mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-12-02 23:04:09 +08:00
ec45252592
Move the declarations out of defs.h, and the implementations out of findvar.c. I opted for a new file, because this functionality of converting integers to bytes and vice-versa seems a bit to generic to live in findvar.c. Change-Id: I524858fca33901ee2150c582bac16042148d2251 Approved-By: John Baldwin <jhb@FreeBSD.org>
2162 lines
59 KiB
C
2162 lines
59 KiB
C
/* Intel 387 floating point stuff.
|
||
|
||
Copyright (C) 1988-2024 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "extract-store-integer.h"
|
||
#include "frame.h"
|
||
#include "gdbcore.h"
|
||
#include "inferior.h"
|
||
#include "language.h"
|
||
#include "regcache.h"
|
||
#include "target-float.h"
|
||
#include "value.h"
|
||
|
||
#include "i386-tdep.h"
|
||
#include "i387-tdep.h"
|
||
#include "gdbsupport/x86-xstate.h"
|
||
|
||
/* Print the floating point number specified by RAW. */
|
||
|
||
static void
|
||
print_i387_value (struct gdbarch *gdbarch,
|
||
const gdb_byte *raw, struct ui_file *file)
|
||
{
|
||
/* We try to print 19 digits. The last digit may or may not contain
|
||
garbage, but we'd better print one too many. We need enough room
|
||
to print the value, 1 position for the sign, 1 for the decimal
|
||
point, 19 for the digits and 6 for the exponent adds up to 27. */
|
||
const struct type *type = i387_ext_type (gdbarch);
|
||
std::string str = target_float_to_string (raw, type, " %-+27.19g");
|
||
gdb_printf (file, "%s", str.c_str ());
|
||
}
|
||
|
||
/* Print the classification for the register contents RAW. */
|
||
|
||
static void
|
||
print_i387_ext (struct gdbarch *gdbarch,
|
||
const gdb_byte *raw, struct ui_file *file)
|
||
{
|
||
int sign;
|
||
int integer;
|
||
unsigned int exponent;
|
||
unsigned long fraction[2];
|
||
|
||
sign = raw[9] & 0x80;
|
||
integer = raw[7] & 0x80;
|
||
exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
|
||
fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
|
||
fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
|
||
| (raw[5] << 8) | raw[4]);
|
||
|
||
if (exponent == 0x7fff && integer)
|
||
{
|
||
if (fraction[0] == 0x00000000 && fraction[1] == 0x00000000)
|
||
/* Infinity. */
|
||
gdb_printf (file, " %cInf", (sign ? '-' : '+'));
|
||
else if (sign && fraction[0] == 0x00000000 && fraction[1] == 0x40000000)
|
||
/* Real Indefinite (QNaN). */
|
||
gdb_puts (" Real Indefinite (QNaN)", file);
|
||
else if (fraction[1] & 0x40000000)
|
||
/* QNaN. */
|
||
gdb_puts (" QNaN", file);
|
||
else
|
||
/* SNaN. */
|
||
gdb_puts (" SNaN", file);
|
||
}
|
||
else if (exponent < 0x7fff && exponent > 0x0000 && integer)
|
||
/* Normal. */
|
||
print_i387_value (gdbarch, raw, file);
|
||
else if (exponent == 0x0000)
|
||
{
|
||
/* Denormal or zero. */
|
||
print_i387_value (gdbarch, raw, file);
|
||
|
||
if (integer)
|
||
/* Pseudo-denormal. */
|
||
gdb_puts (" Pseudo-denormal", file);
|
||
else if (fraction[0] || fraction[1])
|
||
/* Denormal. */
|
||
gdb_puts (" Denormal", file);
|
||
}
|
||
else
|
||
/* Unsupported. */
|
||
gdb_puts (" Unsupported", file);
|
||
}
|
||
|
||
/* Print the status word STATUS. If STATUS_P is false, then STATUS
|
||
was unavailable. */
|
||
|
||
static void
|
||
print_i387_status_word (int status_p,
|
||
unsigned int status, struct ui_file *file)
|
||
{
|
||
gdb_printf (file, "Status Word: ");
|
||
if (!status_p)
|
||
{
|
||
gdb_printf (file, "%s\n", _("<unavailable>"));
|
||
return;
|
||
}
|
||
|
||
gdb_printf (file, "%s", hex_string_custom (status, 4));
|
||
gdb_puts (" ", file);
|
||
gdb_printf (file, " %s", (status & 0x0001) ? "IE" : " ");
|
||
gdb_printf (file, " %s", (status & 0x0002) ? "DE" : " ");
|
||
gdb_printf (file, " %s", (status & 0x0004) ? "ZE" : " ");
|
||
gdb_printf (file, " %s", (status & 0x0008) ? "OE" : " ");
|
||
gdb_printf (file, " %s", (status & 0x0010) ? "UE" : " ");
|
||
gdb_printf (file, " %s", (status & 0x0020) ? "PE" : " ");
|
||
gdb_puts (" ", file);
|
||
gdb_printf (file, " %s", (status & 0x0080) ? "ES" : " ");
|
||
gdb_puts (" ", file);
|
||
gdb_printf (file, " %s", (status & 0x0040) ? "SF" : " ");
|
||
gdb_puts (" ", file);
|
||
gdb_printf (file, " %s", (status & 0x0100) ? "C0" : " ");
|
||
gdb_printf (file, " %s", (status & 0x0200) ? "C1" : " ");
|
||
gdb_printf (file, " %s", (status & 0x0400) ? "C2" : " ");
|
||
gdb_printf (file, " %s", (status & 0x4000) ? "C3" : " ");
|
||
|
||
gdb_puts ("\n", file);
|
||
|
||
gdb_printf (file,
|
||
" TOP: %d\n", ((status >> 11) & 7));
|
||
}
|
||
|
||
/* Print the control word CONTROL. If CONTROL_P is false, then
|
||
CONTROL was unavailable. */
|
||
|
||
static void
|
||
print_i387_control_word (int control_p,
|
||
unsigned int control, struct ui_file *file)
|
||
{
|
||
gdb_printf (file, "Control Word: ");
|
||
if (!control_p)
|
||
{
|
||
gdb_printf (file, "%s\n", _("<unavailable>"));
|
||
return;
|
||
}
|
||
|
||
gdb_printf (file, "%s", hex_string_custom (control, 4));
|
||
gdb_puts (" ", file);
|
||
gdb_printf (file, " %s", (control & 0x0001) ? "IM" : " ");
|
||
gdb_printf (file, " %s", (control & 0x0002) ? "DM" : " ");
|
||
gdb_printf (file, " %s", (control & 0x0004) ? "ZM" : " ");
|
||
gdb_printf (file, " %s", (control & 0x0008) ? "OM" : " ");
|
||
gdb_printf (file, " %s", (control & 0x0010) ? "UM" : " ");
|
||
gdb_printf (file, " %s", (control & 0x0020) ? "PM" : " ");
|
||
|
||
gdb_puts ("\n", file);
|
||
|
||
gdb_puts (" PC: ", file);
|
||
switch ((control >> 8) & 3)
|
||
{
|
||
case 0:
|
||
gdb_puts ("Single Precision (24-bits)\n", file);
|
||
break;
|
||
case 1:
|
||
gdb_puts ("Reserved\n", file);
|
||
break;
|
||
case 2:
|
||
gdb_puts ("Double Precision (53-bits)\n", file);
|
||
break;
|
||
case 3:
|
||
gdb_puts ("Extended Precision (64-bits)\n", file);
|
||
break;
|
||
}
|
||
|
||
gdb_puts (" RC: ", file);
|
||
switch ((control >> 10) & 3)
|
||
{
|
||
case 0:
|
||
gdb_puts ("Round to nearest\n", file);
|
||
break;
|
||
case 1:
|
||
gdb_puts ("Round down\n", file);
|
||
break;
|
||
case 2:
|
||
gdb_puts ("Round up\n", file);
|
||
break;
|
||
case 3:
|
||
gdb_puts ("Round toward zero\n", file);
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Print out the i387 floating point state. Note that we ignore FRAME
|
||
in the code below. That's OK since floating-point registers are
|
||
never saved on the stack. */
|
||
|
||
void
|
||
i387_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
|
||
const frame_info_ptr &frame, const char *args)
|
||
{
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
ULONGEST fctrl;
|
||
int fctrl_p;
|
||
ULONGEST fstat;
|
||
int fstat_p;
|
||
ULONGEST ftag;
|
||
int ftag_p;
|
||
ULONGEST fiseg;
|
||
int fiseg_p;
|
||
ULONGEST fioff;
|
||
int fioff_p;
|
||
ULONGEST foseg;
|
||
int foseg_p;
|
||
ULONGEST fooff;
|
||
int fooff_p;
|
||
ULONGEST fop;
|
||
int fop_p;
|
||
int fpreg;
|
||
int top;
|
||
|
||
gdb_assert (gdbarch == get_frame_arch (frame));
|
||
|
||
fctrl_p = read_frame_register_unsigned (frame,
|
||
I387_FCTRL_REGNUM (tdep), &fctrl);
|
||
fstat_p = read_frame_register_unsigned (frame,
|
||
I387_FSTAT_REGNUM (tdep), &fstat);
|
||
ftag_p = read_frame_register_unsigned (frame,
|
||
I387_FTAG_REGNUM (tdep), &ftag);
|
||
fiseg_p = read_frame_register_unsigned (frame,
|
||
I387_FISEG_REGNUM (tdep), &fiseg);
|
||
fioff_p = read_frame_register_unsigned (frame,
|
||
I387_FIOFF_REGNUM (tdep), &fioff);
|
||
foseg_p = read_frame_register_unsigned (frame,
|
||
I387_FOSEG_REGNUM (tdep), &foseg);
|
||
fooff_p = read_frame_register_unsigned (frame,
|
||
I387_FOOFF_REGNUM (tdep), &fooff);
|
||
fop_p = read_frame_register_unsigned (frame,
|
||
I387_FOP_REGNUM (tdep), &fop);
|
||
|
||
if (fstat_p)
|
||
{
|
||
top = ((fstat >> 11) & 7);
|
||
|
||
for (fpreg = 7; fpreg >= 0; fpreg--)
|
||
{
|
||
struct value *regval;
|
||
int regnum;
|
||
int i;
|
||
int tag = -1;
|
||
|
||
gdb_printf (file, "%sR%d: ", fpreg == top ? "=>" : " ", fpreg);
