mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-24 02:24:46 +08:00
65558ca5df
I looked at all the spots using value_mark, and converted all the straightforward ones to use scoped_value_mark instead. Regression tested on x86-64 Fedora 34.
2031 lines
55 KiB
C
2031 lines
55 KiB
C
/* Perform arithmetic and other operations on values, for GDB.
|
||
|
||
Copyright (C) 1986-2022 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "value.h"
|
||
#include "symtab.h"
|
||
#include "gdbtypes.h"
|
||
#include "expression.h"
|
||
#include "target.h"
|
||
#include "language.h"
|
||
#include "target-float.h"
|
||
#include "infcall.h"
|
||
#include "gdbsupport/byte-vector.h"
|
||
#include "gdbarch.h"
|
||
|
||
/* Forward declarations. */
|
||
static struct value *value_subscripted_rvalue (struct value *array,
|
||
LONGEST index,
|
||
LONGEST lowerbound);
|
||
|
||
/* Define whether or not the C operator '/' truncates towards zero for
|
||
differently signed operands (truncation direction is undefined in C). */
|
||
|
||
#ifndef TRUNCATION_TOWARDS_ZERO
|
||
#define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
|
||
#endif
|
||
|
||
/* Given a pointer, return the size of its target.
|
||
If the pointer type is void *, then return 1.
|
||
If the target type is incomplete, then error out.
|
||
This isn't a general purpose function, but just a
|
||
helper for value_ptradd. */
|
||
|
||
static LONGEST
|
||
find_size_for_pointer_math (struct type *ptr_type)
|
||
{
|
||
LONGEST sz = -1;
|
||
struct type *ptr_target;
|
||
|
||
gdb_assert (ptr_type->code () == TYPE_CODE_PTR);
|
||
ptr_target = check_typedef (ptr_type->target_type ());
|
||
|
||
sz = type_length_units (ptr_target);
|
||
if (sz == 0)
|
||
{
|
||
if (ptr_type->code () == TYPE_CODE_VOID)
|
||
sz = 1;
|
||
else
|
||
{
|
||
const char *name;
|
||
|
||
name = ptr_target->name ();
|
||
if (name == NULL)
|
||
error (_("Cannot perform pointer math on incomplete types, "
|
||
"try casting to a known type, or void *."));
|
||
else
|
||
error (_("Cannot perform pointer math on incomplete type \"%s\", "
|
||
"try casting to a known type, or void *."), name);
|
||
}
|
||
}
|
||
return sz;
|
||
}
|
||
|
||
/* Given a pointer ARG1 and an integral value ARG2, return the
|
||
result of C-style pointer arithmetic ARG1 + ARG2. */
|
||
|
||
struct value *
|
||
value_ptradd (struct value *arg1, LONGEST arg2)
|
||
{
|
||
struct type *valptrtype;
|
||
LONGEST sz;
|
||
struct value *result;
|
||
|
||
arg1 = coerce_array (arg1);
|
||
valptrtype = check_typedef (value_type (arg1));
|
||
sz = find_size_for_pointer_math (valptrtype);
|
||
|
||
result = value_from_pointer (valptrtype,
|
||
value_as_address (arg1) + sz * arg2);
|
||
if (VALUE_LVAL (result) != lval_internalvar)
|
||
set_value_component_location (result, arg1);
|
||
return result;
|
||
}
|
||
|
||
/* Given two compatible pointer values ARG1 and ARG2, return the
|
||
result of C-style pointer arithmetic ARG1 - ARG2. */
|
||
|
||
LONGEST
|
||
value_ptrdiff (struct value *arg1, struct value *arg2)
|
||
{
|
||
struct type *type1, *type2;
|
||
LONGEST sz;
|
||
|
||
arg1 = coerce_array (arg1);
|
||
arg2 = coerce_array (arg2);
|
||
type1 = check_typedef (value_type (arg1));
|
||
type2 = check_typedef (value_type (arg2));
|
||
|
||
gdb_assert (type1->code () == TYPE_CODE_PTR);
|
||
gdb_assert (type2->code () == TYPE_CODE_PTR);
|
||
|
||
if (check_typedef (type1->target_type ())->length ()
|
||
!= check_typedef (type2->target_type ())->length ())
|
||
error (_("First argument of `-' is a pointer and "
|
||
"second argument is neither\n"
|
||
"an integer nor a pointer of the same type."));
|
||
|
||
sz = type_length_units (check_typedef (type1->target_type ()));
|
||
if (sz == 0)
|
||
{
|
||
warning (_("Type size unknown, assuming 1. "
|
||
"Try casting to a known type, or void *."));
|
||
sz = 1;
|
||
}
|
||
|
||
return (value_as_long (arg1) - value_as_long (arg2)) / sz;
|
||
}
|
||
|
||
/* Return the value of ARRAY[IDX].
|
||
|
||
ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
|
||
current language supports C-style arrays, it may also be TYPE_CODE_PTR.
|
||
|
||
See comments in value_coerce_array() for rationale for reason for
|
||
doing lower bounds adjustment here rather than there.
|
||
FIXME: Perhaps we should validate that the index is valid and if
|
||
verbosity is set, warn about invalid indices (but still use them). */
|
||
|
||
struct value *
|
||
value_subscript (struct value *array, LONGEST index)
|
||
{
|
||
bool c_style = current_language->c_style_arrays_p ();
|
||
struct type *tarray;
|
||
|
||
array = coerce_ref (array);
|
||
tarray = check_typedef (value_type (array));
|
||
|
||
if (tarray->code () == TYPE_CODE_ARRAY
|
||
|| tarray->code () == TYPE_CODE_STRING)
|
||
{
|
||
struct type *range_type = tarray->index_type ();
|
||
gdb::optional<LONGEST> lowerbound = get_discrete_low_bound (range_type);
|
||
if (!lowerbound.has_value ())
|
||
lowerbound = 0;
|
||
|
||
if (VALUE_LVAL (array) != lval_memory)
|
||
return value_subscripted_rvalue (array, index, *lowerbound);
|
||
|
||
gdb::optional<LONGEST> upperbound
|
||
= get_discrete_high_bound (range_type);
|
||
|
||
if (!upperbound.has_value ())
|
||
upperbound = -1;
|
||
|
||
if (index >= *lowerbound && index <= *upperbound)
|
||
return value_subscripted_rvalue (array, index, *lowerbound);
|
||
|
||
if (!c_style)
|
||
{
|
||
/* Emit warning unless we have an array of unknown size.
|
||
An array of unknown size has lowerbound 0 and upperbound -1. */
|
||
if (*upperbound > -1)
|
||
warning (_("array or string index out of range"));
|
||
/* fall doing C stuff */
|
||
c_style = true;
|
||
}
|
||
|
||
index -= *lowerbound;
|
||
array = value_coerce_array (array);
|
||
}
|
||
|
||
if (c_style)
|
||
return value_ind (value_ptradd (array, index));
|
||
else
|
||
error (_("not an array or string"));
|
||
}
|
||
|
||
/* Return the value of EXPR[IDX], expr an aggregate rvalue
|
||
(eg, a vector register). This routine used to promote floats
|
||
to doubles, but no longer does. */
|
||
|
||
static struct value *
|
||
value_subscripted_rvalue (struct value *array, LONGEST index,
|
||
LONGEST lowerbound)
|
||
{
|
||
struct type *array_type = check_typedef (value_type (array));
|
||
struct type *elt_type = array_type->target_type ();
|
||
LONGEST elt_size = type_length_units (elt_type);
|
||
|
||
/* Fetch the bit stride and convert it to a byte stride, assuming 8 bits
|
||
in a byte. */
|
||
LONGEST stride = array_type->bit_stride ();
|
||
if (stride != 0)
|
||
{
|
||
struct gdbarch *arch = elt_type->arch ();
|
||
int unit_size = gdbarch_addressable_memory_unit_size (arch);
|
||
elt_size = stride / (unit_size * 8);
|
||
}
|
||
|
||
LONGEST elt_offs = elt_size * (index - lowerbound);
|
||
bool array_upper_bound_undefined
|
||
= array_type->bounds ()->high.kind () == PROP_UNDEFINED;
|
||
|
||
if (index < lowerbound
|
||
|| (!array_upper_bound_undefined
|
||
&& elt_offs >= type_length_units (array_type))
|
||
|| (VALUE_LVAL (array) != lval_memory && array_upper_bound_undefined))
|
||
{
|
||
if (type_not_associated (array_type))
|
||
error (_("no such vector element (vector not associated)"));
|
||
else if (type_not_allocated (array_type))
|
||
error (_("no such vector element (vector not allocated)"));
|
||
else
|
||
error (_("no such vector element"));
|
||
}
|
||
|
||
if (is_dynamic_type (elt_type))
|
||
{
|
||
CORE_ADDR address;
|
||
|
||
address = value_address (array) + elt_offs;
|
||
elt_type = resolve_dynamic_type (elt_type, {}, address);
|
||
}
|
||
|
||
return value_from_component (array, elt_type, elt_offs);
|
||
}
|
||
|
||
|
||
/* Check to see if either argument is a structure, or a reference to
|
||
one. This is called so we know whether to go ahead with the normal
|
||
binop or look for a user defined function instead.
