created. */
|
||
bfd_get_symcount (abfd) = sym - symbase;
|
||
|
||
/* Save our results and return success. */
|
||
obj_som_symtab (abfd) = symbase;
|
||
successful_return:
|
||
if (buf != NULL)
|
||
free (buf);
|
||
return (TRUE);
|
||
|
||
error_return:
|
||
if (buf != NULL)
|
||
free (buf);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Canonicalize a SOM symbol table. Return the number of entries
|
||
in the symbol table. */
|
||
|
||
static long
|
||
som_canonicalize_symtab (bfd *abfd, asymbol **location)
|
||
{
|
||
int i;
|
||
som_symbol_type *symbase;
|
||
|
||
if (!som_slurp_symbol_table (abfd))
|
||
return -1;
|
||
|
||
i = bfd_get_symcount (abfd);
|
||
symbase = obj_som_symtab (abfd);
|
||
|
||
for (; i > 0; i--, location++, symbase++)
|
||
*location = &symbase->symbol;
|
||
|
||
/* Final null pointer. */
|
||
*location = 0;
|
||
return (bfd_get_symcount (abfd));
|
||
}
|
||
|
||
/* Make a SOM symbol. There is nothing special to do here. */
|
||
|
||
static asymbol *
|
||
som_make_empty_symbol (bfd *abfd)
|
||
{
|
||
bfd_size_type amt = sizeof (som_symbol_type);
|
||
som_symbol_type *new_symbol_type = bfd_zalloc (abfd, amt);
|
||
|
||
if (new_symbol_type == NULL)
|
||
return NULL;
|
||
new_symbol_type->symbol.the_bfd = abfd;
|
||
|
||
return &new_symbol_type->symbol;
|
||
}
|
||
|
||
/* Print symbol information. */
|
||
|
||
static void
|
||
som_print_symbol (bfd *abfd,
|
||
void *afile,
|
||
asymbol *symbol,
|
||
bfd_print_symbol_type how)
|
||
{
|
||
FILE *file = (FILE *) afile;
|
||
|
||
switch (how)
|
||
{
|
||
case bfd_print_symbol_name:
|
||
fprintf (file, "%s", symbol->name);
|
||
break;
|
||
case bfd_print_symbol_more:
|
||
fprintf (file, "som ");
|
||
fprintf_vma (file, symbol->value);
|
||
fprintf (file, " %lx", (long) symbol->flags);
|
||
break;
|
||
case bfd_print_symbol_all:
|
||
{
|
||
const char *section_name;
|
||
|
||
section_name = symbol->section ? symbol->section->name : "(*none*)";
|
||
bfd_print_symbol_vandf (abfd, (void *) file, symbol);
|
||
fprintf (file, " %s\t%s", section_name, symbol->name);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
static bfd_boolean
|
||
som_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
|
||
const char *name)
|
||
{
|
||
return name[0] == 'L' && name[1] == '$';
|
||
}
|
||
|
||
/* Count or process variable-length SOM fixup records.
|
||
|
||
To avoid code duplication we use this code both to compute the number
|
||
of relocations requested by a stream, and to internalize the stream.
|
||
|
||
When computing the number of relocations requested by a stream the
|
||
variables rptr, section, and symbols have no meaning.
|
||
|
||
Return the number of relocations requested by the fixup stream. When
|
||
not just counting
|
||
|
||
This needs at least two or three more passes to get it cleaned up. */
|
||
|
||
static unsigned int
|
||
som_set_reloc_info (unsigned char *fixup,
|
||
unsigned int end,
|
||
arelent *internal_relocs,
|
||
asection *section,
|
||
asymbol **symbols,
|
||
bfd_boolean just_count)
|
||
{
|
||
unsigned int op, varname, deallocate_contents = 0;
|
||
unsigned char *end_fixups = &fixup[end];
|
||
const struct fixup_format *fp;
|
||
const char *cp;
|
||
unsigned char *save_fixup;
|
||
int variables[26], stack[20], c, v, count, prev_fixup, *sp, saved_unwind_bits;
|
||
const int *subop;
|
||
arelent *rptr = internal_relocs;
|
||
unsigned int offset = 0;
|
||
|
||
#define var(c) variables[(c) - 'A']
|
||
#define push(v) (*sp++ = (v))
|
||
#define pop() (*--sp)
|
||
#define emptystack() (sp == stack)
|
||
|
||
som_initialize_reloc_queue (reloc_queue);
|
||
memset (variables, 0, sizeof (variables));
|
||
memset (stack, 0, sizeof (stack));
|
||
count = 0;
|
||
prev_fixup = 0;
|
||
saved_unwind_bits = 0;
|
||
sp = stack;
|
||
|
||
while (fixup < end_fixups)
|
||
{
|
||
/* Save pointer to the start of this fixup. We'll use
|
||
it later to determine if it is necessary to put this fixup
|
||
on the queue. */
|
||
save_fixup = fixup;
|
||
|
||
/* Get the fixup code and its associated format. */
|
||
op = *fixup++;
|
||
fp = &som_fixup_formats[op];
|
||
|
||
/* Handle a request for a previous fixup. */
|
||
if (*fp->format == 'P')
|
||
{
|
||
/* Get pointer to the beginning of the prev fixup, move
|
||
the repeated fixup to the head of the queue. */
|
||
fixup = reloc_queue[fp->D].reloc;
|
||
som_reloc_queue_fix (reloc_queue, fp->D);
|
||
prev_fixup = 1;
|
||
|
||
/* Get the fixup code and its associated format. */
|
||
op = *fixup++;
|
||
fp = &som_fixup_formats[op];
|
||
}
|
||
|
||
/* If this fixup will be passed to BFD, set some reasonable defaults. */
|
||
if (! just_count
|
||
&& som_hppa_howto_table[op].type != R_NO_RELOCATION
|
||
&& som_hppa_howto_table[op].type != R_DATA_OVERRIDE)
|
||
{
|
||
rptr->address = offset;
|
||
rptr->howto = &som_hppa_howto_table[op];
|
||
rptr->addend = 0;
|
||
rptr->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
|
||
}
|
||
|
||
/* Set default input length to 0. Get the opcode class index
|
||
into D. */
|
||
var ('L') = 0;
|
||
var ('D') = fp->D;
|
||
var ('U') = saved_unwind_bits;
|
||
|
||
/* Get the opcode format. */
|
||
cp = fp->format;
|
||
|
||
/* Process the format string. Parsing happens in two phases,
|
||
parse RHS, then assign to LHS. Repeat until no more
|
||
characters in the format string. */
|
||
while (*cp)
|
||
{
|
||
/* The variable this pass is going to compute a value for. */
|
||
varname = *cp++;
|
||
|
||
/* Start processing RHS. Continue until a NULL or '=' is found. */
|
||
do
|
||
{
|
||
c = *cp++;
|
||
|
||
/* If this is a variable, push it on the stack. */
|
||
if (ISUPPER (c))
|
||
push (var (c));
|
||
|
||
/* If this is a lower case letter, then it represents
|
||
additional data from the fixup stream to be pushed onto
|
||
the stack. */
|
||
else if (ISLOWER (c))
|
||
{
|
||
int bits = (c - 'a') * 8;
|
||
for (v = 0; c > 'a'; --c)
|
||
v = (v << 8) | *fixup++;
|
||
if (varname == 'V')
|
||
v = sign_extend (v, bits);
|
||
push (v);
|
||
}
|
||
|
||
/* A decimal constant. Push it on the stack. */
|
||
else if (ISDIGIT (c))
|
||
{
|
||
v = c - '0';
|
||
while (ISDIGIT (*cp))
|
||
v = (v * 10) + (*cp++ - '0');
|
||
push (v);
|
||
}
|
||
else
|
||
/* An operator. Pop two two values from the stack and
|
||
use them as operands to the given operation. Push
|
||
the result of the operation back on the stack. */
|
||
switch (c)
|
||
{
|
||
case '+':
|
||
v = pop ();
|
||
v += pop ();
|
||
push (v);
|
||
break;
|
||
case '*':
|
||
v = pop ();
|
||
v *= pop ();