|
||
|
||
if (ftag_p)
|
||
{
|
||
tag = (ftag >> (fpreg * 2)) & 3;
|
||
|
||
switch (tag)
|
||
{
|
||
case 0:
|
||
gdb_puts ("Valid ", file);
|
||
break;
|
||
case 1:
|
||
gdb_puts ("Zero ", file);
|
||
break;
|
||
case 2:
|
||
gdb_puts ("Special ", file);
|
||
break;
|
||
case 3:
|
||
gdb_puts ("Empty ", file);
|
||
break;
|
||
}
|
||
}
|
||
else
|
||
gdb_puts ("Unknown ", file);
|
||
|
||
regnum = (fpreg + 8 - top) % 8 + I387_ST0_REGNUM (tdep);
|
||
regval = get_frame_register_value (frame, regnum);
|
||
|
||
if (regval->entirely_available ())
|
||
{
|
||
const gdb_byte *raw = regval->contents ().data ();
|
||
|
||
gdb_puts ("0x", file);
|
||
for (i = 9; i >= 0; i--)
|
||
gdb_printf (file, "%02x", raw[i]);
|
||
|
||
if (tag != -1 && tag != 3)
|
||
print_i387_ext (gdbarch, raw, file);
|
||
}
|
||
else
|
||
gdb_printf (file, "%s", _("<unavailable>"));
|
||
|
||
gdb_puts ("\n", file);
|
||
}
|
||
}
|
||
|
||
gdb_puts ("\n", file);
|
||
print_i387_status_word (fstat_p, fstat, file);
|
||
print_i387_control_word (fctrl_p, fctrl, file);
|
||
gdb_printf (file, "Tag Word: %s\n",
|
||
ftag_p ? hex_string_custom (ftag, 4) : _("<unavailable>"));
|
||
gdb_printf (file, "Instruction Pointer: %s:",
|
||
fiseg_p ? hex_string_custom (fiseg, 2) : _("<unavailable>"));
|
||
gdb_printf (file, "%s\n",
|
||
fioff_p ? hex_string_custom (fioff, 8) : _("<unavailable>"));
|
||
gdb_printf (file, "Operand Pointer: %s:",
|
||
foseg_p ? hex_string_custom (foseg, 2) : _("<unavailable>"));
|
||
gdb_printf (file, "%s\n",
|
||
fooff_p ? hex_string_custom (fooff, 8) : _("<unavailable>"));
|
||
gdb_printf (file, "Opcode: %s\n",
|
||
fop_p
|
||
? (hex_string_custom (fop ? (fop | 0xd800) : 0, 4))
|
||
: _("<unavailable>"));
|
||
}
|
||
|
||
|
||
/* Return nonzero if a value of type TYPE stored in register REGNUM
|
||
needs any special handling. */
|
||
|
||
int
|
||
i387_convert_register_p (struct gdbarch *gdbarch, int regnum,
|
||
struct type *type)
|
||
{
|
||
if (i386_fp_regnum_p (gdbarch, regnum))
|
||
{
|
||
/* Floating point registers must be converted unless we are
|
||
accessing them in their hardware type or TYPE is not float. */
|
||
if (type == i387_ext_type (gdbarch)
|
||
|| type->code () != TYPE_CODE_FLT)
|
||
return 0;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Read a value of type TYPE from register REGNUM in frame FRAME, and
|
||
return its contents in TO. */
|
||
|
||
int
|
||
i387_register_to_value (const frame_info_ptr &frame, int regnum,
|
||
struct type *type, gdb_byte *to,
|
||
int *optimizedp, int *unavailablep)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
gdb_byte from[I386_MAX_REGISTER_SIZE];
|
||
|
||
gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
|
||
|
||
/* We only support floating-point values. */
|
||
if (type->code () != TYPE_CODE_FLT)
|
||
{
|
||
warning (_("Cannot convert floating-point register value "
|
||
"to non-floating-point type."));
|
||
*optimizedp = *unavailablep = 0;
|
||
return 0;
|
||
}
|
||
|
||
/* Convert to TYPE. */
|
||
auto from_view
|
||
= gdb::make_array_view (from, register_size (gdbarch, regnum));
|
||
frame_info_ptr next_frame = get_next_frame_sentinel_okay (frame);
|
||
if (!get_frame_register_bytes (next_frame, regnum, 0, from_view, optimizedp,
|
||
unavailablep))
|
||
return 0;
|
||
|
||
target_float_convert (from, i387_ext_type (gdbarch), to, type);
|
||
*optimizedp = *unavailablep = 0;
|
||
return 1;
|
||
}
|
||
|
||
/* Write the contents FROM of a value of type TYPE into register
|
||
REGNUM in frame FRAME. */
|
||
|
||
void
|
||
i387_value_to_register (const frame_info_ptr &frame, int regnum,
|
||
struct type *type, const gdb_byte *from)
|
||
{
|
||
struct gdbarch *gdbarch = get_frame_arch (frame);
|
||
gdb_byte to[I386_MAX_REGISTER_SIZE];
|
||
|
||
gdb_assert (i386_fp_regnum_p (gdbarch, regnum));
|
||
|
||
/* We only support floating-point values. */
|
||
if (type->code () != TYPE_CODE_FLT)
|
||
{
|
||
warning (_("Cannot convert non-floating-point type "
|
||
"to floating-point register value."));
|
||
return;
|
||
}
|
||
|
||
/* Convert from TYPE. */
|
||
struct type *to_type = i387_ext_type (gdbarch);
|
||
target_float_convert (from, type, to, to_type);
|
||
auto to_view = gdb::make_array_view (to, to_type->length ());
|
||
put_frame_register (get_next_frame_sentinel_okay (frame), regnum, to_view);
|
||
}
|
||
|
||
|
||
/* Handle FSAVE and FXSAVE formats. */
|
||
|
||
/* At fsave_offset[REGNUM] you'll find the offset to the location in
|
||
the data structure used by the "fsave" instruction where GDB
|
||
register REGNUM is stored. */
|
||
|
||
static int fsave_offset[] =
|
||
{
|
||
28 + 0 * 10, /* %st(0) ... */
|
||
28 + 1 * 10,
|
||
28 + 2 * 10,
|
||
28 + 3 * 10,
|
||
28 + 4 * 10,
|
||
28 + 5 * 10,
|
||
28 + 6 * 10,
|
||
28 + 7 * 10, /* ... %st(7). */
|
||
0, /* `fctrl' (16 bits). */
|
||
4, /* `fstat' (16 bits). */
|
||
8, /* `ftag' (16 bits). */
|
||
16, /* `fiseg' (16 bits). */
|
||
12, /* `fioff'. */
|
||
24, /* `foseg' (16 bits). */
|
||
20, /* `fooff'. */
|
||
18 /* `fop' (bottom 11 bits). */
|
||
};
|
||
|
||
#define FSAVE_ADDR(tdep, fsave, regnum) \
|
||
(fsave + fsave_offset[regnum - I387_ST0_REGNUM (tdep)])
|
||
|
||
|
||
/* Fill register REGNUM in REGCACHE with the appropriate value from
|
||
*FSAVE. This function masks off any of the reserved bits in
|
||
*FSAVE. */
|
||
|
||
void
|
||
i387_supply_fsave (struct regcache *regcache, int regnum, const void *fsave)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
const gdb_byte *regs = (const gdb_byte *) fsave;
|
||
int i;
|
||
|
||
gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
|
||
|
||
for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
|
||
if (regnum == -1 || regnum == i)
|
||
{
|
||
if (fsave == NULL)
|
||
{
|
||
regcache->raw_supply (i, NULL);
|
||
continue;
|
||
}
|
||
|
||
/* Most of the FPU control registers occupy only 16 bits in the
|
||
fsave area. Give those a special treatment. */
|
||
if (i >= I387_FCTRL_REGNUM (tdep)
|
||
&& i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
|
||
{
|
||
gdb_byte val[4];
|
||
|
||
memcpy (val, FSAVE_ADDR (tdep, regs, i), 2);
|
||
val[2] = val[3] = 0;
|
||
if (i == I387_FOP_REGNUM (tdep))
|
||
val[1] &= ((1 << 3) - 1);
|
||
regcache->raw_supply (i, val);
|
||
}
|
||
else
|
||
regcache->raw_supply (i, FSAVE_ADDR (tdep, regs, i));
|
||
}
|
||
|
||
/* Provide dummy values for the SSE registers. */
|
||
for (i = I387_XMM0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
|
||
if (regnum == -1 || regnum == i)
|
||
regcache->raw_supply (i, NULL);
|
||
if (regnum == -1 || regnum == I387_MXCSR_REGNUM (tdep))
|
||
{
|
||
gdb_byte buf[4];
|
||
|
||
store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL);
|
||
regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf);
|
||
}
|
||
}
|
||
|
||
/* Fill register REGNUM (if it is a floating-point register) in *FSAVE
|
||
with the value from REGCACHE. If REGNUM is -1, do this for all
|
||
registers. This function doesn't touch any of the reserved bits in
|
||
*FSAVE. */
|
||
|
||
void
|
||
i387_collect_fsave (const struct regcache *regcache, int regnum, void *fsave)
|
||
{
|
||
gdbarch *arch = regcache->arch ();
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
|
||
gdb_byte *regs = (gdb_byte *) fsave;
|
||
int i;
|
||
|
||
gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
|
||
|
||
for (i = I387_ST0_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
|
||
if (regnum == -1 || regnum == i)
|
||
{
|
||
/* Most of the FPU control registers occupy only 16 bits in
|
||
the fsave area. Give those a special treatment. */
|
||
if (i >= I387_FCTRL_REGNUM (tdep)
|
||
&& i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
|
||
{
|
||
gdb_byte buf[4];
|
||
|
||
regcache->raw_collect (i, buf);
|
||
|
||
if (i == I387_FOP_REGNUM (tdep))
|
||
{
|
||
/* The opcode occupies only 11 bits. Make sure we
|
||
don't touch the other bits. */
