mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2025-01-07 16:43:36 +08:00
7e73cedf75
gdbarch.{c,sh} removed a word from a comment.
699 lines
25 KiB
C
699 lines
25 KiB
C
/* Data structures associated with breakpoints in GDB.
|
||
Copyright (C) 1992, 93, 94, 95, 96, 98, 1999 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#if !defined (BREAKPOINT_H)
|
||
#define BREAKPOINT_H 1
|
||
|
||
#include "frame.h"
|
||
#include "value.h"
|
||
|
||
#include "gdb-events.h"
|
||
|
||
/* This is the maximum number of bytes a breakpoint instruction can take.
|
||
Feel free to increase it. It's just used in a few places to size
|
||
arrays that should be independent of the target architecture. */
|
||
|
||
#define BREAKPOINT_MAX 16
|
||
|
||
/* Type of breakpoint. */
|
||
/* FIXME In the future, we should fold all other breakpoint-like things into
|
||
here. This includes:
|
||
|
||
* single-step (for machines where we have to simulate single stepping)
|
||
(probably, though perhaps it is better for it to look as much as
|
||
possible like a single-step to wait_for_inferior). */
|
||
|
||
enum bptype
|
||
{
|
||
bp_none = 0, /* Eventpoint has been deleted. */
|
||
bp_breakpoint, /* Normal breakpoint */
|
||
bp_hardware_breakpoint, /* Hardware assisted breakpoint */
|
||
bp_until, /* used by until command */
|
||
bp_finish, /* used by finish command */
|
||
bp_watchpoint, /* Watchpoint */
|
||
bp_hardware_watchpoint, /* Hardware assisted watchpoint */
|
||
bp_read_watchpoint, /* read watchpoint, (hardware assisted) */
|
||
bp_access_watchpoint, /* access watchpoint, (hardware assisted) */
|
||
bp_longjmp, /* secret breakpoint to find longjmp() */
|
||
bp_longjmp_resume, /* secret breakpoint to escape longjmp() */
|
||
|
||
/* Used by wait_for_inferior for stepping over subroutine calls, for
|
||
stepping over signal handlers, and for skipping prologues. */
|
||
bp_step_resume,
|
||
|
||
/* Used by wait_for_inferior for stepping over signal handlers. */
|
||
bp_through_sigtramp,
|
||
|
||
/* Used to detect when a watchpoint expression has gone out of
|
||
scope. These breakpoints are usually not visible to the user.
|
||
|
||
This breakpoint has some interesting properties:
|
||
|
||
1) There's always a 1:1 mapping between watchpoints
|
||
on local variables and watchpoint_scope breakpoints.
|
||
|
||
2) It automatically deletes itself and the watchpoint it's
|
||
associated with when hit.
|
||
|
||
3) It can never be disabled. */
|
||
bp_watchpoint_scope,
|
||
|
||
/* The breakpoint at the end of a call dummy. */
|
||
/* FIXME: What if the function we are calling longjmp()s out of the
|
||
call, or the user gets out with the "return" command? We currently
|
||
have no way of cleaning up the breakpoint in these (obscure) situations.
|
||
(Probably can solve this by noticing longjmp, "return", etc., it's
|
||
similar to noticing when a watchpoint on a local variable goes out
|
||
of scope (with hardware support for watchpoints)). */
|
||
bp_call_dummy,
|
||
|
||
/* Some dynamic linkers (HP, maybe Solaris) can arrange for special
|
||
code in the inferior to run when significant events occur in the
|
||
dynamic linker (for example a library is loaded or unloaded).
|
||
|
||
By placing a breakpoint in this magic code GDB will get control
|
||
when these significant events occur. GDB can then re-examine
|
||
the dynamic linker's data structures to discover any newly loaded
|
||
dynamic libraries. */
|
||
bp_shlib_event,
|
||
|
||
/* Some multi-threaded systems can arrange for a location in the
|
||
inferior to be executed when certain thread-related events occur
|
||
(such as thread creation or thread death).