|
||
push (v);
|
||
break;
|
||
case '<':
|
||
v = pop ();
|
||
v = pop () << v;
|
||
push (v);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
while (*cp && *cp != '=');
|
||
|
||
/* Move over the equal operator. */
|
||
cp++;
|
||
|
||
/* Pop the RHS off the stack. */
|
||
c = pop ();
|
||
|
||
/* Perform the assignment. */
|
||
var (varname) = c;
|
||
|
||
/* Handle side effects. and special 'O' stack cases. */
|
||
switch (varname)
|
||
{
|
||
/* Consume some bytes from the input space. */
|
||
case 'L':
|
||
offset += c;
|
||
break;
|
||
/* A symbol to use in the relocation. Make a note
|
||
of this if we are not just counting. */
|
||
case 'S':
|
||
if (! just_count)
|
||
rptr->sym_ptr_ptr = &symbols[c];
|
||
break;
|
||
/* Argument relocation bits for a function call. */
|
||
case 'R':
|
||
if (! just_count)
|
||
{
|
||
unsigned int tmp = var ('R');
|
||
rptr->addend = 0;
|
||
|
||
if ((som_hppa_howto_table[op].type == R_PCREL_CALL
|
||
&& R_PCREL_CALL + 10 > op)
|
||
|| (som_hppa_howto_table[op].type == R_ABS_CALL
|
||
&& R_ABS_CALL + 10 > op))
|
||
{
|
||
/* Simple encoding. */
|
||
if (tmp > 4)
|
||
{
|
||
tmp -= 5;
|
||
rptr->addend |= 1;
|
||
}
|
||
if (tmp == 4)
|
||
rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4 | 1 << 2;
|
||
else if (tmp == 3)
|
||
rptr->addend |= 1 << 8 | 1 << 6 | 1 << 4;
|
||
else if (tmp == 2)
|
||
rptr->addend |= 1 << 8 | 1 << 6;
|
||
else if (tmp == 1)
|
||
rptr->addend |= 1 << 8;
|
||
}
|
||
else
|
||
{
|
||
unsigned int tmp1, tmp2;
|
||
|
||
/* First part is easy -- low order two bits are
|
||
directly copied, then shifted away. */
|
||
rptr->addend = tmp & 0x3;
|
||
tmp >>= 2;
|
||
|
||
/* Diving the result by 10 gives us the second
|
||
part. If it is 9, then the first two words
|
||
are a double precision paramater, else it is
|
||
3 * the first arg bits + the 2nd arg bits. */
|
||
tmp1 = tmp / 10;
|
||
tmp -= tmp1 * 10;
|
||
if (tmp1 == 9)
|
||
rptr->addend += (0xe << 6);
|
||
else
|
||
{
|
||
/* Get the two pieces. */
|
||
tmp2 = tmp1 / 3;
|
||
tmp1 -= tmp2 * 3;
|
||
/* Put them in the addend. */
|
||
rptr->addend += (tmp2 << 8) + (tmp1 << 6);
|
||
}
|
||
|
||
/* What's left is the third part. It's unpacked
|
||
just like the second. */
|
||
if (tmp == 9)
|
||
rptr->addend += (0xe << 2);
|
||
else
|
||
{
|
||
tmp2 = tmp / 3;
|
||
tmp -= tmp2 * 3;
|
||
rptr->addend += (tmp2 << 4) + (tmp << 2);
|
||
}
|
||
}
|
||
rptr->addend = HPPA_R_ADDEND (rptr->addend, 0);
|
||
}
|
||
break;
|
||
/* Handle the linker expression stack. */
|
||
case 'O':
|
||
switch (op)
|
||
{
|
||
case R_COMP1:
|
||
subop = comp1_opcodes;
|
||
break;
|
||
case R_COMP2:
|
||
subop = comp2_opcodes;
|
||
break;
|
||
case R_COMP3:
|
||
subop = comp3_opcodes;
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
while (*subop <= (unsigned char) c)
|
||
++subop;
|
||
--subop;
|
||
break;
|
||
/* The lower 32unwind bits must be persistent. */
|
||
case 'U':
|
||
saved_unwind_bits = var ('U');
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we used a previous fixup, clean up after it. */
|
||
if (prev_fixup)
|
||
{
|
||
fixup = save_fixup + 1;
|
||
prev_fixup = 0;
|
||
}
|
||
/* Queue it. */
|
||
else if (fixup > save_fixup + 1)
|
||
som_reloc_queue_insert (save_fixup, fixup - save_fixup, reloc_queue);
|
||
|
||
/* We do not pass R_DATA_OVERRIDE or R_NO_RELOCATION
|
||
fixups to BFD. */
|
||
if (som_hppa_howto_table[op].type != R_DATA_OVERRIDE
|
||
&& som_hppa_howto_table[op].type != R_NO_RELOCATION)
|
||
{
|
||
/* Done with a single reloction. Loop back to the top. */
|
||
if (! just_count)
|
||
{
|
||
if (som_hppa_howto_table[op].type == R_ENTRY)
|
||
rptr->addend = var ('T');
|
||
else if (som_hppa_howto_table[op].type == R_EXIT)
|
||
rptr->addend = var ('U');
|
||
else if (som_hppa_howto_table[op].type == R_PCREL_CALL
|
||
|| som_hppa_howto_table[op].type == R_ABS_CALL)
|
||
;
|
||
else if (som_hppa_howto_table[op].type == R_DATA_ONE_SYMBOL)
|
||
{
|
||
/* Try what was specified in R_DATA_OVERRIDE first
|
||
(if anything). Then the hard way using the
|
||
section contents. */
|
||
rptr->addend = var ('V');
|
||
|
||
if (rptr->addend == 0 && !section->contents)
|
||
{
|
||
/* Got to read the damn contents first. We don't
|
||
bother saving the contents (yet). Add it one
|
||
day if the need arises. */
|
||
bfd_byte *contents;
|
||
if (!bfd_malloc_and_get_section (section->owner, section,
|
||
&contents))
|
||
{
|
||
if (contents != NULL)
|
||
free (contents);
|
||
return (unsigned) -1;
|
||
}
|
||
section->contents = contents;
|
||
deallocate_contents = 1;
|
||
}
|
||
else if (rptr->addend == 0)
|
||
rptr->addend = bfd_get_32 (section->owner,
|
||
(section->contents
|
||
+ offset - var ('L')));
|
||
|
||
}
|
||
else
|
||
rptr->addend = var ('V');
|
||
rptr++;
|
||
}
|
||
count++;
|
||
/* Now that we've handled a "full" relocation, reset
|
||
some state. */
|
||
memset (variables, 0, sizeof (variables));
|
||
memset (stack, 0, sizeof (stack));
|
||
}
|
||
}
|
||
if (deallocate_contents)
|
||
free (section->contents);
|
||
|
||
return count;
|
||
|
||
#undef var
|
||
#undef push
|
||
#undef pop
|
||
#undef emptystack
|
||
}
|
||
|
||
/* Read in the relocs (aka fixups in SOM terms) for a section.
|
||
|
||
som_get_reloc_upper_bound calls this routine with JUST_COUNT
|
||
set to TRUE to indicate it only needs a count of the number
|
||
of actual relocations. */
|
||
|
||
static bfd_boolean
|
||
som_slurp_reloc_table (bfd *abfd,
|
||
asection *section,
|
||
asymbol **symbols,
|
||
bfd_boolean just_count)
|
||
{
|
||
unsigned char *external_relocs;
|
||
unsigned int fixup_stream_size;
|
||
arelent *internal_relocs;
|
||
unsigned int num_relocs;
|
||
bfd_size_type amt;
|
||
|
||
fixup_stream_size = som_section_data (section)->reloc_size;
|
||
/* If there were no relocations, then there is nothing to do. */
|
||
if (section->reloc_count == 0)
|
||
return TRUE;
|
||
|
||
/* If reloc_count is -1, then the relocation stream has not been
|
||
parsed. We must do so now to know how many relocations exist. */
|
||
if (section->reloc_count == (unsigned) -1)
|
||
{
|
||
amt = fixup_stream_size;
|
||
external_relocs = bfd_malloc (amt);
|
||
if (external_relocs == NULL)
|
||
return FALSE;
|
||
/* Read in the external forms. */
|
||
if (bfd_seek (abfd,
|
||
obj_som_reloc_filepos (abfd) + section->rel_filepos,
|
||
SEEK_SET)
|
||
!= 0)
|
||
return FALSE;
|
||
if (bfd_bread (external_relocs, amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
/* Let callers know how many relocations found.