|
||
|
||
For now, we do not overload the `=' operator. */
|
||
|
||
int
|
||
binop_types_user_defined_p (enum exp_opcode op,
|
||
struct type *type1, struct type *type2)
|
||
{
|
||
if (op == BINOP_ASSIGN)
|
||
return 0;
|
||
|
||
type1 = check_typedef (type1);
|
||
if (TYPE_IS_REFERENCE (type1))
|
||
type1 = check_typedef (type1->target_type ());
|
||
|
||
type2 = check_typedef (type2);
|
||
if (TYPE_IS_REFERENCE (type2))
|
||
type2 = check_typedef (type2->target_type ());
|
||
|
||
return (type1->code () == TYPE_CODE_STRUCT
|
||
|| type2->code () == TYPE_CODE_STRUCT);
|
||
}
|
||
|
||
/* Check to see if either argument is a structure, or a reference to
|
||
one. This is called so we know whether to go ahead with the normal
|
||
binop or look for a user defined function instead.
|
||
|
||
For now, we do not overload the `=' operator. */
|
||
|
||
int
|
||
binop_user_defined_p (enum exp_opcode op,
|
||
struct value *arg1, struct value *arg2)
|
||
{
|
||
return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
|
||
}
|
||
|
||
/* Check to see if argument is a structure. This is called so
|
||
we know whether to go ahead with the normal unop or look for a
|
||
user defined function instead.
|
||
|
||
For now, we do not overload the `&' operator. */
|
||
|
||
int
|
||
unop_user_defined_p (enum exp_opcode op, struct value *arg1)
|
||
{
|
||
struct type *type1;
|
||
|
||
if (op == UNOP_ADDR)
|
||
return 0;
|
||
type1 = check_typedef (value_type (arg1));
|
||
if (TYPE_IS_REFERENCE (type1))
|
||
type1 = check_typedef (type1->target_type ());
|
||
return type1->code () == TYPE_CODE_STRUCT;
|
||
}
|
||
|
||
/* Try to find an operator named OPERATOR which takes NARGS arguments
|
||
specified in ARGS. If the operator found is a static member operator
|
||
*STATIC_MEMFUNP will be set to 1, and otherwise 0.
|
||
The search if performed through find_overload_match which will handle
|
||
member operators, non member operators, operators imported implicitly or
|
||
explicitly, and perform correct overload resolution in all of the above
|
||
situations or combinations thereof. */
|
||
|
||
static struct value *
|
||
value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper,
|
||
int *static_memfuncp, enum noside noside)
|
||
{
|
||
|
||
struct symbol *symp = NULL;
|
||
struct value *valp = NULL;
|
||
|
||
find_overload_match (args, oper, BOTH /* could be method */,
|
||
&args[0] /* objp */,
|
||
NULL /* pass NULL symbol since symbol is unknown */,
|
||
&valp, &symp, static_memfuncp, 0, noside);
|
||
|
||
if (valp)
|
||
return valp;
|
||
|
||
if (symp)
|
||
{
|
||
/* This is a non member function and does not
|
||
expect a reference as its first argument
|
||
rather the explicit structure. */
|
||
args[0] = value_ind (args[0]);
|
||
return value_of_variable (symp, 0);
|
||
}
|
||
|
||
error (_("Could not find %s."), oper);
|
||
}
|
||
|
||
/* Lookup user defined operator NAME. Return a value representing the
|
||
function, otherwise return NULL. */
|
||
|
||
static struct value *
|
||
value_user_defined_op (struct value **argp, gdb::array_view<value *> args,
|
||
char *name, int *static_memfuncp, enum noside noside)
|
||
{
|
||
struct value *result = NULL;
|
||
|
||
if (current_language->la_language == language_cplus)
|
||
{
|
||
result = value_user_defined_cpp_op (args, name, static_memfuncp,
|
||
noside);
|
||
}
|
||
else
|
||
result = value_struct_elt (argp, args, name, static_memfuncp,
|
||
"structure");
|
||
|
||
return result;
|
||
}
|
||
|
||
/* We know either arg1 or arg2 is a structure, so try to find the right
|
||
user defined function. Create an argument vector that calls
|
||
arg1.operator @ (arg1,arg2) and return that value (where '@' is any
|
||
binary operator which is legal for GNU C++).
|
||
|
||
OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
|
||
is the opcode saying how to modify it. Otherwise, OTHEROP is
|
||
unused. */
|
||
|
||
struct value *
|
||
value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
|
||
enum exp_opcode otherop, enum noside noside)
|
||
{
|
||
char *ptr;
|
||
char tstr[13];
|
||
int static_memfuncp;
|
||
|
||
arg1 = coerce_ref (arg1);
|
||
arg2 = coerce_ref (arg2);
|
||
|
||
/* now we know that what we have to do is construct our
|
||
arg vector and find the right function to call it with. */
|
||
|
||
if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
|
||
error (_("Can't do that binary op on that type")); /* FIXME be explicit */
|
||
|
||
value *argvec_storage[3];
|
||
gdb::array_view<value *> argvec = argvec_storage;
|
||
|
||
argvec[1] = value_addr (arg1);
|
||
argvec[2] = arg2;
|
||
|
||
/* Make the right function name up. */
|
||
strcpy (tstr, "operator__");
|
||
ptr = tstr + 8;
|
||
switch (op)
|
||
{
|
||
case BINOP_ADD:
|
||
strcpy (ptr, "+");
|
||
break;
|
||
case BINOP_SUB:
|
||
strcpy (ptr, "-");
|
||
break;
|
||
case BINOP_MUL:
|
||
strcpy (ptr, "*");
|
||
break;
|
||
case BINOP_DIV:
|
||
strcpy (ptr, "/");
|
||
break;
|
||
case BINOP_REM:
|
||
strcpy (ptr, "%");
|
||
break;
|
||
case BINOP_LSH:
|
||
strcpy (ptr, "<<");
|
||
break;
|
||
case BINOP_RSH:
|
||
strcpy (ptr, ">>");
|
||
break;
|
||
case BINOP_BITWISE_AND:
|
||
strcpy (ptr, "&");
|
||
break;
|
||
case BINOP_BITWISE_IOR:
|
||
strcpy (ptr, "|");
|
||
break;
|
||
case BINOP_BITWISE_XOR:
|
||
strcpy (ptr, "^");
|
||
break;
|
||
case BINOP_LOGICAL_AND:
|
||
strcpy (ptr, "&&");
|
||
break;
|
||
case BINOP_LOGICAL_OR:
|
||
strcpy (ptr, "||");
|
||
break;
|
||
case BINOP_MIN:
|
||
strcpy (ptr, "<?");
|
||
break;
|
||
case BINOP_MAX:
|
||
strcpy (ptr, ">?");
|
||
break;
|
||
case BINOP_ASSIGN:
|
||
strcpy (ptr, "=");
|
||
break;
|
||
case BINOP_ASSIGN_MODIFY:
|
||
switch (otherop)
|
||
{
|
||
case BINOP_ADD:
|
||
strcpy (ptr, "+=");
|
||
break;
|
||
case BINOP_SUB:
|
||
strcpy (ptr, "-=");
|
||
break;
|
||
case BINOP_MUL:
|
||
strcpy (ptr, "*=");
|
||
break;
|
||
case BINOP_DIV:
|
||
strcpy (ptr, "/=");
|
||
break;
|
||
case BINOP_REM:
|
||
strcpy (ptr, "%=");
|
||
break;
|
||
case BINOP_BITWISE_AND:
|
||
strcpy (ptr, "&=");
|
||
break;
|
||
case BINOP_BITWISE_IOR:
|
||
strcpy (ptr, "|=");
|
||
break;
|
||
case BINOP_BITWISE_XOR:
|
||
strcpy (ptr, "^=");
|
||
break;
|
||
case BINOP_MOD: /* invalid */
|
||
default:
|
||
error (_("Invalid binary operation specified."));
|
||
}
|
||
break;
|
||
case BINOP_SUBSCRIPT:
|
||
strcpy (ptr, "[]");
|
||
break;
|
||
case BINOP_EQUAL:
|
||
strcpy (ptr, "==");
|
||
break;
|
||
case BINOP_NOTEQUAL:
|
||
strcpy (ptr, "!=");
|
||
break;
|
||
case BINOP_LESS:
|
||
strcpy (ptr, "<");
|
||
break;
|
||
case BINOP_GTR:
|
||
strcpy (ptr, ">");
|
||
break;
|
||
case BINOP_GEQ:
|
||
strcpy (ptr, ">=");
|
||
break;
|
||
case BINOP_LEQ:
|
||
strcpy (ptr, "<=");
|
||
break;
|
||
case BINOP_MOD: /* invalid */
|
||
default:
|
||
error (_("Invalid binary operation specified."));
|
||
}
|
||
|
||
argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr,
|
||
&static_memfuncp, noside);
|
||
|
||
if (argvec[0])
|
||
{
|
||
if (static_memfuncp)
|
||
{
|
||
argvec[1] = argvec[0];
|
||
argvec = argvec.slice (1);
|
||
}
|
||
if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
|
||
{
|
||
/* Static xmethods are not supported yet. */
|
||
gdb_assert (static_memfuncp == 0);
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *return_type
|
||
= result_type_of_xmethod (argvec[0], argvec.slice (1));
|
||
|
||
if (return_type == NULL)
|
||
error (_("Xmethod is missing return type."));
|
||
return value_zero (return_type, VALUE_LVAL (arg1));
|
||
}
|
||
return call_xmethod (argvec[0], argvec.slice (1));
|
||
}
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *return_type;
|
||
|
||
return_type = check_typedef (value_type (argvec[0]))->target_type ();
|
||
return value_zero (return_type, VALUE_LVAL (arg1));
|
||
}
|
||
return call_function_by_hand (argvec[0], NULL,
|
||
argvec.slice (1, 2 - static_memfuncp));
|
||
}
|
||
throw_error (NOT_FOUND_ERROR,
|
||
_("member function %s not found"), tstr);
|
||
}
|
||
|
||
/* We know that arg1 is a structure, so try to find a unary user
|
||
defined operator that matches the operator in question.