|
||
|
||
By placing a breakpoint at one of these locations, GDB will get
|
||
control when these events occur. GDB can then update its thread
|
||
lists etc. */
|
||
|
||
bp_thread_event,
|
||
|
||
/* These breakpoints are used to implement the "catch load" command
|
||
on platforms whose dynamic linkers support such functionality. */
|
||
bp_catch_load,
|
||
|
||
/* These breakpoints are used to implement the "catch unload" command
|
||
on platforms whose dynamic linkers support such functionality. */
|
||
bp_catch_unload,
|
||
|
||
/* These are not really breakpoints, but are catchpoints that
|
||
implement the "catch fork", "catch vfork" and "catch exec" commands
|
||
on platforms whose kernel support such functionality. (I.e.,
|
||
kernels which can raise an event when a fork or exec occurs, as
|
||
opposed to the debugger setting breakpoints on functions named
|
||
"fork" or "exec".) */
|
||
bp_catch_fork,
|
||
bp_catch_vfork,
|
||
bp_catch_exec,
|
||
|
||
/* These are catchpoints to implement "catch catch" and "catch throw"
|
||
commands for C++ exception handling. */
|
||
bp_catch_catch,
|
||
bp_catch_throw
|
||
|
||
|
||
};
|
||
|
||
/* States of enablement of breakpoint. */
|
||
|
||
enum enable
|
||
{
|
||
disabled, /* The eventpoint is inactive, and cannot trigger. */
|
||
enabled, /* The eventpoint is active, and can trigger. */
|
||
shlib_disabled, /* The eventpoint's address is in an unloaded solib.
|
||
The eventpoint will be automatically enabled
|
||
and reset when that solib is loaded. */
|
||
call_disabled, /* The eventpoint has been disabled while a call
|
||
into the inferior is "in flight", because some
|
||
eventpoints interfere with the implementation of
|
||
a call on some targets. The eventpoint will be
|
||
automatically enabled and reset when the call
|
||
"lands" (either completes, or stops at another
|
||
eventpoint). */
|
||
permanent /* There is a breakpoint instruction hard-wired into
|
||
the target's code. Don't try to write another
|
||
breakpoint instruction on top of it, or restore
|
||
its value. Step over it using the architecture's
|
||
SKIP_INSN macro. */
|
||
};
|
||
|
||
|
||
/* Disposition of breakpoint. Ie: what to do after hitting it. */
|
||
|
||
enum bpdisp
|
||
{
|
||
del, /* Delete it */
|
||
del_at_next_stop, /* Delete at next stop, whether hit or not */
|
||
disable, /* Disable it */
|
||
donttouch /* Leave it alone */
|
||
};
|
||
|
||
enum target_hw_bp_type
|
||
{
|
||
hw_write = 0, /* Common HW watchpoint */
|
||
hw_read = 1, /* Read HW watchpoint */
|
||
hw_access = 2, /* Access HW watchpoint */
|
||
hw_execute = 3 /* Execute HW breakpoint */
|
||
};
|
||
|
||
/* Note that the ->silent field is not currently used by any commands
|
||
(though the code is in there if it was to be, and set_raw_breakpoint
|
||
does set it to 0). I implemented it because I thought it would be
|
||
useful for a hack I had to put in; I'm going to leave it in because
|
||
I can see how there might be times when it would indeed be useful */
|
||
|
||
/* This is for a breakpoint or a watchpoint. */
|
||
|
||
struct breakpoint
|
||
{
|
||
struct breakpoint *next;
|
||
/* Type of breakpoint. */
|
||
enum bptype type;
|
||
/* Zero means disabled; remember the info but don't break here. */
|
||
enum enable enable;
|
||
/* What to do with this breakpoint after we hit it. */
|
||
enum bpdisp disposition;
|
||
/* Number assigned to distinguish breakpoints. */
|
||
int number;
|
||
|
||
/* Address to break at, or NULL if not a breakpoint. */
|
||
CORE_ADDR address;
|
||
|
||
/* Line number of this address. Only matters if address is
|
||
non-NULL. */
|
||
|
||
int line_number;
|
||
|
||
/* Source file name of this address. Only matters if address is
|
||
non-NULL. */
|
||
|
||
char *source_file;
|
||
|
||
/* Non-zero means a silent breakpoint (don't print frame info
|
||
if we stop here). */
|
||
unsigned char silent;
|
||
/* Number of stops at this breakpoint that should
|
||
be continued automatically before really stopping. */
|
||
int ignore_count;
|
||
/* "Real" contents of byte where breakpoint has been inserted.