|
||
also save the relocation stream as we will
|
||
need it again. */
|
||
section->reloc_count = som_set_reloc_info (external_relocs,
|
||
fixup_stream_size,
|
||
NULL, NULL, NULL, TRUE);
|
||
|
||
som_section_data (section)->reloc_stream = external_relocs;
|
||
}
|
||
|
||
/* If the caller only wanted a count, then return now. */
|
||
if (just_count)
|
||
return TRUE;
|
||
|
||
num_relocs = section->reloc_count;
|
||
external_relocs = som_section_data (section)->reloc_stream;
|
||
/* Return saved information about the relocations if it is available. */
|
||
if (section->relocation != NULL)
|
||
return TRUE;
|
||
|
||
amt = num_relocs;
|
||
amt *= sizeof (arelent);
|
||
internal_relocs = bfd_zalloc (abfd, (amt));
|
||
if (internal_relocs == NULL)
|
||
return FALSE;
|
||
|
||
/* Process and internalize the relocations. */
|
||
som_set_reloc_info (external_relocs, fixup_stream_size,
|
||
internal_relocs, section, symbols, FALSE);
|
||
|
||
/* We're done with the external relocations. Free them. */
|
||
free (external_relocs);
|
||
som_section_data (section)->reloc_stream = NULL;
|
||
|
||
/* Save our results and return success. */
|
||
section->relocation = internal_relocs;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Return the number of bytes required to store the relocation
|
||
information associated with the given section. */
|
||
|
||
static long
|
||
som_get_reloc_upper_bound (bfd *abfd, sec_ptr asect)
|
||
{
|
||
/* If section has relocations, then read in the relocation stream
|
||
and parse it to determine how many relocations exist. */
|
||
if (asect->flags & SEC_RELOC)
|
||
{
|
||
if (! som_slurp_reloc_table (abfd, asect, NULL, TRUE))
|
||
return -1;
|
||
return (asect->reloc_count + 1) * sizeof (arelent *);
|
||
}
|
||
|
||
/* There are no relocations. Return enough space to hold the
|
||
NULL pointer which will be installed if som_canonicalize_reloc
|
||
is called. */
|
||
return sizeof (arelent *);
|
||
}
|
||
|
||
/* Convert relocations from SOM (external) form into BFD internal
|
||
form. Return the number of relocations. */
|
||
|
||
static long
|
||
som_canonicalize_reloc (bfd *abfd,
|
||
sec_ptr section,
|
||
arelent **relptr,
|
||
asymbol **symbols)
|
||
{
|
||
arelent *tblptr;
|
||
int count;
|
||
|
||
if (! som_slurp_reloc_table (abfd, section, symbols, FALSE))
|
||
return -1;
|
||
|
||
count = section->reloc_count;
|
||
tblptr = section->relocation;
|
||
|
||
while (count--)
|
||
*relptr++ = tblptr++;
|
||
|
||
*relptr = NULL;
|
||
return section->reloc_count;
|
||
}
|
||
|
||
extern const bfd_target som_vec;
|
||
|
||
/* A hook to set up object file dependent section information. */
|
||
|
||
static bfd_boolean
|
||
som_new_section_hook (bfd *abfd, asection *newsect)
|
||
{
|
||
if (!newsect->used_by_bfd)
|
||
{
|
||
bfd_size_type amt = sizeof (struct som_section_data_struct);
|
||
|
||
newsect->used_by_bfd = bfd_zalloc (abfd, amt);
|
||
if (!newsect->used_by_bfd)
|
||
return FALSE;
|
||
}
|
||
newsect->alignment_power = 3;
|
||
|
||
/* We allow more than three sections internally. */
|
||
return _bfd_generic_new_section_hook (abfd, newsect);
|
||
}
|
||
|
||
/* Copy any private info we understand from the input symbol
|
||
to the output symbol. */
|
||
|
||
static bfd_boolean
|
||
som_bfd_copy_private_symbol_data (bfd *ibfd,
|
||
asymbol *isymbol,
|
||
bfd *obfd,
|
||
asymbol *osymbol)
|
||
{
|
||
struct som_symbol *input_symbol = (struct som_symbol *) isymbol;
|
||
struct som_symbol *output_symbol = (struct som_symbol *) osymbol;
|
||
|
||
/* One day we may try to grok other private data. */
|
||
if (ibfd->xvec->flavour != bfd_target_som_flavour
|
||
|| obfd->xvec->flavour != bfd_target_som_flavour)
|
||
return FALSE;
|
||
|
||
/* The only private information we need to copy is the argument relocation
|
||
bits. */
|
||
output_symbol->tc_data.ap.hppa_arg_reloc =
|
||
input_symbol->tc_data.ap.hppa_arg_reloc;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Copy any private info we understand from the input section
|
||
to the output section. */
|
||
|
||
static bfd_boolean
|
||
som_bfd_copy_private_section_data (bfd *ibfd,
|
||
asection *isection,
|
||
bfd *obfd,
|
||
asection *osection)
|
||
{
|
||
bfd_size_type amt;
|
||
|
||
/* One day we may try to grok other private data. */
|
||
if (ibfd->xvec->flavour != bfd_target_som_flavour
|
||
|| obfd->xvec->flavour != bfd_target_som_flavour
|
||
|| (!som_is_space (isection) && !som_is_subspace (isection)))
|
||
return TRUE;
|
||
|
||
amt = sizeof (struct som_copyable_section_data_struct);
|
||
som_section_data (osection)->copy_data = bfd_zalloc (obfd, amt);
|
||
if (som_section_data (osection)->copy_data == NULL)
|
||
return FALSE;
|
||
|
||
memcpy (som_section_data (osection)->copy_data,
|
||
som_section_data (isection)->copy_data,
|
||
sizeof (struct som_copyable_section_data_struct));
|
||
|
||
/* Reparent if necessary. */
|
||
if (som_section_data (osection)->copy_data->container)
|
||
som_section_data (osection)->copy_data->container =
|
||
som_section_data (osection)->copy_data->container->output_section;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Copy any private info we understand from the input bfd
|
||
to the output bfd. */
|
||
|
||
static bfd_boolean
|
||
som_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
|
||
{
|
||
/* One day we may try to grok other private data. */
|
||
if (ibfd->xvec->flavour != bfd_target_som_flavour
|
||
|| obfd->xvec->flavour != bfd_target_som_flavour)
|
||
return TRUE;
|
||
|
||
/* Allocate some memory to hold the data we need. */
|
||
obj_som_exec_data (obfd) = bfd_zalloc (obfd, (bfd_size_type) sizeof (struct som_exec_data));
|
||
if (obj_som_exec_data (obfd) == NULL)
|
||
return FALSE;
|
||
|
||
/* Now copy the data. */
|
||
memcpy (obj_som_exec_data (obfd), obj_som_exec_data (ibfd),
|
||
sizeof (struct som_exec_data));
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Display the SOM header. */
|
||
|
||
static bfd_boolean
|
||
som_bfd_print_private_bfd_data (bfd *abfd, void *farg)
|
||
{
|
||
struct som_exec_auxhdr *exec_header;
|
||
struct aux_id* auxhdr;
|
||
FILE *f;
|
||
|
||
f = (FILE *) farg;
|
||
|
||
exec_header = obj_som_exec_hdr (abfd);
|
||
if (exec_header)
|
||
{
|
||
fprintf (f, _("\nExec Auxiliary Header\n"));
|
||
fprintf (f, " flags ");
|
||
auxhdr = &exec_header->som_auxhdr;
|
||
if (auxhdr->mandatory)
|
||
fprintf (f, "mandatory ");
|
||
if (auxhdr->copy)
|
||
fprintf (f, "copy ");
|
||
if (auxhdr->append)
|
||
fprintf (f, "append ");
|
||
if (auxhdr->ignore)
|
||
fprintf (f, "ignore ");
|
||
fprintf (f, "\n");
|
||
fprintf (f, " type %#x\n", auxhdr->type);
|
||
fprintf (f, " length %#x\n", auxhdr->length);
|
||
|
||
/* Note that, depending on the HP-UX version, the following fields can be
|
||
either ints, or longs. */
|
||
|
||
fprintf (f, " text size %#lx\n", (long) exec_header->exec_tsize);
|
||
fprintf (f, " text memory offset %#lx\n", (long) exec_header->exec_tmem);
|
||
fprintf (f, " text file offset %#lx\n", (long) exec_header->exec_tfile);
|
||
fprintf (f, " data size %#lx\n", (long) exec_header->exec_dsize);
|
||
fprintf (f, " data memory offset %#lx\n", (long) exec_header->exec_dmem);
|
||
fprintf (f, " data file offset %#lx\n", (long) exec_header->exec_dfile);
|
||
fprintf (f, " bss size %#lx\n", (long) exec_header->exec_bsize);
|
||
fprintf (f, " entry point %#lx\n", (long) exec_header->exec_entry);
|
||
fprintf (f, " loader flags %#lx\n", (long) exec_header->exec_flags);
|
||
fprintf (f, " bss initializer %#lx\n", (long) exec_header->exec_bfill);
|
||
}
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* Set backend info for sections which can not be described
|
||
in the BFD data structures. */
|
||
|
||
bfd_boolean
|
||
bfd_som_set_section_attributes (asection *section,
|
||
int defined,
|
||
int private,
|
||
unsigned int sort_key,
|
||
int spnum)
|
||
{
|
||
/* Allocate memory to hold the magic information. */
|
||
if (som_section_data (section)->copy_data == NULL)
|
||
{
|
||
bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
|
||
|
||
som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
|
||
if (som_section_data (section)->copy_data == NULL)
|
||
return FALSE;
|
||
}
|
||
som_section_data (section)->copy_data->sort_key = sort_key;
|
||
som_section_data (section)->copy_data->is_defined = defined;
|
||
som_section_data (section)->copy_data->is_private = private;
|
||
som_section_data (section)->copy_data->container = section;
|
||
som_section_data (section)->copy_data->space_number = spnum;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Set backend info for subsections which can not be described
|
||
in the BFD data structures. */
|
||
|
||
bfd_boolean
|
||
bfd_som_set_subsection_attributes (asection *section,
|
||
asection *container,
|
||
int access_ctr,
|
||
unsigned int sort_key,
|
||
int quadrant,
|
||
int comdat,
|
||
int common,
|
||
int dup_common)
|
||
{
|
||
/* Allocate memory to hold the magic information. */
|
||
if (som_section_data (section)->copy_data == NULL)
|
||
{
|
||
bfd_size_type amt = sizeof (struct som_copyable_section_data_struct);
|
||
|
||
som_section_data (section)->copy_data = bfd_zalloc (section->owner, amt);
|
||
if (som_section_data (section)->copy_data == NULL)
|
||
return FALSE;
|
||
}
|
||
som_section_data (section)->copy_data->sort_key = sort_key;
