mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-30 13:33:53 +08:00
dffdd8b51f
As reported in PR 26861, when killing an inferior on macOS, we hit the assert: ../../gdb-10.1/gdb/target.c:2149: internal-error: void target_mourn_inferior(ptid_t): Assertion `ptid == inferior_ptid' failed. This is because darwin_nat_target::kill passes a pid-only ptid to target_mourn_inferior, with the pid of the current inferior: target_mourn_inferior (ptid_t (inf->pid)); ... which doesn't satisfy the assert in target_mourn_inferior: gdb_assert (ptid == inferior_ptid); The reason for this assertion is that target_mourn_inferior is a prototype shared between GDB and GDBserver, so that shared code in gdb/nat (used in both GDB and GDBserver) can call target_mourn_inferior. In GDB's implementation, it is likely that some targets still rely on inferior_ptid being set to "the current thread we are working on". So until targets are completely decoupled from inferior_ptid (at least their mourn_inferior implementations), we need to ensure the passed in ptid matches inferior_ptid, to ensure the calling code called target_mourn_inferior with the right global context. However, I think the assert is a bit too restrictive. The mourn_inferior operation works on an inferior, not a specific thread. And by the time we call mourn_inferior, the threads of the inferior don't exist anymore, the process is gone, so it doesn't really make sense to require inferior_ptid to point a specific thread. I looked at all the target_ops::mourn_inferior implementations, those that read inferior_ptid only care about the pid field, which supports the idea that only the inferior matters. Other implementations look at the current inferior (call `current_inferior ()`). I think it would make sense to change target_mourn_inferior to accept only a pid rather than a ptid. It would then assert that the pid is the same as the current inferior's pid. However, this would be a quite involved change, so I'll keep it for later. To fix the macOS issue immediately, I propose to relax the assert to only compare the pids, as is done in this patch. Another solution would obviously be to make darwin_nat_target::kill pass inferior_ptid to target_mourn_inferior. However, the solution I propose is more in line with where I think we want to go (passing a pid to target_mourn_inferior). gdb/ChangeLog: PR gdb/26861 * target.c (target_mourn_inferior): Only compare pids in target_mourn_inferior. Change-Id: If2439ccc5aa67272ea16148a43c5362ef23fb2b8
3986 lines
102 KiB
C
3986 lines
102 KiB
C
/* Select target systems and architectures at runtime for GDB.
|
||
|
||
Copyright (C) 1990-2021 Free Software Foundation, Inc.
|
||
|
||
Contributed by Cygnus Support.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
||
|
||
#include "defs.h"
|
||
#include "target.h"
|
||
#include "target-dcache.h"
|
||
#include "gdbcmd.h"
|
||
#include "symtab.h"
|
||
#include "inferior.h"
|
||
#include "infrun.h"
|
||
#include "bfd.h"
|
||
#include "symfile.h"
|
||
#include "objfiles.h"
|
||
#include "dcache.h"
|
||
#include <signal.h>
|
||
#include "regcache.h"
|
||
#include "gdbcore.h"
|
||
#include "target-descriptions.h"
|
||
#include "gdbthread.h"
|
||
#include "solib.h"
|
||
#include "exec.h"
|
||
#include "inline-frame.h"
|
||
#include "tracepoint.h"
|
||
#include "gdb/fileio.h"
|
||
#include "gdbsupport/agent.h"
|
||
#include "auxv.h"
|
||
#include "target-debug.h"
|
||
#include "top.h"
|
||
#include "event-top.h"
|
||
#include <algorithm>
|
||
#include "gdbsupport/byte-vector.h"
|
||
#include "gdbsupport/search.h"
|
||
#include "terminal.h"
|
||
#include <unordered_map>
|
||
#include "target-connection.h"
|
||
#include "valprint.h"
|
||
|
||
static void generic_tls_error (void) ATTRIBUTE_NORETURN;
|
||
|
||
static void default_terminal_info (struct target_ops *, const char *, int);
|
||
|
||
static int default_watchpoint_addr_within_range (struct target_ops *,
|
||
CORE_ADDR, CORE_ADDR, int);
|
||
|
||
static int default_region_ok_for_hw_watchpoint (struct target_ops *,
|
||
CORE_ADDR, int);
|
||
|
||
static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
|
||
|
||
static ptid_t default_get_ada_task_ptid (struct target_ops *self,
|
||
long lwp, long tid);
|
||
|
||
static void default_mourn_inferior (struct target_ops *self);
|
||
|
||
static int default_search_memory (struct target_ops *ops,
|
||
CORE_ADDR start_addr,
|
||
ULONGEST search_space_len,
|
||
const gdb_byte *pattern,
|
||
ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp);
|
||
|
||
static int default_verify_memory (struct target_ops *self,
|
||
const gdb_byte *data,
|
||
CORE_ADDR memaddr, ULONGEST size);
|
||
|
||
static void tcomplain (void) ATTRIBUTE_NORETURN;
|
||
|
||
static struct target_ops *find_default_run_target (const char *);
|
||
|
||
static int dummy_find_memory_regions (struct target_ops *self,
|
||
find_memory_region_ftype ignore1,
|
||
void *ignore2);
|
||
|
||
static gdb::unique_xmalloc_ptr<char> dummy_make_corefile_notes
|
||
(struct target_ops *self, bfd *ignore1, int *ignore2);
|
||
|
||
static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
|
||
|
||
static enum exec_direction_kind default_execution_direction
|
||
(struct target_ops *self);
|
||
|
||
/* Mapping between target_info objects (which have address identity)
|
||
and corresponding open/factory function/callback. Each add_target
|
||
call adds one entry to this map, and registers a "target
|
||
TARGET_NAME" command that when invoked calls the factory registered
|
||
here. The target_info object is associated with the command via
|
||
the command's context. */
|
||
static std::unordered_map<const target_info *, target_open_ftype *>
|
||
target_factories;
|
||
|
||
/* The singleton debug target. */
|
||
|
||
static struct target_ops *the_debug_target;
|
||
|
||
/* Top of target stack. */
|
||
/* The target structure we are currently using to talk to a process
|
||
or file or whatever "inferior" we have. */
|
||
|
||
target_ops *
|
||
current_top_target ()
|
||
{
|
||
return current_inferior ()->top_target ();
|
||
}
|
||
|
||
/* Command list for target. */
|
||
|
||
static struct cmd_list_element *targetlist = NULL;
|
||
|
||
/* True if we should trust readonly sections from the
|
||
executable when reading memory. */
|
||
|
||
static bool trust_readonly = false;
|
||
|
||
/* Nonzero if we should show true memory content including
|
||
memory breakpoint inserted by gdb. */
|
||
|
||
static int show_memory_breakpoints = 0;
|
||
|
||
/* These globals control whether GDB attempts to perform these
|
||
operations; they are useful for targets that need to prevent
|
||
inadvertent disruption, such as in non-stop mode. */
|
||
|
||
bool may_write_registers = true;
|
||
|
||
bool may_write_memory = true;
|
||
|
||
bool may_insert_breakpoints = true;
|
||
|
||
bool may_insert_tracepoints = true;
|
||
|
||
bool may_insert_fast_tracepoints = true;
|
||
|
||
bool may_stop = true;
|
||
|
||
/* Non-zero if we want to see trace of target level stuff. */
|
||
|
||
static unsigned int targetdebug = 0;
|
||
|
||
static void
|
||
set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
|
||
{
|
||
if (targetdebug)
|
||
push_target (the_debug_target);
|
||
else
|
||
unpush_target (the_debug_target);
|
||
}
|
||
|
||
static void
|
||
show_targetdebug (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file, _("Target debugging is %s.\n"), value);
|
||
}
|
||
|
||
int
|
||
target_has_memory ()
|
||
{
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
if (t->has_memory ())
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_stack ()
|
||
{
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
if (t->has_stack ())
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_has_registers ()
|
||
{
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
if (t->has_registers ())
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
bool
|
||
target_has_execution (inferior *inf)
|
||
{
|
||
if (inf == nullptr)
|
||
inf = current_inferior ();
|
||
|
||
for (target_ops *t = inf->top_target ();
|
||
t != nullptr;
|
||
t = inf->find_target_beneath (t))
|
||
if (t->has_execution (inf))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* This is used to implement the various target commands. */
|
||
|
||
static void
|
||
open_target (const char *args, int from_tty, struct cmd_list_element *command)
|
||
{
|
||
auto *ti = static_cast<target_info *> (get_cmd_context (command));
|
||
target_open_ftype *func = target_factories[ti];
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
|
||
ti->shortname);
|
||
|
||
func (args, from_tty);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
|
||
ti->shortname, args, from_tty);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
add_target (const target_info &t, target_open_ftype *func,
|
||
completer_ftype *completer)
|
||
{
|
||
struct cmd_list_element *c;
|
||
|
||
auto &func_slot = target_factories[&t];
|
||
if (func_slot != nullptr)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("target already added (\"%s\")."), t.shortname);
|
||
func_slot = func;
|
||
|
||
if (targetlist == NULL)
|
||
add_basic_prefix_cmd ("target", class_run, _("\
|
||
Connect to a target machine or process.\n\
|
||
The first argument is the type or protocol of the target machine.\n\
|
||
Remaining arguments are interpreted by the target protocol. For more\n\
|
||
information on the arguments for a particular protocol, type\n\
|
||
`help target ' followed by the protocol name."),
|
||
&targetlist, "target ", 0, &cmdlist);
|
||
c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
|
||
set_cmd_context (c, (void *) &t);
|
||
set_cmd_sfunc (c, open_target);
|
||
if (completer != NULL)
|
||
set_cmd_completer (c, completer);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
add_deprecated_target_alias (const target_info &tinfo, const char *alias)
|
||
{
|
||
struct cmd_list_element *c;
|
||
char *alt;
|
||
|
||
/* If we use add_alias_cmd, here, we do not get the deprecated warning,
|
||
see PR cli/15104. */
|
||
c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
|
||
set_cmd_sfunc (c, open_target);
|
||
set_cmd_context (c, (void *) &tinfo);
|
||
alt = xstrprintf ("target %s", tinfo.shortname);
|
||
deprecate_cmd (c, alt);
|
||
}
|
||
|
||
/* Stub functions */
|
||
|
||
void
|
||
target_kill (void)
|
||
{
|
||
current_top_target ()->kill ();
|
||
}
|
||
|
||
void
|
||
target_load (const char *arg, int from_tty)
|
||
{
|
||
target_dcache_invalidate ();
|
||
current_top_target ()->load (arg, from_tty);
|
||
}
|
||
|
||
/* Define it. */
|
||
|
||
target_terminal_state target_terminal::m_terminal_state
|
||
= target_terminal_state::is_ours;
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::init (void)
|
||
{
|
||
current_top_target ()->terminal_init ();
|
||
|
||
m_terminal_state = target_terminal_state::is_ours;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::inferior (void)
|
||
{
|
||
struct ui *ui = current_ui;
|
||
|
||
/* A background resume (``run&'') should leave GDB in control of the
|
||
terminal. */
|
||
if (ui->prompt_state != PROMPT_BLOCKED)
|
||
return;
|
||
|
||
/* Since we always run the inferior in the main console (unless "set
|
||
inferior-tty" is in effect), when some UI other than the main one
|
||
calls target_terminal::inferior, then we leave the main UI's
|
||
terminal settings as is. */
|
||
if (ui != main_ui)
|
||
return;
|
||
|
||
/* If GDB is resuming the inferior in the foreground, install
|
||
inferior's terminal modes. */
|
||
|
||
struct inferior *inf = current_inferior ();
|
||
|
||
if (inf->terminal_state != target_terminal_state::is_inferior)
|
||
{
|
||
current_top_target ()->terminal_inferior ();
|
||
inf->terminal_state = target_terminal_state::is_inferior;
|
||
}
|
||
|
||
m_terminal_state = target_terminal_state::is_inferior;
|
||
|
||
/* If the user hit C-c before, pretend that it was hit right
|
||
here. */
|
||
if (check_quit_flag ())
|
||
target_pass_ctrlc ();
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::restore_inferior (void)
|
||
{
|
||
struct ui *ui = current_ui;
|
||
|
||
/* See target_terminal::inferior(). */
|
||
if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
|
||
return;
|
||
|
||
/* Restore the terminal settings of inferiors that were in the
|
||
foreground but are now ours_for_output due to a temporary
|
||
target_target::ours_for_output() call. */
|
||
|
||
{
|
||
scoped_restore_current_inferior restore_inferior;
|
||
|
||
for (::inferior *inf : all_inferiors ())
|
||
{
|
||
if (inf->terminal_state == target_terminal_state::is_ours_for_output)
|
||
{
|
||
set_current_inferior (inf);
|
||
current_top_target ()->terminal_inferior ();
|
||
inf->terminal_state = target_terminal_state::is_inferior;
|
||
}
|
||
}
|
||
}
|
||
|
||
m_terminal_state = target_terminal_state::is_inferior;
|
||
|
||
/* If the user hit C-c before, pretend that it was hit right
|
||
here. */
|
||
if (check_quit_flag ())
|
||
target_pass_ctrlc ();
|
||
}
|
||
|
||
/* Switch terminal state to DESIRED_STATE, either is_ours, or
|
||
is_ours_for_output. */
|
||
|
||
static void
|
||
target_terminal_is_ours_kind (target_terminal_state desired_state)
|
||
{
|
||
scoped_restore_current_inferior restore_inferior;
|
||
|
||
/* Must do this in two passes. First, have all inferiors save the
|
||
current terminal settings. Then, after all inferiors have add a
|
||
chance to safely save the terminal settings, restore GDB's
|
||
terminal settings. */
|
||
|
||
for (inferior *inf : all_inferiors ())
|
||
{
|
||
if (inf->terminal_state == target_terminal_state::is_inferior)
|
||
{
|
||
set_current_inferior (inf);
|
||
current_top_target ()->terminal_save_inferior ();
|
||
}
|
||
}
|
||
|
||
for (inferior *inf : all_inferiors ())
|
||
{
|
||
/* Note we don't check is_inferior here like above because we
|
||
need to handle 'is_ours_for_output -> is_ours' too. Careful
|
||
to never transition from 'is_ours' to 'is_ours_for_output',
|
||
though. */
|
||
if (inf->terminal_state != target_terminal_state::is_ours
|
||
&& inf->terminal_state != desired_state)
|
||
{
|
||
set_current_inferior (inf);
|
||
if (desired_state == target_terminal_state::is_ours)
|
||
current_top_target ()->terminal_ours ();
|
||
else if (desired_state == target_terminal_state::is_ours_for_output)
|
||
current_top_target ()->terminal_ours_for_output ();
|
||
else
|
||
gdb_assert_not_reached ("unhandled desired state");
|
||
inf->terminal_state = desired_state;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::ours ()
|
||
{
|
||
struct ui *ui = current_ui;
|
||
|
||
/* See target_terminal::inferior. */
|
||
if (ui != main_ui)
|
||
return;
|
||
|
||
if (m_terminal_state == target_terminal_state::is_ours)
|
||
return;
|
||
|
||
target_terminal_is_ours_kind (target_terminal_state::is_ours);
|
||
m_terminal_state = target_terminal_state::is_ours;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::ours_for_output ()
|
||
{
|
||
struct ui *ui = current_ui;
|
||
|
||
/* See target_terminal::inferior. */
|
||
if (ui != main_ui)
|
||
return;
|
||
|
||
if (!target_terminal::is_inferior ())
|
||
return;
|
||
|
||
target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
|
||
target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_terminal::info (const char *arg, int from_tty)
|
||
{
|
||
current_top_target ()->terminal_info (arg, from_tty);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
bool
|
||
target_supports_terminal_ours (void)
|
||
{
|
||
/* The current top target is the target at the top of the target
|
||
stack of the current inferior. While normally there's always an
|
||
inferior, we must check for nullptr here because we can get here
|
||
very early during startup, before the initial inferior is first
|
||
created. */
|
||
inferior *inf = current_inferior ();
|
||
|
||
if (inf == nullptr)
|
||
return false;
|
||
return inf->top_target ()->supports_terminal_ours ();
|
||
}
|
||
|
||
static void
|
||
tcomplain (void)
|
||
{
|
||
error (_("You can't do that when your target is `%s'"),
|
||
current_top_target ()->shortname ());
|
||
}
|
||
|
||
void
|
||
noprocess (void)
|
||
{
|
||
error (_("You can't do that without a process to debug."));
|
||
}
|
||
|
||
static void
|
||
default_terminal_info (struct target_ops *self, const char *args, int from_tty)
|
||
{
|
||
printf_unfiltered (_("No saved terminal information.\n"));
|
||
}
|
||
|
||
/* A default implementation for the to_get_ada_task_ptid target method.
