mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-24 00:44:14 +08:00
51b57ded88
symtab.h, tm-i386v4.h, valprint.c, values.c: Lint. * breakpoint.c, c-exp.y, coffread.c, command.c, environ.c, eval.c, findvar.c, infcmd.c, infptrace.c, infrun.c, m2-exp.y, parse.c, putenv.c, solib.c, sparc-xdep.c, symtab.c, tm-i386v.h, tm-sparc.h, utils.c, valarith.c, valops.c, valprint.c, values.c: Replace bcopy() use with memcpy(), which is more standard and can take advantage of gcc's builtin functions for increased performance. * breakpoint.c, buildsym.c, coffread.c, dbxread.c, i386-tdep.c, ieee-float.c, infcmd.c, sparc-tdep.c, stack.c, symtab.c, symtab.h, target.c, values.c: Replace bzero() use with memset(), which is more standard and can take advantage of gcc's builtin functions for increased performance. * i386-tdep.c, main.c, valprint.c: Replace bcmp() use with memcmp(), which is more standard and can take advantage of gcc's builtin functions for increased performance.
712 lines
19 KiB
C
712 lines
19 KiB
C
/* Find a variable's value in memory, for GDB, the GNU debugger.
|
||
Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "frame.h"
|
||
#include "value.h"
|
||
#include "gdbcore.h"
|
||
#include "inferior.h"
|
||
#include "target.h"
|
||
|
||
#if !defined (GET_SAVED_REGISTER)
|
||
|
||
/* Return the address in which frame FRAME's value of register REGNUM
|
||
has been saved in memory. Or return zero if it has not been saved.
|
||
If REGNUM specifies the SP, the value we return is actually
|
||
the SP value, not an address where it was saved. */
|
||
|
||
CORE_ADDR
|
||
find_saved_register (frame, regnum)
|
||
FRAME frame;
|
||
int regnum;
|
||
{
|
||
struct frame_info *fi;
|
||
struct frame_saved_regs saved_regs;
|
||
|
||
register FRAME frame1 = 0;
|
||
register CORE_ADDR addr = 0;
|
||
|
||
if (frame == 0) /* No regs saved if want current frame */
|
||
return 0;
|
||
|
||
#ifdef HAVE_REGISTER_WINDOWS
|
||
/* We assume that a register in a register window will only be saved
|
||
in one place (since the name changes and/or disappears as you go
|
||
towards inner frames), so we only call get_frame_saved_regs on
|
||
the current frame. This is directly in contradiction to the
|
||
usage below, which assumes that registers used in a frame must be
|
||
saved in a lower (more interior) frame. This change is a result
|
||
of working on a register window machine; get_frame_saved_regs
|
||
always returns the registers saved within a frame, within the
|
||
context (register namespace) of that frame. */
|
||
|
||
/* However, note that we don't want this to return anything if
|
||
nothing is saved (if there's a frame inside of this one). Also,
|
||
callers to this routine asking for the stack pointer want the
|
||
stack pointer saved for *this* frame; this is returned from the
|
||
next frame. */
|
||
|
||
|
||
if (REGISTER_IN_WINDOW_P(regnum))
|
||
{
|
||
frame1 = get_next_frame (frame);
|
||
if (!frame1) return 0; /* Registers of this frame are
|
||
active. */
|
||
|
||
/* Get the SP from the next frame in; it will be this
|
||
current frame. */
|
||
if (regnum != SP_REGNUM)
|
||
frame1 = frame;
|
||
|
||
fi = get_frame_info (frame1);
|
||
get_frame_saved_regs (fi, &saved_regs);
|
||
return saved_regs.regs[regnum]; /* ... which might be zero */
|
||
}
|
||
#endif /* HAVE_REGISTER_WINDOWS */
|
||
|
||
/* Note that this next routine assumes that registers used in
|
||
frame x will be saved only in the frame that x calls and
|
||
frames interior to it. This is not true on the sparc, but the
|
||
above macro takes care of it, so we should be all right. */
|
||
while (1)
|
||
{
|
||
QUIT;
|
||
frame1 = get_prev_frame (frame1);
|
||
if (frame1 == 0 || frame1 == frame)
|
||
break;
|
||
fi = get_frame_info (frame1);
|
||
get_frame_saved_regs (fi, &saved_regs);
|
||
if (saved_regs.regs[regnum])
|
||
addr = saved_regs.regs[regnum];
|
||
}
|
||
|
||
return addr;
|
||
}
|
||
|
||
/* Find register number REGNUM relative to FRAME and put its
|
||
(raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
|
||
was optimized out (and thus can't be fetched). Set *LVAL to
|
||
lval_memory, lval_register, or not_lval, depending on whether the
|
||
value was fetched from memory, from a register, or in a strange
|
||
and non-modifiable way (e.g. a frame pointer which was calculated
|
||
rather than fetched). Set *ADDRP to the address, either in memory
|
||
on as a REGISTER_BYTE offset into the registers array.