|
||
Create an argument vector that calls arg1.operator @ (arg1)
|
||
and return that value (where '@' is (almost) any unary operator which
|
||
is legal for GNU C++). */
|
||
|
||
struct value *
|
||
value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
|
||
{
|
||
struct gdbarch *gdbarch = value_type (arg1)->arch ();
|
||
char *ptr;
|
||
char tstr[13], mangle_tstr[13];
|
||
int static_memfuncp, nargs;
|
||
|
||
arg1 = coerce_ref (arg1);
|
||
|
||
/* now we know that what we have to do is construct our
|
||
arg vector and find the right function to call it with. */
|
||
|
||
if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
|
||
error (_("Can't do that unary op on that type")); /* FIXME be explicit */
|
||
|
||
value *argvec_storage[3];
|
||
gdb::array_view<value *> argvec = argvec_storage;
|
||
|
||
argvec[1] = value_addr (arg1);
|
||
argvec[2] = 0;
|
||
|
||
nargs = 1;
|
||
|
||
/* Make the right function name up. */
|
||
strcpy (tstr, "operator__");
|
||
ptr = tstr + 8;
|
||
strcpy (mangle_tstr, "__");
|
||
switch (op)
|
||
{
|
||
case UNOP_PREINCREMENT:
|
||
strcpy (ptr, "++");
|
||
break;
|
||
case UNOP_PREDECREMENT:
|
||
strcpy (ptr, "--");
|
||
break;
|
||
case UNOP_POSTINCREMENT:
|
||
strcpy (ptr, "++");
|
||
argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
|
||
nargs ++;
|
||
break;
|
||
case UNOP_POSTDECREMENT:
|
||
strcpy (ptr, "--");
|
||
argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
|
||
nargs ++;
|
||
break;
|
||
case UNOP_LOGICAL_NOT:
|
||
strcpy (ptr, "!");
|
||
break;
|
||
case UNOP_COMPLEMENT:
|
||
strcpy (ptr, "~");
|
||
break;
|
||
case UNOP_NEG:
|
||
strcpy (ptr, "-");
|
||
break;
|
||
case UNOP_PLUS:
|
||
strcpy (ptr, "+");
|
||
break;
|
||
case UNOP_IND:
|
||
strcpy (ptr, "*");
|
||
break;
|
||
case STRUCTOP_PTR:
|
||
strcpy (ptr, "->");
|
||
break;
|
||
default:
|
||
error (_("Invalid unary operation specified."));
|
||
}
|
||
|
||
argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr,
|
||
&static_memfuncp, noside);
|
||
|
||
if (argvec[0])
|
||
{
|
||
if (static_memfuncp)
|
||
{
|
||
argvec[1] = argvec[0];
|
||
argvec = argvec.slice (1);
|
||
}
|
||
if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
|
||
{
|
||
/* Static xmethods are not supported yet. */
|
||
gdb_assert (static_memfuncp == 0);
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *return_type
|
||
= result_type_of_xmethod (argvec[0], argvec[1]);
|
||
|
||
if (return_type == NULL)
|
||
error (_("Xmethod is missing return type."));
|
||
return value_zero (return_type, VALUE_LVAL (arg1));
|
||
}
|
||
return call_xmethod (argvec[0], argvec[1]);
|
||
}
|
||
if (noside == EVAL_AVOID_SIDE_EFFECTS)
|
||
{
|
||
struct type *return_type;
|
||
|
||
return_type = check_typedef (value_type (argvec[0]))->target_type ();
|
||
return value_zero (return_type, VALUE_LVAL (arg1));
|
||
}
|
||
return call_function_by_hand (argvec[0], NULL,
|
||
argvec.slice (1, nargs));
|
||
}
|
||
throw_error (NOT_FOUND_ERROR,
|
||
_("member function %s not found"), tstr);
|
||
}
|
||
|
||
|
||
/* Concatenate two values. One value must be an array; and the other
|
||
value must either be an array with the same element type, or be of
|
||
the array's element type. */
|
||
|
||
struct value *
|
||
value_concat (struct value *arg1, struct value *arg2)
|
||
{
|
||
struct type *type1 = check_typedef (value_type (arg1));
|
||
struct type *type2 = check_typedef (value_type (arg2));
|
||
|
||
if (type1->code () != TYPE_CODE_ARRAY && type2->code () != TYPE_CODE_ARRAY)
|
||
error ("no array provided to concatenation");
|
||
|
||
LONGEST low1, high1;
|
||
struct type *elttype1 = type1;
|
||
if (elttype1->code () == TYPE_CODE_ARRAY)
|
||
{
|
||
elttype1 = elttype1->target_type ();
|
||
if (!get_array_bounds (type1, &low1, &high1))
|
||
error (_("could not determine array bounds on left-hand-side of "
|
||
"array concatenation"));
|
||
}
|
||
else
|
||
{
|
||
low1 = 0;
|
||
high1 = 0;
|
||
}
|
||
|
||
LONGEST low2, high2;
|
||
struct type *elttype2 = type2;
|
||
if (elttype2->code () == TYPE_CODE_ARRAY)
|
||
{
|
||
elttype2 = elttype2->target_type ();
|
||
if (!get_array_bounds (type2, &low2, &high2))
|
||
error (_("could not determine array bounds on right-hand-side of "
|
||
"array concatenation"));
|
||
}
|
||
else
|
||
{
|
||
low2 = 0;
|
||
high2 = 0;
|
||
}
|
||
|
||
if (!types_equal (elttype1, elttype2))
|
||
error (_("concatenation with different element types"));
|
||
|
||
LONGEST lowbound = current_language->c_style_arrays_p () ? 0 : 1;
|
||
LONGEST n_elts = (high1 - low1 + 1) + (high2 - low2 + 1);
|
||
struct type *atype = lookup_array_range_type (elttype1,
|
||
lowbound,
|
||
lowbound + n_elts - 1);
|
||
|
||
struct value *result = allocate_value (atype);
|
||
gdb::array_view<gdb_byte> contents = value_contents_raw (result);
|
||
gdb::array_view<const gdb_byte> lhs_contents = value_contents (arg1);
|
||
gdb::array_view<const gdb_byte> rhs_contents = value_contents (arg2);
|
||
gdb::copy (lhs_contents, contents.slice (0, lhs_contents.size ()));
|
||
gdb::copy (rhs_contents, contents.slice (lhs_contents.size ()));
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Integer exponentiation: V1**V2, where both arguments are
|
||
integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
|
||
|
||
static LONGEST
|
||
integer_pow (LONGEST v1, LONGEST v2)
|
||
{
|
||
if (v2 < 0)
|
||
{
|
||
if (v1 == 0)
|
||
error (_("Attempt to raise 0 to negative power."));
|
||
else
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
/* The Russian Peasant's Algorithm. */
|
||
LONGEST v;
|
||
|
||
v = 1;
|
||
for (;;)
|
||
{
|
||
if (v2 & 1L)
|
||
v *= v1;
|
||
v2 >>= 1;
|
||
if (v2 == 0)