|
||
|
||
This function builds the PTID by using both LWP and TID as part of
|
||
the PTID lwp and tid elements. The pid used is the pid of the
|
||
inferior_ptid. */
|
||
|
||
static ptid_t
|
||
default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
|
||
{
|
||
return ptid_t (inferior_ptid.pid (), lwp, tid);
|
||
}
|
||
|
||
static enum exec_direction_kind
|
||
default_execution_direction (struct target_ops *self)
|
||
{
|
||
if (!target_can_execute_reverse ())
|
||
return EXEC_FORWARD;
|
||
else if (!target_can_async_p ())
|
||
return EXEC_FORWARD;
|
||
else
|
||
gdb_assert_not_reached ("\
|
||
to_execution_direction must be implemented for reverse async");
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
decref_target (target_ops *t)
|
||
{
|
||
t->decref ();
|
||
if (t->refcount () == 0)
|
||
{
|
||
if (t->stratum () == process_stratum)
|
||
connection_list_remove (as_process_stratum_target (t));
|
||
target_close (t);
|
||
}
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_stack::push (target_ops *t)
|
||
{
|
||
t->incref ();
|
||
|
||
strata stratum = t->stratum ();
|
||
|
||
if (stratum == process_stratum)
|
||
connection_list_add (as_process_stratum_target (t));
|
||
|
||
/* If there's already a target at this stratum, remove it. */
|
||
|
||
if (m_stack[stratum] != NULL)
|
||
unpush (m_stack[stratum]);
|
||
|
||
/* Now add the new one. */
|
||
m_stack[stratum] = t;
|
||
|
||
if (m_top < stratum)
|
||
m_top = stratum;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
push_target (struct target_ops *t)
|
||
{
|
||
current_inferior ()->push_target (t);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
push_target (target_ops_up &&t)
|
||
{
|
||
current_inferior ()->push_target (t.get ());
|
||
t.release ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
unpush_target (struct target_ops *t)
|
||
{
|
||
return current_inferior ()->unpush_target (t);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
bool
|
||
target_stack::unpush (target_ops *t)
|
||
{
|
||
gdb_assert (t != NULL);
|
||
|
||
strata stratum = t->stratum ();
|
||
|
||
if (stratum == dummy_stratum)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("Attempt to unpush the dummy target"));
|
||
|
||
/* Look for the specified target. Note that a target can only occur
|
||
once in the target stack. */
|
||
|
||
if (m_stack[stratum] != t)
|
||
{
|
||
/* If T wasn't pushed, quit. Only open targets should be
|
||
closed. */
|
||
return false;
|
||
}
|
||
|
||
/* Unchain the target. */
|
||
m_stack[stratum] = NULL;
|
||
|
||
if (m_top == stratum)
|
||
m_top = t->beneath ()->stratum ();
|
||
|
||
/* Finally close the target, if there are no inferiors
|
||
referencing this target still. Note we do this after unchaining,
|
||
so any target method calls from within the target_close
|
||
implementation don't end up in T anymore. Do leave the target
|
||
open if we have are other inferiors referencing this target
|
||
still. */
|
||
decref_target (t);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Unpush TARGET and assert that it worked. */
|
||
|
||
static void
|
||
unpush_target_and_assert (struct target_ops *target)
|
||
{
|
||
if (!unpush_target (target))
|
||
{
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"pop_all_targets couldn't find target %s\n",
|
||
target->shortname ());
|
||
internal_error (__FILE__, __LINE__,
|
||
_("failed internal consistency check"));
|
||
}
|
||
}
|
||
|
||
void
|
||
pop_all_targets_above (enum strata above_stratum)
|
||
{
|
||
while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
|
||
unpush_target_and_assert (current_top_target ());
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
pop_all_targets_at_and_above (enum strata stratum)
|
||
{
|
||
while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
|
||
unpush_target_and_assert (current_top_target ());
|
||
}
|
||
|
||
void
|
||
pop_all_targets (void)
|
||
{
|
||
pop_all_targets_above (dummy_stratum);
|
||
}
|
||
|
||
/* Return true if T is now pushed in the current inferior's target
|
||
stack. Return false otherwise. */
|
||
|
||
bool
|
||
target_is_pushed (target_ops *t)
|
||
{
|
||
return current_inferior ()->target_is_pushed (t);
|
||
}
|
||
|
||
/* Default implementation of to_get_thread_local_address. */
|
||
|
||
static void
|
||
generic_tls_error (void)
|
||
{
|
||
throw_error (TLS_GENERIC_ERROR,
|
||
_("Cannot find thread-local variables on this target"));
|
||
}
|
||
|
||
/* Using the objfile specified in OBJFILE, find the address for the
|
||
current thread's thread-local storage with offset OFFSET. */
|
||
CORE_ADDR
|
||
target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
|
||
{
|
||
volatile CORE_ADDR addr = 0;
|
||
struct target_ops *target = current_top_target ();
|
||
struct gdbarch *gdbarch = target_gdbarch ();
|
||
|
||
if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
|
||
{
|
||
ptid_t ptid = inferior_ptid;
|
||
|
||
try
|
||
{
|
||
CORE_ADDR lm_addr;
|
||
|
||
/* Fetch the load module address for this objfile. */
|
||
lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
|
||
objfile);
|
||
|
||
if (gdbarch_get_thread_local_address_p (gdbarch))
|
||
addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
|
||
offset);
|
||
else
|
||
addr = target->get_thread_local_address (ptid, lm_addr, offset);
|
||
}
|
||
/* If an error occurred, print TLS related messages here. Otherwise,
|
||
throw the error to some higher catcher. */
|
||
catch (const gdb_exception &ex)
|
||
{
|
||
int objfile_is_library = (objfile->flags & OBJF_SHARED);
|
||
|
||
switch (ex.error)
|
||
{
|
||
case TLS_NO_LIBRARY_SUPPORT_ERROR:
|
||
error (_("Cannot find thread-local variables "
|
||
"in this thread library."));
|
||
break;
|
||
case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
|
||
if (objfile_is_library)
|
||
error (_("Cannot find shared library `%s' in dynamic"
|
||
" linker's load module list"), objfile_name (objfile));
|
||
else
|
||
error (_("Cannot find executable file `%s' in dynamic"
|
||
" linker's load module list"), objfile_name (objfile));
|
||
break;
|
||
case TLS_NOT_ALLOCATED_YET_ERROR:
|
||
if (objfile_is_library)
|
||
error (_("The inferior has not yet allocated storage for"
|
||
" thread-local variables in\n"
|
||
"the shared library `%s'\n"
|
||
"for %s"),
|
||
objfile_name (objfile),
|
||
target_pid_to_str (ptid).c_str ());
|
||
else
|
||
error (_("The inferior has not yet allocated storage for"
|
||
" thread-local variables in\n"
|
||
"the executable `%s'\n"
|
||
"for %s"),
|
||
objfile_name (objfile),
|
||
target_pid_to_str (ptid).c_str ());
|
||
break;
|
||
case TLS_GENERIC_ERROR:
|
||
if (objfile_is_library)
|
||
error (_("Cannot find thread-local storage for %s, "
|
||
"shared library %s:\n%s"),
|
||
target_pid_to_str (ptid).c_str (),
|
||
objfile_name (objfile), ex.what ());
|
||
else
|
||
error (_("Cannot find thread-local storage for %s, "
|
||
"executable file %s:\n%s"),
|
||
target_pid_to_str (ptid).c_str (),
|
||
objfile_name (objfile), ex.what ());
|
||
break;
|
||
default:
|
||
throw;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
error (_("Cannot find thread-local variables on this target"));
|
||
|
||
return addr;
|
||
}
|
||
|
||
const char *
|
||
target_xfer_status_to_string (enum target_xfer_status status)
|
||
{
|
||
#define CASE(X) case X: return #X
|
||
switch (status)
|
||
{
|
||
CASE(TARGET_XFER_E_IO);
|
||
CASE(TARGET_XFER_UNAVAILABLE);
|
||
default:
|
||
return "<unknown>";
|
||
}
|
||
#undef CASE
|
||
};
|
||
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::unique_xmalloc_ptr<char>
|
||
target_read_string (CORE_ADDR memaddr, int len, int *bytes_read)
|
||
{
|
||
gdb::unique_xmalloc_ptr<gdb_byte> buffer;
|
||
|
||
int ignore;
|
||
if (bytes_read == nullptr)
|
||
bytes_read = &ignore;
|
||
|
||
/* Note that the endian-ness does not matter here. */
|
||
int errcode = read_string (memaddr, -1, 1, len, BFD_ENDIAN_LITTLE,
|
||
&buffer, bytes_read);
|
||
if (errcode != 0)
|
||
return {};
|
||
|
||
return gdb::unique_xmalloc_ptr<char> ((char *) buffer.release ());
|
||
}
|
||
|
||
const target_section_table *
|
||
target_get_section_table (struct target_ops *target)
|
||
{
|
||
return target->get_section_table ();
|
||
}
|
||
|
||
/* Find a section containing ADDR. */
|
||
|
||
const struct target_section *
|
||
target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
|
||
{
|
||
const target_section_table *table = target_get_section_table (target);
|
||
|
||
if (table == NULL)
|
||
return NULL;
|
||
|
||
for (const target_section &secp : *table)
|
||
{
|
||
if (addr >= secp.addr && addr < secp.endaddr)
|
||
return &secp;
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
const target_section_table *
|
||
default_get_section_table ()
|
||
{
|
||
return ¤t_program_space->target_sections ();
|
||
}
|
||
|
||
/* Helper for the memory xfer routines. Checks the attributes of the
|
||
memory region of MEMADDR against the read or write being attempted.
|
||
If the access is permitted returns true, otherwise returns false.
|
||
REGION_P is an optional output parameter. If not-NULL, it is
|
||
filled with a pointer to the memory region of MEMADDR. REG_LEN
|
||
returns LEN trimmed to the end of the region. This is how much the
|
||
caller can continue requesting, if the access is permitted. A
|
||
single xfer request must not straddle memory region boundaries. */
|
||
|
||
static int
|
||
memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
|
||
struct mem_region **region_p)
|
||
{
|
||
struct mem_region *region;
|
||
|
||
region = lookup_mem_region (memaddr);
|
||
|
||
if (region_p != NULL)
|
||
*region_p = region;
|
||
|
||
switch (region->attrib.mode)
|
||
{
|
||
case MEM_RO:
|
||
if (writebuf != NULL)
|
||
return 0;
|
||
break;
|
||
|
||
case MEM_WO:
|
||
if (readbuf != NULL)
|
||
return 0;
|
||
break;
|
||
|
||
case MEM_FLASH:
|
||
/* We only support writing to flash during "load" for now. */
|
||
if (writebuf != NULL)
|
||
error (_("Writing to flash memory forbidden in this context"));
|
||
break;
|
||
|
||
case MEM_NONE:
|
||
return 0;
|
||
}
|
||
|
||
/* region->hi == 0 means there's no upper bound. */
|
||
if (memaddr + len < region->hi || region->hi == 0)
|
||
*reg_len = len;
|
||
else
|
||
*reg_len = region->hi - memaddr;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Read memory from more than one valid target. A core file, for
|
||
instance, could have some of memory but delegate other bits to
|
||
the target below it. So, we must manually try all targets. */
|
||
|
||
enum target_xfer_status
|
||
raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
|
||
const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status res;
|
||
|
||
do
|
||
{
|
||
res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
|
||
readbuf, writebuf, memaddr, len,
|
||
xfered_len);
|
||
if (res == TARGET_XFER_OK)
|
||
break;
|
||
|
||
/* Stop if the target reports that the memory is not available. */
|
||
if (res == TARGET_XFER_UNAVAILABLE)
|
||
break;
|
||
|
||
/* Don't continue past targets which have all the memory.