|
||
som_section_data (section)->copy_data->access_control_bits = access_ctr;
|
||
som_section_data (section)->copy_data->quadrant = quadrant;
|
||
som_section_data (section)->copy_data->container = container;
|
||
som_section_data (section)->copy_data->is_comdat = comdat;
|
||
som_section_data (section)->copy_data->is_common = common;
|
||
som_section_data (section)->copy_data->dup_common = dup_common;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Set the full SOM symbol type. SOM needs far more symbol information
|
||
than any other object file format I'm aware of. It is mandatory
|
||
to be able to know if a symbol is an entry point, millicode, data,
|
||
code, absolute, storage request, or procedure label. If you get
|
||
the symbol type wrong your program will not link. */
|
||
|
||
void
|
||
bfd_som_set_symbol_type (asymbol *symbol, unsigned int type)
|
||
{
|
||
som_symbol_data (symbol)->som_type = type;
|
||
}
|
||
|
||
/* Attach an auxiliary header to the BFD backend so that it may be
|
||
written into the object file. */
|
||
|
||
bfd_boolean
|
||
bfd_som_attach_aux_hdr (bfd *abfd, int type, char *string)
|
||
{
|
||
bfd_size_type amt;
|
||
|
||
if (type == VERSION_AUX_ID)
|
||
{
|
||
size_t len = strlen (string);
|
||
int pad = 0;
|
||
|
||
if (len % 4)
|
||
pad = (4 - (len % 4));
|
||
amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
|
||
obj_som_version_hdr (abfd) = bfd_zalloc (abfd, amt);
|
||
if (!obj_som_version_hdr (abfd))
|
||
return FALSE;
|
||
obj_som_version_hdr (abfd)->header_id.type = VERSION_AUX_ID;
|
||
obj_som_version_hdr (abfd)->header_id.length = len + pad;
|
||
obj_som_version_hdr (abfd)->header_id.length += sizeof (int);
|
||
obj_som_version_hdr (abfd)->string_length = len;
|
||
strncpy (obj_som_version_hdr (abfd)->user_string, string, len);
|
||
}
|
||
else if (type == COPYRIGHT_AUX_ID)
|
||
{
|
||
int len = strlen (string);
|
||
int pad = 0;
|
||
|
||
if (len % 4)
|
||
pad = (4 - (len % 4));
|
||
amt = sizeof (struct aux_id) + sizeof (unsigned int) + len + pad;
|
||
obj_som_copyright_hdr (abfd) = bfd_zalloc (abfd, amt);
|
||
if (!obj_som_copyright_hdr (abfd))
|
||
return FALSE;
|
||
obj_som_copyright_hdr (abfd)->header_id.type = COPYRIGHT_AUX_ID;
|
||
obj_som_copyright_hdr (abfd)->header_id.length = len + pad;
|
||
obj_som_copyright_hdr (abfd)->header_id.length += sizeof (int);
|
||
obj_som_copyright_hdr (abfd)->string_length = len;
|
||
strcpy (obj_som_copyright_hdr (abfd)->copyright, string);
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Attach a compilation unit header to the BFD backend so that it may be
|
||
written into the object file. */
|
||
|
||
bfd_boolean
|
||
bfd_som_attach_compilation_unit (bfd *abfd,
|
||
const char *name,
|
||
const char *language_name,
|
||
const char *product_id,
|
||
const char *version_id)
|
||
{
|
||
COMPUNIT *n = (COMPUNIT *) bfd_zalloc (abfd, (bfd_size_type) COMPUNITSZ);
|
||
|
||
if (n == NULL)
|
||
return FALSE;
|
||
|
||
#define STRDUP(f) \
|
||
if (f != NULL) \
|
||
{ \
|
||
n->f.n_name = bfd_alloc (abfd, (bfd_size_type) strlen (f) + 1); \
|
||
if (n->f.n_name == NULL) \
|
||
return FALSE; \
|
||
strcpy (n->f.n_name, f); \
|
||
}
|
||
|
||
STRDUP (name);
|
||
STRDUP (language_name);
|
||
STRDUP (product_id);
|
||
STRDUP (version_id);
|
||
|
||
#undef STRDUP
|
||
|
||
obj_som_compilation_unit (abfd) = n;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
som_get_section_contents (bfd *abfd,
|
||
sec_ptr section,
|
||
void *location,
|
||
file_ptr offset,
|
||
bfd_size_type count)
|
||
{
|
||
if (count == 0 || ((section->flags & SEC_HAS_CONTENTS) == 0))
|
||
return TRUE;
|
||
if ((bfd_size_type) (offset+count) > section->size
|
||
|| bfd_seek (abfd, (file_ptr) (section->filepos + offset), SEEK_SET) != 0
|
||
|| bfd_bread (location, count, abfd) != count)
|
||
return FALSE; /* On error. */
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
som_set_section_contents (bfd *abfd,
|
||
sec_ptr section,
|
||
const void *location,
|
||
file_ptr offset,
|
||
bfd_size_type count)
|
||
{
|
||
if (! abfd->output_has_begun)
|
||
{
|
||
/* Set up fixed parts of the file, space, and subspace headers.
|
||
Notify the world that output has begun. */
|
||
som_prep_headers (abfd);
|
||
abfd->output_has_begun = TRUE;
|
||
/* Start writing the object file. This include all the string
|
||
tables, fixup streams, and other portions of the object file. */
|
||
som_begin_writing (abfd);
|
||
}
|
||
|
||
/* Only write subspaces which have "real" contents (eg. the contents
|
||
are not generated at run time by the OS). */
|
||
if (!som_is_subspace (section)
|
||
|| ((section->flags & SEC_HAS_CONTENTS) == 0))
|
||
return TRUE;
|
||
|
||
/* Seek to the proper offset within the object file and write the
|
||
data. */
|
||
offset += som_section_data (section)->subspace_dict->file_loc_init_value;
|
||
if (bfd_seek (abfd, offset, SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
if (bfd_bwrite (location, count, abfd) != count)
|
||
return FALSE;
|
||
return TRUE;
|
||
}
|
||
|
||
static bfd_boolean
|
||
som_set_arch_mach (bfd *abfd,
|
||
enum bfd_architecture arch,
|
||
unsigned long machine)
|
||
{
|
||
/* Allow any architecture to be supported by the SOM backend. */
|
||
return bfd_default_set_arch_mach (abfd, arch, machine);
|
||
}
|
||
|
||
static bfd_boolean
|
||
som_find_nearest_line (bfd *abfd,
|
||
asection *section,
|
||
asymbol **symbols,
|
||
bfd_vma offset,
|
||
const char **filename_ptr,
|
||
const char **functionname_ptr,
|
||
unsigned int *line_ptr)
|
||
{
|
||
bfd_boolean found;
|
||
asymbol *func;
|
||
bfd_vma low_func;
|
||
asymbol **p;
|
||
|
||
if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
|
||
& found, filename_ptr,
|
||
functionname_ptr, line_ptr,
|
||
& somdata (abfd).line_info))
|
||
return FALSE;
|
||
|
||
if (found)
|
||
return TRUE;
|
||
|
||
if (symbols == NULL)
|
||
return FALSE;
|
||
|
||
/* Fallback: find function name from symbols table. */
|
||
func = NULL;
|
||
low_func = 0;
|
||
|
||
for (p = symbols; *p != NULL; p++)
|
||
{
|
||
som_symbol_type *q = (som_symbol_type *) *p;
|
||
|
||
if (q->som_type == SYMBOL_TYPE_ENTRY
|
||
&& q->symbol.section == section
|
||
&& q->symbol.value >= low_func
|
||
&& q->symbol.value <= offset)
|
||
{
|
||
func = (asymbol *) q;
|
||
low_func = q->symbol.value;
|
||
}
|
||
}
|
||
|
||
if (func == NULL)
|
||
return FALSE;
|
||
|
||
*filename_ptr = NULL;
|
||
*functionname_ptr = bfd_asymbol_name (func);
|
||
*line_ptr = 0;
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
static int
|
||
som_sizeof_headers (bfd *abfd ATTRIBUTE_UNUSED,
|
||
struct bfd_link_info *info ATTRIBUTE_UNUSED)
|
||
{
|
||
(*_bfd_error_handler) (_("som_sizeof_headers unimplemented"));
|
||
fflush (stderr);
|
||
abort ();
|
||
return 0;
|
||
}
|
||
|
||
/* Return the single-character symbol type corresponding to
|
||
SOM section S, or '?' for an unknown SOM section. */
|
||
|
||
static char
|
||
som_section_type (const char *s)
|
||
{
|
||
const struct section_to_type *t;
|
||
|
||
for (t = &stt[0]; t->section; t++)
|
||
if (!strcmp (s, t->section))
|
||
return t->type;
|
||
return '?';
|
||
}
|
||
|
||
static int
|
||
som_decode_symclass (asymbol *symbol)
|
||
{
|
||
char c;
|
||
|
||
if (bfd_is_com_section (symbol->section))
|
||
return 'C';
|
||
if (bfd_is_und_section (symbol->section))
|
||
{
|
||
if (symbol->flags & BSF_WEAK)
|
||
{
|
||
/* If weak, determine if it's specifically an object
|
||
or non-object weak. */
|
||
if (symbol->flags & BSF_OBJECT)
|
||
return 'v';
|
||
else
|
||
return 'w';
|
||
}
|
||
else
|
||
return 'U';
|
||
}
|
||
if (bfd_is_ind_section (symbol->section))
|
||
return 'I';
|
||
if (symbol->flags & BSF_WEAK)
|
||
{
|
||
/* If weak, determine if it's specifically an object
|
||
or non-object weak. */
|
||
if (symbol->flags & BSF_OBJECT)
|
||
return 'V';
|
||
else
|
||
return 'W';
|
||
}
|
||
if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
|
||
return '?';
|
||
|
||
if (bfd_is_abs_section (symbol->section)
|
||
|| (som_symbol_data (symbol) != NULL
|
||
&& som_symbol_data (symbol)->som_type == SYMBOL_TYPE_ABSOLUTE))
|
||
c = 'a';
|
||
else if (symbol->section)
|
||
c = som_section_type (symbol->section->name);
|
||
else
|
||
return '?';
|
||
if (symbol->flags & BSF_GLOBAL)
|
||
c = TOUPPER (c);
|
||
return c;
|
||
}
|
||
|
||
/* Return information about SOM symbol SYMBOL in RET. */
|
||
|
||
static void
|
||
som_get_symbol_info (bfd *ignore_abfd ATTRIBUTE_UNUSED,
|
||
asymbol *symbol,
|
||
symbol_info *ret)
|
||
{
|
||
ret->type = som_decode_symclass (symbol);
|
||
if (ret->type != 'U')
|
||
ret->value = symbol->value + symbol->section->vma;
|
||
else
|
||
ret->value = 0;
|
||
ret->name = symbol->name;
|
||
}
|
||
|
||
/* Count the number of symbols in the archive symbol table. Necessary
|
||
so that we can allocate space for all the carsyms at once. */
|
||
|
||
static bfd_boolean
|
||
som_bfd_count_ar_symbols (bfd *abfd,
|
||
struct lst_header *lst_header,
|
||
symindex *count)
|
||
{
|
||
unsigned int i;
|
||
unsigned int *hash_table = NULL;
|
||
bfd_size_type amt;
|
||
file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
|
||
|
||
amt = lst_header->hash_size;
|
||
amt *= sizeof (unsigned int);
|
||
hash_table = bfd_malloc (amt);
|
||
if (hash_table == NULL && lst_header->hash_size != 0)