|
||
Valid only when breakpoints are in the program. Under the complete
|
||
control of the target insert_breakpoint and remove_breakpoint routines.
|
||
No other code should assume anything about the value(s) here. */
|
||
char shadow_contents[BREAKPOINT_MAX];
|
||
/* Nonzero if this breakpoint is now inserted. Only matters if address
|
||
is non-NULL. */
|
||
char inserted;
|
||
/* Nonzero if this is not the first breakpoint in the list
|
||
for the given address. Only matters if address is non-NULL. */
|
||
char duplicate;
|
||
/* Chain of command lines to execute when this breakpoint is hit. */
|
||
struct command_line *commands;
|
||
/* Stack depth (address of frame). If nonzero, break only if fp
|
||
equals this. */
|
||
CORE_ADDR frame;
|
||
/* Conditional. Break only if this expression's value is nonzero. */
|
||
struct expression *cond;
|
||
|
||
/* String we used to set the breakpoint (malloc'd). Only matters if
|
||
address is non-NULL. */
|
||
char *addr_string;
|
||
/* Language we used to set the breakpoint. */
|
||
enum language language;
|
||
/* Input radix we used to set the breakpoint. */
|
||
int input_radix;
|
||
/* String form of the breakpoint condition (malloc'd), or NULL if there
|
||
is no condition. */
|
||
char *cond_string;
|
||
/* String form of exp (malloc'd), or NULL if none. */
|
||
char *exp_string;
|
||
|
||
/* The expression we are watching, or NULL if not a watchpoint. */
|
||
struct expression *exp;
|
||
/* The largest block within which it is valid, or NULL if it is
|
||
valid anywhere (e.g. consists just of global symbols). */
|
||
struct block *exp_valid_block;
|
||
/* Value of the watchpoint the last time we checked it. */
|
||
value_ptr val;
|
||
|
||
/* Holds the value chain for a hardware watchpoint expression. */
|
||
value_ptr val_chain;
|
||
|
||
/* Holds the address of the related watchpoint_scope breakpoint
|
||
when using watchpoints on local variables (might the concept
|
||
of a related breakpoint be useful elsewhere, if not just call
|
||
it the watchpoint_scope breakpoint or something like that. FIXME). */
|
||
struct breakpoint *related_breakpoint;
|
||
|
||
/* Holds the frame address which identifies the frame this watchpoint
|
||
should be evaluated in, or NULL if the watchpoint should be evaluated
|
||
on the outermost frame. */
|
||
CORE_ADDR watchpoint_frame;
|
||
|
||
/* Thread number for thread-specific breakpoint, or -1 if don't care */
|
||
int thread;
|
||
|
||
/* Count of the number of times this breakpoint was taken, dumped
|
||
with the info, but not used for anything else. Useful for
|
||
seeing how many times you hit a break prior to the program
|
||
aborting, so you can back up to just before the abort. */
|
||
int hit_count;
|
||
|
||
/* Filename of a dynamically-linked library (dll), used for
|
||
bp_catch_load and bp_catch_unload (malloc'd), or NULL if any
|
||
library is significant. */
|
||
char *dll_pathname;
|
||
|
||
/* Filename of a dll whose state change (e.g., load or unload)
|
||
triggered this catchpoint. This field is only valid immediately
|
||
after this catchpoint has triggered. */
|
||
char *triggered_dll_pathname;
|
||
|
||
/* Process id of a child process whose forking triggered this
|
||
catchpoint. This field is only valid immediately after this
|
||
catchpoint has triggered. */
|
||
int forked_inferior_pid;
|
||
|
||
/* Filename of a program whose exec triggered this catchpoint.
|
||
This field is only valid immediately after this catchpoint has
|
||
triggered. */
|
||
char *exec_pathname;
|
||
|
||
asection *section;
|
||
};
|
||
|
||
/* The following stuff is an abstract data type "bpstat" ("breakpoint
|
||
status"). This provides the ability to determine whether we have
|
||
stopped at a breakpoint, and what we should do about it. */
|
||
|
||
typedef struct bpstats *bpstat;
|
||
|
||
/* Interface: */
|
||
/* Clear a bpstat so that it says we are not at any breakpoint.