|
||
At one time, this code was necessary to read data from
|
||
executables / shared libraries when data for the requested
|
||
addresses weren't available in the core file. But now the
|
||
core target handles this case itself. */
|
||
if (ops->has_all_memory ())
|
||
break;
|
||
|
||
ops = ops->beneath ();
|
||
}
|
||
while (ops != NULL);
|
||
|
||
/* The cache works at the raw memory level. Make sure the cache
|
||
gets updated with raw contents no matter what kind of memory
|
||
object was originally being written. Note we do write-through
|
||
first, so that if it fails, we don't write to the cache contents
|
||
that never made it to the target. */
|
||
if (writebuf != NULL
|
||
&& inferior_ptid != null_ptid
|
||
&& target_dcache_init_p ()
|
||
&& (stack_cache_enabled_p () || code_cache_enabled_p ()))
|
||
{
|
||
DCACHE *dcache = target_dcache_get ();
|
||
|
||
/* Note that writing to an area of memory which wasn't present
|
||
in the cache doesn't cause it to be loaded in. */
|
||
dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Perform a partial memory transfer.
|
||
For docs see target.h, to_xfer_partial. */
|
||
|
||
static enum target_xfer_status
|
||
memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
|
||
ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status res;
|
||
ULONGEST reg_len;
|
||
struct mem_region *region;
|
||
struct inferior *inf;
|
||
|
||
/* For accesses to unmapped overlay sections, read directly from
|
||
files. Must do this first, as MEMADDR may need adjustment. */
|
||
if (readbuf != NULL && overlay_debugging)
|
||
{
|
||
struct obj_section *section = find_pc_overlay (memaddr);
|
||
|
||
if (pc_in_unmapped_range (memaddr, section))
|
||
{
|
||
const target_section_table *table = target_get_section_table (ops);
|
||
const char *section_name = section->the_bfd_section->name;
|
||
|
||
memaddr = overlay_mapped_address (memaddr, section);
|
||
|
||
auto match_cb = [=] (const struct target_section *s)
|
||
{
|
||
return (strcmp (section_name, s->the_bfd_section->name) == 0);
|
||
};
|
||
|
||
return section_table_xfer_memory_partial (readbuf, writebuf,
|
||
memaddr, len, xfered_len,
|
||
*table, match_cb);
|
||
}
|
||
}
|
||
|
||
/* Try the executable files, if "trust-readonly-sections" is set. */
|
||
if (readbuf != NULL && trust_readonly)
|
||
{
|
||
const struct target_section *secp
|
||
= target_section_by_addr (ops, memaddr);
|
||
if (secp != NULL
|
||
&& (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
|
||
{
|
||
const target_section_table *table = target_get_section_table (ops);
|
||
return section_table_xfer_memory_partial (readbuf, writebuf,
|
||
memaddr, len, xfered_len,
|
||
*table);
|
||
}
|
||
}
|
||
|
||
/* Try GDB's internal data cache. */
|
||
|
||
if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, ®_len,
|
||
®ion))
|
||
return TARGET_XFER_E_IO;
|
||
|
||
if (inferior_ptid != null_ptid)
|
||
inf = current_inferior ();
|
||
else
|
||
inf = NULL;
|
||
|
||
if (inf != NULL
|
||
&& readbuf != NULL
|
||
/* The dcache reads whole cache lines; that doesn't play well
|
||
with reading from a trace buffer, because reading outside of
|
||
the collected memory range fails. */
|
||
&& get_traceframe_number () == -1
|
||
&& (region->attrib.cache
|
||
|| (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
|
||
|| (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
|
||
{
|
||
DCACHE *dcache = target_dcache_get_or_init ();
|
||
|
||
return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
|
||
reg_len, xfered_len);
|
||
}
|
||
|
||
/* If none of those methods found the memory we wanted, fall back
|
||
to a target partial transfer. Normally a single call to
|
||
to_xfer_partial is enough; if it doesn't recognize an object
|
||
it will call the to_xfer_partial of the next target down.
|
||
But for memory this won't do. Memory is the only target
|
||
object which can be read from more than one valid target.
|
||
A core file, for instance, could have some of memory but
|
||
delegate other bits to the target below it. So, we must
|
||
manually try all targets. */
|
||
|
||
res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
|
||
xfered_len);
|
||
|
||
/* If we still haven't got anything, return the last error. We
|
||
give up. */
|
||
return res;
|
||
}
|
||
|
||
/* Perform a partial memory transfer. For docs see target.h,
|
||
to_xfer_partial. */
|
||
|
||
static enum target_xfer_status
|
||
memory_xfer_partial (struct target_ops *ops, enum target_object object,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status res;
|
||
|
||
/* Zero length requests are ok and require no work. */
|
||
if (len == 0)
|
||
return TARGET_XFER_EOF;
|
||
|
||
memaddr = address_significant (target_gdbarch (), memaddr);
|
||
|
||
/* Fill in READBUF with breakpoint shadows, or WRITEBUF with
|
||
breakpoint insns, thus hiding out from higher layers whether
|
||
there are software breakpoints inserted in the code stream. */
|
||
if (readbuf != NULL)
|
||
{
|
||
res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
|
||
xfered_len);
|
||
|
||
if (res == TARGET_XFER_OK && !show_memory_breakpoints)
|
||
breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
|
||
}
|
||
else
|
||
{
|
||
/* A large write request is likely to be partially satisfied
|
||
by memory_xfer_partial_1. We will continually malloc
|
||
and free a copy of the entire write request for breakpoint
|
||
shadow handling even though we only end up writing a small
|
||
subset of it. Cap writes to a limit specified by the target
|
||
to mitigate this. */
|
||
len = std::min (ops->get_memory_xfer_limit (), len);
|
||
|
||
gdb::byte_vector buf (writebuf, writebuf + len);
|
||
breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
|
||
res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
|
||
xfered_len);
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
scoped_restore_tmpl<int>
|
||
make_scoped_restore_show_memory_breakpoints (int show)
|
||
{
|
||
return make_scoped_restore (&show_memory_breakpoints, show);
|
||
}
|
||
|
||
/* For docs see target.h, to_xfer_partial. */
|
||
|
||
enum target_xfer_status
|
||
target_xfer_partial (struct target_ops *ops,
|
||
enum target_object object, const char *annex,
|
||
gdb_byte *readbuf, const gdb_byte *writebuf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
enum target_xfer_status retval;
|
||
|
||
/* Transfer is done when LEN is zero. */
|
||
if (len == 0)
|
||
return TARGET_XFER_EOF;
|
||
|
||
if (writebuf && !may_write_memory)
|
||
error (_("Writing to memory is not allowed (addr %s, len %s)"),
|
||
core_addr_to_string_nz (offset), plongest (len));
|
||
|
||
*xfered_len = 0;
|
||
|
||
/* If this is a memory transfer, let the memory-specific code
|
||
have a look at it instead. Memory transfers are more
|
||
complicated. */
|
||
if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
|
||
|| object == TARGET_OBJECT_CODE_MEMORY)
|
||
retval = memory_xfer_partial (ops, object, readbuf,
|
||
writebuf, offset, len, xfered_len);
|
||
else if (object == TARGET_OBJECT_RAW_MEMORY)
|
||
{
|
||
/* Skip/avoid accessing the target if the memory region
|
||
attributes block the access. Check this here instead of in
|
||
raw_memory_xfer_partial as otherwise we'd end up checking
|
||
this twice in the case of the memory_xfer_partial path is
|
||
taken; once before checking the dcache, and another in the
|
||
tail call to raw_memory_xfer_partial. */
|
||
if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
|
||
NULL))
|
||
return TARGET_XFER_E_IO;
|
||
|
||
/* Request the normal memory object from other layers. */
|
||
retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
|
||
xfered_len);
|
||
}
|
||
else
|
||
retval = ops->xfer_partial (object, annex, readbuf,
|
||
writebuf, offset, len, xfered_len);
|
||
|
||
if (targetdebug)
|
||
{
|
||
const unsigned char *myaddr = NULL;
|
||
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"%s:target_xfer_partial "
|
||
"(%d, %s, %s, %s, %s, %s) = %d, %s",
|
||
ops->shortname (),
|
||
(int) object,
|
||
(annex ? annex : "(null)"),
|
||
host_address_to_string (readbuf),
|
||
host_address_to_string (writebuf),
|
||
core_addr_to_string_nz (offset),
|
||
pulongest (len), retval,
|
||
pulongest (*xfered_len));
|
||
|
||
if (readbuf)
|
||
myaddr = readbuf;
|
||
if (writebuf)
|
||
myaddr = writebuf;
|
||
if (retval == TARGET_XFER_OK && myaddr != NULL)
|
||
{
|
||
int i;
|
||
|
||
fputs_unfiltered (", bytes =", gdb_stdlog);
|
||
for (i = 0; i < *xfered_len; i++)
|
||
{
|
||
if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
|
||
{
|
||
if (targetdebug < 2 && i > 0)
|
||
{
|
||
fprintf_unfiltered (gdb_stdlog, " ...");
|
||
break;
|
||
}
|
||
fprintf_unfiltered (gdb_stdlog, "\n");
|
||
}
|
||
|
||
fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
|
||
}
|
||
}
|
||
|
||
fputc_unfiltered ('\n', gdb_stdlog);
|
||
}
|
||
|
||
/* Check implementations of to_xfer_partial update *XFERED_LEN
|
||
properly. Do assertion after printing debug messages, so that we
|
||
can find more clues on assertion failure from debugging messages. */
|
||
if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
|
||
gdb_assert (*xfered_len > 0);
|
||
|
||
return retval;
|
||
}
|
||
|
||
/* Read LEN bytes of target memory at address MEMADDR, placing the
|
||
results in GDB's memory at MYADDR. Returns either 0 for success or
|
||
-1 if any error occurs.
|
||
|
||
If an error occurs, no guarantee is made about the contents of the data at
|
||
MYADDR. In particular, the caller should not depend upon partial reads
|
||
filling the buffer with good data. There is no way for the caller to know
|
||
how much good data might have been transfered anyway. Callers that can
|
||
deal with partial reads should call target_read (which will retry until
|
||
it makes no progress, and then return how much was transferred). */
|
||
|
||
int
|
||
target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
int
|
||
target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
|
||
{
|
||
gdb_byte buf[4];
|
||
int r;
|
||
|
||
r = target_read_memory (memaddr, buf, sizeof buf);
|
||
if (r != 0)
|
||
return r;
|
||
*result = extract_unsigned_integer (buf, sizeof buf,
|
||
gdbarch_byte_order (target_gdbarch ()));
|
||
return 0;
|
||
}
|
||
|
||
/* Like target_read_memory, but specify explicitly that this is a read
|
||
from the target's raw memory. That is, this read bypasses the
|
||
dcache, breakpoint shadowing, etc. */
|
||
|
||
int
|
||
target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Like target_read_memory, but specify explicitly that this is a read from
|
||
the target's stack. This may trigger different cache behavior. */
|
||
|
||
int
|
||
target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Like target_read_memory, but specify explicitly that this is a read from
|
||
the target's code. This may trigger different cache behavior. */
|
||
|
||
int
|
||
target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Write LEN bytes from MYADDR to target memory at address MEMADDR.
|
||
Returns either 0 for success or -1 if any error occurs. If an
|
||
error occurs, no guarantee is made about how much data got written.
|
||
Callers that can deal with partial writes should call
|
||
target_write. */
|
||
|
||
int
|
||
target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Write LEN bytes from MYADDR to target raw memory at address
|
||
MEMADDR. Returns either 0 for success or -1 if any error occurs.
|
||
If an error occurs, no guarantee is made about how much data got
|
||
written. Callers that can deal with partial writes should call
|
||
target_write. */
|
||
|
||
int
|
||
target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
|
||
{
|
||
if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
|
||
myaddr, memaddr, len) == len)
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Fetch the target's memory map. */
|
||
|
||
std::vector<mem_region>
|
||
target_memory_map (void)
|
||
{
|
||
std::vector<mem_region> result = current_top_target ()->memory_map ();
|
||
if (result.empty ())
|
||
return result;
|
||
|
||
std::sort (result.begin (), result.end ());
|
||
|
||
/* Check that regions do not overlap. Simultaneously assign
|
||
a numbering for the "mem" commands to use to refer to
|
||
each region. */
|
||
mem_region *last_one = NULL;
|
||
for (size_t ix = 0; ix < result.size (); ix++)
|
||
{
|
||
mem_region *this_one = &result[ix];
|
||
this_one->number = ix;
|
||
|
||
if (last_one != NULL && last_one->hi > this_one->lo)
|
||
{
|
||
warning (_("Overlapping regions in memory map: ignoring"));
|
||
return std::vector<mem_region> ();
|
||
}
|
||
|
||
last_one = this_one;
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
void
|
||
target_flash_erase (ULONGEST address, LONGEST length)
|
||
{
|
||
current_top_target ()->flash_erase (address, length);
|
||
}
|
||
|
||
void
|
||
target_flash_done (void)
|
||
{
|
||
current_top_target ()->flash_done ();
|
||
}
|
||
|
||
static void
|
||
show_trust_readonly (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Mode for reading from readonly sections is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* Target vector read/write partial wrapper functions. */
|
||
|
||
static enum target_xfer_status
|
||
target_read_partial (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, gdb_byte *buf,
|
||
ULONGEST offset, ULONGEST len,
|
||
ULONGEST *xfered_len)
|
||
{
|
||
return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
|
||
xfered_len);
|
||
}
|
||
|
||
static enum target_xfer_status
|
||
target_write_partial (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, const gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
|
||
{
|
||
return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
|
||
xfered_len);
|
||
}
|
||
|
||
/* Wrappers to perform the full transfer. */
|
||
|
||
/* For docs on target_read see target.h. */
|
||
|
||
LONGEST
|
||
target_read (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len)
|
||
{
|
||
LONGEST xfered_total = 0;
|
||
int unit_size = 1;
|
||
|
||
/* If we are reading from a memory object, find the length of an addressable
|
||
unit for that architecture. */
|
||
if (object == TARGET_OBJECT_MEMORY
|
||
|| object == TARGET_OBJECT_STACK_MEMORY
|
||
|| object == TARGET_OBJECT_CODE_MEMORY
|
||
|| object == TARGET_OBJECT_RAW_MEMORY)
|
||
unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
|
||
|
||
while (xfered_total < len)
|
||
{
|
||
ULONGEST xfered_partial;
|
||
enum target_xfer_status status;
|
||
|
||
status = target_read_partial (ops, object, annex,
|
||
buf + xfered_total * unit_size,
|
||
offset + xfered_total, len - xfered_total,
|
||
&xfered_partial);
|
||
|
||
/* Call an observer, notifying them of the xfer progress? */
|
||
if (status == TARGET_XFER_EOF)
|
||
return xfered_total;
|
||
else if (status == TARGET_XFER_OK)
|
||
{
|
||
xfered_total += xfered_partial;
|
||
QUIT;
|
||
}
|
||
else
|
||
return TARGET_XFER_E_IO;
|
||
|
||
}
|
||
return len;
|
||
}
|
||
|
||
/* Assuming that the entire [begin, end) range of memory cannot be
|
||
read, try to read whatever subrange is possible to read.