|
||
buf[1] &= ((1 << 3) - 1);
|
||
buf[1] |= ((FSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
|
||
}
|
||
memcpy (FSAVE_ADDR (tdep, regs, i), buf, 2);
|
||
}
|
||
else
|
||
regcache->raw_collect (i, FSAVE_ADDR (tdep, regs, i));
|
||
}
|
||
}
|
||
|
||
|
||
/* At fxsave_offset[REGNUM] you'll find the offset to the location in
|
||
the data structure used by the "fxsave" instruction where GDB
|
||
register REGNUM is stored. */
|
||
|
||
static int fxsave_offset[] =
|
||
{
|
||
32, /* %st(0) through ... */
|
||
48,
|
||
64,
|
||
80,
|
||
96,
|
||
112,
|
||
128,
|
||
144, /* ... %st(7) (80 bits each). */
|
||
0, /* `fctrl' (16 bits). */
|
||
2, /* `fstat' (16 bits). */
|
||
4, /* `ftag' (16 bits). */
|
||
12, /* `fiseg' (16 bits). */
|
||
8, /* `fioff'. */
|
||
20, /* `foseg' (16 bits). */
|
||
16, /* `fooff'. */
|
||
6, /* `fop' (bottom 11 bits). */
|
||
160 + 0 * 16, /* %xmm0 through ... */
|
||
160 + 1 * 16,
|
||
160 + 2 * 16,
|
||
160 + 3 * 16,
|
||
160 + 4 * 16,
|
||
160 + 5 * 16,
|
||
160 + 6 * 16,
|
||
160 + 7 * 16,
|
||
160 + 8 * 16,
|
||
160 + 9 * 16,
|
||
160 + 10 * 16,
|
||
160 + 11 * 16,
|
||
160 + 12 * 16,
|
||
160 + 13 * 16,
|
||
160 + 14 * 16,
|
||
160 + 15 * 16, /* ... %xmm15 (128 bits each). */
|
||
};
|
||
|
||
#define FXSAVE_ADDR(tdep, fxsave, regnum) \
|
||
(fxsave + fxsave_offset[regnum - I387_ST0_REGNUM (tdep)])
|
||
|
||
/* We made an unfortunate choice in putting %mxcsr after the SSE
|
||
registers %xmm0-%xmm7 instead of before, since it makes supporting
|
||
the registers %xmm8-%xmm15 on AMD64 a bit involved. Therefore we
|
||
don't include the offset for %mxcsr here above. */
|
||
|
||
#define FXSAVE_MXCSR_ADDR(fxsave) (fxsave + 24)
|
||
|
||
static int i387_tag (const gdb_byte *raw);
|
||
|
||
|
||
/* Fill register REGNUM in REGCACHE with the appropriate
|
||
floating-point or SSE register value from *FXSAVE. This function
|
||
masks off any of the reserved bits in *FXSAVE. */
|
||
|
||
void
|
||
i387_supply_fxsave (struct regcache *regcache, int regnum, const void *fxsave)
|
||
{
|
||
gdbarch *arch = regcache->arch ();
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
|
||
const gdb_byte *regs = (const gdb_byte *) fxsave;
|
||
int i;
|
||
|
||
gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
|
||
gdb_assert (tdep->num_xmm_regs > 0);
|
||
|
||
for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
|
||
if (regnum == -1 || regnum == i)
|
||
{
|
||
if (regs == NULL)
|
||
{
|
||
regcache->raw_supply (i, NULL);
|
||
continue;
|
||
}
|
||
|
||
/* Most of the FPU control registers occupy only 16 bits in
|
||
the fxsave area. Give those a special treatment. */
|
||
if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
|
||
&& i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
|
||
{
|
||
gdb_byte val[4];
|
||
|
||
memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
|
||
val[2] = val[3] = 0;
|
||
if (i == I387_FOP_REGNUM (tdep))
|
||
val[1] &= ((1 << 3) - 1);
|
||
else if (i== I387_FTAG_REGNUM (tdep))
|
||
{
|
||
/* The fxsave area contains a simplified version of
|
||
the tag word. We have to look at the actual 80-bit
|
||
FP data to recreate the traditional i387 tag word. */
|
||
|
||
unsigned long ftag = 0;
|
||
int fpreg;
|
||
int top;
|
||
|
||
top = ((FXSAVE_ADDR (tdep, regs,
|
||
I387_FSTAT_REGNUM (tdep)))[1] >> 3);
|
||
top &= 0x7;
|
||
|
||
for (fpreg = 7; fpreg >= 0; fpreg--)
|
||
{
|
||
int tag;
|
||
|
||
if (val[0] & (1 << fpreg))
|
||
{
|
||
int thisreg = (fpreg + 8 - top) % 8
|
||
+ I387_ST0_REGNUM (tdep);
|
||
tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
|
||
}
|
||
else
|
||
tag = 3; /* Empty */
|
||
|
||
ftag |= tag << (2 * fpreg);
|
||
}
|
||
val[0] = ftag & 0xff;
|
||
val[1] = (ftag >> 8) & 0xff;
|
||
}
|
||
regcache->raw_supply (i, val);
|
||
}
|
||
else
|
||
regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
|
||
}
|
||
|
||
if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
|
||
{
|
||
if (regs == NULL)
|
||
regcache->raw_supply (I387_MXCSR_REGNUM (tdep), NULL);
|
||
else
|
||
regcache->raw_supply (I387_MXCSR_REGNUM (tdep),
|
||
FXSAVE_MXCSR_ADDR (regs));
|
||
}
|
||
}
|
||
|
||
/* Fill register REGNUM (if it is a floating-point or SSE register) in
|
||
*FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
|
||
all registers. This function doesn't touch any of the reserved
|
||
bits in *FXSAVE. */
|
||
|
||
void
|
||
i387_collect_fxsave (const struct regcache *regcache, int regnum, void *fxsave)
|
||
{
|
||
gdbarch *arch = regcache->arch ();
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
|
||
gdb_byte *regs = (gdb_byte *) fxsave;
|
||
int i;
|
||
|
||
gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
|
||
gdb_assert (tdep->num_xmm_regs > 0);
|
||
|
||
for (i = I387_ST0_REGNUM (tdep); i < I387_MXCSR_REGNUM (tdep); i++)
|
||
if (regnum == -1 || regnum == i)
|
||
{
|
||
/* Most of the FPU control registers occupy only 16 bits in
|
||
the fxsave area. Give those a special treatment. */
|
||
if (i >= I387_FCTRL_REGNUM (tdep) && i < I387_XMM0_REGNUM (tdep)
|
||
&& i != I387_FIOFF_REGNUM (tdep) && i != I387_FOOFF_REGNUM (tdep))
|
||
{
|
||
gdb_byte buf[4];
|
||
|
||
regcache->raw_collect (i, buf);
|
||
|
||
if (i == I387_FOP_REGNUM (tdep))
|
||
{
|
||
/* The opcode occupies only 11 bits. Make sure we
|
||
don't touch the other bits. */
|
||
buf[1] &= ((1 << 3) - 1);
|
||
buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
|
||
}
|
||
else if (i == I387_FTAG_REGNUM (tdep))
|
||
{
|
||
/* Converting back is much easier. */
|
||
|
||
unsigned short ftag;
|
||
int fpreg;
|
||
|
||
ftag = (buf[1] << 8) | buf[0];
|
||
buf[0] = 0;
|
||
buf[1] = 0;
|
||
|
||
for (fpreg = 7; fpreg >= 0; fpreg--)
|
||
{
|
||
int tag = (ftag >> (fpreg * 2)) & 3;
|
||
|
||
if (tag != 3)
|
||
buf[0] |= (1 << fpreg);
|
||
}
|
||
}
|
||
memcpy (FXSAVE_ADDR (tdep, regs, i), buf, 2);
|
||
}
|
||
else
|
||
regcache->raw_collect (i, FXSAVE_ADDR (tdep, regs, i));
|
||
}
|
||
|
||
if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
|
||
regcache->raw_collect (I387_MXCSR_REGNUM (tdep),
|
||
FXSAVE_MXCSR_ADDR (regs));
|
||
}
|
||
|
||
/* `xstate_bv' is at byte offset 512. */
|
||
#define XSAVE_XSTATE_BV_ADDR(xsave) (xsave + 512)
|
||
|
||
/* At xsave_avxh_offset[REGNUM] you'll find the relative offset within
|
||
the AVX region of the XSAVE extended state where the upper 128bits
|
||
of GDB register YMM0 + REGNUM is stored. */
|
||
|
||
static int xsave_avxh_offset[] =
|
||
{
|
||
0 * 16, /* Upper 128bit of %ymm0 through ... */
|
||
1 * 16,
|
||
2 * 16,
|
||
3 * 16,
|
||
4 * 16,
|
||
5 * 16,
|
||
6 * 16,
|
||
7 * 16,
|
||
8 * 16,
|
||
9 * 16,
|
||
10 * 16,
|
||
11 * 16,
|
||
12 * 16,
|
||
13 * 16,
|
||
14 * 16,
|
||
15 * 16 /* Upper 128bit of ... %ymm15 (128 bits each). */
|
||
};
|
||
|
||
#define XSAVE_AVXH_ADDR(tdep, xsave, regnum) \
|
||
(xsave + (tdep)->xsave_layout.avx_offset \
|
||
+ xsave_avxh_offset[regnum - I387_YMM0H_REGNUM (tdep)])
|
||
|
||
/* At xsave_ymm_avx512_offset[REGNUM] you'll find the relative offset
|
||
within the ZMM region of the XSAVE extended state where the second
|
||
128bits of GDB register YMM16 + REGNUM is stored. */
|
||
|
||
static int xsave_ymm_avx512_offset[] =
|
||
{
|
||
16 + 0 * 64, /* %ymm16 through... */
|
||
16 + 1 * 64,
|
||
16 + 2 * 64,
|
||
16 + 3 * 64,
|
||
16 + 4 * 64,
|
||
16 + 5 * 64,
|
||
16 + 6 * 64,
|
||
16 + 7 * 64,
|
||
16 + 8 * 64,
|
||
16 + 9 * 64,
|
||
16 + 10 * 64,
|
||
16 + 11 * 64,
|
||
16 + 12 * 64,
|
||
16 + 13 * 64,
|
||
16 + 14 * 64,
|
||
16 + 15 * 64 /* ... %ymm31 (128 bits each). */
|
||
};
|
||
|
||
#define XSAVE_YMM_AVX512_ADDR(tdep, xsave, regnum) \
|
||
(xsave + (tdep)->xsave_layout.zmm_offset \
|
||
+ xsave_ymm_avx512_offset[regnum - I387_YMM16H_REGNUM (tdep)])
|
||
|
||
/* At xsave_xmm_avx512_offset[REGNUM] you'll find the relative offset
|
||
within the ZMM region of the XSAVE extended state where the first
|
||
