mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 12:03:41 +08:00
931aecf5ee
* x86-64-tdep.c (x86_64_init_abi): No need to clear extract_struct_value_address, i386 does not set it. * sparc64-tdep.c (sparc64_init_abi): Do not set extract_struct_value_address, never called. (sparc64_extract_struct_value_address): Delete function. * m68hc11-tdep.c: Update copyright. (m68hc11_gdbarch_init): Delete redundant assignment of extract_struct_value_address. * i386-tdep.c: Update copyright. (i386_gdbarch_init): Do not set extract_struct_value_address, never called. (i386_extract_struct_value_address): Delete function. * sparc-tdep.c (sparc32_gdbarch_init): Do not set extract_struct_value_address, never called. (sparc32_extract_struct_value_address): #if 0 function.
1183 lines
34 KiB
C
1183 lines
34 KiB
C
/* Target-dependent code for AMD64.
|
||
|
||
Copyright 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
|
||
Contributed by Jiri Smid, SuSE Labs.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330,
|
||
Boston, MA 02111-1307, USA. */
|
||
|
||
#include "defs.h"
|
||
#include "arch-utils.h"
|
||
#include "block.h"
|
||
#include "dummy-frame.h"
|
||
#include "frame.h"
|
||
#include "frame-base.h"
|
||
#include "frame-unwind.h"
|
||
#include "inferior.h"
|
||
#include "gdbcmd.h"
|
||
#include "gdbcore.h"
|
||
#include "objfiles.h"
|
||
#include "regcache.h"
|
||
#include "regset.h"
|
||
#include "symfile.h"
|
||
|
||
#include "gdb_assert.h"
|
||
|
||
#include "x86-64-tdep.h"
|
||
#include "i387-tdep.h"
|
||
|
||
/* Note that the AMD64 architecture was previously known as x86-64.
|
||
The latter is (forever) engraved into the canonical system name as
|
||
returned bu config.guess, and used as the name for the AMD64 port
|
||
of GNU/Linux. The BSD's have renamed their ports to amd64; they
|
||
don't like to shout. For GDB we prefer the amd64_-prefix over the
|
||
x86_64_-prefix since it's so much easier to type. */
|
||
|
||
/* Register information. */
|
||
|
||
struct amd64_register_info
|
||
{
|
||
char *name;
|
||
struct type **type;
|
||
};
|
||
|
||
static struct amd64_register_info amd64_register_info[] =
|
||
{
|
||
{ "rax", &builtin_type_int64 },
|
||
{ "rbx", &builtin_type_int64 },
|
||
{ "rcx", &builtin_type_int64 },
|
||
{ "rdx", &builtin_type_int64 },
|
||
{ "rsi", &builtin_type_int64 },
|
||
{ "rdi", &builtin_type_int64 },
|
||
{ "rbp", &builtin_type_void_data_ptr },
|
||
{ "rsp", &builtin_type_void_data_ptr },
|
||
|
||
/* %r8 is indeed register number 8. */
|
||
{ "r8", &builtin_type_int64 },
|
||
{ "r9", &builtin_type_int64 },
|
||
{ "r10", &builtin_type_int64 },
|
||
{ "r11", &builtin_type_int64 },
|
||
{ "r12", &builtin_type_int64 },
|
||
{ "r13", &builtin_type_int64 },
|
||
{ "r14", &builtin_type_int64 },
|
||
{ "r15", &builtin_type_int64 },
|
||
{ "rip", &builtin_type_void_func_ptr },
|
||
{ "eflags", &builtin_type_int32 },
|
||
{ "cs", &builtin_type_int32 },
|
||
{ "ss", &builtin_type_int32 },
|
||
{ "ds", &builtin_type_int32 },
|
||
{ "es", &builtin_type_int32 },
|
||
{ "fs", &builtin_type_int32 },
|
||
{ "gs", &builtin_type_int32 },
|
||
|
||
/* %st0 is register number 24. */
|
||
{ "st0", &builtin_type_i387_ext },
|
||
{ "st1", &builtin_type_i387_ext },
|
||
{ "st2", &builtin_type_i387_ext },
|
||
{ "st3", &builtin_type_i387_ext },
|
||
{ "st4", &builtin_type_i387_ext },
|
||
{ "st5", &builtin_type_i387_ext },
|
||
{ "st6", &builtin_type_i387_ext },
|
||
{ "st7", &builtin_type_i387_ext },
|
||
{ "fctrl", &builtin_type_int32 },
|
||
{ "fstat", &builtin_type_int32 },
|
||
{ "ftag", &builtin_type_int32 },
|
||
{ "fiseg", &builtin_type_int32 },
|
||
{ "fioff", &builtin_type_int32 },
|
||
{ "foseg", &builtin_type_int32 },
|
||
{ "fooff", &builtin_type_int32 },
|
||
{ "fop", &builtin_type_int32 },
|
||
|
||
/* %xmm0 is register number 40. */
|
||
{ "xmm0", &builtin_type_v4sf },
|
||
{ "xmm1", &builtin_type_v4sf },
|
||
{ "xmm2", &builtin_type_v4sf },
|
||
{ "xmm3", &builtin_type_v4sf },
|
||
{ "xmm4", &builtin_type_v4sf },
|
||
{ "xmm5", &builtin_type_v4sf },
|
||
{ "xmm6", &builtin_type_v4sf },
|
||
{ "xmm7", &builtin_type_v4sf },
|
||
{ "xmm8", &builtin_type_v4sf },
|
||
{ "xmm9", &builtin_type_v4sf },
|
||
{ "xmm10", &builtin_type_v4sf },
|
||
{ "xmm11", &builtin_type_v4sf },
|
||
{ "xmm12", &builtin_type_v4sf },
|
||
{ "xmm13", &builtin_type_v4sf },
|
||
{ "xmm14", &builtin_type_v4sf },
|
||
{ "xmm15", &builtin_type_v4sf },
|
||