|
||
|
||
The function returns, in RESULT, either zero or one memory block.
|
||
If there's a readable subrange at the beginning, it is completely
|
||
read and returned. Any further readable subrange will not be read.
|
||
Otherwise, if there's a readable subrange at the end, it will be
|
||
completely read and returned. Any readable subranges before it
|
||
(obviously, not starting at the beginning), will be ignored. In
|
||
other cases -- either no readable subrange, or readable subrange(s)
|
||
that is neither at the beginning, or end, nothing is returned.
|
||
|
||
The purpose of this function is to handle a read across a boundary
|
||
of accessible memory in a case when memory map is not available.
|
||
The above restrictions are fine for this case, but will give
|
||
incorrect results if the memory is 'patchy'. However, supporting
|
||
'patchy' memory would require trying to read every single byte,
|
||
and it seems unacceptable solution. Explicit memory map is
|
||
recommended for this case -- and target_read_memory_robust will
|
||
take care of reading multiple ranges then. */
|
||
|
||
static void
|
||
read_whatever_is_readable (struct target_ops *ops,
|
||
const ULONGEST begin, const ULONGEST end,
|
||
int unit_size,
|
||
std::vector<memory_read_result> *result)
|
||
{
|
||
ULONGEST current_begin = begin;
|
||
ULONGEST current_end = end;
|
||
int forward;
|
||
ULONGEST xfered_len;
|
||
|
||
/* If we previously failed to read 1 byte, nothing can be done here. */
|
||
if (end - begin <= 1)
|
||
return;
|
||
|
||
gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
|
||
|
||
/* Check that either first or the last byte is readable, and give up
|
||
if not. This heuristic is meant to permit reading accessible memory
|
||
at the boundary of accessible region. */
|
||
if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
|
||
{
|
||
forward = 1;
|
||
++current_begin;
|
||
}
|
||
else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf.get () + (end - begin) - 1, end - 1, 1,
|
||
&xfered_len) == TARGET_XFER_OK)
|
||
{
|
||
forward = 0;
|
||
--current_end;
|
||
}
|
||
else
|
||
return;
|
||
|
||
/* Loop invariant is that the [current_begin, current_end) was previously
|
||
found to be not readable as a whole.
|
||
|
||
Note loop condition -- if the range has 1 byte, we can't divide the range
|
||
so there's no point trying further. */
|
||
while (current_end - current_begin > 1)
|
||
{
|
||
ULONGEST first_half_begin, first_half_end;
|
||
ULONGEST second_half_begin, second_half_end;
|
||
LONGEST xfer;
|
||
ULONGEST middle = current_begin + (current_end - current_begin) / 2;
|
||
|
||
if (forward)
|
||
{
|
||
first_half_begin = current_begin;
|
||
first_half_end = middle;
|
||
second_half_begin = middle;
|
||
second_half_end = current_end;
|
||
}
|
||
else
|
||
{
|
||
first_half_begin = middle;
|
||
first_half_end = current_end;
|
||
second_half_begin = current_begin;
|
||
second_half_end = middle;
|
||
}
|
||
|
||
xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf.get () + (first_half_begin - begin) * unit_size,
|
||
first_half_begin,
|
||
first_half_end - first_half_begin);
|
||
|
||
if (xfer == first_half_end - first_half_begin)
|
||
{
|
||
/* This half reads up fine. So, the error must be in the
|
||
other half. */
|
||
current_begin = second_half_begin;
|
||
current_end = second_half_end;
|
||
}
|
||
else
|
||
{
|
||
/* This half is not readable. Because we've tried one byte, we
|
||
know some part of this half if actually readable. Go to the next
|
||
iteration to divide again and try to read.
|
||
|
||
We don't handle the other half, because this function only tries
|
||
to read a single readable subrange. */
|
||
current_begin = first_half_begin;
|
||
current_end = first_half_end;
|
||
}
|
||
}
|
||
|
||
if (forward)
|
||
{
|
||
/* The [begin, current_begin) range has been read. */
|
||
result->emplace_back (begin, current_end, std::move (buf));
|
||
}
|
||
else
|
||
{
|
||
/* The [current_end, end) range has been read. */
|
||
LONGEST region_len = end - current_end;
|
||
|
||
gdb::unique_xmalloc_ptr<gdb_byte> data
|
||
((gdb_byte *) xmalloc (region_len * unit_size));
|
||
memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
|
||
region_len * unit_size);
|
||
result->emplace_back (current_end, end, std::move (data));
|
||
}
|
||
}
|
||
|
||
std::vector<memory_read_result>
|
||
read_memory_robust (struct target_ops *ops,
|
||
const ULONGEST offset, const LONGEST len)
|
||
{
|
||
std::vector<memory_read_result> result;
|
||
int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
|
||
|
||
LONGEST xfered_total = 0;
|
||
while (xfered_total < len)
|
||
{
|
||
struct mem_region *region = lookup_mem_region (offset + xfered_total);
|
||
LONGEST region_len;
|
||
|
||
/* If there is no explicit region, a fake one should be created. */
|
||
gdb_assert (region);
|
||
|
||
if (region->hi == 0)
|
||
region_len = len - xfered_total;
|
||
else
|
||
region_len = region->hi - offset;
|
||
|
||
if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
|
||
{
|
||
/* Cannot read this region. Note that we can end up here only
|
||
if the region is explicitly marked inaccessible, or
|
||
'inaccessible-by-default' is in effect. */
|
||
xfered_total += region_len;
|
||
}
|
||
else
|
||
{
|
||
LONGEST to_read = std::min (len - xfered_total, region_len);
|
||
gdb::unique_xmalloc_ptr<gdb_byte> buffer
|
||
((gdb_byte *) xmalloc (to_read * unit_size));
|
||
|
||
LONGEST xfered_partial =
|
||
target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
|
||
offset + xfered_total, to_read);
|
||
/* Call an observer, notifying them of the xfer progress? */
|
||
if (xfered_partial <= 0)
|
||
{
|
||
/* Got an error reading full chunk. See if maybe we can read
|
||
some subrange. */
|
||
read_whatever_is_readable (ops, offset + xfered_total,
|
||
offset + xfered_total + to_read,
|
||
unit_size, &result);
|
||
xfered_total += to_read;
|
||
}
|
||
else
|
||
{
|
||
result.emplace_back (offset + xfered_total,
|
||
offset + xfered_total + xfered_partial,
|
||
std::move (buffer));
|
||
xfered_total += xfered_partial;
|
||
}
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* An alternative to target_write with progress callbacks. */
|
||
|
||
LONGEST
|
||
target_write_with_progress (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, const gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len,
|
||
void (*progress) (ULONGEST, void *), void *baton)
|
||
{
|
||
LONGEST xfered_total = 0;
|
||
int unit_size = 1;
|
||
|
||
/* If we are writing to a memory object, find the length of an addressable
|
||
unit for that architecture. */
|
||
if (object == TARGET_OBJECT_MEMORY
|
||
|| object == TARGET_OBJECT_STACK_MEMORY
|
||
|| object == TARGET_OBJECT_CODE_MEMORY
|
||
|| object == TARGET_OBJECT_RAW_MEMORY)
|
||
unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
|
||
|
||
/* Give the progress callback a chance to set up. */
|
||
if (progress)
|
||
(*progress) (0, baton);
|
||
|
||
while (xfered_total < len)
|
||
{
|
||
ULONGEST xfered_partial;
|
||
enum target_xfer_status status;
|
||
|
||
status = target_write_partial (ops, object, annex,
|
||
buf + xfered_total * unit_size,
|
||
offset + xfered_total, len - xfered_total,
|
||
&xfered_partial);
|
||
|
||
if (status != TARGET_XFER_OK)
|
||
return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
|
||
|
||
if (progress)
|
||
(*progress) (xfered_partial, baton);
|
||
|
||
xfered_total += xfered_partial;
|
||
QUIT;
|
||
}
|
||
return len;
|
||
}
|
||
|
||
/* For docs on target_write see target.h. */
|
||
|
||
LONGEST
|
||
target_write (struct target_ops *ops,
|
||
enum target_object object,
|
||
const char *annex, const gdb_byte *buf,
|
||
ULONGEST offset, LONGEST len)
|
||
{
|
||
return target_write_with_progress (ops, object, annex, buf, offset, len,
|
||
NULL, NULL);
|
||
}
|
||
|
||
/* Help for target_read_alloc and target_read_stralloc. See their comments
|
||
for details. */
|
||
|
||
template <typename T>
|
||
gdb::optional<gdb::def_vector<T>>
|
||
target_read_alloc_1 (struct target_ops *ops, enum target_object object,
|
||
const char *annex)
|
||
{
|
||
gdb::def_vector<T> buf;
|
||
size_t buf_pos = 0;
|
||
const int chunk = 4096;
|
||
|
||
/* This function does not have a length parameter; it reads the
|
||
entire OBJECT). Also, it doesn't support objects fetched partly
|
||
from one target and partly from another (in a different stratum,
|
||
e.g. a core file and an executable). Both reasons make it
|
||
unsuitable for reading memory. */
|
||
gdb_assert (object != TARGET_OBJECT_MEMORY);
|
||
|
||
/* Start by reading up to 4K at a time. The target will throttle
|
||
this number down if necessary. */
|
||
while (1)
|
||
{
|
||
ULONGEST xfered_len;
|
||
enum target_xfer_status status;
|
||
|
||
buf.resize (buf_pos + chunk);
|
||
|
||
status = target_read_partial (ops, object, annex,
|
||
(gdb_byte *) &buf[buf_pos],
|
||
buf_pos, chunk,
|
||
&xfered_len);
|
||
|
||
if (status == TARGET_XFER_EOF)
|
||
{
|
||
/* Read all there was. */
|
||
buf.resize (buf_pos);
|
||
return buf;
|
||
}
|
||
else if (status != TARGET_XFER_OK)
|
||
{
|
||
/* An error occurred. */
|
||
return {};
|
||
}
|
||
|
||
buf_pos += xfered_len;
|
||
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
/* See target.h */
|
||
|
||
gdb::optional<gdb::byte_vector>
|
||
target_read_alloc (struct target_ops *ops, enum target_object object,
|
||
const char *annex)
|
||
{
|
||
return target_read_alloc_1<gdb_byte> (ops, object, annex);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::optional<gdb::char_vector>
|
||
target_read_stralloc (struct target_ops *ops, enum target_object object,
|
||
const char *annex)
|
||
{
|
||
gdb::optional<gdb::char_vector> buf
|
||
= target_read_alloc_1<char> (ops, object, annex);
|
||
|
||
if (!buf)
|
||
return {};
|
||
|
||
if (buf->empty () || buf->back () != '\0')
|
||
buf->push_back ('\0');
|
||
|
||
/* Check for embedded NUL bytes; but allow trailing NULs. */
|
||
for (auto it = std::find (buf->begin (), buf->end (), '\0');
|
||
it != buf->end (); it++)
|
||
if (*it != '\0')
|
||
{
|
||
warning (_("target object %d, annex %s, "
|
||
"contained unexpected null characters"),
|
||
(int) object, annex ? annex : "(none)");
|
||
break;
|
||
}
|
||
|
||
return buf;
|
||
}
|
||
|
||
/* Memory transfer methods. */
|
||
|
||
void
|
||
get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
|
||
LONGEST len)
|
||
{
|
||
/* This method is used to read from an alternate, non-current
|
||
target. This read must bypass the overlay support (as symbols
|
||
don't match this target), and GDB's internal cache (wrong cache
|
||
for this target). */
|
||
if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
|
||
!= len)
|
||
memory_error (TARGET_XFER_E_IO, addr);
|
||
}
|
||
|
||
ULONGEST
|
||
get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
|
||
int len, enum bfd_endian byte_order)
|
||
{
|
||
gdb_byte buf[sizeof (ULONGEST)];
|
||
|
||
gdb_assert (len <= sizeof (buf));
|
||
get_target_memory (ops, addr, buf, len);
|
||
return extract_unsigned_integer (buf, len, byte_order);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_insert_breakpoint (struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt)
|
||
{
|
||
if (!may_insert_breakpoints)
|
||
{
|
||
warning (_("May not insert breakpoints"));
|
||
return 1;
|
||
}
|
||
|
||
return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_remove_breakpoint (struct gdbarch *gdbarch,
|
||
struct bp_target_info *bp_tgt,
|
||
enum remove_bp_reason reason)
|
||
{
|
||
/* This is kind of a weird case to handle, but the permission might
|
||
have been changed after breakpoints were inserted - in which case
|
||
we should just take the user literally and assume that any
|
||
breakpoints should be left in place. */
|
||
if (!may_insert_breakpoints)
|
||
{
|
||
warning (_("May not remove breakpoints"));
|
||
return 1;
|
||
}
|
||
|
||
return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
|
||
}
|
||
|
||
static void
|
||
info_target_command (const char *args, int from_tty)
|
||
{
|
||
int has_all_mem = 0;
|
||
|
||
if (current_program_space->symfile_object_file != NULL)
|
||
{
|
||
objfile *objf = current_program_space->symfile_object_file;
|
||
printf_unfiltered (_("Symbols from \"%s\".\n"),
|
||
objfile_name (objf));
|
||
}
|
||
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
if (!t->has_memory ())
|
||
continue;
|
||
|
||
if ((int) (t->stratum ()) <= (int) dummy_stratum)
|
||
continue;
|
||
if (has_all_mem)
|
||
printf_unfiltered (_("\tWhile running this, "
|
||
"GDB does not access memory from...\n"));
|
||
printf_unfiltered ("%s:\n", t->longname ());
|
||
t->files_info ();
|
||
has_all_mem = t->has_all_memory ();
|
||
}
|
||
}
|
||
|
||
/* This function is called before any new inferior is created, e.g.