|
||
|
||
Note that this implementation never sets *LVAL to not_lval. But
|
||
it can be replaced by defining GET_SAVED_REGISTER and supplying
|
||
your own.
|
||
|
||
The argument RAW_BUFFER must point to aligned memory. */
|
||
void
|
||
get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lval)
|
||
char *raw_buffer;
|
||
int *optimized;
|
||
CORE_ADDR *addrp;
|
||
FRAME frame;
|
||
int regnum;
|
||
enum lval_type *lval;
|
||
{
|
||
CORE_ADDR addr;
|
||
/* Normal systems don't optimize out things with register numbers. */
|
||
if (optimized != NULL)
|
||
*optimized = 0;
|
||
addr = find_saved_register (frame, regnum);
|
||
if (addr != 0)
|
||
{
|
||
if (lval != NULL)
|
||
*lval = lval_memory;
|
||
if (regnum == SP_REGNUM)
|
||
{
|
||
if (raw_buffer != NULL)
|
||
*(CORE_ADDR *)raw_buffer = addr;
|
||
if (addrp != NULL)
|
||
*addrp = 0;
|
||
return;
|
||
}
|
||
if (raw_buffer != NULL)
|
||
read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
|
||
}
|
||
else
|
||
{
|
||
if (lval != NULL)
|
||
*lval = lval_register;
|
||
addr = REGISTER_BYTE (regnum);
|
||
if (raw_buffer != NULL)
|
||
read_register_gen (regnum, raw_buffer);
|
||
}
|
||
if (addrp != NULL)
|
||
*addrp = addr;
|
||
}
|
||
#endif /* GET_SAVED_REGISTER. */
|
||
|
||
/* Copy the bytes of register REGNUM, relative to the current stack frame,
|
||
into our memory at MYADDR, in target byte order.
|
||
The number of bytes copied is REGISTER_RAW_SIZE (REGNUM).
|
||
|
||
Returns 1 if could not be read, 0 if could. */
|
||
|
||
int
|
||
read_relative_register_raw_bytes (regnum, myaddr)
|
||
int regnum;
|
||
char *myaddr;
|
||
{
|
||
int optim;
|
||
if (regnum == FP_REGNUM && selected_frame)
|
||
{
|
||
(void) memcpy (myaddr, &FRAME_FP(selected_frame),
|
||
REGISTER_RAW_SIZE(FP_REGNUM));
|
||
SWAP_TARGET_AND_HOST (myaddr, REGISTER_RAW_SIZE(FP_REGNUM)); /* in target order */
|
||
return 0;
|
||
}
|
||
|
||
get_saved_register (myaddr, &optim, (CORE_ADDR *) NULL, selected_frame,
|
||
regnum, (enum lval_type *)NULL);
|
||
return optim;
|
||
}
|
||
|
||
/* Return a `value' with the contents of register REGNUM
|
||
in its virtual format, with the type specified by
|
||
REGISTER_VIRTUAL_TYPE. */
|
||
|
||
value
|
||
value_of_register (regnum)
|
||
int regnum;
|
||
{
|
||
CORE_ADDR addr;
|
||
int optim;
|
||
register value val;
|
||
char raw_buffer[MAX_REGISTER_RAW_SIZE];
|
||
char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
|
||
enum lval_type lval;
|
||
|
||
get_saved_register (raw_buffer, &optim, &addr,
|
||
selected_frame, regnum, &lval);
|
||
|
||
target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
|
||
val = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
|
||
(void) memcpy (VALUE_CONTENTS_RAW (val), virtual_buffer,
|
||
REGISTER_VIRTUAL_SIZE (regnum));
|
||
VALUE_LVAL (val) = lval;
|
||
VALUE_ADDRESS (val) = addr;
|
||
VALUE_REGNO (val) = regnum;
|
||
VALUE_OPTIMIZED_OUT (val) = optim;
|
||
return val;
|
||
}
|
||
|
||
/* Low level examining and depositing of registers.