|
||
return v;
|
||
v1 *= v1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Obtain argument values for binary operation, converting from
|
||
other types if one of them is not floating point. */
|
||
static void
|
||
value_args_as_target_float (struct value *arg1, struct value *arg2,
|
||
gdb_byte *x, struct type **eff_type_x,
|
||
gdb_byte *y, struct type **eff_type_y)
|
||
{
|
||
struct type *type1, *type2;
|
||
|
||
type1 = check_typedef (value_type (arg1));
|
||
type2 = check_typedef (value_type (arg2));
|
||
|
||
/* At least one of the arguments must be of floating-point type. */
|
||
gdb_assert (is_floating_type (type1) || is_floating_type (type2));
|
||
|
||
if (is_floating_type (type1) && is_floating_type (type2)
|
||
&& type1->code () != type2->code ())
|
||
/* The DFP extension to the C language does not allow mixing of
|
||
* decimal float types with other float types in expressions
|
||
* (see WDTR 24732, page 12). */
|
||
error (_("Mixing decimal floating types with "
|
||
"other floating types is not allowed."));
|
||
|
||
/* Obtain value of arg1, converting from other types if necessary. */
|
||
|
||
if (is_floating_type (type1))
|
||
{
|
||
*eff_type_x = type1;
|
||
memcpy (x, value_contents (arg1).data (), type1->length ());
|
||
}
|
||
else if (is_integral_type (type1))
|
||
{
|
||
*eff_type_x = type2;
|
||
if (type1->is_unsigned ())
|
||
target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
|
||
else
|
||
target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
|
||
}
|
||
else
|
||
error (_("Don't know how to convert from %s to %s."), type1->name (),
|
||
type2->name ());
|
||
|
||
/* Obtain value of arg2, converting from other types if necessary. */
|
||
|
||
if (is_floating_type (type2))
|
||
{
|
||
*eff_type_y = type2;
|
||
memcpy (y, value_contents (arg2).data (), type2->length ());
|
||
}
|
||
else if (is_integral_type (type2))
|
||
{
|
||
*eff_type_y = type1;
|
||
if (type2->is_unsigned ())
|
||
target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
|
||
else
|
||
target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
|
||
}
|
||
else
|
||
error (_("Don't know how to convert from %s to %s."), type1->name (),
|
||
type2->name ());
|
||
}
|
||
|
||
/* Assuming at last one of ARG1 or ARG2 is a fixed point value,
|
||
perform the binary operation OP on these two operands, and return
|
||
the resulting value (also as a fixed point). */
|
||
|
||
static struct value *
|
||
fixed_point_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
|
||
{
|
||
struct type *type1 = check_typedef (value_type (arg1));
|
||
struct type *type2 = check_typedef (value_type (arg2));
|
||
const struct language_defn *language = current_language;
|
||
|
||
struct gdbarch *gdbarch = type1->arch ();
|
||
struct value *val;
|
||
|
||
gdb_mpq v1, v2, res;
|
||
|
||
gdb_assert (is_fixed_point_type (type1) || is_fixed_point_type (type2));
|
||
if (op == BINOP_MUL || op == BINOP_DIV)
|
||
{
|
||
v1 = value_to_gdb_mpq (arg1);
|
||
v2 = value_to_gdb_mpq (arg2);
|
||
|
||
/* The code below uses TYPE1 for the result type, so make sure
|
||
it is set properly. */
|
||
if (!is_fixed_point_type (type1))
|
||
type1 = type2;
|
||
}
|
||
else
|
||
{
|
||
if (!is_fixed_point_type (type1))
|
||
{
|
||
arg1 = value_cast (type2, arg1);
|
||
type1 = type2;
|
||
}
|
||
if (!is_fixed_point_type (type2))
|
||
{
|
||
arg2 = value_cast (type1, arg2);
|
||
type2 = type1;
|
||
}
|
||
|
||
v1.read_fixed_point (value_contents (arg1),
|
||
type_byte_order (type1), type1->is_unsigned (),
|
||
type1->fixed_point_scaling_factor ());
|
||
v2.read_fixed_point (value_contents (arg2),
|
||
type_byte_order (type2), type2->is_unsigned (),
|
||
type2->fixed_point_scaling_factor ());
|
||
}
|
||
|
||
auto fixed_point_to_value = [type1] (const gdb_mpq &fp)
|
||
{
|
||
value *fp_val = allocate_value (type1);
|
||
|
||
fp.write_fixed_point
|
||
(value_contents_raw (fp_val),
|
||
type_byte_order (type1),
|
||
type1->is_unsigned (),
|
||
type1->fixed_point_scaling_factor ());
|
||
|
||
return fp_val;
|
||
};
|
||
|
||
switch (op)
|
||
{
|
||
case BINOP_ADD:
|
||
mpq_add (res.val, v1.val, v2.val);
|
||
val = fixed_point_to_value (res);
|
||
break;
|
||
|
||
case BINOP_SUB:
|
||
mpq_sub (res.val, v1.val, v2.val);
|
||
val = fixed_point_to_value (res);
|
||
break;
|
||
|
||
case BINOP_MIN:
|
||
val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) < 0 ? v1 : v2);
|
||
break;
|
||
|
||
case BINOP_MAX:
|
||
val = fixed_point_to_value (mpq_cmp (v1.val, v2.val) > 0 ? v1 : v2);
|
||
break;
|
||
|
||
case BINOP_MUL:
|
||
mpq_mul (res.val, v1.val, v2.val);
|
||
val = fixed_point_to_value (res);
|
||
break;
|
||
|
||
case BINOP_DIV:
|
||
if (mpq_sgn (v2.val) == 0)
|
||
error (_("Division by zero"));
|
||
mpq_div (res.val, v1.val, v2.val);
|
||
val = fixed_point_to_value (res);
|
||
break;
|
||
|
||
case BINOP_EQUAL:
|
||
val = value_from_ulongest (language_bool_type (language, gdbarch),
|
||
mpq_cmp (v1.val, v2.val) == 0 ? 1 : 0);
|
||
break;
|
||
|
||
case BINOP_LESS:
|
||
val = value_from_ulongest (language_bool_type (language, gdbarch),
|
||
mpq_cmp (v1.val, v2.val) < 0 ? 1 : 0);
|
||
break;
|
||
|
||
default:
|
||
error (_("Integer-only operation on fixed point number."));
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* A helper function that finds the type to use for a binary operation
|
||
involving TYPE1 and TYPE2. */
|
||
|
||
static struct type *
|
||
promotion_type (struct type *type1, struct type *type2)
|
||
{
|
||
struct type *result_type;
|
||
|
||
if (is_floating_type (type1) || is_floating_type (type2))
|
||
{
|
||
/* If only one type is floating-point, use its type.