{ "mxcsr", &builtin_type_int32 }
|
||
};
|
||
|
||
/* Total number of registers. */
|
||
#define AMD64_NUM_REGS \
|
||
(sizeof (amd64_register_info) / sizeof (amd64_register_info[0]))
|
||
|
||
/* Return the name of register REGNUM. */
|
||
|
||
static const char *
|
||
amd64_register_name (int regnum)
|
||
{
|
||
if (regnum >= 0 && regnum < AMD64_NUM_REGS)
|
||
return amd64_register_info[regnum].name;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the GDB type object for the "standard" data type of data in
|
||
register REGNUM. */
|
||
|
||
static struct type *
|
||
amd64_register_type (struct gdbarch *gdbarch, int regnum)
|
||
{
|
||
gdb_assert (regnum >= 0 && regnum < AMD64_NUM_REGS);
|
||
|
||
return *amd64_register_info[regnum].type;
|
||
}
|
||
|
||
/* DWARF Register Number Mapping as defined in the System V psABI,
|
||
section 3.6. */
|
||
|
||
static int amd64_dwarf_regmap[] =
|
||
{
|
||
/* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
|
||
X86_64_RAX_REGNUM, X86_64_RDX_REGNUM, 2, 1,
|
||
4, X86_64_RDI_REGNUM,
|
||
|
||
/* Frame Pointer Register RBP. */
|
||
X86_64_RBP_REGNUM,
|
||
|
||
/* Stack Pointer Register RSP. */
|
||
X86_64_RSP_REGNUM,
|
||
|
||
/* Extended Integer Registers 8 - 15. */
|
||
8, 9, 10, 11, 12, 13, 14, 15,
|
||
|
||
/* Return Address RA. Mapped to RIP. */
|
||
X86_64_RIP_REGNUM,
|
||
|
||
/* SSE Registers 0 - 7. */
|
||
X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM,
|
||
X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3,
|
||
X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5,
|
||
X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7,
|
||
|
||
/* Extended SSE Registers 8 - 15. */
|
||
X86_64_XMM0_REGNUM + 8, X86_64_XMM0_REGNUM + 9,
|
||
X86_64_XMM0_REGNUM + 10, X86_64_XMM0_REGNUM + 11,
|
||
X86_64_XMM0_REGNUM + 12, X86_64_XMM0_REGNUM + 13,
|
||
X86_64_XMM0_REGNUM + 14, X86_64_XMM0_REGNUM + 15,
|
||
|
||
/* Floating Point Registers 0-7. */
|
||
X86_64_ST0_REGNUM + 0, X86_64_ST0_REGNUM + 1,
|
||
X86_64_ST0_REGNUM + 2, X86_64_ST0_REGNUM + 3,
|
||
X86_64_ST0_REGNUM + 4, X86_64_ST0_REGNUM + 5,
|
||
X86_64_ST0_REGNUM + 6, X86_64_ST0_REGNUM + 7
|
||
};
|
||
|
||
static const int amd64_dwarf_regmap_len =
|
||
(sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
|
||
|
||
/* Convert DWARF register number REG to the appropriate register
|
||
number used by GDB. */
|
||
|
||
static int
|
||
amd64_dwarf_reg_to_regnum (int reg)
|
||
{
|
||
int regnum = -1;
|
||
|
||
if (reg >= 0 || reg < amd64_dwarf_regmap_len)
|
||
regnum = amd64_dwarf_regmap[reg];
|
||
|
||
if (regnum == -1)
|
||
warning ("Unmapped DWARF Register #%d encountered\n", reg);
|
||
|
||
return regnum;
|
||
}
|
||
|
||
/* Return nonzero if a value of type TYPE stored in register REGNUM
|
||
needs any special handling. */
|
||
|
||
static int
|
||
amd64_convert_register_p (int regnum, struct type *type)
|
||
{
|
||
return i386_fp_regnum_p (regnum);
|
||
}
|
||
|
||
|
||
/* Register classes as defined in the psABI. */
|
||
|
||
enum amd64_reg_class
|
||
{
|
||
AMD64_INTEGER,
|
||
AMD64_SSE,
|
||
AMD64_SSEUP,
|
||
AMD64_X87,
|
||
AMD64_X87UP,
|
||
AMD64_COMPLEX_X87,
|
||
AMD64_NO_CLASS,
|
||
AMD64_MEMORY
|
||
};
|
||
|
||
/* Return the union class of CLASS1 and CLASS2. See the psABI for
|
||
details. */
|
||
|
||
static enum amd64_reg_class
|
||
amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
|
||
{
|
||
/* Rule (a): If both classes are equal, this is the resulting class. */
|
||
if (class1 == class2)
|
||
return class1;
|
||
|
||
/* Rule (b): If one of the classes is NO_CLASS, the resulting class
|
||
is the other class. */
|
||
if (class1 == AMD64_NO_CLASS)
|
||
return class2;
|
||
if (class2 == AMD64_NO_CLASS)
|
||
return class1;
|
||
|
||
/* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
|
||
if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
|
||
return AMD64_MEMORY;
|
||
|
||
/* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
|
||
if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
|
||
return AMD64_INTEGER;
|
||
|
||
/* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
|
||
MEMORY is used as class. */
|
||
if (class1 == AMD64_X87 || class1 == AMD64_X87UP
|
||
|| class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
|
||
|| class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
|
||
return AMD64_MEMORY;
|
||
|
||
/* Rule (f): Otherwise class SSE is used. */
|
||
return AMD64_SSE;
|
||
}
|
||
|
||