|
||
Also free any storage that is part of a bpstat. */
|
||
extern void bpstat_clear (bpstat *);
|
||
|
||
/* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
|
||
is part of the bpstat is copied as well. */
|
||
extern bpstat bpstat_copy (bpstat);
|
||
|
||
extern bpstat bpstat_stop_status (CORE_ADDR *, int);
|
||
|
||
/* This bpstat_what stuff tells wait_for_inferior what to do with a
|
||
breakpoint (a challenging task). */
|
||
|
||
enum bpstat_what_main_action
|
||
{
|
||
/* Perform various other tests; that is, this bpstat does not
|
||
say to perform any action (e.g. failed watchpoint and nothing
|
||
else). */
|
||
BPSTAT_WHAT_KEEP_CHECKING,
|
||
|
||
/* Rather than distinguish between noisy and silent stops here, it
|
||
might be cleaner to have bpstat_print make that decision (also
|
||
taking into account stop_print_frame and source_only). But the
|
||
implications are a bit scary (interaction with auto-displays, etc.),
|
||
so I won't try it. */
|
||
|
||
/* Stop silently. */
|
||
BPSTAT_WHAT_STOP_SILENT,
|
||
|
||
/* Stop and print. */
|
||
BPSTAT_WHAT_STOP_NOISY,
|
||
|
||
/* Remove breakpoints, single step once, then put them back in and
|
||
go back to what we were doing. It's possible that this should be
|
||
removed from the main_action and put into a separate field, to more
|
||
cleanly handle BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE. */
|
||
BPSTAT_WHAT_SINGLE,
|
||
|
||
/* Set longjmp_resume breakpoint, remove all other breakpoints,
|
||
and continue. The "remove all other breakpoints" part is required
|
||
if we are also stepping over another breakpoint as well as doing
|
||
the longjmp handling. */
|
||
BPSTAT_WHAT_SET_LONGJMP_RESUME,
|
||
|
||
/* Clear longjmp_resume breakpoint, then handle as
|
||
BPSTAT_WHAT_KEEP_CHECKING. */
|
||
BPSTAT_WHAT_CLEAR_LONGJMP_RESUME,
|
||
|
||
/* Clear longjmp_resume breakpoint, then handle as BPSTAT_WHAT_SINGLE. */
|
||
BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE,
|
||
|
||
/* Clear step resume breakpoint, and keep checking. */
|
||
BPSTAT_WHAT_STEP_RESUME,
|
||
|
||
/* Clear through_sigtramp breakpoint, muck with trap_expected, and keep
|
||
checking. */
|
||
BPSTAT_WHAT_THROUGH_SIGTRAMP,
|
||
|
||
/* Check the dynamic linker's data structures for new libraries, then
|
||
keep checking. */
|
||
BPSTAT_WHAT_CHECK_SHLIBS,
|
||
|
||
/* Check the dynamic linker's data structures for new libraries, then
|
||
resume out of the dynamic linker's callback, stop and print. */
|
||
BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK,
|
||
|
||
/* This is just used to keep track of how many enums there are. */
|
||
BPSTAT_WHAT_LAST
|
||
};
|
||
|
||
struct bpstat_what
|
||
{
|
||
enum bpstat_what_main_action main_action;
|
||
|
||
/* Did we hit a call dummy breakpoint? This only goes with a main_action
|
||
of BPSTAT_WHAT_STOP_SILENT or BPSTAT_WHAT_STOP_NOISY (the concept of
|
||
continuing from a call dummy without popping the frame is not a
|
||
useful one). */
|
||
int call_dummy;
|
||
};
|
||
|
||
/* The possible return values for print_bpstat, print_it_normal,
|
||
print_it_done, print_it_noop. */
|
||
enum print_stop_action
|
||
{
|
||
PRINT_UNKNOWN = -1,
|
||
PRINT_SRC_AND_LOC,
|
||
PRINT_SRC_ONLY,
|
||
PRINT_NOTHING
|
||
};
|
||
|
||
/* Tell what to do about this bpstat. */
|
||
struct bpstat_what bpstat_what (bpstat);
|
||
|
||
/* Find the bpstat associated with a breakpoint. NULL otherwise. */
|
||
bpstat bpstat_find_breakpoint (bpstat, struct breakpoint *);
|
||
|
||
/* Find a step_resume breakpoint associated with this bpstat.