|
||
by running a program, attaching, or connecting to a target.
|
||
It cleans up any state from previous invocations which might
|
||
change between runs. This is a subset of what target_preopen
|
||
resets (things which might change between targets). */
|
||
|
||
void
|
||
target_pre_inferior (int from_tty)
|
||
{
|
||
/* Clear out solib state. Otherwise the solib state of the previous
|
||
inferior might have survived and is entirely wrong for the new
|
||
target. This has been observed on GNU/Linux using glibc 2.3. How
|
||
to reproduce:
|
||
|
||
bash$ ./foo&
|
||
[1] 4711
|
||
bash$ ./foo&
|
||
[1] 4712
|
||
bash$ gdb ./foo
|
||
[...]
|
||
(gdb) attach 4711
|
||
(gdb) detach
|
||
(gdb) attach 4712
|
||
Cannot access memory at address 0xdeadbeef
|
||
*/
|
||
|
||
/* In some OSs, the shared library list is the same/global/shared
|
||
across inferiors. If code is shared between processes, so are
|
||
memory regions and features. */
|
||
if (!gdbarch_has_global_solist (target_gdbarch ()))
|
||
{
|
||
no_shared_libraries (NULL, from_tty);
|
||
|
||
invalidate_target_mem_regions ();
|
||
|
||
target_clear_description ();
|
||
}
|
||
|
||
/* attach_flag may be set if the previous process associated with
|
||
the inferior was attached to. */
|
||
current_inferior ()->attach_flag = 0;
|
||
|
||
current_inferior ()->highest_thread_num = 0;
|
||
|
||
agent_capability_invalidate ();
|
||
}
|
||
|
||
/* This is to be called by the open routine before it does
|
||
anything. */
|
||
|
||
void
|
||
target_preopen (int from_tty)
|
||
{
|
||
dont_repeat ();
|
||
|
||
if (current_inferior ()->pid != 0)
|
||
{
|
||
if (!from_tty
|
||
|| !target_has_execution ()
|
||
|| query (_("A program is being debugged already. Kill it? ")))
|
||
{
|
||
/* Core inferiors actually should be detached, not
|
||
killed. */
|
||
if (target_has_execution ())
|
||
target_kill ();
|
||
else
|
||
target_detach (current_inferior (), 0);
|
||
}
|
||
else
|
||
error (_("Program not killed."));
|
||
}
|
||
|
||
/* Calling target_kill may remove the target from the stack. But if
|
||
it doesn't (which seems like a win for UDI), remove it now. */
|
||
/* Leave the exec target, though. The user may be switching from a
|
||
live process to a core of the same program. */
|
||
pop_all_targets_above (file_stratum);
|
||
|
||
target_pre_inferior (from_tty);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_detach (inferior *inf, int from_tty)
|
||
{
|
||
/* After we have detached, we will clear the register cache for this inferior
|
||
by calling registers_changed_ptid. We must save the pid_ptid before
|
||
detaching, as the target detach method will clear inf->pid. */
|
||
ptid_t save_pid_ptid = ptid_t (inf->pid);
|
||
|
||
/* As long as some to_detach implementations rely on the current_inferior
|
||
(either directly, or indirectly, like through target_gdbarch or by
|
||
reading memory), INF needs to be the current inferior. When that
|
||
requirement will become no longer true, then we can remove this
|
||
assertion. */
|
||
gdb_assert (inf == current_inferior ());
|
||
|
||
prepare_for_detach ();
|
||
|
||
/* Hold a strong reference because detaching may unpush the
|
||
target. */
|
||
auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
|
||
|
||
current_top_target ()->detach (inf, from_tty);
|
||
|
||
process_stratum_target *proc_target
|
||
= as_process_stratum_target (proc_target_ref.get ());
|
||
|
||
registers_changed_ptid (proc_target, save_pid_ptid);
|
||
|
||
/* We have to ensure we have no frame cache left. Normally,
|
||
registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
|
||
inferior_ptid matches save_pid_ptid, but in our case, it does not
|
||
call it, as inferior_ptid has been reset. */
|
||
reinit_frame_cache ();
|
||
}
|
||
|
||
void
|
||
target_disconnect (const char *args, int from_tty)
|
||
{
|
||
/* If we're in breakpoints-always-inserted mode or if breakpoints
|
||
are global across processes, we have to remove them before
|
||
disconnecting. */
|
||
remove_breakpoints ();
|
||
|
||
current_top_target ()->disconnect (args, from_tty);
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
ptid_t
|
||
target_wait (ptid_t ptid, struct target_waitstatus *status,
|
||
target_wait_flags options)
|
||
{
|
||
target_ops *target = current_top_target ();
|
||
|
||
if (!target->can_async_p ())
|
||
gdb_assert ((options & TARGET_WNOHANG) == 0);
|
||
|
||
return target->wait (ptid, status, options);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
ptid_t
|
||
default_target_wait (struct target_ops *ops,
|
||
ptid_t ptid, struct target_waitstatus *status,
|
||
target_wait_flags options)
|
||
{
|
||
status->kind = TARGET_WAITKIND_IGNORE;
|
||
return minus_one_ptid;
|
||
}
|
||
|
||
std::string
|
||
target_pid_to_str (ptid_t ptid)
|
||
{
|
||
return current_top_target ()->pid_to_str (ptid);
|
||
}
|
||
|
||
const char *
|
||
target_thread_name (struct thread_info *info)
|
||
{
|
||
gdb_assert (info->inf == current_inferior ());
|
||
|
||
return current_top_target ()->thread_name (info);
|
||
}
|
||
|
||
struct thread_info *
|
||
target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
|
||
int handle_len,
|
||
struct inferior *inf)
|
||
{
|
||
return current_top_target ()->thread_handle_to_thread_info (thread_handle,
|
||
handle_len, inf);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::byte_vector
|
||
target_thread_info_to_thread_handle (struct thread_info *tip)
|
||
{
|
||
return current_top_target ()->thread_info_to_thread_handle (tip);
|
||
}
|
||
|
||
void
|
||
target_resume (ptid_t ptid, int step, enum gdb_signal signal)
|
||
{
|
||
process_stratum_target *curr_target = current_inferior ()->process_target ();
|
||
|
||
target_dcache_invalidate ();
|
||
|
||
current_top_target ()->resume (ptid, step, signal);
|
||
|
||
registers_changed_ptid (curr_target, ptid);
|
||
/* We only set the internal executing state here. The user/frontend
|
||
running state is set at a higher level. This also clears the
|
||
thread's stop_pc as side effect. */
|
||
set_executing (curr_target, ptid, true);
|
||
clear_inline_frame_state (curr_target, ptid);
|
||
}
|
||
|
||
/* If true, target_commit_resume is a nop. */
|
||
static int defer_target_commit_resume;
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_commit_resume (void)
|
||
{
|
||
if (defer_target_commit_resume)
|
||
return;
|
||
|
||
current_top_target ()->commit_resume ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
scoped_restore_tmpl<int>
|
||
make_scoped_defer_target_commit_resume ()
|
||
{
|
||
return make_scoped_restore (&defer_target_commit_resume, 1);
|
||
}
|
||
|
||
void
|
||
target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
|
||
{
|
||
current_top_target ()->pass_signals (pass_signals);
|
||
}
|
||
|
||
void
|
||
target_program_signals (gdb::array_view<const unsigned char> program_signals)
|
||
{
|
||
current_top_target ()->program_signals (program_signals);
|
||
}
|
||
|
||
static bool
|
||
default_follow_fork (struct target_ops *self, bool follow_child,
|
||
bool detach_fork)
|
||
{
|
||
/* Some target returned a fork event, but did not know how to follow it. */
|
||
internal_error (__FILE__, __LINE__,
|
||
_("could not find a target to follow fork"));
|
||
}
|
||
|
||
/* Look through the list of possible targets for a target that can
|
||
follow forks. */
|
||
|
||
bool
|
||
target_follow_fork (bool follow_child, bool detach_fork)
|
||
{
|
||
return current_top_target ()->follow_fork (follow_child, detach_fork);
|
||
}
|
||
|
||
/* Target wrapper for follow exec hook. */
|
||
|
||
void
|
||
target_follow_exec (struct inferior *inf, const char *execd_pathname)
|
||
{
|
||
current_top_target ()->follow_exec (inf, execd_pathname);
|
||
}
|
||
|
||
static void
|
||
default_mourn_inferior (struct target_ops *self)
|
||
{
|
||
internal_error (__FILE__, __LINE__,
|
||
_("could not find a target to follow mourn inferior"));
|
||
}
|
||
|
||
void
|
||
target_mourn_inferior (ptid_t ptid)
|
||
{
|
||
gdb_assert (ptid.pid () == inferior_ptid.pid ());
|
||
current_top_target ()->mourn_inferior ();
|
||
|
||
/* We no longer need to keep handles on any of the object files.
|
||
Make sure to release them to avoid unnecessarily locking any
|
||
of them while we're not actually debugging. */
|
||
bfd_cache_close_all ();
|
||
}
|
||
|
||
/* Look for a target which can describe architectural features, starting
|
||
from TARGET. If we find one, return its description. */
|
||
|
||
const struct target_desc *
|
||
target_read_description (struct target_ops *target)
|
||
{
|
||
return target->read_description ();
|
||
}
|
||
|
||
|
||
/* Default implementation of memory-searching. */
|
||
|
||
static int
|
||
default_search_memory (struct target_ops *self,
|
||
CORE_ADDR start_addr, ULONGEST search_space_len,
|
||
const gdb_byte *pattern, ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp)
|
||
{
|
||
auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
|
||
{
|
||
return target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
|
||
result, addr, len) == len;
|
||
};
|
||
|
||
/* Start over from the top of the target stack. */
|
||
return simple_search_memory (read_memory, start_addr, search_space_len,
|
||
pattern, pattern_len, found_addrp);
|
||
}
|
||
|
||
/* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
|
||
sequence of bytes in PATTERN with length PATTERN_LEN.
|
||
|
||
The result is 1 if found, 0 if not found, and -1 if there was an error
|
||
requiring halting of the search (e.g. memory read error).
|
||
If the pattern is found the address is recorded in FOUND_ADDRP. */
|
||
|
||
int
|
||
target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
|
||
const gdb_byte *pattern, ULONGEST pattern_len,
|
||
CORE_ADDR *found_addrp)
|
||
{
|
||
return current_top_target ()->search_memory (start_addr, search_space_len,
|
||
pattern, pattern_len, found_addrp);
|
||
}
|
||
|
||
/* Look through the currently pushed targets. If none of them will
|
||
be able to restart the currently running process, issue an error
|
||
message. */
|
||
|
||
void
|
||
target_require_runnable (void)
|
||
{
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
/* If this target knows how to create a new program, then
|
||
assume we will still be able to after killing the current
|
||
one. Either killing and mourning will not pop T, or else
|
||
find_default_run_target will find it again. */
|
||
if (t->can_create_inferior ())
|
||
return;
|
||
|
||
/* Do not worry about targets at certain strata that can not
|
||
create inferiors. Assume they will be pushed again if
|
||
necessary, and continue to the process_stratum. */
|
||
if (t->stratum () > process_stratum)
|
||
continue;
|
||
|
||
error (_("The \"%s\" target does not support \"run\". "
|
||
"Try \"help target\" or \"continue\"."),
|
||
t->shortname ());
|
||
}
|
||
|
||
/* This function is only called if the target is running. In that
|
||
case there should have been a process_stratum target and it
|
||
should either know how to create inferiors, or not... */
|
||
internal_error (__FILE__, __LINE__, _("No targets found"));
|
||
}
|
||
|
||
/* Whether GDB is allowed to fall back to the default run target for
|
||
"run", "attach", etc. when no target is connected yet. */
|
||
static bool auto_connect_native_target = true;
|
||
|
||
static void
|
||
show_auto_connect_native_target (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c, const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Whether GDB may automatically connect to the "
|
||
"native target is %s.\n"),
|
||
value);
|
||
}
|
||
|
||
/* A pointer to the target that can respond to "run" or "attach".
|
||
Native targets are always singletons and instantiated early at GDB
|
||
startup. */
|
||
static target_ops *the_native_target;
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
set_native_target (target_ops *target)
|
||
{
|
||
if (the_native_target != NULL)
|
||
internal_error (__FILE__, __LINE__,
|
||
_("native target already set (\"%s\")."),
|
||
the_native_target->longname ());
|
||
|
||
the_native_target = target;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
target_ops *
|
||
get_native_target ()
|
||
{
|
||
return the_native_target;
|
||
}
|
||
|
||
/* Look through the list of possible targets for a target that can
|
||
execute a run or attach command without any other data. This is
|
||
used to locate the default process stratum.