128bits of GDB register XMM16 + REGNUM is stored. */
|
||
|
||
static int xsave_xmm_avx512_offset[] =
|
||
{
|
||
0 * 64, /* %xmm16 through... */
|
||
1 * 64,
|
||
2 * 64,
|
||
3 * 64,
|
||
4 * 64,
|
||
5 * 64,
|
||
6 * 64,
|
||
7 * 64,
|
||
8 * 64,
|
||
9 * 64,
|
||
10 * 64,
|
||
11 * 64,
|
||
12 * 64,
|
||
13 * 64,
|
||
14 * 64,
|
||
15 * 64 /* ... %xmm31 (128 bits each). */
|
||
};
|
||
|
||
#define XSAVE_XMM_AVX512_ADDR(tdep, xsave, regnum) \
|
||
(xsave + (tdep)->xsave_layout.zmm_offset \
|
||
+ xsave_xmm_avx512_offset[regnum - I387_XMM16_REGNUM (tdep)])
|
||
|
||
/* At xsave_bndregs_offset[REGNUM] you'll find the relative offset
|
||
within the BNDREGS region of the XSAVE extended state where the GDB
|
||
register BND0R + REGNUM is stored. */
|
||
|
||
static int xsave_bndregs_offset[] = {
|
||
0 * 16, /* bnd0r...bnd3r registers. */
|
||
1 * 16,
|
||
2 * 16,
|
||
3 * 16
|
||
};
|
||
|
||
#define XSAVE_BNDREGS_ADDR(tdep, xsave, regnum) \
|
||
(xsave + (tdep)->xsave_layout.bndregs_offset \
|
||
+ xsave_bndregs_offset[regnum - I387_BND0R_REGNUM (tdep)])
|
||
|
||
static int xsave_bndcfg_offset[] = {
|
||
0 * 8, /* bndcfg ... bndstatus. */
|
||
1 * 8,
|
||
};
|
||
|
||
#define XSAVE_BNDCFG_ADDR(tdep, xsave, regnum) \
|
||
(xsave + (tdep)->xsave_layout.bndcfg_offset \
|
||
+ xsave_bndcfg_offset[regnum - I387_BNDCFGU_REGNUM (tdep)])
|
||
|
||
/* At xsave_avx512_k_offset[REGNUM] you'll find the relative offset
|
||
within the K region of the XSAVE extended state where the AVX512
|
||
opmask register K0 + REGNUM is stored. */
|
||
|
||
static int xsave_avx512_k_offset[] =
|
||
{
|
||
0 * 8, /* %k0 through... */
|
||
1 * 8,
|
||
2 * 8,
|
||
3 * 8,
|
||
4 * 8,
|
||
5 * 8,
|
||
6 * 8,
|
||
7 * 8 /* %k7 (64 bits each). */
|
||
};
|
||
|
||
#define XSAVE_AVX512_K_ADDR(tdep, xsave, regnum) \
|
||
(xsave + (tdep)->xsave_layout.k_offset \
|
||
+ xsave_avx512_k_offset[regnum - I387_K0_REGNUM (tdep)])
|
||
|
||
|
||
/* At xsave_avx512_zmm0_h_offset[REGNUM] you find the relative offset
|
||
within the ZMM_H region of the XSAVE extended state where the upper
|
||
256bits of the GDB register ZMM0 + REGNUM is stored. */
|
||
|
||
static int xsave_avx512_zmm0_h_offset[] =
|
||
{
|
||
0 * 32, /* Upper 256bit of %zmmh0 through... */
|
||
1 * 32,
|
||
2 * 32,
|
||
3 * 32,
|
||
4 * 32,
|
||
5 * 32,
|
||
6 * 32,
|
||
7 * 32,
|
||
8 * 32,
|
||
9 * 32,
|
||
10 * 32,
|
||
11 * 32,
|
||
12 * 32,
|
||
13 * 32,
|
||
14 * 32,
|
||
15 * 32 /* Upper 256bit of... %zmmh15 (256 bits each). */
|
||
};
|
||
|
||
#define XSAVE_AVX512_ZMM0_H_ADDR(tdep, xsave, regnum) \
|
||
(xsave + (tdep)->xsave_layout.zmm_h_offset \
|
||
+ xsave_avx512_zmm0_h_offset[regnum - I387_ZMM0H_REGNUM (tdep)])
|
||
|
||
/* At xsave_avx512_zmm16_h_offset[REGNUM] you find the relative offset
|
||
within the ZMM_H region of the XSAVE extended state where the upper
|
||
256bits of the GDB register ZMM16 + REGNUM is stored. */
|
||
|
||
static int xsave_avx512_zmm16_h_offset[] =
|
||
{
|
||
32 + 0 * 64, /* Upper 256bit of... %zmmh16 (256 bits each). */
|
||
32 + 1 * 64,
|
||
32 + 2 * 64,
|
||
32 + 3 * 64,
|
||
32 + 4 * 64,
|
||
32 + 5 * 64,
|
||
32 + 6 * 64,
|
||
32 + 7 * 64,
|
||
32 + 8 * 64,
|
||
32 + 9 * 64,
|
||
32 + 10 * 64,
|
||
32 + 11 * 64,
|
||
32 + 12 * 64,
|
||
32 + 13 * 64,
|
||
32 + 14 * 64,
|
||
32 + 15 * 64 /* Upper 256bit of... %zmmh31 (256 bits each). */
|
||
};
|
||
|
||
#define XSAVE_AVX512_ZMM16_H_ADDR(tdep, xsave, regnum) \
|
||
(xsave + (tdep)->xsave_layout.zmm_offset \
|
||
+ xsave_avx512_zmm16_h_offset[regnum - I387_ZMM16H_REGNUM (tdep)])
|
||
|
||
/* At xsave_pkeys_offset[REGNUM] you'll find the relative offset
|
||
within the PKEYS region of the XSAVE extended state where the PKRU
|
||
register is stored. */
|
||
|
||
static int xsave_pkeys_offset[] =
|
||
{
|
||
0 * 8 /* %pkru (64 bits in XSTATE, 32-bit actually used by
|
||
instructions and applications). */
|
||
};
|
||
|
||
#define XSAVE_PKEYS_ADDR(tdep, xsave, regnum) \
|
||
(xsave + (tdep)->xsave_layout.pkru_offset \
|
||
+ xsave_pkeys_offset[regnum - I387_PKRU_REGNUM (tdep)])
|
||
|
||
|
||
/* See i387-tdep.h. */
|
||
|
||
bool
|
||
i387_guess_xsave_layout (uint64_t xcr0, size_t xsave_size,
|
||
x86_xsave_layout &layout)
|
||
{
|
||
if (HAS_PKRU (xcr0) && xsave_size == 2696)
|
||
{
|
||
/* Intel CPUs supporting PKRU. */
|
||
layout.avx_offset = 576;
|
||
layout.bndregs_offset = 960;
|
||
layout.bndcfg_offset = 1024;
|
||
layout.k_offset = 1088;
|
||
layout.zmm_h_offset = 1152;
|
||
layout.zmm_offset = 1664;
|
||
layout.pkru_offset = 2688;
|
||
}
|
||
else if (HAS_PKRU (xcr0) && xsave_size == 2440)
|
||
{
|
||
/* AMD CPUs supporting PKRU. */
|
||
layout.avx_offset = 576;
|
||
layout.k_offset = 832;
|
||
layout.zmm_h_offset = 896;
|
||
layout.zmm_offset = 1408;
|
||
layout.pkru_offset = 2432;
|
||
}
|
||
else if (HAS_AVX512 (xcr0) && xsave_size == 2688)
|
||
{
|
||
/* Intel CPUs supporting AVX512. */
|
||
layout.avx_offset = 576;
|
||
layout.bndregs_offset = 960;
|
||
layout.bndcfg_offset = 1024;
|
||
layout.k_offset = 1088;
|
||
layout.zmm_h_offset = 1152;
|
||
layout.zmm_offset = 1664;
|
||
}
|
||
else if (HAS_MPX (xcr0) && xsave_size == 1088)
|
||
{
|
||
/* Intel CPUs supporting MPX. */
|
||
layout.avx_offset = 576;
|
||
layout.bndregs_offset = 960;
|
||
layout.bndcfg_offset = 1024;
|
||
}
|
||
else if (HAS_AVX (xcr0) && xsave_size == 832)
|
||
{
|
||
/* Intel and AMD CPUs supporting AVX. */
|
||
layout.avx_offset = 576;
|
||
}
|
||
else
|
||
return false;
|
||
|
||
layout.sizeof_xsave = xsave_size;
|
||
return true;
|
||
}
|
||
|
||
/* See i387-tdep.h. */
|
||
|
||
x86_xsave_layout
|
||
i387_fallback_xsave_layout (uint64_t xcr0)
|
||
{
|
||
x86_xsave_layout layout;
|
||
|
||
if (HAS_PKRU (xcr0))
|
||
{
|
||
/* Intel CPUs supporting PKRU. */
|
||
layout.avx_offset = 576;
|
||
layout.bndregs_offset = 960;
|
||
layout.bndcfg_offset = 1024;
|
||
layout.k_offset = 1088;
|
||
layout.zmm_h_offset = 1152;
|
||
layout.zmm_offset = 1664;
|
||
layout.pkru_offset = 2688;
|
||
layout.sizeof_xsave = 2696;
|
||
}
|
||
else if (HAS_AVX512 (xcr0))
|
||
{
|
||
/* Intel CPUs supporting AVX512. */
|
||
layout.avx_offset = 576;
|
||
layout.bndregs_offset = 960;
|
||
layout.bndcfg_offset = 1024;
|
||
layout.k_offset = 1088;
|
||
layout.zmm_h_offset = 1152;
|
||
layout.zmm_offset = 1664;
|
||
layout.sizeof_xsave = 2688;
|
||
}
|
||
else if (HAS_MPX (xcr0))
|
||
{
|
||
/* Intel CPUs supporting MPX. */
|
||
layout.avx_offset = 576;
|
||
layout.bndregs_offset = 960;
|
||
layout.bndcfg_offset = 1024;
|
||
layout.sizeof_xsave = 1088;
|
||
}
|
||
else if (HAS_AVX (xcr0))
|
||
{
|
||
/* Intel and AMD CPUs supporting AVX. */
|
||
layout.avx_offset = 576;
|
||
layout.sizeof_xsave = 832;
|
||
}
|
||
|
||
return layout;
|
||
}
|
||
|
||
/* Extract from XSAVE a bitset of the features that are available on the
|
||
target, but which have not yet been enabled. */
|
||
|
||
ULONGEST
|
||
i387_xsave_get_clear_bv (struct gdbarch *gdbarch, const void *xsave)
|
||
{
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
const gdb_byte *regs = (const gdb_byte *) xsave;
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
|
||
/* Get `xstat_bv'. The supported bits in `xstat_bv' are 8 bytes. */
|
||
ULONGEST xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
|
||
8, byte_order);
|
||
|
||
/* Clear part in vector registers if its bit in xstat_bv is zero. */
|
||
ULONGEST clear_bv = (~(xstate_bv)) & tdep->xcr0;
|
||
|
||
return clear_bv;
|
||
}
|
||
|
||
/* Similar to i387_supply_fxsave, but use XSAVE extended state. */
|
||
|
||
void
|
||
i387_supply_xsave (struct regcache *regcache, int regnum,
|
||
const void *xsave)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
const gdb_byte *regs = (const gdb_byte *) xsave;
|
||
int i;
|
||
/* In 64-bit mode the split between "low" and "high" ZMM registers is at
|
||
ZMM16. Outside of 64-bit mode there are no "high" ZMM registers at all.