|
||
(If there are multiple step_resume bp's on the list, this function
|
||
will arbitrarily pick one.)
|
||
|
||
It is an error to use this function if BPSTAT doesn't contain a
|
||
step_resume breakpoint.
|
||
|
||
See wait_for_inferior's use of this function.
|
||
*/
|
||
extern struct breakpoint *bpstat_find_step_resume_breakpoint (bpstat);
|
||
|
||
/* Nonzero if a signal that we got in wait() was due to circumstances
|
||
explained by the BS. */
|
||
/* Currently that is true if we have hit a breakpoint, or if there is
|
||
a watchpoint enabled. */
|
||
#define bpstat_explains_signal(bs) ((bs) != NULL)
|
||
|
||
/* Nonzero if we should step constantly (e.g. watchpoints on machines
|
||
without hardware support). This isn't related to a specific bpstat,
|
||
just to things like whether watchpoints are set. */
|
||
extern int bpstat_should_step (void);
|
||
|
||
/* Nonzero if there are enabled hardware watchpoints. */
|
||
extern int bpstat_have_active_hw_watchpoints (void);
|
||
|
||
/* Print a message indicating what happened. Returns nonzero to
|
||
say that only the source line should be printed after this (zero
|
||
return means print the frame as well as the source line). */
|
||
extern enum print_stop_action bpstat_print (bpstat);
|
||
|
||
/* Return the breakpoint number of the first breakpoint we are stopped
|
||
at. *BSP upon return is a bpstat which points to the remaining
|
||
breakpoints stopped at (but which is not guaranteed to be good for
|
||
anything but further calls to bpstat_num).
|
||
Return 0 if passed a bpstat which does not indicate any breakpoints. */
|
||
extern int bpstat_num (bpstat *);
|
||
|
||
/* Perform actions associated with having stopped at *BSP. Actually, we just
|
||
use this for breakpoint commands. Perhaps other actions will go here
|
||
later, but this is executed at a late time (from the command loop). */
|
||
extern void bpstat_do_actions (bpstat *);
|
||
|
||
/* Modify BS so that the actions will not be performed. */
|
||
extern void bpstat_clear_actions (bpstat);
|
||
|
||
/* Given a bpstat that records zero or more triggered eventpoints, this
|
||
function returns another bpstat which contains only the catchpoints
|
||
on that first list, if any.
|
||
*/
|
||
extern void bpstat_get_triggered_catchpoints (bpstat, bpstat *);
|
||
|
||
/* Implementation: */
|
||
|
||
/* Values used to tell the printing routine how to behave for this bpstat. */
|
||
enum bp_print_how
|
||
{
|
||
/* This is used when we want to do a normal printing of the reason
|
||
for stopping. The output will depend on the type of eventpoint
|
||
we are dealing with. This is the default value, most commonly
|
||
used. */
|
||
print_it_normal,
|
||
/* This is used when nothing should be printed for this bpstat entry. */
|
||
print_it_noop,
|
||
/* This is used when everything which needs to be printed has
|
||
already been printed. But we still want to print the frame. */
|
||
print_it_done
|
||
};
|
||
|
||
struct bpstats
|
||
{
|
||
/* Linked list because there can be two breakpoints at the same
|
||
place, and a bpstat reflects the fact that both have been hit. */
|
||
bpstat next;
|
||
/* Breakpoint that we are at. */
|
||
struct breakpoint *breakpoint_at;
|
||
/* Commands left to be done. */
|
||
struct command_line *commands;
|
||
/* Old value associated with a watchpoint. */
|
||
value_ptr old_val;
|
||
|
||
/* Nonzero if this breakpoint tells us to print the frame. */
|
||
char print;
|
||
|
||
/* Nonzero if this breakpoint tells us to stop. */
|
||
char stop;
|
||
|
||
/* Tell bpstat_print and print_bp_stop_message how to print stuff
|
||
associated with this element of the bpstat chain. */
|
||
enum bp_print_how print_it;
|
||
};
|
||
|
||
enum inf_context
|
||
{
|
||
inf_starting,
|
||
inf_running,
|
||
inf_exited
|
||
};
|
||
|
||
/* The possible return values for breakpoint_here_p.