|
||
Otherwise use the bigger type. */
|
||
if (!is_floating_type (type1))
|
||
result_type = type2;
|
||
else if (!is_floating_type (type2))
|
||
result_type = type1;
|
||
else if (type2->length () > type1->length ())
|
||
result_type = type2;
|
||
else
|
||
result_type = type1;
|
||
}
|
||
else
|
||
{
|
||
/* Integer types. */
|
||
if (type1->length () > type2->length ())
|
||
result_type = type1;
|
||
else if (type2->length () > type1->length ())
|
||
result_type = type2;
|
||
else if (type1->is_unsigned ())
|
||
result_type = type1;
|
||
else if (type2->is_unsigned ())
|
||
result_type = type2;
|
||
else
|
||
result_type = type1;
|
||
}
|
||
|
||
return result_type;
|
||
}
|
||
|
||
static struct value *scalar_binop (struct value *arg1, struct value *arg2,
|
||
enum exp_opcode op);
|
||
|
||
/* Perform a binary operation on complex operands. */
|
||
|
||
static struct value *
|
||
complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
|
||
{
|
||
struct type *arg1_type = check_typedef (value_type (arg1));
|
||
struct type *arg2_type = check_typedef (value_type (arg2));
|
||
|
||
struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag;
|
||
if (arg1_type->code () == TYPE_CODE_COMPLEX)
|
||
{
|
||
arg1_real = value_real_part (arg1);
|
||
arg1_imag = value_imaginary_part (arg1);
|
||
}
|
||
else
|
||
{
|
||
arg1_real = arg1;
|
||
arg1_imag = value_zero (arg1_type, not_lval);
|
||
}
|
||
if (arg2_type->code () == TYPE_CODE_COMPLEX)
|
||
{
|
||
arg2_real = value_real_part (arg2);
|
||
arg2_imag = value_imaginary_part (arg2);
|
||
}
|
||
else
|
||
{
|
||
arg2_real = arg2;
|
||
arg2_imag = value_zero (arg2_type, not_lval);
|
||
}
|
||
|
||
struct type *comp_type = promotion_type (value_type (arg1_real),
|
||
value_type (arg2_real));
|
||
if (!can_create_complex_type (comp_type))
|
||
error (_("Argument to complex arithmetic operation not supported."));
|
||
|
||
arg1_real = value_cast (comp_type, arg1_real);
|
||
arg1_imag = value_cast (comp_type, arg1_imag);
|
||
arg2_real = value_cast (comp_type, arg2_real);
|
||
arg2_imag = value_cast (comp_type, arg2_imag);
|
||
|
||
struct type *result_type = init_complex_type (nullptr, comp_type);
|
||
|
||
struct value *result_real, *result_imag;
|
||
switch (op)
|
||
{
|
||
case BINOP_ADD:
|
||
case BINOP_SUB:
|
||
result_real = scalar_binop (arg1_real, arg2_real, op);
|
||
result_imag = scalar_binop (arg1_imag, arg2_imag, op);
|
||
break;
|
||
|
||
case BINOP_MUL:
|
||
{
|
||
struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
|
||
struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
|
||
result_real = scalar_binop (x1, x2, BINOP_SUB);
|
||
|
||
x1 = scalar_binop (arg1_real, arg2_imag, op);
|
||
x2 = scalar_binop (arg1_imag, arg2_real, op);
|
||
result_imag = scalar_binop (x1, x2, BINOP_ADD);
|
||
}
|
||
break;
|
||
|
||
case BINOP_DIV:
|
||
{
|
||
if (arg2_type->code () == TYPE_CODE_COMPLEX)
|
||
{
|
||
struct value *conjugate = value_complement (arg2);
|
||
/* We have to reconstruct ARG1, in case the type was
|
||
promoted. */
|
||
arg1 = value_literal_complex (arg1_real, arg1_imag, result_type);
|
||
|
||
struct value *numerator = scalar_binop (arg1, conjugate,
|
||
BINOP_MUL);
|
||
arg1_real = value_real_part (numerator);
|
||
arg1_imag = value_imaginary_part (numerator);
|
||
|
||
struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL);
|
||
struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL);
|
||
arg2_real = scalar_binop (x1, x2, BINOP_ADD);
|
||
}
|
||
|
||
result_real = scalar_binop (arg1_real, arg2_real, op);
|
||
result_imag = scalar_binop (arg1_imag, arg2_real, op);
|
||
}
|
||
break;
|
||
|
||
case BINOP_EQUAL:
|
||
case BINOP_NOTEQUAL:
|
||
{
|
||
struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
|
||
struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
|
||
|
||
LONGEST v1 = value_as_long (x1);
|
||
LONGEST v2 = value_as_long (x2);
|
||
|
||
if (op == BINOP_EQUAL)
|
||
v1 = v1 && v2;
|
||
else
|
||
v1 = v1 || v2;
|
||
|
||
return value_from_longest (value_type (x1), v1);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
error (_("Invalid binary operation on numbers."));
|
||
}
|
||
|
||
return value_literal_complex (result_real, result_imag, result_type);
|
||
}
|
||
|
||
/* Return the type's length in bits. */
|
||
|
||
static int
|
||
type_length_bits (type *type)
|
||
{
|
||
int unit_size = gdbarch_addressable_memory_unit_size (type->arch ());
|
||
return unit_size * 8 * type->length ();
|
||
}
|
||
|
||
/* Check whether the RHS value of a shift is valid in C/C++ semantics.
|
||
SHIFT_COUNT is the shift amount, SHIFT_COUNT_TYPE is the type of
|
||
the shift count value, used to determine whether the type is
|
||
signed, and RESULT_TYPE is the result type. This is used to avoid
|
||
both negative and too-large shift amounts, which are undefined, and
|
||
would crash a GDB built with UBSan. Depending on the current
|
||
language, if the shift is not valid, this either warns and returns
|
||
false, or errors out. Returns true if valid. */
|
||
|
||
static bool
|
||
check_valid_shift_count (int op, type *result_type,
|
||
type *shift_count_type, ULONGEST shift_count)
|
||
{
|
||
if (!shift_count_type->is_unsigned () && (LONGEST) shift_count < 0)
|
||
{
|
||
auto error_or_warning = [] (const char *msg)
|
||
{
|
||
/* Shifts by a negative amount are always an error in Go. Other
|
||
languages are more permissive and their compilers just warn or
|
||
have modes to disable the errors. */
|
||
if (current_language->la_language == language_go)
|
||
error (("%s"), msg);
|
||
else
|
||
warning (("%s"), msg);
|
||
};
|
||
|
||
if (op == BINOP_RSH)
|
||
error_or_warning (_("right shift count is negative"));
|
||
else
|
||
error_or_warning (_("left shift count is negative"));
|
||
return false;
|
||
}
|
||
|
||
if (shift_count >= type_length_bits (result_type))
|
||
{
|
||
/* In Go, shifting by large amounts is defined. Be silent and
|
||
still return false, as the caller's error path does the right
|
||
thing for Go. */
|
||
if (current_language->la_language != language_go)
|
||
{
|
||
if (op == BINOP_RSH)
|
||
warning (_("right shift count >= width of type"));
|
||
else
|
||
warning (_("left shift count >= width of type"));
|
||
}
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Perform a binary operation on two operands which have reasonable
|
||
representations as integers or floats. This includes booleans,
|
||
characters, integers, or floats.
|
||
Does not support addition and subtraction on pointers;
|
||
use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
|
||
|
||
static struct value *
|
||
scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
|
||
{
|
||
struct value *val;
|
||
struct type *type1, *type2, *result_type;
|
||
|
||
arg1 = coerce_ref (arg1);
|
||
arg2 = coerce_ref (arg2);
|
||
|
||
type1 = check_typedef (value_type (arg1));
|
||
type2 = check_typedef (value_type (arg2));
|
||
|
||
if (type1->code () == TYPE_CODE_COMPLEX
|
||
|| type2->code () == TYPE_CODE_COMPLEX)
|
||
return complex_binop (arg1, arg2, op);
|
||
|
||
if ((!is_floating_value (arg1)
|
||
&& !is_integral_type (type1)
|
||
&& !is_fixed_point_type (type1))
|
||
|| (!is_floating_value (arg2)
|
||
&& !is_integral_type (type2)
|
||
&& !is_fixed_point_type (type2)))
|
||
error (_("Argument to arithmetic operation not a number or boolean."));
|
||
|
||
if (is_fixed_point_type (type1) || is_fixed_point_type (type2))
|
||
return fixed_point_binop (arg1, arg2, op);
|
||
|
||
if (is_floating_type (type1) || is_floating_type (type2))
|
||
{
|
||
result_type = promotion_type (type1, type2);
|
||
val = allocate_value (result_type);
|
||
|
||
struct type *eff_type_v1, *eff_type_v2;
|
||
gdb::byte_vector v1, v2;
|
||
v1.resize (result_type->length ());
|
||
v2.resize (result_type->length ());
|
||
|
||
value_args_as_target_float (arg1, arg2,
|
||
v1.data (), &eff_type_v1,
|
||
v2.data (), &eff_type_v2);
|
||
target_float_binop (op, v1.data (), eff_type_v1,
|
||
v2.data (), eff_type_v2,
|
||
value_contents_raw (val).data (), result_type);
|
||
}
|
||
else if (type1->code () == TYPE_CODE_BOOL
|
||
|| type2->code () == TYPE_CODE_BOOL)
|
||
{
|
||
LONGEST v1, v2, v = 0;
|
||
|
||
v1 = value_as_long (arg1);
|
||
v2 = value_as_long (arg2);
|
||
|
||
switch (op)
|
||
{
|
||
case BINOP_BITWISE_AND:
|
||
v = v1 & v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_IOR:
|
||
v = v1 | v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_XOR:
|
||
v = v1 ^ v2;
|
||
break;
|
||
|
||
case BINOP_EQUAL:
|
||
v = v1 == v2;
|
||
break;
|
||
|
||
case BINOP_NOTEQUAL:
|
||
v = v1 != v2;
|
||
break;
|
||
|
||
default:
|
||
error (_("Invalid operation on booleans."));
|
||
}
|
||
|
||
result_type = type1;
|
||
|
||
val = allocate_value (result_type);
|
||
store_signed_integer (value_contents_raw (val).data (),
|
||
result_type->length (),
|
||
type_byte_order (result_type),
|
||
v);
|
||
}
|
||
else
|
||
/* Integral operations here. */
|
||
{
|
||
/* Determine type length of the result, and if the operation should
|
||
be done unsigned. For exponentiation and shift operators,
|
||
use the length and type of the left operand. Otherwise,
|
||
use the signedness of the operand with the greater length.