|
||
Precalculate the number to be used for the split point, with the all
|
||
registers in the "low" portion outside of 64-bit mode. */
|
||
unsigned int zmm_endlo_regnum = I387_ZMM0H_REGNUM (tdep)
|
||
+ std::min (tdep->num_zmm_regs, 16);
|
||
ULONGEST clear_bv;
|
||
static const gdb_byte zero[I386_MAX_REGISTER_SIZE] = { 0 };
|
||
enum
|
||
{
|
||
none = 0x0,
|
||
x87 = 0x1,
|
||
sse = 0x2,
|
||
avxh = 0x4,
|
||
bndregs = 0x8,
|
||
bndcfg = 0x10,
|
||
avx512_k = 0x20,
|
||
avx512_zmm0_h = 0x40,
|
||
avx512_zmm16_h = 0x80,
|
||
avx512_ymmh_avx512 = 0x100,
|
||
avx512_xmm_avx512 = 0x200,
|
||
pkeys = 0x400,
|
||
all = x87 | sse | avxh | bndregs | bndcfg | avx512_k | avx512_zmm0_h
|
||
| avx512_zmm16_h | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys
|
||
} regclass;
|
||
|
||
gdb_assert (regs != NULL);
|
||
gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
|
||
gdb_assert (tdep->num_xmm_regs > 0);
|
||
|
||
if (regnum == -1)
|
||
regclass = all;
|
||
else if (regnum >= I387_PKRU_REGNUM (tdep)
|
||
&& regnum < I387_PKEYSEND_REGNUM (tdep))
|
||
regclass = pkeys;
|
||
else if (regnum >= I387_ZMM0H_REGNUM (tdep)
|
||
&& regnum < I387_ZMM16H_REGNUM (tdep))
|
||
regclass = avx512_zmm0_h;
|
||
else if (regnum >= I387_ZMM16H_REGNUM (tdep)
|
||
&& regnum < I387_ZMMENDH_REGNUM (tdep))
|
||
regclass = avx512_zmm16_h;
|
||
else if (regnum >= I387_K0_REGNUM (tdep)
|
||
&& regnum < I387_KEND_REGNUM (tdep))
|
||
regclass = avx512_k;
|
||
else if (regnum >= I387_YMM16H_REGNUM (tdep)
|
||
&& regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
|
||
regclass = avx512_ymmh_avx512;
|
||
else if (regnum >= I387_XMM16_REGNUM (tdep)
|
||
&& regnum < I387_XMM_AVX512_END_REGNUM (tdep))
|
||
regclass = avx512_xmm_avx512;
|
||
else if (regnum >= I387_YMM0H_REGNUM (tdep)
|
||
&& regnum < I387_YMMENDH_REGNUM (tdep))
|
||
regclass = avxh;
|
||
else if (regnum >= I387_BND0R_REGNUM (tdep)
|
||
&& regnum < I387_BNDCFGU_REGNUM (tdep))
|
||
regclass = bndregs;
|
||
else if (regnum >= I387_BNDCFGU_REGNUM (tdep)
|
||
&& regnum < I387_MPXEND_REGNUM (tdep))
|
||
regclass = bndcfg;
|
||
else if (regnum >= I387_XMM0_REGNUM (tdep)
|
||
&& regnum < I387_MXCSR_REGNUM (tdep))
|
||
regclass = sse;
|
||
else if (regnum >= I387_ST0_REGNUM (tdep)
|
||
&& regnum < I387_FCTRL_REGNUM (tdep))
|
||
regclass = x87;
|
||
else
|
||
regclass = none;
|
||
|
||
clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
|
||
|
||
/* With the delayed xsave mechanism, in between the program
|
||
starting, and the program accessing the vector registers for the
|
||
first time, the register's values are invalid. The kernel
|
||
initializes register states to zero when they are set the first
|
||
time in a program. This means that from the user-space programs'
|
||
perspective, it's the same as if the registers have always been
|
||
zero from the start of the program. Therefore, the debugger
|
||
should provide the same illusion to the user. */
|
||
|
||
switch (regclass)
|
||
{
|
||
case none:
|
||
break;
|
||
|
||
case pkeys:
|
||
if ((clear_bv & X86_XSTATE_PKRU))
|
||
regcache->raw_supply (regnum, zero);
|
||
else
|
||
regcache->raw_supply (regnum, XSAVE_PKEYS_ADDR (tdep, regs, regnum));
|
||
return;
|
||
|
||
case avx512_zmm0_h:
|
||
if ((clear_bv & X86_XSTATE_ZMM_H))
|
||
regcache->raw_supply (regnum, zero);
|
||
else
|
||
regcache->raw_supply (regnum,
|
||
XSAVE_AVX512_ZMM0_H_ADDR (tdep, regs, regnum));
|
||
return;
|
||
|
||
case avx512_zmm16_h:
|
||
if ((clear_bv & X86_XSTATE_ZMM))
|
||
regcache->raw_supply (regnum, zero);
|
||
else
|
||
regcache->raw_supply (regnum,
|
||
XSAVE_AVX512_ZMM16_H_ADDR (tdep, regs, regnum));
|
||
return;
|
||
|
||
case avx512_k:
|
||
if ((clear_bv & X86_XSTATE_K))
|
||
regcache->raw_supply (regnum, zero);
|
||
else
|
||
regcache->raw_supply (regnum, XSAVE_AVX512_K_ADDR (tdep, regs, regnum));
|
||
return;
|
||
|
||
case avx512_ymmh_avx512:
|
||
if ((clear_bv & X86_XSTATE_ZMM))
|
||
regcache->raw_supply (regnum, zero);
|
||
else
|
||
regcache->raw_supply (regnum,
|
||
XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum));
|
||
return;
|
||
|
||
case avx512_xmm_avx512:
|
||
if ((clear_bv & X86_XSTATE_ZMM))
|
||
regcache->raw_supply (regnum, zero);
|
||
else
|
||
regcache->raw_supply (regnum,
|
||
XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum));
|
||
return;
|
||
|
||
case avxh:
|
||
if ((clear_bv & X86_XSTATE_AVX))
|
||
regcache->raw_supply (regnum, zero);
|
||
else
|
||
regcache->raw_supply (regnum, XSAVE_AVXH_ADDR (tdep, regs, regnum));
|
||
return;
|
||
|
||
case bndcfg:
|
||
if ((clear_bv & X86_XSTATE_BNDCFG))
|
||
regcache->raw_supply (regnum, zero);
|
||
else
|
||
regcache->raw_supply (regnum, XSAVE_BNDCFG_ADDR (tdep, regs, regnum));
|
||
return;
|
||
|
||
case bndregs:
|
||
if ((clear_bv & X86_XSTATE_BNDREGS))
|
||
regcache->raw_supply (regnum, zero);
|
||
else
|
||
regcache->raw_supply (regnum, XSAVE_BNDREGS_ADDR (tdep, regs, regnum));
|
||
return;
|
||
|
||
case sse:
|
||
if ((clear_bv & X86_XSTATE_SSE))
|
||
regcache->raw_supply (regnum, zero);
|
||
else
|
||
regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum));
|
||
return;
|
||
|
||
case x87:
|
||
if ((clear_bv & X86_XSTATE_X87))
|
||
regcache->raw_supply (regnum, zero);
|
||
else
|
||
regcache->raw_supply (regnum, FXSAVE_ADDR (tdep, regs, regnum));
|
||
return;
|
||
|
||
case all:
|
||
/* Handle PKEYS registers. */
|
||
if ((tdep->xcr0 & X86_XSTATE_PKRU))
|
||
{
|
||
if ((clear_bv & X86_XSTATE_PKRU))
|
||
{
|
||
for (i = I387_PKRU_REGNUM (tdep);
|
||
i < I387_PKEYSEND_REGNUM (tdep);
|
||
i++)
|
||
regcache->raw_supply (i, zero);
|
||
}
|
||
else
|
||
{
|
||
for (i = I387_PKRU_REGNUM (tdep);
|
||
i < I387_PKEYSEND_REGNUM (tdep);
|
||
i++)
|
||
regcache->raw_supply (i, XSAVE_PKEYS_ADDR (tdep, regs, i));
|
||
}
|
||
}
|
||
|
||
/* Handle the upper halves of the low 8/16 ZMM registers. */
|
||
if ((tdep->xcr0 & X86_XSTATE_ZMM_H))
|
||
{
|
||
if ((clear_bv & X86_XSTATE_ZMM_H))
|
||
{
|
||
for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++)
|
||
regcache->raw_supply (i, zero);
|
||
}
|
||
else
|
||
{
|
||
for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++)
|
||
regcache->raw_supply (i,
|
||
XSAVE_AVX512_ZMM0_H_ADDR (tdep, regs, i));
|
||
}
|
||
}
|
||
|
||
/* Handle AVX512 OpMask registers. */
|
||
if ((tdep->xcr0 & X86_XSTATE_K))
|
||
{
|
||
if ((clear_bv & X86_XSTATE_K))
|
||
{
|
||
for (i = I387_K0_REGNUM (tdep);
|
||
i < I387_KEND_REGNUM (tdep);
|
||
i++)
|
||
regcache->raw_supply (i, zero);
|
||
}
|
||
else
|
||
{
|
||
for (i = I387_K0_REGNUM (tdep);
|
||
i < I387_KEND_REGNUM (tdep);
|
||
i++)
|
||
regcache->raw_supply (i, XSAVE_AVX512_K_ADDR (tdep, regs, i));
|
||
}
|
||
}
|
||
|
||
/* Handle the upper 16 ZMM/YMM/XMM registers (if any). */
|
||
if ((tdep->xcr0 & X86_XSTATE_ZMM))
|
||
{
|
||
if ((clear_bv & X86_XSTATE_ZMM))
|
||
{
|
||
for (i = I387_ZMM16H_REGNUM (tdep);
|
||
i < I387_ZMMENDH_REGNUM (tdep); i++)
|
||
regcache->raw_supply (i, zero);
|
||
for (i = I387_YMM16H_REGNUM (tdep);
|
||
i < I387_YMMH_AVX512_END_REGNUM (tdep);
|
||
i++)
|
||
regcache->raw_supply (i, zero);
|
||
for (i = I387_XMM16_REGNUM (tdep);
|
||
i < I387_XMM_AVX512_END_REGNUM (tdep);
|
||
i++)
|
||
regcache->raw_supply (i, zero);
|
||
}
|
||
else
|
||
{
|
||
for (i = I387_ZMM16H_REGNUM (tdep);
|
||
i < I387_ZMMENDH_REGNUM (tdep); i++)
|
||
regcache->raw_supply (i,
|
||
XSAVE_AVX512_ZMM16_H_ADDR (tdep, regs, i));
|
||
for (i = I387_YMM16H_REGNUM (tdep);
|
||
i < I387_YMMH_AVX512_END_REGNUM (tdep);
|
||
i++)
|
||
regcache->raw_supply (i, XSAVE_YMM_AVX512_ADDR (tdep, regs, i));
|
||
for (i = I387_XMM16_REGNUM (tdep);
|
||
i < I387_XMM_AVX512_END_REGNUM (tdep);
|
||
i++)
|
||
regcache->raw_supply (i, XSAVE_XMM_AVX512_ADDR (tdep, regs, i));
|
||
}
|
||
}
|
||
/* Handle the upper YMM registers. */
|
||
if ((tdep->xcr0 & X86_XSTATE_AVX))
|
||
{
|
||
if ((clear_bv & X86_XSTATE_AVX))
|
||
{
|
||
for (i = I387_YMM0H_REGNUM (tdep);
|
||
i < I387_YMMENDH_REGNUM (tdep);
|
||
i++)
|
||
regcache->raw_supply (i, zero);
|
||
}
|
||
else
|
||
{
|
||
for (i = I387_YMM0H_REGNUM (tdep);
|
||
i < I387_YMMENDH_REGNUM (tdep);
|
||
i++)
|
||