|
||
|
||
The caller is responsible for making
|
||
sure that the inferior is stopped before calling the fetching routines,
|
||
or it will get garbage. (a change from GDB version 3, in which
|
||
the caller got the value from the last stop). */
|
||
|
||
/* Contents of the registers in target byte order.
|
||
We allocate some extra slop since we do a lot of bcopy's around `registers',
|
||
and failing-soft is better than failing hard. */
|
||
char registers[REGISTER_BYTES + /* SLOP */ 256];
|
||
|
||
/* Nonzero if that register has been fetched. */
|
||
char register_valid[NUM_REGS];
|
||
|
||
/* Indicate that registers may have changed, so invalidate the cache. */
|
||
void
|
||
registers_changed ()
|
||
{
|
||
int i;
|
||
for (i = 0; i < NUM_REGS; i++)
|
||
register_valid[i] = 0;
|
||
}
|
||
|
||
/* Indicate that all registers have been fetched, so mark them all valid. */
|
||
void
|
||
registers_fetched ()
|
||
{
|
||
int i;
|
||
for (i = 0; i < NUM_REGS; i++)
|
||
register_valid[i] = 1;
|
||
}
|
||
|
||
/* Copy LEN bytes of consecutive data from registers
|
||
starting with the REGBYTE'th byte of register data
|
||
into memory at MYADDR. */
|
||
|
||
void
|
||
read_register_bytes (regbyte, myaddr, len)
|
||
int regbyte;
|
||
char *myaddr;
|
||
int len;
|
||
{
|
||
/* Fetch all registers. */
|
||
int i;
|
||
for (i = 0; i < NUM_REGS; i++)
|
||
if (!register_valid[i])
|
||
{
|
||
target_fetch_registers (-1);
|
||
break;
|
||
}
|
||
if (myaddr != NULL)
|
||
(void) memcpy (myaddr, ®isters[regbyte], len);
|
||
}
|
||
|
||
/* Read register REGNO into memory at MYADDR, which must be large enough
|
||
for REGISTER_RAW_BYTES (REGNO). Target byte-order.