|
||
If both operands are of equal length, use unsigned operation
|
||
if one of the operands is unsigned. */
|
||
if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
|
||
result_type = type1;
|
||
else
|
||
result_type = promotion_type (type1, type2);
|
||
|
||
if (result_type->is_unsigned ())
|
||
{
|
||
LONGEST v2_signed = value_as_long (arg2);
|
||
ULONGEST v1, v2, v = 0;
|
||
|
||
v1 = (ULONGEST) value_as_long (arg1);
|
||
v2 = (ULONGEST) v2_signed;
|
||
|
||
switch (op)
|
||
{
|
||
case BINOP_ADD:
|
||
v = v1 + v2;
|
||
break;
|
||
|
||
case BINOP_SUB:
|
||
v = v1 - v2;
|
||
break;
|
||
|
||
case BINOP_MUL:
|
||
v = v1 * v2;
|
||
break;
|
||
|
||
case BINOP_DIV:
|
||
case BINOP_INTDIV:
|
||
if (v2 != 0)
|
||
v = v1 / v2;
|
||
else
|
||
error (_("Division by zero"));
|
||
break;
|
||
|
||
case BINOP_EXP:
|
||
v = uinteger_pow (v1, v2_signed);
|
||
break;
|
||
|
||
case BINOP_REM:
|
||
if (v2 != 0)
|
||
v = v1 % v2;
|
||
else
|
||
error (_("Division by zero"));
|
||
break;
|
||
|
||
case BINOP_MOD:
|
||
/* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
|
||
v1 mod 0 has a defined value, v1. */
|
||
if (v2 == 0)
|
||
{
|
||
v = v1;
|
||
}
|
||
else
|
||
{
|
||
v = v1 / v2;
|
||
/* Note floor(v1/v2) == v1/v2 for unsigned. */
|
||
v = v1 - (v2 * v);
|
||
}
|
||
break;
|
||
|
||
case BINOP_LSH:
|
||
if (!check_valid_shift_count (op, result_type, type2, v2))
|
||
v = 0;
|
||
else
|
||
v = v1 << v2;
|
||
break;
|
||
|
||
case BINOP_RSH:
|
||
if (!check_valid_shift_count (op, result_type, type2, v2))
|
||
v = 0;
|
||
else
|
||
v = v1 >> v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_AND:
|
||
v = v1 & v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_IOR:
|
||
v = v1 | v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_XOR:
|
||
v = v1 ^ v2;
|
||
break;
|
||
|
||
case BINOP_LOGICAL_AND:
|
||
v = v1 && v2;
|
||
break;
|
||
|
||
case BINOP_LOGICAL_OR:
|
||
v = v1 || v2;
|
||
break;
|
||
|
||
case BINOP_MIN:
|
||
v = v1 < v2 ? v1 : v2;
|
||
break;
|
||
|
||
case BINOP_MAX:
|
||
v = v1 > v2 ? v1 : v2;
|
||
break;
|
||
|
||
case BINOP_EQUAL:
|
||
v = v1 == v2;
|
||
break;
|
||
|
||
case BINOP_NOTEQUAL:
|
||
v = v1 != v2;
|
||
break;
|
||
|
||
case BINOP_LESS:
|
||
v = v1 < v2;
|
||
break;
|
||
|
||
case BINOP_GTR:
|
||
v = v1 > v2;
|
||
break;
|
||
|
||
case BINOP_LEQ:
|
||
v = v1 <= v2;
|
||
break;
|
||
|
||
case BINOP_GEQ:
|
||
v = v1 >= v2;
|
||
break;
|
||
|
||
default:
|
||
error (_("Invalid binary operation on numbers."));
|
||
}
|
||
|
||
val = allocate_value (result_type);
|
||
store_unsigned_integer (value_contents_raw (val).data (),
|
||
value_type (val)->length (),
|
||
type_byte_order (result_type),
|
||
v);
|
||
}
|
||
else
|
||
{
|
||
LONGEST v1, v2, v = 0;
|
||
|
||
v1 = value_as_long (arg1);
|
||
v2 = value_as_long (arg2);
|
||
|
||
switch (op)
|
||
{
|
||
case BINOP_ADD:
|
||
v = v1 + v2;
|
||
break;
|
||
|
||
case BINOP_SUB:
|
||
/* Avoid runtime error: signed integer overflow: \
|
||
0 - -9223372036854775808 cannot be represented in type
|
||
'long int'. */
|
||
v = (ULONGEST)v1 - (ULONGEST)v2;
|
||
break;
|
||
|
||
case BINOP_MUL:
|
||
v = v1 * v2;
|
||
break;
|
||
|
||
case BINOP_DIV:
|
||
case BINOP_INTDIV:
|
||
if (v2 != 0)
|
||
v = v1 / v2;
|
||
else
|
||
error (_("Division by zero"));
|
||
break;
|
||
|
||
case BINOP_EXP:
|
||
v = integer_pow (v1, v2);
|
||
break;
|
||
|
||
case BINOP_REM:
|
||
if (v2 != 0)
|
||
v = v1 % v2;
|
||
else
|
||
error (_("Division by zero"));
|
||
break;
|
||
|
||
case BINOP_MOD:
|
||
/* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
|
||
X mod 0 has a defined value, X. */
|
||
if (v2 == 0)
|
||
{
|
||
v = v1;
|
||
}
|
||
else
|
||
{
|
||
v = v1 / v2;
|
||
/* Compute floor. */
|
||
if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
|
||
{
|
||
v--;
|
||
}
|
||
v = v1 - (v2 * v);
|
||
}
|
||
break;
|
||
|
||
case BINOP_LSH:
|
||
if (!check_valid_shift_count (op, result_type, type2, v2))
|
||
v = 0;
|
||
else
|
||
{
|
||
/* Cast to unsigned to avoid undefined behavior on
|
||
signed shift overflow (unless C++20 or later),
|
||
which would crash GDB when built with UBSan.
|
||
Note we don't warn on left signed shift overflow,
|
||
because starting with C++20, that is actually
|
||
defined behavior. Also, note GDB assumes 2's
|
||
complement throughout. */
|
||
v = (ULONGEST) v1 << v2;
|
||
}
|
||
break;
|
||
|
||
case BINOP_RSH:
|
||
if (!check_valid_shift_count (op, result_type, type2, v2))
|
||
{
|
||
/* Pretend the too-large shift was decomposed in a
|
||
number of smaller shifts. An arithmetic signed
|
||
right shift of a negative number always yields -1
|
||
with such semantics. This is the right thing to
|
||
do for Go, and we might as well do it for
|
||
languages where it is undefined. Also, pretend a
|
||
shift by a negative number was a shift by the
|
||
negative number cast to unsigned, which is the
|
||
same as shifting by a too-large number. */
|
||
if (v1 < 0)
|
||
v = -1;
|
||
else
|
||
v = 0;
|
||
}
|
||
else
|
||
v = v1 >> v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_AND:
|
||
v = v1 & v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_IOR:
|
||
v = v1 | v2;
|
||
break;
|
||
|
||
case BINOP_BITWISE_XOR:
|
||
v = v1 ^ v2;
|
||
break;
|
||
|
||
case BINOP_LOGICAL_AND:
|
||
v = v1 && v2;
|
||
break;
|
||
|
||
case BINOP_LOGICAL_OR:
|
||
v = v1 || v2;
|
||
break;
|
||
|
||
case BINOP_MIN:
|
||
v = v1 < v2 ? v1 : v2;
|
||
break;
|
||
|
||
case BINOP_MAX:
|
||
v = v1 > v2 ? v1 : v2;
|
||
break;
|
||
|
||
case BINOP_EQUAL:
|
||
v = v1 == v2;
|
||
break;
|
||
|
||
case BINOP_NOTEQUAL:
|
||
v = v1 != v2;
|
||
break;
|
||
|
||
case BINOP_LESS:
|
||
v = v1 < v2;
|
||
break;
|
||
|
||
case BINOP_GTR:
|
||
v = v1 > v2;
|
||
break;
|
||
|
||
case BINOP_LEQ:
|
||
v = v1 <= v2;
|
||
break;
|
||
|
||
case BINOP_GEQ:
|
||
v = v1 >= v2;
|
||
break;
|
||
|
||
default:
|
||
error (_("Invalid binary operation on numbers."));
|
||
}
|
||
|
||
val = allocate_value (result_type);
|
||
store_signed_integer (value_contents_raw (val).data (),
|
||
value_type (val)->length (),
|
||
type_byte_order (result_type),
|
||
v);
|
||
}
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
|
||
replicating SCALAR_VALUE for each element of the vector. Only scalar
|
||
types that can be cast to the type of one element of the vector are
|
||
acceptable. The newly created vector value is returned upon success,
|
||
otherwise an error is thrown. */
|
||
|
||
struct value *
|
||
value_vector_widen (struct value *scalar_value, struct type *vector_type)
|
||
{
|
||
/* Widen the scalar to a vector. */
|
||
struct type *eltype, *scalar_type;
|
||
struct value *elval;
|
||
LONGEST low_bound, high_bound;
|
||
int i;
|
||
|
||
vector_type = check_typedef (vector_type);
|
||
|
||
gdb_assert (vector_type->code () == TYPE_CODE_ARRAY
|
||
&& vector_type->is_vector ());
|
||
|
||
if (!get_array_bounds (vector_type, &low_bound, &high_bound))
|
||
error (_("Could not determine the vector bounds"));
|
||
|
||
eltype = check_typedef (vector_type->target_type ());
|
||
elval = value_cast (eltype, scalar_value);
|
||
|
||
scalar_type = check_typedef (value_type (scalar_value));
|
||
|
||
/* If we reduced the length of the scalar then check we didn't loose any
|
||
important bits. */
|
||
if (eltype->length () < scalar_type->length ()
|
||
&& !value_equal (elval, scalar_value))
|
||
error (_("conversion of scalar to vector involves truncation"));