static void amd64_classify (struct type *type, enum amd64_reg_class class[2]);
|
||
|
||
/* Return non-zero if TYPE is a non-POD structure or union type. */
|
||
|
||
static int
|
||
amd64_non_pod_p (struct type *type)
|
||
{
|
||
/* ??? A class with a base class certainly isn't POD, but does this
|
||
catch all non-POD structure types? */
|
||
if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Classify TYPE according to the rules for aggregate (structures and
|
||
arrays) and union types, and store the result in CLASS. */
|
||
|
||
static void
|
||
amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
|
||
{
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
/* 1. If the size of an object is larger than two eightbytes, or in
|
||
C++, is a non-POD structure or union type, or contains
|
||
unaligned fields, it has class memory. */
|
||
if (len > 16 || amd64_non_pod_p (type))
|
||
{
|
||
class[0] = class[1] = AMD64_MEMORY;
|
||
return;
|
||
}
|
||
|
||
/* 2. Both eightbytes get initialized to class NO_CLASS. */
|
||
class[0] = class[1] = AMD64_NO_CLASS;
|
||
|
||
/* 3. Each field of an object is classified recursively so that
|
||
always two fields are considered. The resulting class is
|
||
calculated according to the classes of the fields in the
|
||
eightbyte: */
|
||
|
||
if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
|
||
{
|
||
struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
|
||
|
||
/* All fields in an array have the same type. */
|
||
amd64_classify (subtype, class);
|
||
if (len > 8 && class[1] == AMD64_NO_CLASS)
|
||
class[1] = class[0];
|
||
}
|
||
else
|
||
{
|
||
int i;
|
||
|
||
/* Structure or union. */
|
||
gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
|
||
|| TYPE_CODE (type) == TYPE_CODE_UNION);
|
||
|
||
for (i = 0; i < TYPE_NFIELDS (type); i++)
|
||
{
|
||
struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
|
||
int pos = TYPE_FIELD_BITPOS (type, i) / 64;
|
||
enum amd64_reg_class subclass[2];
|
||
|
||
/* Ignore static fields. */
|
||
if (TYPE_FIELD_STATIC (type, i))
|
||
continue;
|
||
|
||
gdb_assert (pos == 0 || pos == 1);
|
||
|
||
amd64_classify (subtype, subclass);
|
||
class[pos] = amd64_merge_classes (class[pos], subclass[0]);
|
||
if (pos == 0)
|
||
class[1] = amd64_merge_classes (class[1], subclass[1]);
|
||
}
|
||
}
|
||
|
||
/* 4. Then a post merger cleanup is done: */
|
||
|
||
/* Rule (a): If one of the classes is MEMORY, the whole argument is
|
||
passed in memory. */
|
||
if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
|
||
class[0] = class[1] = AMD64_MEMORY;
|
||
|
||
/* Rule (b): If SSEUP is not preceeded by SSE, it is converted to
|
||
SSE. */
|
||
if (class[0] == AMD64_SSEUP)
|
||
class[0] = AMD64_SSE;
|
||
if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
|
||
class[1] = AMD64_SSE;
|
||
}
|
||
|
||
/* Classify TYPE, and store the result in CLASS. */
|
||
|
||
static void
|
||
amd64_classify (struct type *type, enum amd64_reg_class class[2])
|
||
{
|
||
enum type_code code = TYPE_CODE (type);
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
class[0] = class[1] = AMD64_NO_CLASS;
|
||
|
||
/* Arguments of types (signed and unsigned) _Bool, char, short, int,
|
||
long, long long, and pointers are in the INTEGER class. */
|
||
if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
|
||
|| code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
|
||
&& (len == 1 || len == 2 || len == 4 || len == 8))
|
||
class[0] = AMD64_INTEGER;
|
||
|
||
/* Arguments of types float, double and __m64 are in class SSE. */
|
||
else if (code == TYPE_CODE_FLT && (len == 4 || len == 8))
|
||
/* FIXME: __m64 . */
|
||
class[0] = AMD64_SSE;
|
||
|
||
/* Arguments of types __float128 and __m128 are split into two
|
||
halves. The least significant ones belong to class SSE, the most
|
||
significant one to class SSEUP. */
|
||
/* FIXME: __float128, __m128. */
|
||
|
||
/* The 64-bit mantissa of arguments of type long double belongs to
|
||
class X87, the 16-bit exponent plus 6 bytes of padding belongs to
|
||
class X87UP. */
|
||
else if (code == TYPE_CODE_FLT && len == 16)
|
||
/* Class X87 and X87UP. */
|
||
class[0] = AMD64_X87, class[1] = AMD64_X87UP;
|
||
|
||
/* Aggregates. */
|
||
else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
|
||
|| code == TYPE_CODE_UNION)
|
||
amd64_classify_aggregate (type, class);
|
||
}
|
||
|
||
static enum return_value_convention
|
||