|
||
goto error_return;
|
||
|
||
/* Don't forget to initialize the counter! */
|
||
*count = 0;
|
||
|
||
/* Read in the hash table. The has table is an array of 32bit file offsets
|
||
which point to the hash chains. */
|
||
if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
/* Walk each chain counting the number of symbols found on that particular
|
||
chain. */
|
||
for (i = 0; i < lst_header->hash_size; i++)
|
||
{
|
||
struct lst_symbol_record lst_symbol;
|
||
|
||
/* An empty chain has zero as it's file offset. */
|
||
if (hash_table[i] == 0)
|
||
continue;
|
||
|
||
/* Seek to the first symbol in this hash chain. */
|
||
if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
|
||
goto error_return;
|
||
|
||
/* Read in this symbol and update the counter. */
|
||
amt = sizeof (lst_symbol);
|
||
if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
(*count)++;
|
||
|
||
/* Now iterate through the rest of the symbols on this chain. */
|
||
while (lst_symbol.next_entry)
|
||
{
|
||
|
||
/* Seek to the next symbol. */
|
||
if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
|
||
!= 0)
|
||
goto error_return;
|
||
|
||
/* Read the symbol in and update the counter. */
|
||
amt = sizeof (lst_symbol);
|
||
if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
(*count)++;
|
||
}
|
||
}
|
||
if (hash_table != NULL)
|
||
free (hash_table);
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (hash_table != NULL)
|
||
free (hash_table);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Fill in the canonical archive symbols (SYMS) from the archive described
|
||
by ABFD and LST_HEADER. */
|
||
|
||
static bfd_boolean
|
||
som_bfd_fill_in_ar_symbols (bfd *abfd,
|
||
struct lst_header *lst_header,
|
||
carsym **syms)
|
||
{
|
||
unsigned int i, len;
|
||
carsym *set = syms[0];
|
||
unsigned int *hash_table = NULL;
|
||
struct som_entry *som_dict = NULL;
|
||
bfd_size_type amt;
|
||
file_ptr lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
|
||
|
||
amt = lst_header->hash_size;
|
||
amt *= sizeof (unsigned int);
|
||
hash_table = bfd_malloc (amt);
|
||
if (hash_table == NULL && lst_header->hash_size != 0)
|
||
goto error_return;
|
||
|
||
/* Read in the hash table. The has table is an array of 32bit file offsets
|
||
which point to the hash chains. */
|
||
if (bfd_bread ((void *) hash_table, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
/* Seek to and read in the SOM dictionary. We will need this to fill
|
||
in the carsym's filepos field. */
|
||
if (bfd_seek (abfd, lst_filepos + lst_header->dir_loc, SEEK_SET) != 0)
|
||
goto error_return;
|
||
|
||
amt = lst_header->module_count;
|
||
amt *= sizeof (struct som_entry);
|
||
som_dict = bfd_malloc (amt);
|
||
if (som_dict == NULL && lst_header->module_count != 0)
|
||
goto error_return;
|
||
|
||
if (bfd_bread ((void *) som_dict, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
/* Walk each chain filling in the carsyms as we go along. */
|
||
for (i = 0; i < lst_header->hash_size; i++)
|
||
{
|
||
struct lst_symbol_record lst_symbol;
|
||
|
||
/* An empty chain has zero as it's file offset. */
|
||
if (hash_table[i] == 0)
|
||
continue;
|
||
|
||
/* Seek to and read the first symbol on the chain. */
|
||
if (bfd_seek (abfd, lst_filepos + hash_table[i], SEEK_SET) != 0)
|
||
goto error_return;
|
||
|
||
amt = sizeof (lst_symbol);
|
||
if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
/* Get the name of the symbol, first get the length which is stored
|
||
as a 32bit integer just before the symbol.
|
||
|
||
One might ask why we don't just read in the entire string table
|
||
and index into it. Well, according to the SOM ABI the string
|
||
index can point *anywhere* in the archive to save space, so just
|
||
using the string table would not be safe. */
|
||
if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
|
||
+ lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
|
||
goto error_return;
|
||
|
||
if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
|
||
goto error_return;
|
||
|
||
/* Allocate space for the name and null terminate it too. */
|
||
set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
|
||
if (!set->name)
|
||
goto error_return;
|
||
if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
|
||
goto error_return;
|
||
|
||
set->name[len] = 0;
|
||
|
||
/* Fill in the file offset. Note that the "location" field points
|
||
to the SOM itself, not the ar_hdr in front of it. */
|
||
set->file_offset = som_dict[lst_symbol.som_index].location
|
||
- sizeof (struct ar_hdr);
|
||
|
||
/* Go to the next symbol. */
|
||
set++;
|
||
|
||
/* Iterate through the rest of the chain. */
|
||
while (lst_symbol.next_entry)
|
||
{
|
||
/* Seek to the next symbol and read it in. */
|
||
if (bfd_seek (abfd, lst_filepos + lst_symbol.next_entry, SEEK_SET)
|
||
!= 0)
|
||
goto error_return;
|
||
|
||
amt = sizeof (lst_symbol);
|
||
if (bfd_bread ((void *) &lst_symbol, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
/* Seek to the name length & string and read them in. */
|
||
if (bfd_seek (abfd, lst_filepos + lst_header->string_loc
|
||
+ lst_symbol.name.n_strx - 4, SEEK_SET) != 0)
|
||
goto error_return;
|
||
|
||
if (bfd_bread (&len, (bfd_size_type) 4, abfd) != 4)
|
||
goto error_return;
|
||
|
||
/* Allocate space for the name and null terminate it too. */
|
||
set->name = bfd_zalloc (abfd, (bfd_size_type) len + 1);
|
||
if (!set->name)
|
||
goto error_return;
|
||
|
||
if (bfd_bread (set->name, (bfd_size_type) len, abfd) != len)
|
||
goto error_return;
|
||
set->name[len] = 0;
|
||
|
||
/* Fill in the file offset. Note that the "location" field points
|
||
to the SOM itself, not the ar_hdr in front of it. */
|
||
set->file_offset = som_dict[lst_symbol.som_index].location
|
||
- sizeof (struct ar_hdr);
|
||
|
||
/* Go on to the next symbol. */
|
||
set++;
|
||
}
|
||
}
|
||
/* If we haven't died by now, then we successfully read the entire
|
||
archive symbol table. */
|
||
if (hash_table != NULL)
|
||
free (hash_table);
|
||
if (som_dict != NULL)
|
||
free (som_dict);
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (hash_table != NULL)
|
||
free (hash_table);
|
||
if (som_dict != NULL)
|
||
free (som_dict);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Read in the LST from the archive. */
|
||
|
||
static bfd_boolean
|
||
som_slurp_armap (bfd *abfd)
|
||
{
|
||
struct lst_header lst_header;
|
||
struct ar_hdr ar_header;
|
||
unsigned int parsed_size;
|
||
struct artdata *ardata = bfd_ardata (abfd);
|
||
char nextname[17];
|
||
bfd_size_type amt = 16;
|
||
int i = bfd_bread ((void *) nextname, amt, abfd);
|
||
|
||
/* Special cases. */
|
||
if (i == 0)
|
||
return TRUE;
|
||
if (i != 16)
|
||
return FALSE;
|
||
|
||
if (bfd_seek (abfd, (file_ptr) -16, SEEK_CUR) != 0)
|
||
return FALSE;
|
||
|
||
/* For archives without .o files there is no symbol table. */
|
||
if (! CONST_STRNEQ (nextname, "/ "))
|
||
{
|
||
bfd_has_map (abfd) = FALSE;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Read in and sanity check the archive header. */
|
||
amt = sizeof (struct ar_hdr);
|
||
if (bfd_bread ((void *) &ar_header, amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
if (strncmp (ar_header.ar_fmag, ARFMAG, 2))
|
||
{
|
||
bfd_set_error (bfd_error_malformed_archive);
|
||
return FALSE;
|
||
}
|
||
|
||
/* How big is the archive symbol table entry? */
|
||
errno = 0;
|
||
parsed_size = strtol (ar_header.ar_size, NULL, 10);
|
||
if (errno != 0)
|
||
{
|
||
bfd_set_error (bfd_error_malformed_archive);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Save off the file offset of the first real user data. */
|
||
ardata->first_file_filepos = bfd_tell (abfd) + parsed_size;
|
||
|
||
/* Read in the library symbol table. We'll make heavy use of this
|
||
in just a minute. */
|
||
amt = sizeof (struct lst_header);
|
||
if (bfd_bread ((void *) &lst_header, amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
/* Sanity check. */
|
||
if (lst_header.a_magic != LIBMAGIC)
|
||
{
|
||
bfd_set_error (bfd_error_malformed_archive);
|
||
return FALSE;
|
||
}
|
||
|
||
/* Count the number of symbols in the library symbol table. */
|
||
if (! som_bfd_count_ar_symbols (abfd, &lst_header, &ardata->symdef_count))
|
||
return FALSE;
|
||
|
||
/* Get back to the start of the library symbol table. */
|
||
if (bfd_seek (abfd, (ardata->first_file_filepos - parsed_size
|
||
+ sizeof (struct lst_header)), SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
/* Initialize the cache and allocate space for the library symbols. */
|
||
ardata->cache = 0;
|
||
amt = ardata->symdef_count;
|
||
amt *= sizeof (carsym);
|
||
ardata->symdefs = bfd_alloc (abfd, amt);
|
||
if (!ardata->symdefs)
|
||
return FALSE;
|
||
|
||
/* Now fill in the canonical archive symbols. */
|
||
if (! som_bfd_fill_in_ar_symbols (abfd, &lst_header, &ardata->symdefs))
|
||
return FALSE;
|
||
|
||
/* Seek back to the "first" file in the archive. Note the "first"
|
||
file may be the extended name table. */
|
||
if (bfd_seek (abfd, ardata->first_file_filepos, SEEK_SET) != 0)
|
||
return FALSE;
|
||
|
||
/* Notify the generic archive code that we have a symbol map. */
|
||
bfd_has_map (abfd) = TRUE;
|
||
return TRUE;
|
||
}
|
||
|
||
/* Begin preparing to write a SOM library symbol table.