regcache->raw_supply (i, XSAVE_AVXH_ADDR (tdep, regs, i));
|
||
}
|
||
}
|
||
|
||
/* Handle the MPX registers. */
|
||
if ((tdep->xcr0 & X86_XSTATE_BNDREGS))
|
||
{
|
||
if (clear_bv & X86_XSTATE_BNDREGS)
|
||
{
|
||
for (i = I387_BND0R_REGNUM (tdep);
|
||
i < I387_BNDCFGU_REGNUM (tdep); i++)
|
||
regcache->raw_supply (i, zero);
|
||
}
|
||
else
|
||
{
|
||
for (i = I387_BND0R_REGNUM (tdep);
|
||
i < I387_BNDCFGU_REGNUM (tdep); i++)
|
||
regcache->raw_supply (i, XSAVE_BNDREGS_ADDR (tdep, regs, i));
|
||
}
|
||
}
|
||
|
||
/* Handle the MPX registers. */
|
||
if ((tdep->xcr0 & X86_XSTATE_BNDCFG))
|
||
{
|
||
if (clear_bv & X86_XSTATE_BNDCFG)
|
||
{
|
||
for (i = I387_BNDCFGU_REGNUM (tdep);
|
||
i < I387_MPXEND_REGNUM (tdep); i++)
|
||
regcache->raw_supply (i, zero);
|
||
}
|
||
else
|
||
{
|
||
for (i = I387_BNDCFGU_REGNUM (tdep);
|
||
i < I387_MPXEND_REGNUM (tdep); i++)
|
||
regcache->raw_supply (i, XSAVE_BNDCFG_ADDR (tdep, regs, i));
|
||
}
|
||
}
|
||
|
||
/* Handle the XMM registers. */
|
||
if ((tdep->xcr0 & X86_XSTATE_SSE))
|
||
{
|
||
if ((clear_bv & X86_XSTATE_SSE))
|
||
{
|
||
for (i = I387_XMM0_REGNUM (tdep);
|
||
i < I387_MXCSR_REGNUM (tdep);
|
||
i++)
|
||
regcache->raw_supply (i, zero);
|
||
}
|
||
else
|
||
{
|
||
for (i = I387_XMM0_REGNUM (tdep);
|
||
i < I387_MXCSR_REGNUM (tdep); i++)
|
||
regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
|
||
}
|
||
}
|
||
|
||
/* Handle the x87 registers. */
|
||
if ((tdep->xcr0 & X86_XSTATE_X87))
|
||
{
|
||
if ((clear_bv & X86_XSTATE_X87))
|
||
{
|
||
for (i = I387_ST0_REGNUM (tdep);
|
||
i < I387_FCTRL_REGNUM (tdep);
|
||
i++)
|
||
regcache->raw_supply (i, zero);
|
||
}
|
||
else
|
||
{
|
||
for (i = I387_ST0_REGNUM (tdep);
|
||
i < I387_FCTRL_REGNUM (tdep);
|
||
i++)
|
||
regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
/* Only handle x87 control registers. */
|
||
for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
|
||
if (regnum == -1 || regnum == i)
|
||
{
|
||
if (clear_bv & X86_XSTATE_X87)
|
||
{
|
||
if (i == I387_FCTRL_REGNUM (tdep))
|
||
{
|
||
gdb_byte buf[4];
|
||
|
||
store_unsigned_integer (buf, 4, byte_order,
|
||
I387_FCTRL_INIT_VAL);
|
||
regcache->raw_supply (i, buf);
|
||
}
|
||
else if (i == I387_FTAG_REGNUM (tdep))
|
||
{
|
||
gdb_byte buf[4];
|
||
|
||
store_unsigned_integer (buf, 4, byte_order, 0xffff);
|
||
regcache->raw_supply (i, buf);
|
||
}
|
||
else
|
||
regcache->raw_supply (i, zero);
|
||
}
|
||
/* Most of the FPU control registers occupy only 16 bits in
|
||
the xsave extended state. Give those a special treatment. */
|
||
else if (i != I387_FIOFF_REGNUM (tdep)
|
||
&& i != I387_FOOFF_REGNUM (tdep))
|
||
{
|
||
gdb_byte val[4];
|
||
|
||
memcpy (val, FXSAVE_ADDR (tdep, regs, i), 2);
|
||
val[2] = val[3] = 0;
|
||
if (i == I387_FOP_REGNUM (tdep))
|
||
val[1] &= ((1 << 3) - 1);
|
||
else if (i == I387_FTAG_REGNUM (tdep))
|
||
{
|
||
/* The fxsave area contains a simplified version of
|
||
the tag word. We have to look at the actual 80-bit
|
||
FP data to recreate the traditional i387 tag word. */
|
||
|
||
unsigned long ftag = 0;
|
||
int fpreg;
|
||
int top;
|
||
|
||
top = ((FXSAVE_ADDR (tdep, regs,
|
||
I387_FSTAT_REGNUM (tdep)))[1] >> 3);
|
||
top &= 0x7;
|
||
|
||
for (fpreg = 7; fpreg >= 0; fpreg--)
|
||
{
|
||
int tag;
|
||
|
||
if (val[0] & (1 << fpreg))
|
||
{
|
||
int thisreg = (fpreg + 8 - top) % 8
|
||
+ I387_ST0_REGNUM (tdep);
|
||
tag = i387_tag (FXSAVE_ADDR (tdep, regs, thisreg));
|
||
}
|
||
else
|
||
tag = 3; /* Empty */
|
||
|
||
ftag |= tag << (2 * fpreg);
|
||
}
|
||
val[0] = ftag & 0xff;
|
||
val[1] = (ftag >> 8) & 0xff;
|
||
}
|
||
regcache->raw_supply (i, val);
|
||
}
|
||
else
|
||
regcache->raw_supply (i, FXSAVE_ADDR (tdep, regs, i));
|
||
}
|
||
|
||
if (regnum == I387_MXCSR_REGNUM (tdep) || regnum == -1)
|
||
{
|
||
/* The MXCSR register is placed into the xsave buffer if either the
|
||
AVX or SSE features are enabled. */
|
||
if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE))
|
||
== (X86_XSTATE_AVX | X86_XSTATE_SSE))
|
||
{
|
||
gdb_byte buf[4];
|
||
|
||
store_unsigned_integer (buf, 4, byte_order, I387_MXCSR_INIT_VAL);
|
||
regcache->raw_supply (I387_MXCSR_REGNUM (tdep), buf);
|
||
}
|
||
else
|
||
regcache->raw_supply (I387_MXCSR_REGNUM (tdep),
|
||
FXSAVE_MXCSR_ADDR (regs));
|
||
}
|
||
}
|
||
|
||
/* Similar to i387_collect_fxsave, but use XSAVE extended state. */
|
||
|
||
void
|
||
i387_collect_xsave (const struct regcache *regcache, int regnum,
|
||
void *xsave, int gcore)
|
||
{
|
||
struct gdbarch *gdbarch = regcache->arch ();
|
||
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
gdb_byte *p, *regs = (gdb_byte *) xsave;
|
||
gdb_byte raw[I386_MAX_REGISTER_SIZE];
|
||
ULONGEST initial_xstate_bv, clear_bv, xstate_bv = 0;
|
||
unsigned int i;
|
||
/* See the comment in i387_supply_xsave(). */
|
||
unsigned int zmm_endlo_regnum = I387_ZMM0H_REGNUM (tdep)
|
||
+ std::min (tdep->num_zmm_regs, 16);
|
||
enum
|
||
{
|
||
x87_ctrl_or_mxcsr = 0x1,
|
||
x87 = 0x2,
|
||
sse = 0x4,
|
||
avxh = 0x8,
|
||
bndregs = 0x10,
|
||
bndcfg = 0x20,
|
||
avx512_k = 0x40,
|
||
avx512_zmm0_h = 0x80,
|
||
avx512_zmm16_h = 0x100,
|
||
avx512_ymmh_avx512 = 0x200,
|
||
avx512_xmm_avx512 = 0x400,
|
||
pkeys = 0x800,
|
||
all = x87 | sse | avxh | bndregs | bndcfg | avx512_k | avx512_zmm0_h
|
||
| avx512_zmm16_h | avx512_ymmh_avx512 | avx512_xmm_avx512 | pkeys
|
||
} regclass;
|
||
|
||
gdb_assert (tdep->st0_regnum >= I386_ST0_REGNUM);
|
||
gdb_assert (tdep->num_xmm_regs > 0);
|
||
|
||
if (regnum == -1)
|
||
regclass = all;
|
||
else if (regnum >= I387_PKRU_REGNUM (tdep)
|
||
&& regnum < I387_PKEYSEND_REGNUM (tdep))
|
||
regclass = pkeys;
|
||
else if (regnum >= I387_ZMM0H_REGNUM (tdep)
|
||
&& regnum < I387_ZMM16H_REGNUM (tdep))
|
||
regclass = avx512_zmm0_h;
|
||
else if (regnum >= I387_ZMM16H_REGNUM (tdep)
|
||
&& regnum < I387_ZMMENDH_REGNUM (tdep))
|
||
regclass = avx512_zmm16_h;
|
||
else if (regnum >= I387_K0_REGNUM (tdep)
|
||
&& regnum < I387_KEND_REGNUM (tdep))
|
||
regclass = avx512_k;
|
||
else if (regnum >= I387_YMM16H_REGNUM (tdep)
|
||
&& regnum < I387_YMMH_AVX512_END_REGNUM (tdep))
|
||
regclass = avx512_ymmh_avx512;
|
||
else if (regnum >= I387_XMM16_REGNUM (tdep)
|
||
&& regnum < I387_XMM_AVX512_END_REGNUM (tdep))
|
||
regclass = avx512_xmm_avx512;
|
||
else if (regnum >= I387_YMM0H_REGNUM (tdep)
|
||
&& regnum < I387_YMMENDH_REGNUM (tdep))
|
||
regclass = avxh;
|
||
else if (regnum >= I387_BND0R_REGNUM (tdep)
|
||
&& regnum < I387_BNDCFGU_REGNUM (tdep))
|
||
regclass = bndregs;
|
||
else if (regnum >= I387_BNDCFGU_REGNUM (tdep)
|
||
&& regnum < I387_MPXEND_REGNUM (tdep))
|
||
regclass = bndcfg;
|
||
else if (regnum >= I387_XMM0_REGNUM (tdep)
|
||
&& regnum < I387_MXCSR_REGNUM (tdep))
|
||
regclass = sse;
|
||
else if (regnum >= I387_ST0_REGNUM (tdep)
|
||
&& regnum < I387_FCTRL_REGNUM (tdep))
|
||
regclass = x87;
|
||
else if ((regnum >= I387_FCTRL_REGNUM (tdep)
|
||
&& regnum < I387_XMM0_REGNUM (tdep))
|
||
|| regnum == I387_MXCSR_REGNUM (tdep))
|
||
regclass = x87_ctrl_or_mxcsr;
|
||
else
|
||
internal_error (_("invalid i387 regnum %d"), regnum);
|
||
|
||
if (gcore)
|
||
{
|
||
/* Clear XSAVE extended state. */
|
||
memset (regs, 0, tdep->xsave_layout.sizeof_xsave);
|
||
|
||
/* Update XCR0 and `xstate_bv' with XCR0 for gcore. */
|
||
if (tdep->xsave_xcr0_offset != -1)
|
||
memcpy (regs + tdep->xsave_xcr0_offset, &tdep->xcr0, 8);
|
||
memcpy (XSAVE_XSTATE_BV_ADDR (regs), &tdep->xcr0, 8);
|
||
}
|
||
|
||
/* The supported bits in `xstat_bv' are 8 bytes. */
|
||
initial_xstate_bv = extract_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
|
||
8, byte_order);
|
||
clear_bv = (~(initial_xstate_bv)) & tdep->xcr0;
|
||
|
||
/* The XSAVE buffer was filled lazily by the kernel. Only those
|
||
features that are enabled were written into the buffer, disabled
|
||
features left the buffer uninitialised. In order to identify if any
|
||
registers have changed we will be comparing the register cache
|
||
version to the version in the XSAVE buffer, it is important then that
|
||
at this point we initialise to the default values any features in
|
||
XSAVE that are not yet initialised.