amd64_return_value (struct gdbarch *gdbarch, struct type *type,
|
||
struct regcache *regcache,
|
||
void *readbuf, const void *writebuf)
|
||
{
|
||
enum amd64_reg_class class[2];
|
||
int len = TYPE_LENGTH (type);
|
||
static int integer_regnum[] = { X86_64_RAX_REGNUM, X86_64_RDX_REGNUM };
|
||
static int sse_regnum[] = { X86_64_XMM0_REGNUM, X86_64_XMM1_REGNUM };
|
||
int integer_reg = 0;
|
||
int sse_reg = 0;
|
||
int i;
|
||
|
||
gdb_assert (!(readbuf && writebuf));
|
||
|
||
/* 1. Classify the return type with the classification algorithm. */
|
||
amd64_classify (type, class);
|
||
|
||
/* 2. If the type has class MEMORY, then the caller provides space
|
||
for the return value and passes the address of this storage in
|
||
%rdi as if it were the first argument to the function. In
|
||
effect, this address becomes a hidden first argument. */
|
||
if (class[0] == AMD64_MEMORY)
|
||
return RETURN_VALUE_STRUCT_CONVENTION;
|
||
|
||
gdb_assert (class[1] != AMD64_MEMORY);
|
||
gdb_assert (len <= 16);
|
||
|
||
for (i = 0; len > 0; i++, len -= 8)
|
||
{
|
||
int regnum = -1;
|
||
int offset = 0;
|
||
|
||
switch (class[i])
|
||
{
|
||
case AMD64_INTEGER:
|
||
/* 3. If the class is INTEGER, the next available register
|
||
of the sequence %rax, %rdx is used. */
|
||
regnum = integer_regnum[integer_reg++];
|
||
break;
|
||
|
||
case AMD64_SSE:
|
||
/* 4. If the class is SSE, the next available SSE register
|
||
of the sequence %xmm0, %xmm1 is used. */
|
||
regnum = sse_regnum[sse_reg++];
|
||
break;
|
||
|
||
case AMD64_SSEUP:
|
||
/* 5. If the class is SSEUP, the eightbyte is passed in the
|
||
upper half of the last used SSE register. */
|
||
gdb_assert (sse_reg > 0);
|
||
regnum = sse_regnum[sse_reg - 1];
|
||
offset = 8;
|
||
break;
|
||
|
||
case AMD64_X87:
|
||
/* 6. If the class is X87, the value is returned on the X87
|
||
stack in %st0 as 80-bit x87 number. */
|
||
regnum = X86_64_ST0_REGNUM;
|
||
if (writebuf)
|
||
i387_return_value (gdbarch, regcache);
|
||
break;
|
||
|
||
case AMD64_X87UP:
|
||
/* 7. If the class is X87UP, the value is returned together
|
||
with the previous X87 value in %st0. */
|
||
gdb_assert (i > 0 && class[0] == AMD64_X87);
|
||
regnum = X86_64_ST0_REGNUM;
|
||
offset = 8;
|
||
len = 2;
|
||
break;
|
||
|
||
case AMD64_NO_CLASS:
|
||
continue;
|
||
|
||
default:
|
||
gdb_assert (!"Unexpected register class.");
|
||
}
|
||
|
||
gdb_assert (regnum != -1);
|
||
|
||
if (readbuf)
|
||
regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
|
||
(char *) readbuf + i * 8);
|
||
if (writebuf)
|
||
regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
|
||
(const char *) writebuf + i * 8);
|
||
}
|
||
|
||
return RETURN_VALUE_REGISTER_CONVENTION;
|
||
}
|
||
|
||
|
||
static CORE_ADDR
|
||
amd64_push_arguments (struct regcache *regcache, int nargs,
|
||
struct value **args, CORE_ADDR sp, int struct_return)
|
||
{
|
||
static int integer_regnum[] =
|
||
{
|
||
X86_64_RDI_REGNUM, 4, /* %rdi, %rsi */
|
||
X86_64_RDX_REGNUM, 2, /* %rdx, %rcx */
|
||
8, 9 /* %r8, %r9 */
|
||
};
|
||
static int sse_regnum[] =
|
||
{
|
||
/* %xmm0 ... %xmm7 */
|
||
X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM,
|
||
X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3,
|
||
X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5,
|
||
X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7,
|
||
};
|
||
struct value **stack_args = alloca (nargs * sizeof (struct value *));
|
||
int num_stack_args = 0;
|
||
int num_elements = 0;
|
||
int element = 0;
|
||
int integer_reg = 0;
|
||
int sse_reg = 0;
|
||
int i;
|
||
|
||
/* Reserve a register for the "hidden" argument. */
|
||
if (struct_return)
|
||
integer_reg++;
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
{
|
||
struct type *type = VALUE_TYPE (args[i]);
|
||
int len = TYPE_LENGTH (type);
|
||
enum amd64_reg_class class[2];
|
||
int needed_integer_regs = 0;
|
||
int needed_sse_regs = 0;
|
||
int j;
|
||
|
||
/* Classify argument. */
|
||
amd64_classify (type, class);
|
||
|
||
/* Calculate the number of integer and SSE registers needed for
|
||
this argument. */
|
||
for (j = 0; j < 2; j++)
|
||
{
|
||
if (class[j] == AMD64_INTEGER)
|
||
needed_integer_regs++;
|
||
else if (class[j] == AMD64_SSE)
|
||
needed_sse_regs++;
|
||
}
|
||
|
||
/* Check whether enough registers are available, and if the
|
||
argument should be passed in registers at all. */
|
||
if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