|
||
If the register is known to be the size of a CORE_ADDR or smaller,
|
||
read_register can be used instead. */
|
||
void
|
||
read_register_gen (regno, myaddr)
|
||
int regno;
|
||
char *myaddr;
|
||
{
|
||
if (!register_valid[regno])
|
||
target_fetch_registers (regno);
|
||
(void) memcpy (myaddr, ®isters[REGISTER_BYTE (regno)],
|
||
REGISTER_RAW_SIZE (regno));
|
||
}
|
||
|
||
/* Copy LEN bytes of consecutive data from memory at MYADDR
|
||
into registers starting with the REGBYTE'th byte of register data. */
|
||
|
||
void
|
||
write_register_bytes (regbyte, myaddr, len)
|
||
int regbyte;
|
||
char *myaddr;
|
||
int len;
|
||
{
|
||
/* Make sure the entire registers array is valid. */
|
||
read_register_bytes (0, (char *)NULL, REGISTER_BYTES);
|
||
(void) memcpy (®isters[regbyte], myaddr, len);
|
||
target_store_registers (-1);
|
||
}
|
||
|
||
/* Return the contents of register REGNO, regarding it as an integer. */
|
||
/* FIXME, this loses when the REGISTER_VIRTUAL (REGNO) is true. Also,
|
||
why is the return type CORE_ADDR rather than some integer type? */
|
||
|
||
CORE_ADDR
|
||
read_register (regno)
|
||
int regno;
|
||
{
|
||
REGISTER_TYPE reg;
|
||
|
||
if (!register_valid[regno])
|
||
target_fetch_registers (regno);
|
||
memcpy (®, ®isters[REGISTER_BYTE (regno)], sizeof (REGISTER_TYPE));
|
||
SWAP_TARGET_AND_HOST (®, sizeof (REGISTER_TYPE));
|
||
return reg;
|
||
}
|
||
|
||
/* Registers we shouldn't try to store. */
|
||
#if !defined (CANNOT_STORE_REGISTER)
|
||
#define CANNOT_STORE_REGISTER(regno) 0
|
||
#endif
|
||
|
||
/* Store VALUE in the register number REGNO, regarded as an integer. */
|
||
/* FIXME, this loses when REGISTER_VIRTUAL (REGNO) is true. Also,
|
||
shouldn't the val arg be a LONGEST or something? */
|
||
|
||
void
|
||
write_register (regno, val)
|
||
int regno, val;
|
||
{
|
||
REGISTER_TYPE reg;
|
||
|
||
/* On the sparc, writing %g0 is a no-op, so we don't even want to change
|
||
the registers array if something writes to this register. */
|
||
if (CANNOT_STORE_REGISTER (regno))
|
||
return;
|
||
|
||
reg = val;
|
||
SWAP_TARGET_AND_HOST (®, sizeof (REGISTER_TYPE));
|
||
|
||
target_prepare_to_store ();
|
||
|
||
register_valid [regno] = 1;
|
||
memcpy (®isters[REGISTER_BYTE (regno)], ®, sizeof (REGISTER_TYPE));
|
||
|
||
target_store_registers (regno);
|
||
}
|
||
|
||
/* Record that register REGNO contains VAL.
|
||
This is used when the value is obtained from the inferior or core dump,
|
||
so there is no need to store the value there. */
|
||
|
||
void
|
||
supply_register (regno, val)
|
||
int regno;
|
||
char *val;
|
||
{
|
||
register_valid[regno] = 1;
|
||
(void) memcpy (®isters[REGISTER_BYTE (regno)], val,
|
||
REGISTER_RAW_SIZE (regno));
|
||
}
|
||
|
||
/* Given a struct symbol for a variable,
|
||
and a stack frame id, read the value of the variable
|
||
and return a (pointer to a) struct value containing the value.
|
||
If the variable cannot be found, return a zero pointer.