|
||
|
||
value *val = allocate_value (vector_type);
|
||
gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
|
||
int elt_len = eltype->length ();
|
||
|
||
for (i = 0; i < high_bound - low_bound + 1; i++)
|
||
/* Duplicate the contents of elval into the destination vector. */
|
||
copy (value_contents_all (elval),
|
||
val_contents.slice (i * elt_len, elt_len));
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Performs a binary operation on two vector operands by calling scalar_binop
|
||
for each pair of vector components. */
|
||
|
||
static struct value *
|
||
vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
|
||
{
|
||
struct type *type1, *type2, *eltype1, *eltype2;
|
||
int t1_is_vec, t2_is_vec, elsize, i;
|
||
LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
|
||
|
||
type1 = check_typedef (value_type (val1));
|
||
type2 = check_typedef (value_type (val2));
|
||
|
||
t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
|
||
&& type1->is_vector ()) ? 1 : 0;
|
||
t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
|
||
&& type2->is_vector ()) ? 1 : 0;
|
||
|
||
if (!t1_is_vec || !t2_is_vec)
|
||
error (_("Vector operations are only supported among vectors"));
|
||
|
||
if (!get_array_bounds (type1, &low_bound1, &high_bound1)
|
||
|| !get_array_bounds (type2, &low_bound2, &high_bound2))
|
||
error (_("Could not determine the vector bounds"));
|
||
|
||
eltype1 = check_typedef (type1->target_type ());
|
||
eltype2 = check_typedef (type2->target_type ());
|
||
elsize = eltype1->length ();
|
||
|
||
if (eltype1->code () != eltype2->code ()
|
||
|| elsize != eltype2->length ()
|
||
|| eltype1->is_unsigned () != eltype2->is_unsigned ()
|
||
|| low_bound1 != low_bound2 || high_bound1 != high_bound2)
|
||
error (_("Cannot perform operation on vectors with different types"));
|
||
|
||
value *val = allocate_value (type1);
|
||
gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
|
||
scoped_value_mark mark;
|
||
for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
|
||
{
|
||
value *tmp = value_binop (value_subscript (val1, i),
|
||
value_subscript (val2, i), op);
|
||
copy (value_contents_all (tmp),
|
||
val_contents.slice (i * elsize, elsize));
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Perform a binary operation on two operands. */
|
||
|
||
struct value *
|
||
value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
|
||
{
|
||
struct value *val;
|
||
struct type *type1 = check_typedef (value_type (arg1));
|
||
struct type *type2 = check_typedef (value_type (arg2));
|
||
int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
|
||
&& type1->is_vector ());
|
||
int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
|
||
&& type2->is_vector ());
|
||
|
||
if (!t1_is_vec && !t2_is_vec)
|
||
val = scalar_binop (arg1, arg2, op);
|
||
else if (t1_is_vec && t2_is_vec)
|
||
val = vector_binop (arg1, arg2, op);
|
||
else
|
||
{
|
||
/* Widen the scalar operand to a vector. */
|
||
struct value **v = t1_is_vec ? &arg2 : &arg1;
|
||
struct type *t = t1_is_vec ? type2 : type1;
|
||
|
||
if (t->code () != TYPE_CODE_FLT
|
||
&& t->code () != TYPE_CODE_DECFLOAT
|
||
&& !is_integral_type (t))
|
||
error (_("Argument to operation not a number or boolean."));
|
||
|
||
/* Replicate the scalar value to make a vector value. */
|
||
*v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
|
||
|
||
val = vector_binop (arg1, arg2, op);
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* See value.h. */
|
||
|
||
bool
|
||
value_logical_not (struct value *arg1)
|
||
{
|
||
int len;
|
||
const gdb_byte *p;
|
||
struct type *type1;
|
||
|
||
arg1 = coerce_array (arg1);
|
||
type1 = check_typedef (value_type (arg1));
|
||
|
||
if (is_floating_value (arg1))
|
||
return target_float_is_zero (value_contents (arg1).data (), type1);
|
||
|
||
len = type1->length ();
|
||
p = value_contents (arg1).data ();
|
||
|
||
while (--len >= 0)
|
||
{
|
||
if (*p++)
|
||
break;
|
||
}
|
||
|
||
return len < 0;
|
||
}
|
||
|
||
/* Perform a comparison on two string values (whose content are not
|
||
necessarily null terminated) based on their length. */
|
||
|
||
static int
|
||
value_strcmp (struct value *arg1, struct value *arg2)
|
||
{
|
||
int len1 = value_type (arg1)->length ();
|
||
int len2 = value_type (arg2)->length ();
|
||
const gdb_byte *s1 = value_contents (arg1).data ();
|
||
const gdb_byte *s2 = value_contents (arg2).data ();
|
||
int i, len = len1 < len2 ? len1 : len2;
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
if (s1[i] < s2[i])
|
||
return -1;
|
||
else if (s1[i] > s2[i])
|
||
return 1;
|
||
else
|
||
continue;
|
||
}
|
||
|
||
if (len1 < len2)
|
||
return -1;
|
||
else if (len1 > len2)
|
||
return 1;
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
/* Simulate the C operator == by returning a 1
|
||
iff ARG1 and ARG2 have equal contents. */
|
||
|
||
int
|
||
value_equal (struct value *arg1, struct value *arg2)
|
||
{
|
||
int len;
|
||
const gdb_byte *p1;
|
||
const gdb_byte *p2;
|
||
struct type *type1, *type2;
|
||
enum type_code code1;
|
||
enum type_code code2;
|
||
int is_int1, is_int2;
|
||
|
||
arg1 = coerce_array (arg1);
|
||
arg2 = coerce_array (arg2);
|
||
|
||
type1 = check_typedef (value_type (arg1));
|
||
type2 = check_typedef (value_type (arg2));
|
||
code1 = type1->code ();
|
||
code2 = type2->code ();
|
||
is_int1 = is_integral_type (type1);
|
||
is_int2 = is_integral_type (type2);
|
||
|
||
if (is_int1 && is_int2)
|
||
return longest_to_int (value_as_long (value_binop (arg1, arg2,
|
||
BINOP_EQUAL)));
|
||
else if ((is_floating_value (arg1) || is_int1)
|
||
&& (is_floating_value (arg2) || is_int2))
|
||
{
|
||
struct type *eff_type_v1, *eff_type_v2;
|
||
gdb::byte_vector v1, v2;
|
||
v1.resize (std::max (type1->length (), type2->length ()));
|
||
v2.resize (std::max (type1->length (), type2->length ()));
|
||
|
||
value_args_as_target_float (arg1, arg2,
|
||
v1.data (), &eff_type_v1,
|
||
v2.data (), &eff_type_v2);
|
||
|
||
return target_float_compare (v1.data (), eff_type_v1,
|
||
v2.data (), eff_type_v2) == 0;
|
||
}
|
||
|
||
/* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
|
||
is bigger. */
|
||
else if (code1 == TYPE_CODE_PTR && is_int2)
|
||
return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
|
||
else if (code2 == TYPE_CODE_PTR && is_int1)
|
||
return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
|
||
|
||
else if (code1 == code2
|
||
&& ((len = (int) type1->length ())
|
||
== (int) type2->length ()))
|
||
{
|
||
p1 = value_contents (arg1).data ();
|
||
p2 = value_contents (arg2).data ();
|
||
while (--len >= 0)
|
||
{
|
||
if (*p1++ != *p2++)
|
||
break;
|
||
}
|
||
return len < 0;
|
||
}
|
||
else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
|
||
{
|
||
return value_strcmp (arg1, arg2) == 0;
|
||
}
|
||
else
|
||
error (_("Invalid type combination in equality test."));
|
||
}
|
||
|
||
/* Compare values based on their raw contents. Useful for arrays since
|
||
value_equal coerces them to pointers, thus comparing just the address
|
||
of the array instead of its contents. */
|
||
|
||
int
|
||
value_equal_contents (struct value *arg1, struct value *arg2)
|
||
{
|
||
struct type *type1, *type2;
|
||
|
||
type1 = check_typedef (value_type (arg1));
|
||
type2 = check_typedef (value_type (arg2));
|
||
|
||
return (type1->code () == type2->code ()
|
||