|
||
|| sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
|
||
|| (needed_integer_regs == 0 && needed_sse_regs == 0))
|
||
{
|
||
/* The argument will be passed on the stack. */
|
||
num_elements += ((len + 7) / 8);
|
||
stack_args[num_stack_args++] = args[i];
|
||
}
|
||
else
|
||
{
|
||
/* The argument will be passed in registers. */
|
||
char *valbuf = VALUE_CONTENTS (args[i]);
|
||
char buf[8];
|
||
|
||
gdb_assert (len <= 16);
|
||
|
||
for (j = 0; len > 0; j++, len -= 8)
|
||
{
|
||
int regnum = -1;
|
||
int offset = 0;
|
||
|
||
switch (class[j])
|
||
{
|
||
case AMD64_INTEGER:
|
||
regnum = integer_regnum[integer_reg++];
|
||
break;
|
||
|
||
case AMD64_SSE:
|
||
regnum = sse_regnum[sse_reg++];
|
||
break;
|
||
|
||
case AMD64_SSEUP:
|
||
gdb_assert (sse_reg > 0);
|
||
regnum = sse_regnum[sse_reg - 1];
|
||
offset = 8;
|
||
break;
|
||
|
||
default:
|
||
gdb_assert (!"Unexpected register class.");
|
||
}
|
||
|
||
gdb_assert (regnum != -1);
|
||
memset (buf, 0, sizeof buf);
|
||
memcpy (buf, valbuf + j * 8, min (len, 8));
|
||
regcache_raw_write_part (regcache, regnum, offset, 8, buf);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Allocate space for the arguments on the stack. */
|
||
sp -= num_elements * 8;
|
||
|
||
/* The psABI says that "The end of the input argument area shall be
|
||
aligned on a 16 byte boundary." */
|
||
sp &= ~0xf;
|
||
|
||
/* Write out the arguments to the stack. */
|
||
for (i = 0; i < num_stack_args; i++)
|
||
{
|
||
struct type *type = VALUE_TYPE (stack_args[i]);
|
||
char *valbuf = VALUE_CONTENTS (stack_args[i]);
|
||
int len = TYPE_LENGTH (type);
|
||
|
||
write_memory (sp + element * 8, valbuf, len);
|
||
element += ((len + 7) / 8);
|
||
}
|
||
|
||
/* The psABI says that "For calls that may call functions that use
|
||
varargs or stdargs (prototype-less calls or calls to functions
|
||
containing ellipsis (...) in the declaration) %al is used as
|
||
hidden argument to specify the number of SSE registers used. */
|
||
regcache_raw_write_unsigned (regcache, X86_64_RAX_REGNUM, sse_reg);
|
||
return sp;
|
||
}
|
||
|
||
static CORE_ADDR
|
||
amd64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
|
||
struct regcache *regcache, CORE_ADDR bp_addr,
|
||
int nargs, struct value **args, CORE_ADDR sp,
|
||
int struct_return, CORE_ADDR struct_addr)
|
||
{
|
||
char buf[8];
|
||
|
||
/* Pass arguments. */
|
||
sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
|
||
|
||
/* Pass "hidden" argument". */
|
||
if (struct_return)
|
||
{
|
||
store_unsigned_integer (buf, 8, struct_addr);
|
||
regcache_cooked_write (regcache, X86_64_RDI_REGNUM, buf);
|
||
}
|
||
|
||
/* Store return address. */
|
||
sp -= 8;
|
||
store_unsigned_integer (buf, 8, bp_addr);
|
||
write_memory (sp, buf, 8);
|
||
|
||
/* Finally, update the stack pointer... */
|
||
store_unsigned_integer (buf, 8, sp);
|
||
regcache_cooked_write (regcache, X86_64_RSP_REGNUM, buf);
|
||
|
||
/* ...and fake a frame pointer. */
|
||
regcache_cooked_write (regcache, X86_64_RBP_REGNUM, buf);
|
||
|
||
return sp + 16;
|
||
}
|
||
|
||
|
||
/* The maximum number of saved registers. This should include %rip. */
|
||
#define AMD64_NUM_SAVED_REGS X86_64_NUM_GREGS
|
||
|
||
struct amd64_frame_cache
|
||
{
|
||
/* Base address. */
|
||
CORE_ADDR base;
|
||
CORE_ADDR sp_offset;
|
||
CORE_ADDR pc;
|
||
|
||
/* Saved registers. */
|
||
CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
|
||
CORE_ADDR saved_sp;
|
||
|
||
/* Do we have a frame? */
|
||
int frameless_p;
|
||
};
|
||
|
||
/* Allocate and initialize a frame cache. */
|
||
|
||
static struct amd64_frame_cache *
|
||
amd64_alloc_frame_cache (void)
|
||
{
|
||
struct amd64_frame_cache *cache;
|
||
int i;
|
||
|
||
cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
|
||
|
||
/* Base address. */
|
||
cache->base = 0;
|
||
cache->sp_offset = -8;
|
||
cache->pc = 0;
|
||
|
||
/* Saved registers. We initialize these to -1 since zero is a valid
|
||
offset (that's where %rbp is supposed to be stored). */
|
||
for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
|
||
cache->saved_regs[i] = -1;
|
||
cache->saved_sp = 0;
|
||
|
||
/* Frameless until proven otherwise. */
|
||
cache->frameless_p = 1;
|
||
|
||
return cache;
|
||
}
|
||
|
||
/* Do a limited analysis of the prologue at PC and update CACHE
|
||
accordingly. Bail out early if CURRENT_PC is reached. Return the
|
||
address where the analysis stopped.