|
||
|
||
This could be made more efficient, we know which features (from
|
||
REGNUM) we will be potentially updating, and could limit ourselves to
|
||
only clearing that feature. However, the extra complexity does not
|
||
seem justified at this point. */
|
||
if (clear_bv)
|
||
{
|
||
if ((clear_bv & X86_XSTATE_PKRU))
|
||
for (i = I387_PKRU_REGNUM (tdep);
|
||
i < I387_PKEYSEND_REGNUM (tdep); i++)
|
||
memset (XSAVE_PKEYS_ADDR (tdep, regs, i), 0, 4);
|
||
|
||
if ((clear_bv & X86_XSTATE_BNDREGS))
|
||
for (i = I387_BND0R_REGNUM (tdep);
|
||
i < I387_BNDCFGU_REGNUM (tdep); i++)
|
||
memset (XSAVE_BNDREGS_ADDR (tdep, regs, i), 0, 16);
|
||
|
||
if ((clear_bv & X86_XSTATE_BNDCFG))
|
||
for (i = I387_BNDCFGU_REGNUM (tdep);
|
||
i < I387_MPXEND_REGNUM (tdep); i++)
|
||
memset (XSAVE_BNDCFG_ADDR (tdep, regs, i), 0, 8);
|
||
|
||
if ((clear_bv & X86_XSTATE_ZMM_H))
|
||
for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++)
|
||
memset (XSAVE_AVX512_ZMM0_H_ADDR (tdep, regs, i), 0, 32);
|
||
|
||
if ((clear_bv & X86_XSTATE_K))
|
||
for (i = I387_K0_REGNUM (tdep);
|
||
i < I387_KEND_REGNUM (tdep); i++)
|
||
memset (XSAVE_AVX512_K_ADDR (tdep, regs, i), 0, 8);
|
||
|
||
if ((clear_bv & X86_XSTATE_ZMM))
|
||
{
|
||
for (i = I387_ZMM16H_REGNUM (tdep); i < I387_ZMMENDH_REGNUM (tdep);
|
||
i++)
|
||
memset (XSAVE_AVX512_ZMM16_H_ADDR (tdep, regs, i), 0, 32);
|
||
for (i = I387_YMM16H_REGNUM (tdep);
|
||
i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
|
||
memset (XSAVE_YMM_AVX512_ADDR (tdep, regs, i), 0, 16);
|
||
for (i = I387_XMM16_REGNUM (tdep);
|
||
i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
|
||
memset (XSAVE_XMM_AVX512_ADDR (tdep, regs, i), 0, 16);
|
||
}
|
||
|
||
if ((clear_bv & X86_XSTATE_AVX))
|
||
for (i = I387_YMM0H_REGNUM (tdep);
|
||
i < I387_YMMENDH_REGNUM (tdep); i++)
|
||
memset (XSAVE_AVXH_ADDR (tdep, regs, i), 0, 16);
|
||
|
||
if ((clear_bv & X86_XSTATE_SSE))
|
||
for (i = I387_XMM0_REGNUM (tdep);
|
||
i < I387_MXCSR_REGNUM (tdep); i++)
|
||
memset (FXSAVE_ADDR (tdep, regs, i), 0, 16);
|
||
|
||
/* The mxcsr register is written into the xsave buffer if either AVX
|
||
or SSE is enabled, so only clear it if both of those features
|
||
require clearing. */
|
||
if ((clear_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE))
|
||
== (X86_XSTATE_AVX | X86_XSTATE_SSE))
|
||
store_unsigned_integer (FXSAVE_MXCSR_ADDR (regs), 2, byte_order,
|
||
I387_MXCSR_INIT_VAL);
|
||
|
||
if ((clear_bv & X86_XSTATE_X87))
|
||
{
|
||
for (i = I387_ST0_REGNUM (tdep);
|
||
i < I387_FCTRL_REGNUM (tdep); i++)
|
||
memset (FXSAVE_ADDR (tdep, regs, i), 0, 10);
|
||
|
||
for (i = I387_FCTRL_REGNUM (tdep);
|
||
i < I387_XMM0_REGNUM (tdep); i++)
|
||
{
|
||
if (i == I387_FCTRL_REGNUM (tdep))
|
||
store_unsigned_integer (FXSAVE_ADDR (tdep, regs, i), 2,
|
||
byte_order, I387_FCTRL_INIT_VAL);
|
||
else
|
||
memset (FXSAVE_ADDR (tdep, regs, i), 0,
|
||
regcache_register_size (regcache, i));
|
||
}
|
||
}
|
||
}
|
||
|
||
if (regclass == all)
|
||
{
|
||
/* Check if any PKEYS registers are changed. */
|
||
if ((tdep->xcr0 & X86_XSTATE_PKRU))
|
||
for (i = I387_PKRU_REGNUM (tdep);
|
||
i < I387_PKEYSEND_REGNUM (tdep); i++)
|
||
{
|
||
regcache->raw_collect (i, raw);
|
||
p = XSAVE_PKEYS_ADDR (tdep, regs, i);
|
||
if (memcmp (raw, p, 4) != 0)
|
||
{
|
||
xstate_bv |= X86_XSTATE_PKRU;
|
||
memcpy (p, raw, 4);
|
||
}
|
||
}
|
||
|
||
/* Check if any ZMMH registers are changed. */
|
||
if ((tdep->xcr0 & X86_XSTATE_ZMM))
|
||
for (i = I387_ZMM16H_REGNUM (tdep);
|
||
i < I387_ZMMENDH_REGNUM (tdep); i++)
|
||
{
|
||
regcache->raw_collect (i, raw);
|
||
p = XSAVE_AVX512_ZMM16_H_ADDR (tdep, regs, i);
|
||
if (memcmp (raw, p, 32) != 0)
|
||
{
|
||
xstate_bv |= X86_XSTATE_ZMM;
|
||
memcpy (p, raw, 32);
|
||
}
|
||
}
|
||
|
||
if ((tdep->xcr0 & X86_XSTATE_ZMM_H))
|
||
for (i = I387_ZMM0H_REGNUM (tdep); i < zmm_endlo_regnum; i++)
|
||
{
|
||
regcache->raw_collect (i, raw);
|
||
p = XSAVE_AVX512_ZMM0_H_ADDR (tdep, regs, i);
|
||
if (memcmp (raw, p, 32) != 0)
|
||
{
|
||
xstate_bv |= X86_XSTATE_ZMM_H;
|
||
memcpy (p, raw, 32);
|
||
}
|
||
}
|
||
|
||
/* Check if any K registers are changed. */
|
||
if ((tdep->xcr0 & X86_XSTATE_K))
|
||
for (i = I387_K0_REGNUM (tdep);
|
||
i < I387_KEND_REGNUM (tdep); i++)
|
||
{
|
||
regcache->raw_collect (i, raw);
|
||
p = XSAVE_AVX512_K_ADDR (tdep, regs, i);
|
||
if (memcmp (raw, p, 8) != 0)
|
||
{
|
||
xstate_bv |= X86_XSTATE_K;
|
||
memcpy (p, raw, 8);
|
||
}
|
||
}
|
||
|
||
/* Check if any XMM or upper YMM registers are changed. */
|
||
if ((tdep->xcr0 & X86_XSTATE_ZMM))
|
||
{
|
||
for (i = I387_YMM16H_REGNUM (tdep);
|
||
i < I387_YMMH_AVX512_END_REGNUM (tdep); i++)
|
||
{
|
||
regcache->raw_collect (i, raw);
|
||
p = XSAVE_YMM_AVX512_ADDR (tdep, regs, i);
|
||
if (memcmp (raw, p, 16) != 0)
|
||
{
|
||
xstate_bv |= X86_XSTATE_ZMM;
|
||
memcpy (p, raw, 16);
|
||
}
|
||
}
|
||
for (i = I387_XMM16_REGNUM (tdep);
|
||
i < I387_XMM_AVX512_END_REGNUM (tdep); i++)
|
||
{
|
||
regcache->raw_collect (i, raw);
|
||
p = XSAVE_XMM_AVX512_ADDR (tdep, regs, i);
|
||
if (memcmp (raw, p, 16) != 0)
|
||
{
|
||
xstate_bv |= X86_XSTATE_ZMM;
|
||
memcpy (p, raw, 16);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check if any upper MPX registers are changed. */
|
||
if ((tdep->xcr0 & X86_XSTATE_BNDREGS))
|
||
for (i = I387_BND0R_REGNUM (tdep);
|
||
i < I387_BNDCFGU_REGNUM (tdep); i++)
|
||
{
|
||
regcache->raw_collect (i, raw);
|
||
p = XSAVE_BNDREGS_ADDR (tdep, regs, i);
|
||
if (memcmp (raw, p, 16))
|
||
{
|
||
xstate_bv |= X86_XSTATE_BNDREGS;
|
||
memcpy (p, raw, 16);
|
||
}
|
||
}
|
||
|
||
/* Check if any upper MPX registers are changed. */
|
||
if ((tdep->xcr0 & X86_XSTATE_BNDCFG))
|
||
for (i = I387_BNDCFGU_REGNUM (tdep);
|
||
i < I387_MPXEND_REGNUM (tdep); i++)
|
||
{
|
||
regcache->raw_collect (i, raw);
|
||
p = XSAVE_BNDCFG_ADDR (tdep, regs, i);
|
||
if (memcmp (raw, p, 8))
|
||
{
|
||
xstate_bv |= X86_XSTATE_BNDCFG;
|
||
memcpy (p, raw, 8);
|
||
}
|
||
}
|
||
|
||
/* Check if any upper YMM registers are changed. */
|
||
if ((tdep->xcr0 & X86_XSTATE_AVX))
|
||
for (i = I387_YMM0H_REGNUM (tdep);
|
||
i < I387_YMMENDH_REGNUM (tdep); i++)
|
||
{
|
||
regcache->raw_collect (i, raw);
|
||
p = XSAVE_AVXH_ADDR (tdep, regs, i);
|
||
if (memcmp (raw, p, 16))
|
||
{
|
||
xstate_bv |= X86_XSTATE_AVX;
|
||
memcpy (p, raw, 16);
|
||
}
|
||
}
|
||
|
||
/* Check if any SSE registers are changed. */
|
||
if ((tdep->xcr0 & X86_XSTATE_SSE))
|
||
for (i = I387_XMM0_REGNUM (tdep);
|
||
i < I387_MXCSR_REGNUM (tdep); i++)
|
||
{
|
||
regcache->raw_collect (i, raw);
|
||
p = FXSAVE_ADDR (tdep, regs, i);
|
||
if (memcmp (raw, p, 16))
|
||
{
|
||
xstate_bv |= X86_XSTATE_SSE;
|
||
memcpy (p, raw, 16);
|
||
}
|
||
}
|
||
|
||
if ((tdep->xcr0 & X86_XSTATE_AVX) || (tdep->xcr0 & X86_XSTATE_SSE))
|
||
{
|
||
i = I387_MXCSR_REGNUM (tdep);
|
||
regcache->raw_collect (i, raw);
|
||
p = FXSAVE_MXCSR_ADDR (regs);
|
||
if (memcmp (raw, p, 4))
|
||
{
|
||
/* Now, we need to mark one of either SSE of AVX as enabled.