|
||
|
||
As part of the prep work we need to determine the number of symbols
|
||
and the size of the associated string section. */
|
||
|
||
static bfd_boolean
|
||
som_bfd_prep_for_ar_write (bfd *abfd,
|
||
unsigned int *num_syms,
|
||
unsigned int *stringsize)
|
||
{
|
||
bfd *curr_bfd = abfd->archive_head;
|
||
|
||
/* Some initialization. */
|
||
*num_syms = 0;
|
||
*stringsize = 0;
|
||
|
||
/* Iterate over each BFD within this archive. */
|
||
while (curr_bfd != NULL)
|
||
{
|
||
unsigned int curr_count, i;
|
||
som_symbol_type *sym;
|
||
|
||
/* Don't bother for non-SOM objects. */
|
||
if (curr_bfd->format != bfd_object
|
||
|| curr_bfd->xvec->flavour != bfd_target_som_flavour)
|
||
{
|
||
curr_bfd = curr_bfd->archive_next;
|
||
continue;
|
||
}
|
||
|
||
/* Make sure the symbol table has been read, then snag a pointer
|
||
to it. It's a little slimey to grab the symbols via obj_som_symtab,
|
||
but doing so avoids allocating lots of extra memory. */
|
||
if (! som_slurp_symbol_table (curr_bfd))
|
||
return FALSE;
|
||
|
||
sym = obj_som_symtab (curr_bfd);
|
||
curr_count = bfd_get_symcount (curr_bfd);
|
||
|
||
/* Examine each symbol to determine if it belongs in the
|
||
library symbol table. */
|
||
for (i = 0; i < curr_count; i++, sym++)
|
||
{
|
||
struct som_misc_symbol_info info;
|
||
|
||
/* Derive SOM information from the BFD symbol. */
|
||
som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
|
||
|
||
/* Should we include this symbol? */
|
||
if (info.symbol_type == ST_NULL
|
||
|| info.symbol_type == ST_SYM_EXT
|
||
|| info.symbol_type == ST_ARG_EXT)
|
||
continue;
|
||
|
||
/* Only global symbols and unsatisfied commons. */
|
||
if (info.symbol_scope != SS_UNIVERSAL
|
||
&& info.symbol_type != ST_STORAGE)
|
||
continue;
|
||
|
||
/* Do no include undefined symbols. */
|
||
if (bfd_is_und_section (sym->symbol.section))
|
||
continue;
|
||
|
||
/* Bump the various counters, being careful to honor
|
||
alignment considerations in the string table. */
|
||
(*num_syms)++;
|
||
*stringsize = *stringsize + strlen (sym->symbol.name) + 5;
|
||
while (*stringsize % 4)
|
||
(*stringsize)++;
|
||
}
|
||
|
||
curr_bfd = curr_bfd->archive_next;
|
||
}
|
||
return TRUE;
|
||
}
|
||
|
||
/* Hash a symbol name based on the hashing algorithm presented in the
|
||
SOM ABI. */
|
||
|
||
static unsigned int
|
||
som_bfd_ar_symbol_hash (asymbol *symbol)
|
||
{
|
||
unsigned int len = strlen (symbol->name);
|
||
|
||
/* Names with length 1 are special. */
|
||
if (len == 1)
|
||
return 0x1000100 | (symbol->name[0] << 16) | symbol->name[0];
|
||
|
||
return ((len & 0x7f) << 24) | (symbol->name[1] << 16)
|
||
| (symbol->name[len - 2] << 8) | symbol->name[len - 1];
|
||
}
|
||
|
||
/* Do the bulk of the work required to write the SOM library
|
||
symbol table. */
|
||
|
||
static bfd_boolean
|
||
som_bfd_ar_write_symbol_stuff (bfd *abfd,
|
||
unsigned int nsyms,
|
||
unsigned int string_size,
|
||
struct lst_header lst,
|
||
unsigned elength)
|
||
{
|
||
file_ptr lst_filepos;
|
||
char *strings = NULL, *p;
|
||
struct lst_symbol_record *lst_syms = NULL, *curr_lst_sym;
|
||
bfd *curr_bfd;
|
||
unsigned int *hash_table = NULL;
|
||
struct som_entry *som_dict = NULL;
|
||
struct lst_symbol_record **last_hash_entry = NULL;
|
||
unsigned int curr_som_offset, som_index = 0;
|
||
bfd_size_type amt;
|
||
|
||
amt = lst.hash_size;
|
||
amt *= sizeof (unsigned int);
|
||
hash_table = bfd_zmalloc (amt);
|
||
if (hash_table == NULL && lst.hash_size != 0)
|
||
goto error_return;
|
||
|
||
amt = lst.module_count;
|
||
amt *= sizeof (struct som_entry);
|
||
som_dict = bfd_zmalloc (amt);
|
||
if (som_dict == NULL && lst.module_count != 0)
|
||
goto error_return;
|
||
|
||
amt = lst.hash_size;
|
||
amt *= sizeof (struct lst_symbol_record *);
|
||
last_hash_entry = bfd_zmalloc (amt);
|
||
if (last_hash_entry == NULL && lst.hash_size != 0)
|
||
goto error_return;
|
||
|
||
/* Lots of fields are file positions relative to the start
|
||
of the lst record. So save its location. */
|
||
lst_filepos = bfd_tell (abfd) - sizeof (struct lst_header);
|
||
|
||
/* Symbols have som_index fields, so we have to keep track of the
|
||
index of each SOM in the archive.