|
||
|
||
We will handle only functions beginning with:
|
||
|
||
pushq %rbp 0x55
|
||
movq %rsp, %rbp 0x48 0x89 0xe5
|
||
|
||
Any function that doesn't start with this sequence will be assumed
|
||
to have no prologue and thus no valid frame pointer in %rbp. */
|
||
|
||
static CORE_ADDR
|
||
amd64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
|
||
struct amd64_frame_cache *cache)
|
||
{
|
||
static unsigned char proto[3] = { 0x48, 0x89, 0xe5 };
|
||
unsigned char buf[3];
|
||
unsigned char op;
|
||
|
||
if (current_pc <= pc)
|
||
return current_pc;
|
||
|
||
op = read_memory_unsigned_integer (pc, 1);
|
||
|
||
if (op == 0x55) /* pushq %rbp */
|
||
{
|
||
/* Take into account that we've executed the `pushq %rbp' that
|
||
starts this instruction sequence. */
|
||
cache->saved_regs[X86_64_RBP_REGNUM] = 0;
|
||
cache->sp_offset += 8;
|
||
|
||
/* If that's all, return now. */
|
||
if (current_pc <= pc + 1)
|
||
return current_pc;
|
||
|
||
/* Check for `movq %rsp, %rbp'. */
|
||
read_memory (pc + 1, buf, 3);
|
||
if (memcmp (buf, proto, 3) != 0)
|
||
return pc + 1;
|
||
|
||
/* OK, we actually have a frame. */
|
||
cache->frameless_p = 0;
|
||
return pc + 4;
|
||
}
|
||
|
||
return pc;
|
||
}
|
||
|
||
/* Return PC of first real instruction. */
|
||
|
||
static CORE_ADDR
|
||
amd64_skip_prologue (CORE_ADDR start_pc)
|
||
{
|
||
struct amd64_frame_cache cache;
|
||
CORE_ADDR pc;
|
||
|
||
pc = amd64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache);
|
||
if (cache.frameless_p)
|
||
return start_pc;
|
||
|
||
return pc;
|
||
}
|
||
|
||
|
||
/* Normal frames. */
|
||
|
||
static struct amd64_frame_cache *
|
||
amd64_frame_cache (struct frame_info *next_frame, void **this_cache)
|
||
{
|
||
struct amd64_frame_cache *cache;
|
||
char buf[8];
|
||
int i;
|
||
|
||
if (*this_cache)
|
||
return *this_cache;
|
||
|
||
cache = amd64_alloc_frame_cache ();
|
||
*this_cache = cache;
|
||
|
||
cache->pc = frame_func_unwind (next_frame);
|
||
if (cache->pc != 0)
|
||
amd64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
|
||
|
||
if (cache->frameless_p)
|
||
{
|
||
/* We didn't find a valid frame, which means that CACHE->base
|
||
currently holds the frame pointer for our calling frame. If
|
||
we're at the start of a function, or somewhere half-way its
|
||
prologue, the function's frame probably hasn't been fully
|
||
setup yet. Try to reconstruct the base address for the stack
|
||
frame by looking at the stack pointer. For truly "frameless"
|
||
functions this might work too. */
|
||
|
||
frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
|
||
}
|
||
else
|
||
{
|
||
frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8);
|
||
}
|
||
|
||
/* Now that we have the base address for the stack frame we can
|
||
calculate the value of %rsp in the calling frame. */
|
||
cache->saved_sp = cache->base + 16;
|
||
|
||
/* For normal frames, %rip is stored at 8(%rbp). If we don't have a
|
||
frame we find it at the same offset from the reconstructed base
|
||
address. */
|
||
cache->saved_regs[X86_64_RIP_REGNUM] = 8;
|
||
|
||
/* Adjust all the saved registers such that they contain addresses
|
||
instead of offsets. */
|
||
for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
|
||
if (cache->saved_regs[i] != -1)
|
||
cache->saved_regs[i] += cache->base;
|
||
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
amd64_frame_this_id (struct frame_info *next_frame, void **this_cache,
|
||
struct frame_id *this_id)
|
||
{
|
||
struct amd64_frame_cache *cache =
|
||
amd64_frame_cache (next_frame, this_cache);
|
||
|
||
/* This marks the outermost frame. */
|
||
if (cache->base == 0)
|
||
return;
|
||
|
||
(*this_id) = frame_id_build (cache->base + 16, cache->pc);
|
||
}
|
||
|
||
static void
|
||
amd64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
|
||
int regnum, int *optimizedp,
|
||
enum lval_type *lvalp, CORE_ADDR *addrp,
|
||
int *realnump, void *valuep)
|
||
{
|
||
struct amd64_frame_cache *cache =
|
||
amd64_frame_cache (next_frame, this_cache);
|
||
|
||
gdb_assert (regnum >= 0);
|
||
|
||
if (regnum == SP_REGNUM && cache->saved_sp)
|
||
{
|
||
*optimizedp = 0;
|
||
*lvalp = not_lval;
|
||
*addrp = 0;
|
||
*realnump = -1;
|
||
if (valuep)
|
||
{
|
||
/* Store the value. */
|
||
store_unsigned_integer (valuep, 8, cache->saved_sp);
|
||
}
|
||
return;
|
||
}
|
||
|
||
if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
|
||
{
|
||
*optimizedp = 0;
|
||
*lvalp = lval_memory;
|
||
*addrp = cache->saved_regs[regnum];
|
||
*realnump = -1;
|
||
if (valuep)
|
||
{
|
||
/* Read the value in from memory. */
|
||
read_memory (*addrp, valuep,
|
||
register_size (current_gdbarch, regnum));
|
||
}
|
||
return;
|
||
}
|
||
|
||
frame_register_unwind (next_frame, regnum,
|
||
optimizedp, lvalp, addrp, realnump, valuep);
|
||
}
|
||
|
||
static const struct frame_unwind amd64_frame_unwind =
|
||
{
|
||
NORMAL_FRAME,
|
||
amd64_frame_this_id,
|
||
amd64_frame_prev_register
|
||
};
|
||
|
||
static const struct frame_unwind *
|
||
amd64_frame_sniffer (struct frame_info *next_frame)
|
||
{
|
||
return &amd64_frame_unwind;
|
||
}
|
||
|
||
|
||
/* Signal trampolines. */
|
||
|
||
/* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
|
||
64-bit variants. This would require using identical frame caches
|
||
on both platforms. */
|
||
|
||
static struct amd64_frame_cache *
|
||
amd64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
|
||
{
|
||
struct amd64_frame_cache *cache;
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
|
||
CORE_ADDR addr;
|
||
char buf[8];
|
||
int i;
|
||
|
||
if (*this_cache)