|
||
If FRAME is NULL, use the selected_frame. */
|
||
|
||
value
|
||
read_var_value (var, frame)
|
||
register struct symbol *var;
|
||
FRAME frame;
|
||
{
|
||
register value v;
|
||
struct frame_info *fi;
|
||
struct type *type = SYMBOL_TYPE (var);
|
||
CORE_ADDR addr;
|
||
register int len;
|
||
|
||
v = allocate_value (type);
|
||
VALUE_LVAL (v) = lval_memory; /* The most likely possibility. */
|
||
len = TYPE_LENGTH (type);
|
||
|
||
if (frame == 0) frame = selected_frame;
|
||
|
||
switch (SYMBOL_CLASS (var))
|
||
{
|
||
case LOC_CONST:
|
||
(void) memcpy (VALUE_CONTENTS_RAW (v), &SYMBOL_VALUE (var), len);
|
||
SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
|
||
VALUE_LVAL (v) = not_lval;
|
||
return v;
|
||
|
||
case LOC_LABEL:
|
||
addr = SYMBOL_VALUE_ADDRESS (var);
|
||
(void) memcpy (VALUE_CONTENTS_RAW (v), &addr, len);
|
||
SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (v), len);
|
||
VALUE_LVAL (v) = not_lval;
|
||
return v;
|
||
|
||
case LOC_CONST_BYTES:
|
||
{
|
||
char *bytes_addr;
|
||
bytes_addr = SYMBOL_VALUE_BYTES (var);
|
||
(void) memcpy (VALUE_CONTENTS_RAW (v), bytes_addr, len);
|
||
VALUE_LVAL (v) = not_lval;
|
||
return v;
|
||
}
|
||
|
||
case LOC_STATIC:
|
||
addr = SYMBOL_VALUE_ADDRESS (var);
|
||
break;
|
||
|
||
case LOC_ARG:
|
||
if (SYMBOL_BASEREG_VALID (var))
|
||
{
|
||
addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var));
|
||
}
|
||
else
|
||
{
|
||
fi = get_frame_info (frame);
|
||
if (fi == NULL)
|
||
return 0;
|
||
addr = FRAME_ARGS_ADDRESS (fi);
|
||
}
|
||
if (!addr)
|
||
{
|
||
return 0;
|
||
}
|
||
addr += SYMBOL_VALUE (var);
|
||
break;
|
||
|
||
case LOC_REF_ARG:
|
||
if (SYMBOL_BASEREG_VALID (var))
|
||
{
|
||
addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var));
|
||
}
|
||
else
|
||
{
|
||
fi = get_frame_info (frame);
|
||
if (fi == NULL)
|
||
return 0;
|
||
addr = FRAME_ARGS_ADDRESS (fi);
|
||
}
|
||
if (!addr)
|
||
{
|
||
return 0;
|
||
}
|
||
addr += SYMBOL_VALUE (var);
|
||
read_memory (addr, (char *) &addr, sizeof (CORE_ADDR));
|
||
break;
|
||
|
||
case LOC_LOCAL:
|
||
case LOC_LOCAL_ARG:
|
||
if (SYMBOL_BASEREG_VALID (var))
|
||
{
|
||
addr = FRAME_GET_BASEREG_VALUE (frame, SYMBOL_BASEREG (var));
|
||
}
|
||
else
|
||
{
|
||
fi = get_frame_info (frame);
|
||
if (fi == NULL)
|
||
return 0;
|
||
addr = FRAME_LOCALS_ADDRESS (fi);
|
||
}
|
||
addr += SYMBOL_VALUE (var);
|
||
break;
|
||
|
||
case LOC_TYPEDEF:
|
||
error ("Cannot look up value of a typedef");
|
||
break;
|
||
|
||
case LOC_BLOCK:
|
||
VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (var));
|
||
return v;
|
||
|
||
case LOC_REGISTER:
|
||
case LOC_REGPARM:
|
||
{
|
||
struct block *b;
|
||
|
||
if (frame == NULL)
|
||
return 0;
|
||
b = get_frame_block (frame);
|
||
|
||
v = value_from_register (type, SYMBOL_VALUE (var), frame);
|
||
|
||
/* Nonzero if a struct which is located in a register or a LOC_ARG
|
||
really contains
|
||
the address of the struct, not the struct itself. GCC_P is nonzero
|
||
if the function was compiled with GCC. */
|
||
#if !defined (REG_STRUCT_HAS_ADDR)
|
||
#define REG_STRUCT_HAS_ADDR(gcc_p) 0
|
||
#endif
|
||
|
||
if (REG_STRUCT_HAS_ADDR (BLOCK_GCC_COMPILED (b))
|
||
&& ( (TYPE_CODE (type) == TYPE_CODE_STRUCT)
|
||
|| (TYPE_CODE (type) == TYPE_CODE_UNION)))
|
||
addr = *(CORE_ADDR *)VALUE_CONTENTS (v);
|
||
else
|
||
return v;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
error ("Cannot look up value of a botched symbol.");
|
||
break;
|
||
}
|
||
|
||
VALUE_ADDRESS (v) = addr;
|
||
VALUE_LAZY (v) = 1;
|
||
return v;
|
||
}
|
||
|
||
/* Return a value of type TYPE, stored in register REGNUM, in frame
|
||
FRAME. */
|
||
|
||
value
|
||
value_from_register (type, regnum, frame)
|
||
struct type *type;
|
||
int regnum;
|
||
FRAME frame;
|
||
{
|
||
char raw_buffer [MAX_REGISTER_RAW_SIZE];
|
||
char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
|
||
CORE_ADDR addr;
|
||
int optim;
|
||
value v = allocate_value (type);
|
||
int len = TYPE_LENGTH (type);
|
||
char *value_bytes = 0;
|
||
int value_bytes_copied = 0;
|
||
int num_storage_locs;
|
||
enum lval_type lval;
|
||
|
||
VALUE_REGNO (v) = regnum;
|
||
|
||
num_storage_locs = (len > REGISTER_VIRTUAL_SIZE (regnum) ?