|
||
|
||
If DO_MESG is not NULL, the result is always valid (error() is
|
||
called for errors); else, return NULL on error. */
|
||
|
||
static struct target_ops *
|
||
find_default_run_target (const char *do_mesg)
|
||
{
|
||
if (auto_connect_native_target && the_native_target != NULL)
|
||
return the_native_target;
|
||
|
||
if (do_mesg != NULL)
|
||
error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
|
||
return NULL;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct target_ops *
|
||
find_attach_target (void)
|
||
{
|
||
/* If a target on the current stack can attach, use it. */
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
if (t->can_attach ())
|
||
return t;
|
||
}
|
||
|
||
/* Otherwise, use the default run target for attaching. */
|
||
return find_default_run_target ("attach");
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct target_ops *
|
||
find_run_target (void)
|
||
{
|
||
/* If a target on the current stack can run, use it. */
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
if (t->can_create_inferior ())
|
||
return t;
|
||
}
|
||
|
||
/* Otherwise, use the default run target. */
|
||
return find_default_run_target ("run");
|
||
}
|
||
|
||
bool
|
||
target_ops::info_proc (const char *args, enum info_proc_what what)
|
||
{
|
||
return false;
|
||
}
|
||
|
||
/* Implement the "info proc" command. */
|
||
|
||
int
|
||
target_info_proc (const char *args, enum info_proc_what what)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If we're already connected to something that can get us OS
|
||
related data, use it. Otherwise, try using the native
|
||
target. */
|
||
t = find_target_at (process_stratum);
|
||
if (t == NULL)
|
||
t = find_default_run_target (NULL);
|
||
|
||
for (; t != NULL; t = t->beneath ())
|
||
{
|
||
if (t->info_proc (args, what))
|
||
{
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_info_proc (\"%s\", %d)\n", args, what);
|
||
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
find_default_supports_disable_randomization (struct target_ops *self)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
t = find_default_run_target (NULL);
|
||
if (t != NULL)
|
||
return t->supports_disable_randomization ();
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
target_supports_disable_randomization (void)
|
||
{
|
||
return current_top_target ()->supports_disable_randomization ();
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
int
|
||
target_supports_multi_process (void)
|
||
{
|
||
return current_top_target ()->supports_multi_process ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::optional<gdb::char_vector>
|
||
target_get_osdata (const char *type)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If we're already connected to something that can get us OS
|
||
related data, use it. Otherwise, try using the native
|
||
target. */
|
||
t = find_target_at (process_stratum);
|
||
if (t == NULL)
|
||
t = find_default_run_target ("get OS data");
|
||
|
||
if (!t)
|
||
return {};
|
||
|
||
return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
|
||
}
|
||
|
||
/* Determine the current address space of thread PTID. */
|
||
|
||
struct address_space *
|
||
target_thread_address_space (ptid_t ptid)
|
||
{
|
||
struct address_space *aspace;
|
||
|
||
aspace = current_top_target ()->thread_address_space (ptid);
|
||
gdb_assert (aspace != NULL);
|
||
|
||
return aspace;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
target_ops *
|
||
target_ops::beneath () const
|
||
{
|
||
return current_inferior ()->find_target_beneath (this);
|
||
}
|
||
|
||
void
|
||
target_ops::close ()
|
||
{
|
||
}
|
||
|
||
bool
|
||
target_ops::can_attach ()
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
target_ops::attach (const char *, int)
|
||
{
|
||
gdb_assert_not_reached ("target_ops::attach called");
|
||
}
|
||
|
||
bool
|
||
target_ops::can_create_inferior ()
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
target_ops::create_inferior (const char *, const std::string &,
|
||
char **, int)
|
||
{
|
||
gdb_assert_not_reached ("target_ops::create_inferior called");
|
||
}
|
||
|
||
bool
|
||
target_ops::can_run ()
|
||
{
|
||
return false;
|
||
}
|
||
|
||
int
|
||
target_can_run ()
|
||
{
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
if (t->can_run ())
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Target file operations. */
|
||
|
||
static struct target_ops *
|
||
default_fileio_target (void)
|
||
{
|
||
struct target_ops *t;
|
||
|
||
/* If we're already connected to something that can perform
|
||
file I/O, use it. Otherwise, try using the native target. */
|
||
t = find_target_at (process_stratum);
|
||
if (t != NULL)
|
||
return t;
|
||
return find_default_run_target ("file I/O");
|
||
}
|
||
|
||
/* File handle for target file operations. */
|
||
|
||
struct fileio_fh_t
|
||
{
|
||
/* The target on which this file is open. NULL if the target is
|
||
meanwhile closed while the handle is open. */
|
||
target_ops *target;
|
||
|
||
/* The file descriptor on the target. */
|
||
int target_fd;
|
||
|
||
/* Check whether this fileio_fh_t represents a closed file. */
|
||
bool is_closed ()
|
||
{
|
||
return target_fd < 0;
|
||
}
|
||
};
|
||
|
||
/* Vector of currently open file handles. The value returned by
|
||
target_fileio_open and passed as the FD argument to other
|
||
target_fileio_* functions is an index into this vector. This
|
||
vector's entries are never freed; instead, files are marked as
|
||
closed, and the handle becomes available for reuse. */
|
||
static std::vector<fileio_fh_t> fileio_fhandles;
|
||
|
||
/* Index into fileio_fhandles of the lowest handle that might be
|
||
closed. This permits handle reuse without searching the whole
|
||
list each time a new file is opened. */
|
||
static int lowest_closed_fd;
|
||
|
||
/* Invalidate the target associated with open handles that were open
|
||
on target TARG, since we're about to close (and maybe destroy) the
|
||
target. The handles remain open from the client's perspective, but
|
||
trying to do anything with them other than closing them will fail
|
||
with EIO. */
|
||
|
||
static void
|
||
fileio_handles_invalidate_target (target_ops *targ)
|
||
{
|
||
for (fileio_fh_t &fh : fileio_fhandles)
|
||
if (fh.target == targ)
|
||
fh.target = NULL;
|
||
}
|
||
|
||
/* Acquire a target fileio file descriptor. */
|
||
|
||
static int
|
||
acquire_fileio_fd (target_ops *target, int target_fd)
|
||
{
|
||
/* Search for closed handles to reuse. */
|
||
for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
|
||
{
|
||
fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
|
||
|
||
if (fh.is_closed ())
|
||
break;
|
||
}
|
||
|
||
/* Push a new handle if no closed handles were found. */
|
||
if (lowest_closed_fd == fileio_fhandles.size ())
|
||
fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
|
||
else
|
||
fileio_fhandles[lowest_closed_fd] = {target, target_fd};
|
||
|
||
/* Should no longer be marked closed. */
|
||
gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
|
||
|
||
/* Return its index, and start the next lookup at
|
||
the next index. */
|
||
return lowest_closed_fd++;
|
||
}
|
||
|
||
/* Release a target fileio file descriptor. */
|
||
|
||
static void
|
||
release_fileio_fd (int fd, fileio_fh_t *fh)
|
||
{
|
||
fh->target_fd = -1;
|
||
lowest_closed_fd = std::min (lowest_closed_fd, fd);
|
||
}
|
||
|
||
/* Return a pointer to the fileio_fhandle_t corresponding to FD. */
|
||
|
||
static fileio_fh_t *
|
||
fileio_fd_to_fh (int fd)
|
||
{
|
||
return &fileio_fhandles[fd];
|
||
}
|
||
|
||
|
||
/* Default implementations of file i/o methods. We don't want these
|
||
to delegate automatically, because we need to know which target
|
||
supported the method, in order to call it directly from within
|
||
pread/pwrite, etc. */
|
||
|
||
int
|
||
target_ops::fileio_open (struct inferior *inf, const char *filename,
|
||
int flags, int mode, int warn_if_slow,
|
||
int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
int
|
||
target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
|
||
ULONGEST offset, int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
int
|
||
target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
|
||
ULONGEST offset, int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
int
|
||
target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
int
|
||
target_ops::fileio_close (int fd, int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
int
|
||
target_ops::fileio_unlink (struct inferior *inf, const char *filename,
|
||
int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
gdb::optional<std::string>
|
||
target_ops::fileio_readlink (struct inferior *inf, const char *filename,
|
||
int *target_errno)
|
||
{
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return {};
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_open (struct inferior *inf, const char *filename,
|
||
int flags, int mode, bool warn_if_slow, int *target_errno)
|
||
{
|
||
for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
int fd = t->fileio_open (inf, filename, flags, mode,
|
||
warn_if_slow, target_errno);
|
||
|
||
if (fd == -1 && *target_errno == FILEIO_ENOSYS)
|
||
continue;
|
||
|
||
if (fd < 0)
|
||
fd = -1;
|
||
else
|
||
fd = acquire_fileio_fd (t, fd);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_open (%d,%s,0x%x,0%o,%d)"
|
||
" = %d (%d)\n",
|
||
inf == NULL ? 0 : inf->num,
|
||
filename, flags, mode,
|
||
warn_if_slow, fd,
|
||
fd != -1 ? 0 : *target_errno);
|
||
return fd;
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
|
||
ULONGEST offset, int *target_errno)
|
||
{
|
||
fileio_fh_t *fh = fileio_fd_to_fh (fd);
|
||
int ret = -1;
|
||
|
||
if (fh->is_closed ())
|
||
*target_errno = EBADF;
|
||
else if (fh->target == NULL)
|
||
*target_errno = EIO;
|
||
else
|
||
ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
|
||
len, offset, target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_pwrite (%d,...,%d,%s) "
|
||
"= %d (%d)\n",
|
||
fd, len, pulongest (offset),
|
||
ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_pread (int fd, gdb_byte *read_buf, int len,
|
||
ULONGEST offset, int *target_errno)
|
||
{
|
||
fileio_fh_t *fh = fileio_fd_to_fh (fd);
|
||
int ret = -1;
|
||
|
||
if (fh->is_closed ())
|
||
*target_errno = EBADF;
|
||
else if (fh->target == NULL)
|
||
*target_errno = EIO;
|
||
else
|
||
ret = fh->target->fileio_pread (fh->target_fd, read_buf,
|
||
len, offset, target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_pread (%d,...,%d,%s) "
|
||
"= %d (%d)\n",
|
||
fd, len, pulongest (offset),
|
||
ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
|
||
{
|
||
fileio_fh_t *fh = fileio_fd_to_fh (fd);
|
||
int ret = -1;
|
||
|
||
if (fh->is_closed ())
|
||
*target_errno = EBADF;
|
||
else if (fh->target == NULL)
|
||
*target_errno = EIO;
|
||
else
|
||
ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_fstat (%d) = %d (%d)\n",
|
||
fd, ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_close (int fd, int *target_errno)
|
||
{
|
||
fileio_fh_t *fh = fileio_fd_to_fh (fd);
|
||
int ret = -1;
|
||
|
||
if (fh->is_closed ())
|
||
*target_errno = EBADF;
|
||
else
|
||
{
|
||
if (fh->target != NULL)
|
||
ret = fh->target->fileio_close (fh->target_fd,
|
||
target_errno);
|
||
else
|
||
ret = 0;
|
||
release_fileio_fd (fd, fh);
|
||
}
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_close (%d) = %d (%d)\n",
|
||
fd, ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_fileio_unlink (struct inferior *inf, const char *filename,
|
||
int *target_errno)
|
||
{
|
||
for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
int ret = t->fileio_unlink (inf, filename, target_errno);
|
||
|
||
if (ret == -1 && *target_errno == FILEIO_ENOSYS)
|
||
continue;
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_unlink (%d,%s)"
|
||
" = %d (%d)\n",
|
||
inf == NULL ? 0 : inf->num, filename,
|
||
ret, ret != -1 ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return -1;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::optional<std::string>
|
||
target_fileio_readlink (struct inferior *inf, const char *filename,
|
||
int *target_errno)
|
||
{
|
||
for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
gdb::optional<std::string> ret
|
||
= t->fileio_readlink (inf, filename, target_errno);
|
||
|
||
if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
|
||
continue;
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog,
|
||
"target_fileio_readlink (%d,%s)"
|
||
" = %s (%d)\n",
|
||
inf == NULL ? 0 : inf->num,
|
||
filename, ret ? ret->c_str () : "(nil)",
|
||
ret ? 0 : *target_errno);
|
||
return ret;
|
||
}
|
||
|
||
*target_errno = FILEIO_ENOSYS;
|
||
return {};
|
||
}
|
||
|
||
/* Like scoped_fd, but specific to target fileio. */
|
||
|
||
class scoped_target_fd
|
||
{
|
||
public:
|
||
explicit scoped_target_fd (int fd) noexcept
|
||
: m_fd (fd)
|
||
{
|
||
}
|
||
|
||
~scoped_target_fd ()
|
||
{
|
||
if (m_fd >= 0)
|
||
{
|
||
int target_errno;
|
||
|
||
target_fileio_close (m_fd, &target_errno);
|
||
}
|
||
}
|
||
|
||
DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
|
||
|
||
int get () const noexcept
|
||
{
|
||
return m_fd;
|
||
}
|
||
|
||
private:
|
||
int m_fd;
|
||
};
|
||
|
||
/* Read target file FILENAME, in the filesystem as seen by INF. If
|
||
INF is NULL, use the filesystem seen by the debugger (GDB or, for
|
||
remote targets, the remote stub). Store the result in *BUF_P and
|
||
return the size of the transferred data. PADDING additional bytes
|
||
are available in *BUF_P. This is a helper function for
|
||
target_fileio_read_alloc; see the declaration of that function for
|
||
more information. */
|
||
|
||
static LONGEST
|
||
target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
|
||
gdb_byte **buf_p, int padding)
|
||
{
|
||
size_t buf_alloc, buf_pos;
|
||
gdb_byte *buf;
|
||
LONGEST n;
|
||
int target_errno;
|
||
|
||
scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
|
||
0700, false, &target_errno));
|
||
if (fd.get () == -1)
|
||
return -1;
|
||
|
||
/* Start by reading up to 4K at a time. The target will throttle
|
||
this number down if necessary. */
|
||
buf_alloc = 4096;
|
||
buf = (gdb_byte *) xmalloc (buf_alloc);
|
||
buf_pos = 0;
|
||
while (1)
|
||
{
|
||
n = target_fileio_pread (fd.get (), &buf[buf_pos],
|
||
buf_alloc - buf_pos - padding, buf_pos,
|
||
&target_errno);
|
||
if (n < 0)
|
||
{
|
||
/* An error occurred. */
|
||
xfree (buf);
|
||
return -1;
|
||
}
|
||
else if (n == 0)
|
||
{
|