|
||
return *this_cache;
|
||
|
||
cache = amd64_alloc_frame_cache ();
|
||
|
||
frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf);
|
||
cache->base = extract_unsigned_integer (buf, 8) - 8;
|
||
|
||
addr = tdep->sigcontext_addr (next_frame);
|
||
gdb_assert (tdep->sc_reg_offset);
|
||
gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
|
||
for (i = 0; i < tdep->sc_num_regs; i++)
|
||
if (tdep->sc_reg_offset[i] != -1)
|
||
cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
|
||
|
||
*this_cache = cache;
|
||
return cache;
|
||
}
|
||
|
||
static void
|
||
amd64_sigtramp_frame_this_id (struct frame_info *next_frame,
|
||
void **this_cache, struct frame_id *this_id)
|
||
{
|
||
struct amd64_frame_cache *cache =
|
||
amd64_sigtramp_frame_cache (next_frame, this_cache);
|
||
|
||
(*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
|
||
}
|
||
|
||
static void
|
||
amd64_sigtramp_frame_prev_register (struct frame_info *next_frame,
|
||
void **this_cache,
|
||
int regnum, int *optimizedp,
|
||
enum lval_type *lvalp, CORE_ADDR *addrp,
|
||
int *realnump, void *valuep)
|
||
{
|
||
/* Make sure we've initialized the cache. */
|
||
amd64_sigtramp_frame_cache (next_frame, this_cache);
|
||
|
||
amd64_frame_prev_register (next_frame, this_cache, regnum,
|
||
optimizedp, lvalp, addrp, realnump, valuep);
|
||
}
|
||
|
||
static const struct frame_unwind amd64_sigtramp_frame_unwind =
|
||
{
|
||
SIGTRAMP_FRAME,
|
||
amd64_sigtramp_frame_this_id,
|
||
amd64_sigtramp_frame_prev_register
|
||
};
|
||
|
||
static const struct frame_unwind *
|
||
amd64_sigtramp_frame_sniffer (struct frame_info *next_frame)
|
||
{
|
||
CORE_ADDR pc = frame_pc_unwind (next_frame);
|
||
char *name;
|
||
|
||
find_pc_partial_function (pc, &name, NULL, NULL);
|
||
if (PC_IN_SIGTRAMP (pc, name))
|
||
{
|
||
gdb_assert (gdbarch_tdep (current_gdbarch)->sigcontext_addr);
|
||
|
||
return &amd64_sigtramp_frame_unwind;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
|
||
static CORE_ADDR
|
||
amd64_frame_base_address (struct frame_info *next_frame, void **this_cache)
|
||
{
|
||
struct amd64_frame_cache *cache =
|
||
amd64_frame_cache (next_frame, this_cache);
|
||
|
||
return cache->base;
|
||
}
|
||
|
||
static const struct frame_base amd64_frame_base =
|
||
{
|
||
&amd64_frame_unwind,
|
||
amd64_frame_base_address,
|
||
amd64_frame_base_address,
|
||
amd64_frame_base_address
|
||
};
|
||
|
||
static struct frame_id
|
||
amd64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
|
||
{
|
||
char buf[8];
|
||
CORE_ADDR fp;
|
||
|
||
frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf);
|
||
fp = extract_unsigned_integer (buf, 8);
|
||
|
||
return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
|
||
}
|
||
|
||
/* 16 byte align the SP per frame requirements. */
|
||
|
||
static CORE_ADDR
|
||
amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
|
||
{
|
||
return sp & -(CORE_ADDR)16;
|
||
}
|
||
|
||
|
||
/* Supply register REGNUM from the floating-point register set REGSET
|
||
to register cache REGCACHE. If REGNUM is -1, do this for all
|
||
registers in REGSET. */
|
||
|
||
static void
|
||
amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
|
||
int regnum, const void *fpregs, size_t len)
|
||
{
|
||
const struct gdbarch_tdep *tdep = regset->descr;
|
||
|
||
gdb_assert (len == tdep->sizeof_fpregset);
|
||
x86_64_supply_fxsave (regcache, regnum, fpregs);
|
||
}
|
||
|
||
/* Return the appropriate register set for the core section identified
|
||
by SECT_NAME and SECT_SIZE. */
|
||
|
||
static const struct regset *
|
||
amd64_regset_from_core_section (struct gdbarch *gdbarch,
|
||
const char *sect_name, size_t sect_size)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
|
||
{
|
||
if (tdep->fpregset == NULL)
|
||
{
|
||
tdep->fpregset = XMALLOC (struct regset);
|
||
tdep->fpregset->descr = tdep;
|
||
tdep->fpregset->supply_regset = amd64_supply_fpregset;
|
||
}
|
||
|
||
return tdep->fpregset;
|
||
}
|
||
|
||
return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
|
||
}
|
||
|
||
|
||
void
|
||
x86_64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
||
{
|
||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||
|
||
/* AMD64 generally uses `fxsave' instead of `fsave' for saving its
|
||
floating-point registers. */
|
||
tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
|
||
|
||
/* AMD64 has an FPU and 16 SSE registers. */
|
||
tdep->st0_regnum = X86_64_ST0_REGNUM;
|
||
tdep->num_xmm_regs = 16;
|
||
|
||
/* This is what all the fuss is about. */
|
||
set_gdbarch_long_bit (gdbarch, 64);
|
||
set_gdbarch_long_long_bit (gdbarch, 64);
|
||
set_gdbarch_ptr_bit (gdbarch, 64);
|
||
|
||
/* In contrast to the i386, on AMD64 a `long double' actually takes
|
||
up 128 bits, even though it's still based on the i387 extended
|
||
floating-point format which has only 80 significant bits. */
|
||
set_gdbarch_long_double_bit (gdbarch, 128);
|
||
|
||
set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
|
||
set_gdbarch_register_name (gdbarch, amd64_register_name);
|
||
set_gdbarch_register_type (gdbarch, amd64_register_type);
|
||
|
||
/* Register numbers of various important registers. */
|
||
set_gdbarch_sp_regnum (gdbarch, X86_64_RSP_REGNUM); /* %rsp */
|
||
set_gdbarch_pc_regnum (gdbarch, X86_64_RIP_REGNUM); /* %rip */
|
||
set_gdbarch_ps_regnum (gdbarch, X86_64_EFLAGS_REGNUM); /* %eflags */
|
||
set_gdbarch_fp0_regnum (gdbarch, X86_64_ST0_REGNUM); /* %st(0) */
|
||
|
||
/* The "default" register numbering scheme for AMD64 is referred to
|
||
as the "DWARF Register Number Mapping" in the System V psABI.