&& type1->length () == type2->length ()
|
||
&& memcmp (value_contents (arg1).data (),
|
||
value_contents (arg2).data (),
|
||
type1->length ()) == 0);
|
||
}
|
||
|
||
/* Simulate the C operator < by returning 1
|
||
iff ARG1's contents are less than ARG2's. */
|
||
|
||
int
|
||
value_less (struct value *arg1, struct value *arg2)
|
||
{
|
||
enum type_code code1;
|
||
enum type_code code2;
|
||
struct type *type1, *type2;
|
||
int is_int1, is_int2;
|
||
|
||
arg1 = coerce_array (arg1);
|
||
arg2 = coerce_array (arg2);
|
||
|
||
type1 = check_typedef (value_type (arg1));
|
||
type2 = check_typedef (value_type (arg2));
|
||
code1 = type1->code ();
|
||
code2 = type2->code ();
|
||
is_int1 = is_integral_type (type1);
|
||
is_int2 = is_integral_type (type2);
|
||
|
||
if ((is_int1 && is_int2)
|
||
|| (is_fixed_point_type (type1) && is_fixed_point_type (type2)))
|
||
return longest_to_int (value_as_long (value_binop (arg1, arg2,
|
||
BINOP_LESS)));
|
||
else if ((is_floating_value (arg1) || is_int1)
|
||
&& (is_floating_value (arg2) || is_int2))
|
||
{
|
||
struct type *eff_type_v1, *eff_type_v2;
|
||
gdb::byte_vector v1, v2;
|
||
v1.resize (std::max (type1->length (), type2->length ()));
|
||
v2.resize (std::max (type1->length (), type2->length ()));
|
||
|
||
value_args_as_target_float (arg1, arg2,
|
||
v1.data (), &eff_type_v1,
|
||
v2.data (), &eff_type_v2);
|
||
|
||
return target_float_compare (v1.data (), eff_type_v1,
|
||
v2.data (), eff_type_v2) == -1;
|
||
}
|
||
else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
|
||
return value_as_address (arg1) < value_as_address (arg2);
|
||
|
||
/* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
|
||
is bigger. */
|
||
else if (code1 == TYPE_CODE_PTR && is_int2)
|
||
return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
|
||
else if (code2 == TYPE_CODE_PTR && is_int1)
|
||
return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
|
||
else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
|
||
return value_strcmp (arg1, arg2) < 0;
|
||
else
|
||
{
|
||
error (_("Invalid type combination in ordering comparison."));
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* The unary operators +, - and ~. They free the argument ARG1. */
|
||
|
||
struct value *
|
||
value_pos (struct value *arg1)
|
||
{
|
||
struct type *type;
|
||
|
||
arg1 = coerce_ref (arg1);
|
||
type = check_typedef (value_type (arg1));
|
||
|
||
if (is_integral_type (type) || is_floating_value (arg1)
|
||
|| (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
|
||
|| type->code () == TYPE_CODE_COMPLEX)
|
||
return value_from_contents (type, value_contents (arg1).data ());
|
||
else
|
||
error (_("Argument to positive operation not a number."));
|
||
}
|
||
|
||
struct value *
|
||
value_neg (struct value *arg1)
|
||
{
|
||
struct type *type;
|
||
|
||
arg1 = coerce_ref (arg1);
|
||
type = check_typedef (value_type (arg1));
|
||
|
||
if (is_integral_type (type) || is_floating_type (type))
|
||
return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
|
||
else if (is_fixed_point_type (type))
|
||
return value_binop (value_zero (type, not_lval), arg1, BINOP_SUB);
|
||
else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
|
||
{
|
||
struct value *val = allocate_value (type);
|
||
struct type *eltype = check_typedef (type->target_type ());
|
||
int i;
|
||
LONGEST low_bound, high_bound;
|
||
|
||
if (!get_array_bounds (type, &low_bound, &high_bound))
|
||
error (_("Could not determine the vector bounds"));
|
||
|
||
gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
|
||
int elt_len = eltype->length ();
|
||
|
||
for (i = 0; i < high_bound - low_bound + 1; i++)
|
||
{
|
||
value *tmp = value_neg (value_subscript (arg1, i));
|
||
copy (value_contents_all (tmp),
|
||
val_contents.slice (i * elt_len, elt_len));
|
||
}
|
||
return val;
|
||
}
|
||
else if (type->code () == TYPE_CODE_COMPLEX)
|
||
{
|
||
struct value *real = value_real_part (arg1);
|
||
struct value *imag = value_imaginary_part (arg1);
|
||
|
||
real = value_neg (real);
|
||
imag = value_neg (imag);
|
||
return value_literal_complex (real, imag, type);
|
||
}
|
||
else
|
||
error (_("Argument to negate operation not a number."));
|
||
}
|
||
|
||
struct value *
|
||
value_complement (struct value *arg1)
|
||
{
|
||
struct type *type;
|
||
struct value *val;
|
||
|
||
arg1 = coerce_ref (arg1);
|
||
type = check_typedef (value_type (arg1));
|
||
|
||
if (is_integral_type (type))
|
||
val = value_from_longest (type, ~value_as_long (arg1));
|
||
else if (type->code () == TYPE_CODE_ARRAY && type->is_vector ())
|
||
{
|
||
struct type *eltype = check_typedef (type->target_type ());
|
||
int i;
|
||
LONGEST low_bound, high_bound;
|
||
|
||
if (!get_array_bounds (type, &low_bound, &high_bound))
|
||
error (_("Could not determine the vector bounds"));
|
||
|
||
val = allocate_value (type);
|
||
gdb::array_view<gdb_byte> val_contents = value_contents_writeable (val);
|
||
int elt_len = eltype->length ();
|
||
|
||
for (i = 0; i < high_bound - low_bound + 1; i++)
|
||
{
|
||
value *tmp = value_complement (value_subscript (arg1, i));
|
||
copy (value_contents_all (tmp),
|
||
val_contents.slice (i * elt_len, elt_len));
|
||
}
|
||
}
|
||
else if (type->code () == TYPE_CODE_COMPLEX)
|
||
{
|
||
/* GCC has an extension that treats ~complex as the complex
|
||
conjugate. */
|
||
struct value *real = value_real_part (arg1);
|
||
struct value *imag = value_imaginary_part (arg1);
|
||
|
||
imag = value_neg (imag);
|
||
return value_literal_complex (real, imag, type);
|
||
}
|
||
else
|
||
error (_("Argument to complement operation not an integer, boolean."));
|
||
|
||
return val;
|
||
}
|
||
|
||
/* The INDEX'th bit of SET value whose value_type is TYPE,
|
||
and whose value_contents is valaddr.
|
||
Return -1 if out of range, -2 other error. */
|
||
|
||
int
|
||
value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
|
||
{
|
||
struct gdbarch *gdbarch = type->arch ();
|
||
LONGEST low_bound, high_bound;
|
||
LONGEST word;
|
||
unsigned rel_index;
|
||
struct type *range = type->index_type ();
|
||
|
||
if (!get_discrete_bounds (range, &low_bound, &high_bound))
|
||
return -2;
|
||
if (index < low_bound || index > high_bound)
|
||
return -1;
|
||
rel_index = index - low_bound;
|
||
word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
|
||
type_byte_order (type));
|
||
rel_index %= TARGET_CHAR_BIT;
|
||
if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
|
||
rel_index = TARGET_CHAR_BIT - 1 - rel_index;
|
||
return (word >> rel_index) & 1;
|
||
}
|
||
|
||
int
|
||
value_in (struct value *element, struct value *set)
|
||
{
|
||
int member;
|
||
struct type *settype = check_typedef (value_type (set));
|
||
struct type *eltype = check_typedef (value_type (element));
|
||
|
||
if (eltype->code () == TYPE_CODE_RANGE)
|
||
eltype = eltype->target_type ();
|
||
if (settype->code () != TYPE_CODE_SET)
|
||
error (_("Second argument of 'IN' has wrong type"));
|
||
if (eltype->code () != TYPE_CODE_INT
|
||
&& eltype->code () != TYPE_CODE_CHAR
|
||
&& eltype->code () != TYPE_CODE_ENUM
|
||
&& eltype->code () != TYPE_CODE_BOOL)
|
||
error (_("First argument of 'IN' has wrong type"));
|
||
member = value_bit_index (settype, value_contents (set).data (),
|
||
value_as_long (element));
|
||
if (member < 0)
|
||
error (_("First argument of 'IN' not in range"));
|
||
return member;
|
||
}
|