|
||
|
||
The SOM dictionary has (among other things) the absolute file
|
||
position for the SOM which a particular dictionary entry
|
||
describes. We have to compute that information as we iterate
|
||
through the SOMs/symbols. */
|
||
som_index = 0;
|
||
|
||
/* We add in the size of the archive header twice as the location
|
||
in the SOM dictionary is the actual offset of the SOM, not the
|
||
archive header before the SOM. */
|
||
curr_som_offset = 8 + 2 * sizeof (struct ar_hdr) + lst.file_end;
|
||
|
||
/* Make room for the archive header and the contents of the
|
||
extended string table. Note that elength includes the size
|
||
of the archive header for the extended name table! */
|
||
if (elength)
|
||
curr_som_offset += elength;
|
||
|
||
/* Make sure we're properly aligned. */
|
||
curr_som_offset = (curr_som_offset + 0x1) & ~0x1;
|
||
|
||
/* FIXME should be done with buffers just like everything else... */
|
||
amt = nsyms;
|
||
amt *= sizeof (struct lst_symbol_record);
|
||
lst_syms = bfd_malloc (amt);
|
||
if (lst_syms == NULL && nsyms != 0)
|
||
goto error_return;
|
||
strings = bfd_malloc ((bfd_size_type) string_size);
|
||
if (strings == NULL && string_size != 0)
|
||
goto error_return;
|
||
|
||
p = strings;
|
||
curr_lst_sym = lst_syms;
|
||
|
||
curr_bfd = abfd->archive_head;
|
||
while (curr_bfd != NULL)
|
||
{
|
||
unsigned int curr_count, i;
|
||
som_symbol_type *sym;
|
||
|
||
/* Don't bother for non-SOM objects. */
|
||
if (curr_bfd->format != bfd_object
|
||
|| curr_bfd->xvec->flavour != bfd_target_som_flavour)
|
||
{
|
||
curr_bfd = curr_bfd->archive_next;
|
||
continue;
|
||
}
|
||
|
||
/* Make sure the symbol table has been read, then snag a pointer
|
||
to it. It's a little slimey to grab the symbols via obj_som_symtab,
|
||
but doing so avoids allocating lots of extra memory. */
|
||
if (! som_slurp_symbol_table (curr_bfd))
|
||
goto error_return;
|
||
|
||
sym = obj_som_symtab (curr_bfd);
|
||
curr_count = bfd_get_symcount (curr_bfd);
|
||
|
||
for (i = 0; i < curr_count; i++, sym++)
|
||
{
|
||
struct som_misc_symbol_info info;
|
||
|
||
/* Derive SOM information from the BFD symbol. */
|
||
som_bfd_derive_misc_symbol_info (curr_bfd, &sym->symbol, &info);
|
||
|
||
/* Should we include this symbol? */
|
||
if (info.symbol_type == ST_NULL
|
||
|| info.symbol_type == ST_SYM_EXT
|
||
|| info.symbol_type == ST_ARG_EXT)
|
||
continue;
|
||
|
||
/* Only global symbols and unsatisfied commons. */
|
||
if (info.symbol_scope != SS_UNIVERSAL
|
||
&& info.symbol_type != ST_STORAGE)
|
||
continue;
|
||
|
||
/* Do no include undefined symbols. */
|
||
if (bfd_is_und_section (sym->symbol.section))
|
||
continue;
|
||
|
||
/* If this is the first symbol from this SOM, then update
|
||
the SOM dictionary too. */
|
||
if (som_dict[som_index].location == 0)
|
||
{
|
||
som_dict[som_index].location = curr_som_offset;
|
||
som_dict[som_index].length = arelt_size (curr_bfd);
|
||
}
|
||
|
||
/* Fill in the lst symbol record. */
|
||
curr_lst_sym->hidden = 0;
|
||
curr_lst_sym->secondary_def = info.secondary_def;
|
||
curr_lst_sym->symbol_type = info.symbol_type;
|
||
curr_lst_sym->symbol_scope = info.symbol_scope;
|
||
curr_lst_sym->check_level = 0;
|
||
curr_lst_sym->must_qualify = 0;
|
||
curr_lst_sym->initially_frozen = 0;
|
||
curr_lst_sym->memory_resident = 0;
|
||
curr_lst_sym->is_common = bfd_is_com_section (sym->symbol.section);
|
||
curr_lst_sym->dup_common = info.dup_common;
|
||
curr_lst_sym->xleast = 3;
|
||
curr_lst_sym->arg_reloc = info.arg_reloc;
|
||
curr_lst_sym->name.n_strx = p - strings + 4;
|
||
curr_lst_sym->qualifier_name.n_strx = 0;
|
||
curr_lst_sym->symbol_info = info.symbol_info;
|
||
curr_lst_sym->symbol_value = info.symbol_value | info.priv_level;
|
||
curr_lst_sym->symbol_descriptor = 0;
|
||
curr_lst_sym->reserved = 0;
|
||
curr_lst_sym->som_index = som_index;
|
||
curr_lst_sym->symbol_key = som_bfd_ar_symbol_hash (&sym->symbol);
|
||
curr_lst_sym->next_entry = 0;
|
||
|
||
/* Insert into the hash table. */
|
||
if (hash_table[curr_lst_sym->symbol_key % lst.hash_size])
|
||
{
|
||
struct lst_symbol_record *tmp;
|
||
|
||
/* There is already something at the head of this hash chain,
|
||
so tack this symbol onto the end of the chain. */
|
||
tmp = last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size];
|
||
tmp->next_entry
|
||
= (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
|
||
+ lst.hash_size * 4
|
||
+ lst.module_count * sizeof (struct som_entry)
|
||
+ sizeof (struct lst_header);
|
||
}
|
||
else
|
||
/* First entry in this hash chain. */
|
||
hash_table[curr_lst_sym->symbol_key % lst.hash_size]
|
||
= (curr_lst_sym - lst_syms) * sizeof (struct lst_symbol_record)
|
||
+ lst.hash_size * 4
|
||
+ lst.module_count * sizeof (struct som_entry)
|
||
+ sizeof (struct lst_header);
|
||
|
||
/* Keep track of the last symbol we added to this chain so we can
|
||
easily update its next_entry pointer. */
|
||
last_hash_entry[curr_lst_sym->symbol_key % lst.hash_size]
|
||
= curr_lst_sym;
|
||
|
||
/* Update the string table. */
|
||
bfd_put_32 (abfd, strlen (sym->symbol.name), p);
|
||
p += 4;
|
||
strcpy (p, sym->symbol.name);
|
||
p += strlen (sym->symbol.name) + 1;
|
||
while ((int) p % 4)
|
||
{
|
||
bfd_put_8 (abfd, 0, p);
|
||
p++;
|
||
}
|
||
|
||
/* Head to the next symbol. */
|
||
curr_lst_sym++;
|
||
}
|
||
|
||
/* Keep track of where each SOM will finally reside; then look
|
||
at the next BFD. */
|
||
curr_som_offset += arelt_size (curr_bfd) + sizeof (struct ar_hdr);
|
||
|
||
/* A particular object in the archive may have an odd length; the
|
||
linker requires objects begin on an even boundary. So round
|
||
up the current offset as necessary. */
|
||
curr_som_offset = (curr_som_offset + 0x1) &~ (unsigned) 1;
|
||
curr_bfd = curr_bfd->archive_next;
|
||
som_index++;
|
||
}
|
||
|
||
/* Now scribble out the hash table. */
|
||
amt = lst.hash_size * 4;
|
||
if (bfd_bwrite ((void *) hash_table, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
/* Then the SOM dictionary. */
|
||
amt = lst.module_count * sizeof (struct som_entry);
|
||
if (bfd_bwrite ((void *) som_dict, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
/* The library symbols. */
|
||
amt = nsyms * sizeof (struct lst_symbol_record);
|
||
if (bfd_bwrite ((void *) lst_syms, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
/* And finally the strings. */
|
||
amt = string_size;
|
||
if (bfd_bwrite ((void *) strings, amt, abfd) != amt)
|
||
goto error_return;
|
||
|
||
if (hash_table != NULL)
|
||
free (hash_table);
|
||
if (som_dict != NULL)
|
||
free (som_dict);
|
||
if (last_hash_entry != NULL)
|
||
free (last_hash_entry);
|
||
if (lst_syms != NULL)
|
||
free (lst_syms);
|
||
if (strings != NULL)
|
||
free (strings);
|
||
return TRUE;
|
||
|
||
error_return:
|
||
if (hash_table != NULL)
|
||
free (hash_table);
|
||
if (som_dict != NULL)
|
||
free (som_dict);
|
||
if (last_hash_entry != NULL)
|
||
free (last_hash_entry);
|
||
if (lst_syms != NULL)
|
||
free (lst_syms);
|
||
if (strings != NULL)
|
||
free (strings);
|
||
|
||
return FALSE;
|
||
}
|
||
|
||
/* Write out the LST for the archive.