||
/* Read all there was. */
|
||
if (buf_pos == 0)
|
||
xfree (buf);
|
||
else
|
||
*buf_p = buf;
|
||
return buf_pos;
|
||
}
|
||
|
||
buf_pos += n;
|
||
|
||
/* If the buffer is filling up, expand it. */
|
||
if (buf_alloc < buf_pos * 2)
|
||
{
|
||
buf_alloc *= 2;
|
||
buf = (gdb_byte *) xrealloc (buf, buf_alloc);
|
||
}
|
||
|
||
QUIT;
|
||
}
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
LONGEST
|
||
target_fileio_read_alloc (struct inferior *inf, const char *filename,
|
||
gdb_byte **buf_p)
|
||
{
|
||
return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
gdb::unique_xmalloc_ptr<char>
|
||
target_fileio_read_stralloc (struct inferior *inf, const char *filename)
|
||
{
|
||
gdb_byte *buffer;
|
||
char *bufstr;
|
||
LONGEST i, transferred;
|
||
|
||
transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
|
||
bufstr = (char *) buffer;
|
||
|
||
if (transferred < 0)
|
||
return gdb::unique_xmalloc_ptr<char> (nullptr);
|
||
|
||
if (transferred == 0)
|
||
return make_unique_xstrdup ("");
|
||
|
||
bufstr[transferred] = 0;
|
||
|
||
/* Check for embedded NUL bytes; but allow trailing NULs. */
|
||
for (i = strlen (bufstr); i < transferred; i++)
|
||
if (bufstr[i] != 0)
|
||
{
|
||
warning (_("target file %s "
|
||
"contained unexpected null characters"),
|
||
filename);
|
||
break;
|
||
}
|
||
|
||
return gdb::unique_xmalloc_ptr<char> (bufstr);
|
||
}
|
||
|
||
|
||
static int
|
||
default_region_ok_for_hw_watchpoint (struct target_ops *self,
|
||
CORE_ADDR addr, int len)
|
||
{
|
||
return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
|
||
}
|
||
|
||
static int
|
||
default_watchpoint_addr_within_range (struct target_ops *target,
|
||
CORE_ADDR addr,
|
||
CORE_ADDR start, int length)
|
||
{
|
||
return addr >= start && addr < start + length;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
target_ops *
|
||
target_stack::find_beneath (const target_ops *t) const
|
||
{
|
||
/* Look for a non-empty slot at stratum levels beneath T's. */
|
||
for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
|
||
if (m_stack[stratum] != NULL)
|
||
return m_stack[stratum];
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct target_ops *
|
||
find_target_at (enum strata stratum)
|
||
{
|
||
return current_inferior ()->target_at (stratum);
|
||
}
|
||
|
||
|
||
|
||
/* See target.h */
|
||
|
||
void
|
||
target_announce_detach (int from_tty)
|
||
{
|
||
pid_t pid;
|
||
const char *exec_file;
|
||
|
||
if (!from_tty)
|
||
return;
|
||
|
||
exec_file = get_exec_file (0);
|
||
if (exec_file == NULL)
|
||
exec_file = "";
|
||
|
||
pid = inferior_ptid.pid ();
|
||
printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
|
||
target_pid_to_str (ptid_t (pid)).c_str ());
|
||
}
|
||
|
||
/* The inferior process has died. Long live the inferior! */
|
||
|
||
void
|
||
generic_mourn_inferior (void)
|
||
{
|
||
inferior *inf = current_inferior ();
|
||
|
||
switch_to_no_thread ();
|
||
|
||
/* Mark breakpoints uninserted in case something tries to delete a
|
||
breakpoint while we delete the inferior's threads (which would
|
||
fail, since the inferior is long gone). */
|
||
mark_breakpoints_out ();
|
||
|
||
if (inf->pid != 0)
|
||
exit_inferior (inf);
|
||
|
||
/* Note this wipes step-resume breakpoints, so needs to be done
|
||
after exit_inferior, which ends up referencing the step-resume
|
||
breakpoints through clear_thread_inferior_resources. */
|
||
breakpoint_init_inferior (inf_exited);
|
||
|
||
registers_changed ();
|
||
|
||
reopen_exec_file ();
|
||
reinit_frame_cache ();
|
||
|
||
if (deprecated_detach_hook)
|
||
deprecated_detach_hook ();
|
||
}
|
||
|
||
/* Convert a normal process ID to a string. Returns the string in a
|
||
static buffer. */
|
||
|
||
std::string
|
||
normal_pid_to_str (ptid_t ptid)
|
||
{
|
||
return string_printf ("process %d", ptid.pid ());
|
||
}
|
||
|
||
static std::string
|
||
default_pid_to_str (struct target_ops *ops, ptid_t ptid)
|
||
{
|
||
return normal_pid_to_str (ptid);
|
||
}
|
||
|
||
/* Error-catcher for target_find_memory_regions. */
|
||
static int
|
||
dummy_find_memory_regions (struct target_ops *self,
|
||
find_memory_region_ftype ignore1, void *ignore2)
|
||
{
|
||
error (_("Command not implemented for this target."));
|
||
return 0;
|
||
}
|
||
|
||
/* Error-catcher for target_make_corefile_notes. */
|
||
static gdb::unique_xmalloc_ptr<char>
|
||
dummy_make_corefile_notes (struct target_ops *self,
|
||
bfd *ignore1, int *ignore2)
|
||
{
|
||
error (_("Command not implemented for this target."));
|
||
return NULL;
|
||
}
|
||
|
||
#include "target-delegates.c"
|
||
|
||
/* The initial current target, so that there is always a semi-valid
|
||
current target. */
|
||
|
||
static dummy_target the_dummy_target;
|
||
|
||
/* See target.h. */
|
||
|
||
target_ops *
|
||
get_dummy_target ()
|
||
{
|
||
return &the_dummy_target;
|
||
}
|
||
|
||
static const target_info dummy_target_info = {
|
||
"None",
|
||
N_("None"),
|
||
""
|
||
};
|
||
|
||
strata
|
||
dummy_target::stratum () const
|
||
{
|
||
return dummy_stratum;
|
||
}
|
||
|
||
strata
|
||
debug_target::stratum () const
|
||
{
|
||
return debug_stratum;
|
||
}
|
||
|
||
const target_info &
|
||
dummy_target::info () const
|
||
{
|
||
return dummy_target_info;
|
||
}
|
||
|
||
const target_info &
|
||
debug_target::info () const
|
||
{
|
||
return beneath ()->info ();
|
||
}
|
||
|
||
|
||
|
||
void
|
||
target_close (struct target_ops *targ)
|
||
{
|
||
gdb_assert (!target_is_pushed (targ));
|
||
|
||
fileio_handles_invalidate_target (targ);
|
||
|
||
targ->close ();
|
||
|
||
if (targetdebug)
|
||
fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
|
||
}
|
||
|
||
int
|
||
target_thread_alive (ptid_t ptid)
|
||
{
|
||
return current_top_target ()->thread_alive (ptid);
|
||
}
|
||
|
||
void
|
||
target_update_thread_list (void)
|
||
{
|
||
current_top_target ()->update_thread_list ();
|
||
}
|
||
|
||
void
|
||
target_stop (ptid_t ptid)
|
||
{
|
||
if (!may_stop)
|
||
{
|
||
warning (_("May not interrupt or stop the target, ignoring attempt"));
|
||
return;
|
||
}
|
||
|
||
current_top_target ()->stop (ptid);
|
||
}
|
||
|
||
void
|
||
target_interrupt ()
|
||
{
|
||
if (!may_stop)
|
||
{
|
||
warning (_("May not interrupt or stop the target, ignoring attempt"));
|
||
return;
|
||
}
|
||
|
||
current_top_target ()->interrupt ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_pass_ctrlc (void)
|
||
{
|
||
/* Pass the Ctrl-C to the first target that has a thread
|
||
running. */
|
||
for (inferior *inf : all_inferiors ())
|
||
{
|
||
target_ops *proc_target = inf->process_target ();
|
||
if (proc_target == NULL)
|
||
continue;
|
||
|
||
for (thread_info *thr : inf->non_exited_threads ())
|
||
{
|
||
/* A thread can be THREAD_STOPPED and executing, while
|
||
running an infcall. */
|
||
if (thr->state == THREAD_RUNNING || thr->executing)
|
||
{
|
||
/* We can get here quite deep in target layers. Avoid
|
||
switching thread context or anything that would
|
||
communicate with the target (e.g., to fetch
|
||
registers), or flushing e.g., the frame cache. We
|
||
just switch inferior in order to be able to call
|
||
through the target_stack. */
|
||
scoped_restore_current_inferior restore_inferior;
|
||
set_current_inferior (inf);
|
||
current_top_target ()->pass_ctrlc ();
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
default_target_pass_ctrlc (struct target_ops *ops)
|
||
{
|
||
target_interrupt ();
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_stop_and_wait (ptid_t ptid)
|
||
{
|
||
struct target_waitstatus status;
|
||
bool was_non_stop = non_stop;
|
||
|
||
non_stop = true;
|
||
target_stop (ptid);
|
||
|
||
memset (&status, 0, sizeof (status));
|
||
target_wait (ptid, &status, 0);
|
||
|
||
non_stop = was_non_stop;
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_continue_no_signal (ptid_t ptid)
|
||
{
|
||
target_resume (ptid, 0, GDB_SIGNAL_0);
|
||
}
|
||
|
||
/* See target/target.h. */
|
||
|
||
void
|
||
target_continue (ptid_t ptid, enum gdb_signal signal)
|
||
{
|
||
target_resume (ptid, 0, signal);
|
||
}
|
||
|
||
/* Concatenate ELEM to LIST, a comma-separated list. */
|
||
|
||
static void
|
||
str_comma_list_concat_elem (std::string *list, const char *elem)
|
||
{
|
||
if (!list->empty ())
|
||
list->append (", ");
|
||
|
||
list->append (elem);
|
||
}
|
||
|
||
/* Helper for target_options_to_string. If OPT is present in
|
||
TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
|
||
OPT is removed from TARGET_OPTIONS. */
|
||
|
||
static void
|
||
do_option (target_wait_flags *target_options, std::string *ret,
|
||
target_wait_flag opt, const char *opt_str)
|
||
{
|
||
if ((*target_options & opt) != 0)
|
||
{
|
||
str_comma_list_concat_elem (ret, opt_str);
|
||
*target_options &= ~opt;
|
||
}
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
std::string
|
||
target_options_to_string (target_wait_flags target_options)
|
||
{
|
||
std::string ret;
|
||
|
||
#define DO_TARG_OPTION(OPT) \
|
||
do_option (&target_options, &ret, OPT, #OPT)
|
||
|
||
DO_TARG_OPTION (TARGET_WNOHANG);
|
||
|
||
if (target_options != 0)
|
||
str_comma_list_concat_elem (&ret, "unknown???");
|
||
|
||
return ret;
|
||
}
|
||
|
||
void
|
||
target_fetch_registers (struct regcache *regcache, int regno)
|
||
{
|
||
current_top_target ()->fetch_registers (regcache, regno);
|
||
if (targetdebug)
|
||
regcache->debug_print_register ("target_fetch_registers", regno);
|
||
}
|
||
|
||
void
|
||
target_store_registers (struct regcache *regcache, int regno)
|
||
{
|
||
if (!may_write_registers)
|
||
error (_("Writing to registers is not allowed (regno %d)"), regno);
|
||
|
||
current_top_target ()->store_registers (regcache, regno);
|
||
if (targetdebug)
|
||
{
|
||
regcache->debug_print_register ("target_store_registers", regno);
|
||
}
|
||
}
|
||
|
||
int
|
||
target_core_of_thread (ptid_t ptid)
|
||
{
|
||
return current_top_target ()->core_of_thread (ptid);
|
||
}
|
||
|
||
int
|
||
simple_verify_memory (struct target_ops *ops,
|
||
const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
|
||
{
|
||
LONGEST total_xfered = 0;
|
||
|
||
while (total_xfered < size)
|
||
{
|
||
ULONGEST xfered_len;
|
||
enum target_xfer_status status;
|
||
gdb_byte buf[1024];
|
||
ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
|
||
|
||
status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
|
||
buf, NULL, lma + total_xfered, howmuch,
|
||
&xfered_len);
|
||
if (status == TARGET_XFER_OK
|
||
&& memcmp (data + total_xfered, buf, xfered_len) == 0)
|
||
{
|
||
total_xfered += xfered_len;
|
||
QUIT;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Default implementation of memory verification. */
|
||
|
||
static int
|
||
default_verify_memory (struct target_ops *self,
|
||
const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
|
||
{
|
||
/* Start over from the top of the target stack. */
|
||
return simple_verify_memory (current_top_target (),
|
||
data, memaddr, size);
|
||
}
|
||
|
||
int
|
||
target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
|
||
{
|
||
return current_top_target ()->verify_memory (data, memaddr, size);
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration in
|
||
target.h. */
|
||
|
||
int
|
||
target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
|
||
enum target_hw_bp_type rw)
|
||
{
|
||
return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration in
|
||
target.h. */
|
||
|
||
int
|
||
target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
|
||
enum target_hw_bp_type rw)
|
||
{
|
||
return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration
|
||
in target.h. */
|
||
|
||
int
|
||
target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
|
||
{
|
||
return current_top_target ()->masked_watch_num_registers (addr, mask);
|
||
}
|
||
|
||
/* The documentation for this function is in its prototype declaration
|
||
in target.h. */
|
||
|
||
int
|
||
target_ranged_break_num_registers (void)
|
||
{
|
||
return current_top_target ()->ranged_break_num_registers ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
struct btrace_target_info *
|
||
target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
|
||
{
|
||
return current_top_target ()->enable_btrace (ptid, conf);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_disable_btrace (struct btrace_target_info *btinfo)
|
||
{
|
||
current_top_target ()->disable_btrace (btinfo);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_teardown_btrace (struct btrace_target_info *btinfo)
|
||
{
|
||
current_top_target ()->teardown_btrace (btinfo);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
enum btrace_error
|
||
target_read_btrace (struct btrace_data *btrace,
|
||
struct btrace_target_info *btinfo,
|
||
enum btrace_read_type type)
|
||
{
|
||
return current_top_target ()->read_btrace (btrace, btinfo, type);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
const struct btrace_config *
|
||
target_btrace_conf (const struct btrace_target_info *btinfo)
|
||
{
|
||
return current_top_target ()->btrace_conf (btinfo);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_stop_recording (void)
|
||
{
|
||
current_top_target ()->stop_recording ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_save_record (const char *filename)
|
||
{
|
||
current_top_target ()->save_record (filename);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_supports_delete_record ()
|
||
{
|
||
return current_top_target ()->supports_delete_record ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_delete_record (void)
|
||
{
|
||
current_top_target ()->delete_record ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
enum record_method
|
||
target_record_method (ptid_t ptid)
|
||
{
|
||
return current_top_target ()->record_method (ptid);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_record_is_replaying (ptid_t ptid)
|
||
{
|
||
return current_top_target ()->record_is_replaying (ptid);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
int
|
||
target_record_will_replay (ptid_t ptid, int dir)
|
||
{
|
||
return current_top_target ()->record_will_replay (ptid, dir);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_record_stop_replaying (void)
|
||
{
|
||
current_top_target ()->record_stop_replaying ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_goto_record_begin (void)
|
||
{
|
||
current_top_target ()->goto_record_begin ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_goto_record_end (void)
|
||
{
|
||