|
||
We could pick either. What we do is check to see if one
|
||
of the features is already enabled, if it is then we leave
|
||
it at that, otherwise we pick SSE. */
|
||
if ((xstate_bv & (X86_XSTATE_SSE | X86_XSTATE_AVX)) == 0)
|
||
xstate_bv |= X86_XSTATE_SSE;
|
||
memcpy (p, raw, 4);
|
||
}
|
||
}
|
||
|
||
/* Check if any X87 registers are changed. Only the non-control
|
||
registers are handled here, the control registers are all handled
|
||
later on in this function. */
|
||
if ((tdep->xcr0 & X86_XSTATE_X87))
|
||
for (i = I387_ST0_REGNUM (tdep);
|
||
i < I387_FCTRL_REGNUM (tdep); i++)
|
||
{
|
||
regcache->raw_collect (i, raw);
|
||
p = FXSAVE_ADDR (tdep, regs, i);
|
||
if (memcmp (raw, p, 10))
|
||
{
|
||
xstate_bv |= X86_XSTATE_X87;
|
||
memcpy (p, raw, 10);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Check if REGNUM is changed. */
|
||
regcache->raw_collect (regnum, raw);
|
||
|
||
switch (regclass)
|
||
{
|
||
default:
|
||
internal_error (_("invalid i387 regclass"));
|
||
|
||
case pkeys:
|
||
/* This is a PKEYS register. */
|
||
p = XSAVE_PKEYS_ADDR (tdep, regs, regnum);
|
||
if (memcmp (raw, p, 4) != 0)
|
||
{
|
||
xstate_bv |= X86_XSTATE_PKRU;
|
||
memcpy (p, raw, 4);
|
||
}
|
||
break;
|
||
|
||
case avx512_zmm16_h:
|
||
/* This is a ZMM16-31 register. */
|
||
p = XSAVE_AVX512_ZMM16_H_ADDR (tdep, regs, regnum);
|
||
if (memcmp (raw, p, 32) != 0)
|
||
{
|
||
xstate_bv |= X86_XSTATE_ZMM;
|
||
memcpy (p, raw, 32);
|
||
}
|
||
break;
|
||
|
||
case avx512_zmm0_h:
|
||
/* This is a ZMM0-15 register. */
|
||
p = XSAVE_AVX512_ZMM0_H_ADDR (tdep, regs, regnum);
|
||
if (memcmp (raw, p, 32) != 0)
|
||
{
|
||
xstate_bv |= X86_XSTATE_ZMM_H;
|
||
memcpy (p, raw, 32);
|
||
}
|
||
break;
|
||
|
||
case avx512_k:
|
||
/* This is a AVX512 mask register. */
|
||
p = XSAVE_AVX512_K_ADDR (tdep, regs, regnum);
|
||
if (memcmp (raw, p, 8) != 0)
|
||
{
|
||
xstate_bv |= X86_XSTATE_K;
|
||
memcpy (p, raw, 8);
|
||
}
|
||
break;
|
||
|
||
case avx512_ymmh_avx512:
|
||
/* This is an upper YMM16-31 register. */
|
||
p = XSAVE_YMM_AVX512_ADDR (tdep, regs, regnum);
|
||
if (memcmp (raw, p, 16) != 0)
|
||
{
|
||
xstate_bv |= X86_XSTATE_ZMM;
|
||
memcpy (p, raw, 16);
|
||
}
|
||
break;
|
||
|
||
case avx512_xmm_avx512:
|
||
/* This is an upper XMM16-31 register. */
|
||
p = XSAVE_XMM_AVX512_ADDR (tdep, regs, regnum);
|
||
if (memcmp (raw, p, 16) != 0)
|
||
{
|
||
xstate_bv |= X86_XSTATE_ZMM;
|
||
memcpy (p, raw, 16);
|
||
}
|
||
break;
|
||
|
||
case avxh:
|
||
/* This is an upper YMM register. */
|
||
p = XSAVE_AVXH_ADDR (tdep, regs, regnum);
|
||
if (memcmp (raw, p, 16))
|
||
{
|
||
xstate_bv |= X86_XSTATE_AVX;
|
||
memcpy (p, raw, 16);
|
||
}
|
||
break;
|
||
|
||
case bndregs:
|
||
regcache->raw_collect (regnum, raw);
|
||
p = XSAVE_BNDREGS_ADDR (tdep, regs, regnum);
|
||
if (memcmp (raw, p, 16))
|
||
{
|
||
xstate_bv |= X86_XSTATE_BNDREGS;
|
||
memcpy (p, raw, 16);
|
||
}
|
||
break;
|
||
|
||
case bndcfg:
|
||
p = XSAVE_BNDCFG_ADDR (tdep, regs, regnum);
|
||
xstate_bv |= X86_XSTATE_BNDCFG;
|
||
memcpy (p, raw, 8);
|
||
break;
|
||
|
||
case sse:
|
||
/* This is an SSE register. */
|
||
p = FXSAVE_ADDR (tdep, regs, regnum);
|
||
if (memcmp (raw, p, 16))
|
||
{
|
||
xstate_bv |= X86_XSTATE_SSE;
|
||
memcpy (p, raw, 16);
|
||
}
|
||
break;
|
||
|
||
case x87:
|
||
/* This is an x87 register. */
|
||
p = FXSAVE_ADDR (tdep, regs, regnum);
|
||
if (memcmp (raw, p, 10))
|
||
{
|
||
xstate_bv |= X86_XSTATE_X87;
|
||
memcpy (p, raw, 10);
|
||
}
|
||
break;
|
||
|
||
case x87_ctrl_or_mxcsr:
|
||
/* We only handle MXCSR here. All other x87 control registers
|
||
are handled separately below. */
|
||
if (regnum == I387_MXCSR_REGNUM (tdep))
|
||
{
|
||
p = FXSAVE_MXCSR_ADDR (regs);
|
||
if (memcmp (raw, p, 2))
|
||
{
|
||
/* We're only setting MXCSR, so check the initial state
|
||
to see if either of AVX or SSE are already enabled.
|
||
If they are then we'll attribute this changed MXCSR to
|
||
that feature. If neither feature is enabled, then
|
||
we'll attribute this change to the SSE feature. */
|
||
xstate_bv |= (initial_xstate_bv
|
||
& (X86_XSTATE_AVX | X86_XSTATE_SSE));
|
||
if ((xstate_bv & (X86_XSTATE_AVX | X86_XSTATE_SSE)) == 0)
|
||
xstate_bv |= X86_XSTATE_SSE;
|
||
memcpy (p, raw, 2);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Only handle x87 control registers. */
|
||
for (i = I387_FCTRL_REGNUM (tdep); i < I387_XMM0_REGNUM (tdep); i++)
|
||
if (regnum == -1 || regnum == i)
|
||
{
|
||
/* Most of the FPU control registers occupy only 16 bits in
|
||
the xsave extended state. Give those a special treatment. */
|
||
if (i != I387_FIOFF_REGNUM (tdep)
|
||
&& i != I387_FOOFF_REGNUM (tdep))
|
||
{
|
||
gdb_byte buf[4];
|
||
|
||
regcache->raw_collect (i, buf);
|
||
|
||
if (i == I387_FOP_REGNUM (tdep))
|
||
{
|
||
/* The opcode occupies only 11 bits. Make sure we
|
||
don't touch the other bits. */
|
||
buf[1] &= ((1 << 3) - 1);
|
||
buf[1] |= ((FXSAVE_ADDR (tdep, regs, i))[1] & ~((1 << 3) - 1));
|
||
}
|
||
else if (i == I387_FTAG_REGNUM (tdep))
|
||
{
|
||
/* Converting back is much easier. */
|
||
|
||
unsigned short ftag;
|
||
int fpreg;
|
||
|
||
ftag = (buf[1] << 8) | buf[0];
|
||
buf[0] = 0;
|
||
buf[1] = 0;
|
||
|
||
for (fpreg = 7; fpreg >= 0; fpreg--)
|
||
{
|
||
int tag = (ftag >> (fpreg * 2)) & 3;
|
||
|
||
if (tag != 3)
|
||
buf[0] |= (1 << fpreg);
|
||
}
|
||
}
|
||
p = FXSAVE_ADDR (tdep, regs, i);
|
||
if (memcmp (p, buf, 2))
|
||
{
|
||
xstate_bv |= X86_XSTATE_X87;
|
||
memcpy (p, buf, 2);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
int regsize;
|
||
|
||
regcache->raw_collect (i, raw);
|
||
regsize = regcache_register_size (regcache, i);
|
||
p = FXSAVE_ADDR (tdep, regs, i);
|
||
if (memcmp (raw, p, regsize))
|
||
{
|
||
xstate_bv |= X86_XSTATE_X87;
|
||
memcpy (p, raw, regsize);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Update the corresponding bits in `xstate_bv' if any
|
||
registers are changed. */
|
||
if (xstate_bv)
|
||
{
|
||
/* The supported bits in `xstat_bv' are 8 bytes. */
|
||
initial_xstate_bv |= xstate_bv;
|
||
store_unsigned_integer (XSAVE_XSTATE_BV_ADDR (regs),
|
||
8, byte_order,
|
||
initial_xstate_bv);
|
||
}
|
||
}
|
||
|
||
/* Recreate the FTW (tag word) valid bits from the 80-bit FP data in
|
||
*RAW. */
|
||
|
||
static int
|
||
i387_tag (const gdb_byte *raw)
|
||
{
|
||
int integer;
|
||
unsigned int exponent;
|
||
unsigned long fraction[2];
|
||
|
||
integer = raw[7] & 0x80;
|
||
exponent = (((raw[9] & 0x7f) << 8) | raw[8]);
|
||
fraction[0] = ((raw[3] << 24) | (raw[2] << 16) | (raw[1] << 8) | raw[0]);
|
||
fraction[1] = (((raw[7] & 0x7f) << 24) | (raw[6] << 16)
|
||
| (raw[5] << 8) | raw[4]);
|
||
|
||
if (exponent == 0x7fff)
|
||
{
|
||
/* Special. */
|
||
return (2);
|
||
}
|
||
else if (exponent == 0x0000)
|
||
{
|
||
if (fraction[0] == 0x0000 && fraction[1] == 0x0000 && !integer)
|
||
{
|
||
/* Zero. */
|
||
return (1);
|
||
}
|
||
else
|
||
{
|
||
/* Special. */
|
||
return (2);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (integer)
|
||
{
|
||
/* Valid. */
|
||
return (0);
|
||
}
|
||
else
|
||
{
|
||
/* Special. */
|
||
return (2);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Prepare the FPU stack in REGCACHE for a function return. */
|
||
|
||
void
|
||
i387_return_value (struct gdbarch *gdbarch, struct regcache *regcache)
|
||
{
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
ULONGEST fstat;
|
||
|
||
/* Set the top of the floating-point register stack to 7. The
|
||
actual value doesn't really matter, but 7 is what a normal
|
||
function return would end up with if the program started out with
|
||
a freshly initialized FPU. */
|
||
regcache_raw_read_unsigned (regcache, I387_FSTAT_REGNUM (tdep), &fstat);
|
||
fstat |= (7 << 11);
|
||
regcache_raw_write_unsigned (regcache, I387_FSTAT_REGNUM (tdep), fstat);
|
||
|
||
/* Mark %st(1) through %st(7) as empty. Since we set the top of the
|
||
floating-point register stack to 7, the appropriate value for the
|
||
tag word is 0x3fff. */
|
||
regcache_raw_write_unsigned (regcache, I387_FTAG_REGNUM (tdep), 0x3fff);
|
||
|
||
}
|
||
|
||
/* See i387-tdep.h. */
|
||
|
||
void
|
||
i387_reset_bnd_regs (struct gdbarch *gdbarch, struct regcache *regcache)
|
||
{
|
||
i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
|
||
|
||
if (I387_BND0R_REGNUM (tdep) > 0)
|
||
{
|
||
gdb_byte bnd_buf[16];
|
||
|
||
memset (bnd_buf, 0, 16);
|
||
for (int i = 0; i < I387_NUM_BND_REGS; i++)
|
||
regcache->raw_write (I387_BND0R_REGNUM (tdep) + i, bnd_buf);
|
||
}
|
||
}
|