|
||
((len - 1) / REGISTER_RAW_SIZE (regnum)) + 1 :
|
||
1);
|
||
|
||
if (num_storage_locs > 1)
|
||
{
|
||
/* Value spread across multiple storage locations. */
|
||
|
||
int local_regnum;
|
||
int mem_stor = 0, reg_stor = 0;
|
||
int mem_tracking = 1;
|
||
CORE_ADDR last_addr = 0;
|
||
CORE_ADDR first_addr;
|
||
|
||
value_bytes = (char *) alloca (len + MAX_REGISTER_RAW_SIZE);
|
||
|
||
/* Copy all of the data out, whereever it may be. */
|
||
|
||
for (local_regnum = regnum;
|
||
value_bytes_copied < len;
|
||
(value_bytes_copied += REGISTER_RAW_SIZE (local_regnum),
|
||
++local_regnum))
|
||
{
|
||
get_saved_register (value_bytes + value_bytes_copied,
|
||
&optim,
|
||
&addr,
|
||
frame,
|
||
local_regnum,
|
||
&lval);
|
||
if (lval == lval_register)
|
||
reg_stor++;
|
||
else
|
||
{
|
||
mem_stor++;
|
||
|
||
if (regnum == local_regnum)
|
||
first_addr = addr;
|
||
|
||
mem_tracking =
|
||
(mem_tracking
|
||
&& (regnum == local_regnum
|
||
|| addr == last_addr));
|
||
}
|
||
last_addr = addr;
|
||
}
|
||
|
||
if ((reg_stor && mem_stor)
|
||
|| (mem_stor && !mem_tracking))
|
||
/* Mixed storage; all of the hassle we just went through was
|
||
for some good purpose. */
|
||
{
|
||
VALUE_LVAL (v) = lval_reg_frame_relative;
|
||
VALUE_FRAME (v) = FRAME_FP (frame);
|
||
VALUE_FRAME_REGNUM (v) = regnum;
|
||
}
|
||
else if (mem_stor)
|
||
{
|
||
VALUE_LVAL (v) = lval_memory;
|
||
VALUE_ADDRESS (v) = first_addr;
|
||
}
|
||
else if (reg_stor)
|
||
{
|
||
VALUE_LVAL (v) = lval_register;
|
||
VALUE_ADDRESS (v) = first_addr;
|
||
}
|
||
else
|
||
fatal ("value_from_register: Value not stored anywhere!");
|
||
|
||
VALUE_OPTIMIZED_OUT (v) = optim;
|
||
|
||
/* Any structure stored in more than one register will always be
|
||
an integral number of registers. Otherwise, you'd need to do
|
||
some fiddling with the last register copied here for little
|
||
endian machines. */
|
||
|
||
/* Copy into the contents section of the value. */
|
||
(void) memcpy (VALUE_CONTENTS_RAW (v), value_bytes, len);
|
||
|
||
return v;
|
||
}
|
||
|
||
/* Data is completely contained within a single register. Locate the
|
||
register's contents in a real register or in core;
|
||
read the data in raw format. */
|
||
|
||
get_saved_register (raw_buffer, &optim, &addr, frame, regnum, &lval);
|
||
VALUE_OPTIMIZED_OUT (v) = optim;
|
||
VALUE_LVAL (v) = lval;
|
||
VALUE_ADDRESS (v) = addr;
|
||
|
||
/* Convert the raw contents to virtual contents.