|
||
We guarantee that zero always means "no breakpoint here". */
|
||
enum breakpoint_here
|
||
{
|
||
no_breakpoint_here = 0,
|
||
ordinary_breakpoint_here,
|
||
permanent_breakpoint_here
|
||
};
|
||
|
||
|
||
/* Prototypes for breakpoint-related functions. */
|
||
|
||
/* Forward declarations for prototypes */
|
||
struct frame_info;
|
||
|
||
extern enum breakpoint_here breakpoint_here_p (CORE_ADDR);
|
||
|
||
extern int breakpoint_inserted_here_p (CORE_ADDR);
|
||
|
||
extern int frame_in_dummy (struct frame_info *);
|
||
|
||
extern int breakpoint_thread_match (CORE_ADDR, int);
|
||
|
||
extern void until_break_command (char *, int);
|
||
|
||
extern void breakpoint_re_set (void);
|
||
|
||
extern void breakpoint_re_set_thread (struct breakpoint *);
|
||
|
||
extern int ep_is_exception_catchpoint (struct breakpoint *);
|
||
|
||
extern struct breakpoint *set_momentary_breakpoint
|
||
(struct symtab_and_line, struct frame_info *, enum bptype);
|
||
|
||
extern void set_ignore_count (int, int, int);
|
||
|
||
extern void set_default_breakpoint (int, CORE_ADDR, struct symtab *, int);
|
||
|
||
extern void mark_breakpoints_out (void);
|
||
|
||
extern void breakpoint_init_inferior (enum inf_context);
|
||
|
||
extern struct cleanup *make_cleanup_delete_breakpoint (struct breakpoint *);
|
||
|
||
extern struct cleanup *make_exec_cleanup_delete_breakpoint (struct breakpoint *);
|
||
|
||
extern void delete_breakpoint (struct breakpoint *);
|
||
|
||
extern void breakpoint_auto_delete (bpstat);
|
||
|
||
extern void breakpoint_clear_ignore_counts (void);
|
||
|
||
extern void break_command (char *, int);
|
||
|
||
extern void hbreak_command_wrapper (char *, int);
|
||
extern void thbreak_command_wrapper (char *, int);
|
||
extern void rbreak_command_wrapper (char *, int);
|
||
extern void watch_command_wrapper (char *, int);
|
||
extern void awatch_command_wrapper (char *, int);
|
||
extern void rwatch_command_wrapper (char *, int);
|
||
extern void tbreak_command (char *, int);
|
||
|
||
extern int insert_breakpoints (void);
|
||
|
||
extern int remove_breakpoints (void);
|
||
|
||
/* This function can be used to physically insert eventpoints from the
|
||
specified traced inferior process, without modifying the breakpoint
|
||
package's state. This can be useful for those targets which support
|
||
following the processes of a fork() or vfork() system call, when both
|
||
of the resulting two processes are to be followed. */
|
||
extern int reattach_breakpoints (int);
|
||
|
||
/* This function can be used to update the breakpoint package's state
|
||
after an exec() system call has been executed.
|
||
|
||
This function causes the following:
|
||
|
||
- All eventpoints are marked "not inserted".
|
||
- All eventpoints with a symbolic address are reset such that
|
||
the symbolic address must be reevaluated before the eventpoints
|
||
can be reinserted.
|
||
- The solib breakpoints are explicitly removed from the breakpoint
|
||
list.
|
||
- A step-resume breakpoint, if any, is explicitly removed from the
|
||
breakpoint list.
|
||
- All eventpoints without a symbolic address are removed from the
|
||
breakpoint list. */
|
||
extern void update_breakpoints_after_exec (void);
|
||
|
||
/* This function can be used to physically remove hardware breakpoints
|
||
and watchpoints from the specified traced inferior process, without
|
||
modifying the breakpoint package's state. This can be useful for
|
||
those targets which support following the processes of a fork() or
|
||
vfork() system call, when one of the resulting two processes is to
|
||
be detached and allowed to run free.