current_top_target ()->goto_record_end ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_goto_record (ULONGEST insn)
|
||
{
|
||
current_top_target ()->goto_record (insn);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_insn_history (int size, gdb_disassembly_flags flags)
|
||
{
|
||
current_top_target ()->insn_history (size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_insn_history_from (ULONGEST from, int size,
|
||
gdb_disassembly_flags flags)
|
||
{
|
||
current_top_target ()->insn_history_from (from, size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_insn_history_range (ULONGEST begin, ULONGEST end,
|
||
gdb_disassembly_flags flags)
|
||
{
|
||
current_top_target ()->insn_history_range (begin, end, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_call_history (int size, record_print_flags flags)
|
||
{
|
||
current_top_target ()->call_history (size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
|
||
{
|
||
current_top_target ()->call_history_from (begin, size, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
|
||
{
|
||
current_top_target ()->call_history_range (begin, end, flags);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
const struct frame_unwind *
|
||
target_get_unwinder (void)
|
||
{
|
||
return current_top_target ()->get_unwinder ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
const struct frame_unwind *
|
||
target_get_tailcall_unwinder (void)
|
||
{
|
||
return current_top_target ()->get_tailcall_unwinder ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_prepare_to_generate_core (void)
|
||
{
|
||
current_top_target ()->prepare_to_generate_core ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_done_generating_core (void)
|
||
{
|
||
current_top_target ()->done_generating_core ();
|
||
}
|
||
|
||
|
||
|
||
static char targ_desc[] =
|
||
"Names of targets and files being debugged.\nShows the entire \
|
||
stack of targets currently in use (including the exec-file,\n\
|
||
core-file, and process, if any), as well as the symbol file name.";
|
||
|
||
static void
|
||
default_rcmd (struct target_ops *self, const char *command,
|
||
struct ui_file *output)
|
||
{
|
||
error (_("\"monitor\" command not supported by this target."));
|
||
}
|
||
|
||
static void
|
||
do_monitor_command (const char *cmd, int from_tty)
|
||
{
|
||
target_rcmd (cmd, gdb_stdtarg);
|
||
}
|
||
|
||
/* Erases all the memory regions marked as flash. CMD and FROM_TTY are
|
||
ignored. */
|
||
|
||
void
|
||
flash_erase_command (const char *cmd, int from_tty)
|
||
{
|
||
/* Used to communicate termination of flash operations to the target. */
|
||
bool found_flash_region = false;
|
||
struct gdbarch *gdbarch = target_gdbarch ();
|
||
|
||
std::vector<mem_region> mem_regions = target_memory_map ();
|
||
|
||
/* Iterate over all memory regions. */
|
||
for (const mem_region &m : mem_regions)
|
||
{
|
||
/* Is this a flash memory region? */
|
||
if (m.attrib.mode == MEM_FLASH)
|
||
{
|
||
found_flash_region = true;
|
||
target_flash_erase (m.lo, m.hi - m.lo);
|
||
|
||
ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
|
||
|
||
current_uiout->message (_("Erasing flash memory region at address "));
|
||
current_uiout->field_core_addr ("address", gdbarch, m.lo);
|
||
current_uiout->message (", size = ");
|
||
current_uiout->field_string ("size", hex_string (m.hi - m.lo));
|
||
current_uiout->message ("\n");
|
||
}
|
||
}
|
||
|
||
/* Did we do any flash operations? If so, we need to finalize them. */
|
||
if (found_flash_region)
|
||
target_flash_done ();
|
||
else
|
||
current_uiout->message (_("No flash memory regions found.\n"));
|
||
}
|
||
|
||
/* Print the name of each layers of our target stack. */
|
||
|
||
static void
|
||
maintenance_print_target_stack (const char *cmd, int from_tty)
|
||
{
|
||
printf_filtered (_("The current target stack is:\n"));
|
||
|
||
for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
|
||
{
|
||
if (t->stratum () == debug_stratum)
|
||
continue;
|
||
printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
|
||
}
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_async (int enable)
|
||
{
|
||
infrun_async (enable);
|
||
current_top_target ()->async (enable);
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
void
|
||
target_thread_events (int enable)
|
||
{
|
||
current_top_target ()->thread_events (enable);
|
||
}
|
||
|
||
/* Controls if targets can report that they can/are async. This is
|
||
just for maintainers to use when debugging gdb. */
|
||
bool target_async_permitted = true;
|
||
|
||
/* The set command writes to this variable. If the inferior is
|
||
executing, target_async_permitted is *not* updated. */
|
||
static bool target_async_permitted_1 = true;
|
||
|
||
static void
|
||
maint_set_target_async_command (const char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
if (have_live_inferiors ())
|
||
{
|
||
target_async_permitted_1 = target_async_permitted;
|
||
error (_("Cannot change this setting while the inferior is running."));
|
||
}
|
||
|
||
target_async_permitted = target_async_permitted_1;
|
||
}
|
||
|
||
static void
|
||
maint_show_target_async_command (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
fprintf_filtered (file,
|
||
_("Controlling the inferior in "
|
||
"asynchronous mode is %s.\n"), value);
|
||
}
|
||
|
||
/* Return true if the target operates in non-stop mode even with "set
|
||
non-stop off". */
|
||
|
||
static int
|
||
target_always_non_stop_p (void)
|
||
{
|
||
return current_top_target ()->always_non_stop_p ();
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
bool
|
||
target_is_non_stop_p ()
|
||
{
|
||
return (non_stop
|
||
|| target_non_stop_enabled == AUTO_BOOLEAN_TRUE
|
||
|| (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
|
||
&& target_always_non_stop_p ()));
|
||
}
|
||
|
||
/* See target.h. */
|
||
|
||
bool
|
||
exists_non_stop_target ()
|
||
{
|
||
if (target_is_non_stop_p ())
|
||
return true;
|
||
|
||
scoped_restore_current_thread restore_thread;
|
||
|
||
for (inferior *inf : all_inferiors ())
|
||
{
|
||
switch_to_inferior_no_thread (inf);
|
||
if (target_is_non_stop_p ())
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Controls if targets can report that they always run in non-stop
|
||
mode. This is just for maintainers to use when debugging gdb. */
|
||
enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
|
||
|
||
/* The set command writes to this variable. If the inferior is
|
||
executing, target_non_stop_enabled is *not* updated. */
|
||
static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
|
||
|
||
/* Implementation of "maint set target-non-stop". */
|
||
|
||
static void
|
||
maint_set_target_non_stop_command (const char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
if (have_live_inferiors ())
|
||
{
|
||
target_non_stop_enabled_1 = target_non_stop_enabled;
|
||
error (_("Cannot change this setting while the inferior is running."));
|
||
}
|
||
|
||
target_non_stop_enabled = target_non_stop_enabled_1;
|
||
}
|
||
|
||
/* Implementation of "maint show target-non-stop". */
|
||
|
||
static void
|
||
maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
|
||
struct cmd_list_element *c,
|
||
const char *value)
|
||
{
|
||
if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
|
||
fprintf_filtered (file,
|
||
_("Whether the target is always in non-stop mode "
|
||
"is %s (currently %s).\n"), value,
|
||
target_always_non_stop_p () ? "on" : "off");
|
||
else
|
||
fprintf_filtered (file,
|
||
_("Whether the target is always in non-stop mode "
|
||
"is %s.\n"), value);
|
||
}
|
||
|
||
/* Temporary copies of permission settings. */
|
||
|
||
static bool may_write_registers_1 = true;
|
||
static bool may_write_memory_1 = true;
|
||
static bool may_insert_breakpoints_1 = true;
|
||
static bool may_insert_tracepoints_1 = true;
|
||
static bool may_insert_fast_tracepoints_1 = true;
|
||
static bool may_stop_1 = true;
|
||
|
||
/* Make the user-set values match the real values again. */
|
||
|
||
void
|
||
update_target_permissions (void)
|
||
{
|
||
may_write_registers_1 = may_write_registers;
|
||
may_write_memory_1 = may_write_memory;
|
||
may_insert_breakpoints_1 = may_insert_breakpoints;
|
||
may_insert_tracepoints_1 = may_insert_tracepoints;
|
||
may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
|
||
may_stop_1 = may_stop;
|
||
}
|
||
|
||
/* The one function handles (most of) the permission flags in the same
|
||
way. */
|
||
|
||
static void
|
||
set_target_permissions (const char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
if (target_has_execution ())
|
||
{
|
||
update_target_permissions ();
|
||
error (_("Cannot change this setting while the inferior is running."));
|
||
}
|
||
|
||
/* Make the real values match the user-changed values. */
|
||
may_write_registers = may_write_registers_1;
|
||
may_insert_breakpoints = may_insert_breakpoints_1;
|
||
may_insert_tracepoints = may_insert_tracepoints_1;
|
||
may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
|
||
may_stop = may_stop_1;
|
||
update_observer_mode ();
|
||
}
|
||
|
||
/* Set memory write permission independently of observer mode. */
|
||
|
||
static void
|
||
set_write_memory_permission (const char *args, int from_tty,
|
||
struct cmd_list_element *c)
|
||
{
|
||
/* Make the real values match the user-changed values. */
|
||
may_write_memory = may_write_memory_1;
|
||
update_observer_mode ();
|
||
}
|
||
|
||
void _initialize_target ();
|
||
|
||
void
|
||
_initialize_target ()
|
||
{
|
||
the_debug_target = new debug_target ();
|
||
|
||
add_info ("target", info_target_command, targ_desc);
|
||
add_info ("files", info_target_command, targ_desc);
|
||
|
||
add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
|
||
Set target debugging."), _("\
|
||
Show target debugging."), _("\
|
||
When non-zero, target debugging is enabled. Higher numbers are more\n\
|
||
verbose."),
|
||
set_targetdebug,
|
||
show_targetdebug,
|
||
&setdebuglist, &showdebuglist);
|
||
|
||
add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
|
||
&trust_readonly, _("\
|
||
Set mode for reading from readonly sections."), _("\
|
||
Show mode for reading from readonly sections."), _("\
|
||
When this mode is on, memory reads from readonly sections (such as .text)\n\
|
||
will be read from the object file instead of from the target. This will\n\
|
||
result in significant performance improvement for remote targets."),
|
||
NULL,
|
||
show_trust_readonly,
|
||
&setlist, &showlist);
|
||
|
||
add_com ("monitor", class_obscure, do_monitor_command,
|
||
_("Send a command to the remote monitor (remote targets only)."));
|
||
|
||
add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
|
||
_("Print the name of each layer of the internal target stack."),
|
||
&maintenanceprintlist);
|
||
|
||
add_setshow_boolean_cmd ("target-async", no_class,
|
||
&target_async_permitted_1, _("\
|
||
Set whether gdb controls the inferior in asynchronous mode."), _("\
|
||
Show whether gdb controls the inferior in asynchronous mode."), _("\
|
||
Tells gdb whether to control the inferior in asynchronous mode."),
|
||
maint_set_target_async_command,
|
||
maint_show_target_async_command,
|
||
&maintenance_set_cmdlist,
|
||
&maintenance_show_cmdlist);
|
||
|
||
add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
|
||
&target_non_stop_enabled_1, _("\
|
||
Set whether gdb always controls the inferior in non-stop mode."), _("\
|
||
Show whether gdb always controls the inferior in non-stop mode."), _("\
|
||
Tells gdb whether to control the inferior in non-stop mode."),
|
||
maint_set_target_non_stop_command,
|
||
maint_show_target_non_stop_command,
|
||
&maintenance_set_cmdlist,
|
||
&maintenance_show_cmdlist);
|
||
|
||
add_setshow_boolean_cmd ("may-write-registers", class_support,
|
||
&may_write_registers_1, _("\
|
||
Set permission to write into registers."), _("\
|
||
Show permission to write into registers."), _("\
|
||
When this permission is on, GDB may write into the target's registers.\n\
|
||
Otherwise, any sort of write attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-write-memory", class_support,
|
||
&may_write_memory_1, _("\
|
||
Set permission to write into target memory."), _("\
|
||
Show permission to write into target memory."), _("\
|
||
When this permission is on, GDB may write into the target's memory.\n\
|
||
Otherwise, any sort of write attempt will result in an error."),
|
||
set_write_memory_permission, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
|
||
&may_insert_breakpoints_1, _("\
|
||
Set permission to insert breakpoints in the target."), _("\
|
||
Show permission to insert breakpoints in the target."), _("\
|
||
When this permission is on, GDB may insert breakpoints in the program.\n\
|
||
Otherwise, any sort of insertion attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
|
||
&may_insert_tracepoints_1, _("\
|
||
Set permission to insert tracepoints in the target."), _("\
|
||
Show permission to insert tracepoints in the target."), _("\
|
||
When this permission is on, GDB may insert tracepoints in the program.\n\
|
||
Otherwise, any sort of insertion attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
|
||
&may_insert_fast_tracepoints_1, _("\
|
||
Set permission to insert fast tracepoints in the target."), _("\
|
||
Show permission to insert fast tracepoints in the target."), _("\
|
||
When this permission is on, GDB may insert fast tracepoints.\n\
|
||
Otherwise, any sort of insertion attempt will result in an error."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_setshow_boolean_cmd ("may-interrupt", class_support,
|
||
&may_stop_1, _("\
|
||
Set permission to interrupt or signal the target."), _("\
|
||
Show permission to interrupt or signal the target."), _("\
|
||
When this permission is on, GDB may interrupt/stop the target's execution.\n\
|
||
Otherwise, any attempt to interrupt or stop will be ignored."),
|
||
set_target_permissions, NULL,
|
||
&setlist, &showlist);
|
||
|
||
add_com ("flash-erase", no_class, flash_erase_command,
|
||
_("Erase all flash memory regions."));
|
||
|
||
add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
|
||
&auto_connect_native_target, _("\
|
||
Set whether GDB may automatically connect to the native target."), _("\
|
||
Show whether GDB may automatically connect to the native target."), _("\
|
||
When on, and GDB is not connected to a target yet, GDB\n\
|
||
attempts \"run\" and other commands with the native target."),
|
||
NULL, show_auto_connect_native_target,
|
||
&setlist, &showlist);
|
||
}
|