|
||
(Just copy them if the formats are the same.) */
|
||
|
||
target_convert_to_virtual (regnum, raw_buffer, virtual_buffer);
|
||
|
||
if (REGISTER_CONVERTIBLE (regnum))
|
||
{
|
||
/* When the raw and virtual formats differ, the virtual format
|
||
corresponds to a specific data type. If we want that type,
|
||
copy the data into the value.
|
||
Otherwise, do a type-conversion. */
|
||
|
||
if (type != REGISTER_VIRTUAL_TYPE (regnum))
|
||
{
|
||
/* eg a variable of type `float' in a 68881 register
|
||
with raw type `extended' and virtual type `double'.
|
||
Fetch it as a `double' and then convert to `float'. */
|
||
v = allocate_value (REGISTER_VIRTUAL_TYPE (regnum));
|
||
(void) memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len);
|
||
v = value_cast (type, v);
|
||
}
|
||
else
|
||
(void) memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer, len);
|
||
}
|
||
else
|
||
{
|
||
/* Raw and virtual formats are the same for this register. */
|
||
|
||
#if TARGET_BYTE_ORDER == BIG_ENDIAN
|
||
if (len < REGISTER_RAW_SIZE (regnum))
|
||
{
|
||
/* Big-endian, and we want less than full size. */
|
||
VALUE_OFFSET (v) = REGISTER_RAW_SIZE (regnum) - len;
|
||
}
|
||
#endif
|
||
|
||
(void) memcpy (VALUE_CONTENTS_RAW (v), virtual_buffer + VALUE_OFFSET (v),
|
||
len);
|
||
}
|
||
|
||
return v;
|
||
}
|
||
|
||
/* Given a struct symbol for a variable or function,
|
||
and a stack frame id,
|
||
return a (pointer to a) struct value containing the properly typed
|
||
address. */
|
||
|
||
value
|
||
locate_var_value (var, frame)
|
||
register struct symbol *var;
|
||
FRAME frame;
|
||
{
|
||
CORE_ADDR addr = 0;
|
||
struct type *type = SYMBOL_TYPE (var);
|
||
value lazy_value;
|
||
|
||
/* Evaluate it first; if the result is a memory address, we're fine.
|
||
Lazy evaluation pays off here. */
|
||
|
||
lazy_value = read_var_value (var, frame);
|
||
if (lazy_value == 0)
|
||
error ("Address of \"%s\" is unknown.", SYMBOL_NAME (var));
|
||
|
||
if (VALUE_LAZY (lazy_value)
|
||
|| TYPE_CODE (type) == TYPE_CODE_FUNC)
|
||
{
|
||
addr = VALUE_ADDRESS (lazy_value);
|
||
return value_from_longest (lookup_pointer_type (type), (LONGEST) addr);
|
||
}
|
||
|
||
/* Not a memory address; check what the problem was. */
|
||
switch (VALUE_LVAL (lazy_value))
|
||
{
|
||
case lval_register:
|
||
case lval_reg_frame_relative:
|
||
error ("Address requested for identifier \"%s\" which is in a register.",
|
||
SYMBOL_NAME (var));
|
||
break;
|
||
|
||
default:
|
||
error ("Can't take address of \"%s\" which isn't an lvalue.",
|
||
SYMBOL_NAME (var));
|
||
break;
|
||
}
|
||
return 0; /* For lint -- never reached */
|
||
}
|