|
||
|
||
It is an error to use this function on the process whose id is
|
||
inferior_pid. */
|
||
extern int detach_breakpoints (int);
|
||
|
||
extern void enable_longjmp_breakpoint (void);
|
||
|
||
extern void disable_longjmp_breakpoint (void);
|
||
|
||
extern void set_longjmp_resume_breakpoint (CORE_ADDR, struct frame_info *);
|
||
/* These functions respectively disable or reenable all currently
|
||
enabled watchpoints. When disabled, the watchpoints are marked
|
||
call_disabled. When reenabled, they are marked enabled.
|
||
|
||
The intended client of these functions is infcmd.c\run_stack_dummy.
|
||
|
||
The inferior must be stopped, and all breakpoints removed, when
|
||
these functions are used.
|
||
|
||
The need for these functions is that on some targets (e.g., HP-UX),
|
||
gdb is unable to unwind through the dummy frame that is pushed as
|
||
part of the implementation of a call command. Watchpoints can
|
||
cause the inferior to stop in places where this frame is visible,
|
||
and that can cause execution control to become very confused.
|
||
|
||
Note that if a user sets breakpoints in an interactively called
|
||
function, the call_disabled watchpoints will have been reenabled
|
||
when the first such breakpoint is reached. However, on targets
|
||
that are unable to unwind through the call dummy frame, watches
|
||
of stack-based storage may then be deleted, because gdb will
|
||
believe that their watched storage is out of scope. (Sigh.) */
|
||
extern void disable_watchpoints_before_interactive_call_start (void);
|
||
|
||
extern void enable_watchpoints_after_interactive_call_stop (void);
|
||
|
||
|
||
extern void clear_breakpoint_hit_counts (void);
|
||
|
||
extern int get_number (char **);
|
||
|
||
extern int get_number_or_range (char **);
|
||
|
||
/* The following are for displays, which aren't really breakpoints, but
|
||
here is as good a place as any for them. */
|
||
|
||
extern void disable_current_display (void);
|
||
|
||
extern void do_displays (void);
|
||
|
||
extern void disable_display (int);
|
||
|
||
extern void clear_displays (void);
|
||
|
||
extern void disable_breakpoint (struct breakpoint *);
|
||
|
||
extern void enable_breakpoint (struct breakpoint *);
|
||
|
||
extern void make_breakpoint_permanent (struct breakpoint *);
|
||
|
||
extern struct breakpoint *create_solib_event_breakpoint (CORE_ADDR);
|
||
|
||
extern struct breakpoint *create_thread_event_breakpoint (CORE_ADDR);
|
||
|
||
extern void remove_solib_event_breakpoints (void);
|
||
|
||
extern void remove_thread_event_breakpoints (void);
|
||
|
||
extern void disable_breakpoints_in_shlibs (int silent);
|
||
|
||
extern void re_enable_breakpoints_in_shlibs (void);
|
||
|
||
extern void create_solib_load_event_breakpoint (char *, int, char *, char *);
|
||
|
||
extern void create_solib_unload_event_breakpoint (char *, int,
|
||
char *, char *);
|
||
|
||
extern void create_fork_event_catchpoint (int, char *);
|
||
|
||
extern void create_vfork_event_catchpoint (int, char *);
|
||
|
||
extern void create_exec_event_catchpoint (int, char *);
|
||
|
||
/* This function returns TRUE if ep is a catchpoint. */
|
||
extern int ep_is_catchpoint (struct breakpoint *);
|
||
|
||
/* This function returns TRUE if ep is a catchpoint of a
|
||
shared library (aka dynamically-linked library) event,
|
||
such as a library load or unload. */
|
||
extern int ep_is_shlib_catchpoint (struct breakpoint *);
|
||
|
||
extern struct breakpoint *set_breakpoint_sal (struct symtab_and_line);
|
||
|
||
/* Enable breakpoints and delete when hit. Called with ARG == NULL
|
||
deletes all breakpoints. */
|
||
extern void delete_command (char *arg, int from_tty);
|
||
|
||
/* Pull all H/W watchpoints from the target. Return non-zero if the
|
||
remove fails. */
|
||
extern int remove_hw_watchpoints (void);
|
||
|
||
#endif /* !defined (BREAKPOINT_H) */
|