|
||
|
||
You'll never believe this is really how armaps are handled in SOM... */
|
||
|
||
static bfd_boolean
|
||
som_write_armap (bfd *abfd,
|
||
unsigned int elength,
|
||
struct orl *map ATTRIBUTE_UNUSED,
|
||
unsigned int orl_count ATTRIBUTE_UNUSED,
|
||
int stridx ATTRIBUTE_UNUSED)
|
||
{
|
||
bfd *curr_bfd;
|
||
struct stat statbuf;
|
||
unsigned int i, lst_size, nsyms, stringsize;
|
||
struct ar_hdr hdr;
|
||
struct lst_header lst;
|
||
int *p;
|
||
bfd_size_type amt;
|
||
|
||
/* We'll use this for the archive's date and mode later. */
|
||
if (stat (abfd->filename, &statbuf) != 0)
|
||
{
|
||
bfd_set_error (bfd_error_system_call);
|
||
return FALSE;
|
||
}
|
||
/* Fudge factor. */
|
||
bfd_ardata (abfd)->armap_timestamp = statbuf.st_mtime + 60;
|
||
|
||
/* Account for the lst header first. */
|
||
lst_size = sizeof (struct lst_header);
|
||
|
||
/* Start building the LST header. */
|
||
/* FIXME: Do we need to examine each element to determine the
|
||
largest id number? */
|
||
lst.system_id = CPU_PA_RISC1_0;
|
||
lst.a_magic = LIBMAGIC;
|
||
lst.version_id = VERSION_ID;
|
||
lst.file_time.secs = 0;
|
||
lst.file_time.nanosecs = 0;
|
||
|
||
lst.hash_loc = lst_size;
|
||
lst.hash_size = SOM_LST_HASH_SIZE;
|
||
|
||
/* Hash table is a SOM_LST_HASH_SIZE 32bit offsets. */
|
||
lst_size += 4 * SOM_LST_HASH_SIZE;
|
||
|
||
/* We need to count the number of SOMs in this archive. */
|
||
curr_bfd = abfd->archive_head;
|
||
lst.module_count = 0;
|
||
while (curr_bfd != NULL)
|
||
{
|
||
/* Only true SOM objects count. */
|
||
if (curr_bfd->format == bfd_object
|
||
&& curr_bfd->xvec->flavour == bfd_target_som_flavour)
|
||
lst.module_count++;
|
||
curr_bfd = curr_bfd->archive_next;
|
||
}
|
||
lst.module_limit = lst.module_count;
|
||
lst.dir_loc = lst_size;
|
||
lst_size += sizeof (struct som_entry) * lst.module_count;
|
||
|
||
/* We don't support import/export tables, auxiliary headers,
|
||
or free lists yet. Make the linker work a little harder
|
||
to make our life easier. */
|
||
|
||
lst.export_loc = 0;
|
||
lst.export_count = 0;
|
||
lst.import_loc = 0;
|
||
lst.aux_loc = 0;
|
||
lst.aux_size = 0;
|
||
|
||
/* Count how many symbols we will have on the hash chains and the
|
||
size of the associated string table. */
|
||
if (! som_bfd_prep_for_ar_write (abfd, &nsyms, &stringsize))
|
||
return FALSE;
|
||
|
||
lst_size += sizeof (struct lst_symbol_record) * nsyms;
|
||
|
||
/* For the string table. One day we might actually use this info
|
||
to avoid small seeks/reads when reading archives. */
|
||
lst.string_loc = lst_size;
|
||
lst.string_size = stringsize;
|
||
lst_size += stringsize;
|
||
|
||
/* SOM ABI says this must be zero. */
|
||
lst.free_list = 0;
|
||
lst.file_end = lst_size;
|
||
|
||
/* Compute the checksum. Must happen after the entire lst header
|
||
has filled in. */
|
||
p = (int *) &lst;
|
||
lst.checksum = 0;
|
||
for (i = 0; i < sizeof (struct lst_header) / sizeof (int) - 1; i++)
|
||
lst.checksum ^= *p++;
|
||
|
||
sprintf (hdr.ar_name, "/ ");
|
||
sprintf (hdr.ar_date, "%ld", bfd_ardata (abfd)->armap_timestamp);
|
||
sprintf (hdr.ar_uid, "%ld", (long) getuid ());
|
||
sprintf (hdr.ar_gid, "%ld", (long) getgid ());
|
||
sprintf (hdr.ar_mode, "%-8o", (unsigned int) statbuf.st_mode);
|
||
sprintf (hdr.ar_size, "%-10d", (int) lst_size);
|
||
hdr.ar_fmag[0] = '`';
|
||
hdr.ar_fmag[1] = '\012';
|
||
|
||
/* Turn any nulls into spaces. */
|
||
for (i = 0; i < sizeof (struct ar_hdr); i++)
|
||
if (((char *) (&hdr))[i] == '\0')
|
||
(((char *) (&hdr))[i]) = ' ';
|
||
|
||
/* Scribble out the ar header. */
|
||
amt = sizeof (struct ar_hdr);
|
||
if (bfd_bwrite ((void *) &hdr, amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
/* Now scribble out the lst header. */
|
||
amt = sizeof (struct lst_header);
|
||
if (bfd_bwrite ((void *) &lst, amt, abfd) != amt)
|
||
return FALSE;
|
||
|
||
/* Build and write the armap. */
|
||
if (!som_bfd_ar_write_symbol_stuff (abfd, nsyms, stringsize, lst, elength))
|
||
return FALSE;
|
||
|
||
/* Done. */
|
||
return TRUE;
|
||
}
|
||
|
||
/* Free all information we have cached for this BFD. We can always
|
||
read it again later if we need it. */
|
||
|
||
static bfd_boolean
|
||
som_bfd_free_cached_info (bfd *abfd)
|
||
{
|
||
asection *o;
|
||
|
||
if (bfd_get_format (abfd) != bfd_object)
|
||
return TRUE;
|
||
|
||
#define FREE(x) if (x != NULL) { free (x); x = NULL; }
|
||
/* Free the native string and symbol tables. */
|
||
FREE (obj_som_symtab (abfd));
|
||
FREE (obj_som_stringtab (abfd));
|
||
for (o = abfd->sections; o != NULL; o = o->next)
|
||
{
|
||
/* Free the native relocations. */
|
||
o->reloc_count = (unsigned) -1;
|
||
FREE (som_section_data (o)->reloc_stream);
|
||
/* Free the generic relocations. */
|
||
FREE (o->relocation);
|
||
}
|
||
#undef FREE
|
||
|
||
return TRUE;
|
||
}
|
||
|
||
/* End of miscellaneous support functions. */
|
||
|
||
/* Linker support functions. */
|
||
|
||
static bfd_boolean
|
||
som_bfd_link_split_section (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
|
||
{
|
||
return som_is_subspace (sec) && sec->size > 240000;
|
||
}
|
||
|
||
#define som_close_and_cleanup som_bfd_free_cached_info
|
||
#define som_read_ar_hdr _bfd_generic_read_ar_hdr
|
||
#define som_openr_next_archived_file bfd_generic_openr_next_archived_file
|
||
#define som_get_elt_at_index _bfd_generic_get_elt_at_index
|
||
#define som_generic_stat_arch_elt bfd_generic_stat_arch_elt
|
||
#define som_truncate_arname bfd_bsd_truncate_arname
|
||
#define som_slurp_extended_name_table _bfd_slurp_extended_name_table
|
||
#define som_construct_extended_name_table _bfd_archive_coff_construct_extended_name_table
|
||
#define som_update_armap_timestamp bfd_true
|
||
#define som_bfd_is_target_special_symbol ((bfd_boolean (*) (bfd *, asymbol *)) bfd_false)
|
||
#define som_get_lineno _bfd_nosymbols_get_lineno
|
||
#define som_bfd_make_debug_symbol _bfd_nosymbols_bfd_make_debug_symbol
|
||
#define som_read_minisymbols _bfd_generic_read_minisymbols
|
||
#define som_minisymbol_to_symbol _bfd_generic_minisymbol_to_symbol
|
||
#define som_get_section_contents_in_window _bfd_generic_get_section_contents_in_window
|
||
#define som_bfd_get_relocated_section_contents bfd_generic_get_relocated_section_contents
|
||
#define som_bfd_relax_section bfd_generic_relax_section
|
||
#define som_bfd_link_hash_table_create _bfd_generic_link_hash_table_create
|
||
#define som_bfd_link_hash_table_free _bfd_generic_link_hash_table_free
|
||
#define som_bfd_link_add_symbols _bfd_generic_link_add_symbols
|
||
#define som_bfd_link_just_syms _bfd_generic_link_just_syms
|
||
#define som_bfd_copy_link_hash_symbol_type \
|
||
_bfd_generic_copy_link_hash_symbol_type
|
||
#define som_bfd_final_link _bfd_generic_final_link
|
||
#define som_bfd_gc_sections bfd_generic_gc_sections
|
||
#define som_bfd_merge_sections bfd_generic_merge_sections
|
||
#define som_bfd_is_group_section bfd_generic_is_group_section
|
||
#define som_bfd_discard_group bfd_generic_discard_group
|
||
#define som_section_already_linked _bfd_generic_section_already_linked
|
||
#define som_bfd_define_common_symbol bfd_generic_define_common_symbol
|
||
#define som_bfd_merge_private_bfd_data _bfd_generic_bfd_merge_private_bfd_data
|
||
#define som_bfd_copy_private_header_data _bfd_generic_bfd_copy_private_header_data
|
||
#define som_bfd_set_private_flags _bfd_generic_bfd_set_private_flags
|
||
#define som_find_inliner_info _bfd_nosymbols_find_inliner_info
|
||
|
||
const bfd_target som_vec =
|
||
{
|
||
"som", /* Name. */
|
||
bfd_target_som_flavour,
|
||
BFD_ENDIAN_BIG, /* Target byte order. */
|
||
BFD_ENDIAN_BIG, /* Target headers byte order. */
|
||
(HAS_RELOC | EXEC_P | /* Object flags. */
|
||
HAS_LINENO | HAS_DEBUG |
|
||
HAS_SYMS | HAS_LOCALS | WP_TEXT | D_PAGED | DYNAMIC),
|
||
(SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_LINK_ONCE
|
||
| SEC_ALLOC | SEC_LOAD | SEC_RELOC), /* Section flags. */
|
||
|
||
/* Leading_symbol_char: is the first char of a user symbol
|
||
predictable, and if so what is it. */
|
||
0,
|
||
'/', /* AR_pad_char. */
|
||
14, /* AR_max_namelen. */
|
||
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
|
||
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
|
||
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Data. */
|
||
bfd_getb64, bfd_getb_signed_64, bfd_putb64,
|
||
bfd_getb32, bfd_getb_signed_32, bfd_putb32,
|
||
bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Headers. */
|
||
{_bfd_dummy_target,
|
||
som_object_p, /* bfd_check_format. */
|
||
bfd_generic_archive_p,
|
||
_bfd_dummy_target
|
||
},
|
||
{
|
||
bfd_false,
|
||
som_mkobject,
|
||
_bfd_generic_mkarchive,
|
||
bfd_false
|
||
},
|
||
{
|
||
bfd_false,
|
||
som_write_object_contents,
|
||
_bfd_write_archive_contents,
|
||
bfd_false,
|
||
},
|
||
#undef som
|
||
|
||
BFD_JUMP_TABLE_GENERIC (som),
|
||
BFD_JUMP_TABLE_COPY (som),
|
||
BFD_JUMP_TABLE_CORE (_bfd_nocore),
|
||
BFD_JUMP_TABLE_ARCHIVE (som),
|
||
BFD_JUMP_TABLE_SYMBOLS (som),
|
||
BFD_JUMP_TABLE_RELOCS (som),
|
||
BFD_JUMP_TABLE_WRITE (som),
|
||
BFD_JUMP_TABLE_LINK (som),
|
||
BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic),
|
||
|
||
NULL,
|
||
|
||
NULL
|
||
};
|
||
|
||
#endif /* HOST_HPPAHPUX || HOST_HPPABSD || HOST_HPPAOSF */
|