|
||
The preferred debugging format for all known AMD64 targets is
|
||
actually DWARF2, and GCC doesn't seem to support DWARF (that is
|
||
DWARF-1), but we provide the same mapping just in case. This
|
||
mapping is also used for stabs, which GCC does support. */
|
||
set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
|
||
set_gdbarch_dwarf_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
|
||
set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
|
||
|
||
/* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
|
||
be in use on any of the supported AMD64 targets. */
|
||
|
||
/* Call dummy code. */
|
||
set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
|
||
set_gdbarch_frame_align (gdbarch, amd64_frame_align);
|
||
set_gdbarch_frame_red_zone_size (gdbarch, 128);
|
||
|
||
set_gdbarch_convert_register_p (gdbarch, amd64_convert_register_p);
|
||
set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
|
||
set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
|
||
|
||
set_gdbarch_return_value (gdbarch, amd64_return_value);
|
||
|
||
set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
|
||
|
||
/* Avoid wiring in the MMX registers for now. */
|
||
set_gdbarch_num_pseudo_regs (gdbarch, 0);
|
||
tdep->mm0_regnum = -1;
|
||
|
||
set_gdbarch_unwind_dummy_id (gdbarch, amd64_unwind_dummy_id);
|
||
|
||
/* FIXME: kettenis/20021026: This is ELF-specific. Fine for now,
|
||
since all supported AMD64 targets are ELF, but that might change
|
||
in the future. */
|
||
set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
|
||
|
||
frame_unwind_append_sniffer (gdbarch, amd64_sigtramp_frame_sniffer);
|
||
frame_unwind_append_sniffer (gdbarch, amd64_frame_sniffer);
|
||
frame_base_set_default (gdbarch, &amd64_frame_base);
|
||
|
||
/* If we have a register mapping, enable the generic core file support. */
|
||
if (tdep->gregset_reg_offset)
|
||
set_gdbarch_regset_from_core_section (gdbarch,
|
||
amd64_regset_from_core_section);
|
||
}
|
||
|
||
|
||
#define I387_ST0_REGNUM X86_64_ST0_REGNUM
|
||
|
||
/* The 64-bit FXSAVE format differs from the 32-bit format in the
|
||
sense that the instruction pointer and data pointer are simply
|
||
64-bit offsets into the code segment and the data segment instead
|
||
of a selector offset pair. The functions below store the upper 32
|
||
bits of these pointers (instead of just the 16-bits of the segment
|
||
selector). */
|
||
|
||
/* Fill register REGNUM in REGCACHE with the appropriate
|
||
floating-point or SSE register value from *FXSAVE. If REGNUM is
|
||
-1, do this for all registers. This function masks off any of the
|
||
reserved bits in *FXSAVE. */
|
||
|
||
void
|
||
x86_64_supply_fxsave (struct regcache *regcache, int regnum,
|
||
const void *fxsave)
|
||
{
|
||
i387_supply_fxsave (regcache, regnum, fxsave);
|
||
|
||
if (fxsave)
|
||
{
|
||
const char *regs = fxsave;
|
||
|
||
if (regnum == -1 || regnum == I387_FISEG_REGNUM)
|
||
regcache_raw_supply (regcache, I387_FISEG_REGNUM, regs + 12);
|
||
if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
|
||
regcache_raw_supply (regcache, I387_FOSEG_REGNUM, regs + 20);
|
||
}
|
||
}
|
||
|
||
/* Fill register REGNUM (if it is a floating-point or SSE register) in
|
||
*FXSAVE with the value in GDB's register cache. If REGNUM is -1, do
|
||
this for all registers. This function doesn't touch any of the
|
||
reserved bits in *FXSAVE. */
|
||
|
||
void
|
||
x86_64_fill_fxsave (char *fxsave, int regnum)
|
||
{
|
||
i387_fill_fxsave (fxsave, regnum);
|
||
|
||
if (regnum == -1 || regnum == I387_FISEG_REGNUM)
|
||
regcache_collect (I387_FISEG_REGNUM, fxsave + 12);
|
||
if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
|
||
regcache_collect (I387_FOSEG_REGNUM, fxsave + 20);
|
||
}
|