binutils-gdb/gdb/p-exp.y
Tom Tromey 1b30f42106 Extract symbol-writing function from parsers
I noticed that several parsers shared the same code to write a symbol
reference to an expression.  This patch factors this code out into a
new function.

Regression tested on x86-64 Fedora 32.

gdb/ChangeLog
2021-02-05  Tom Tromey  <tom@tromey.com>

	* parser-defs.h (write_exp_symbol_reference): Declare.
	* parse.c (write_exp_symbol_reference): New function.
	* p-exp.y (variable): Use write_exp_symbol_reference.
	* m2-exp.y (variable): Use write_exp_symbol_reference.
	* f-exp.y (variable): Use write_exp_symbol_reference.
	* d-exp.y (PrimaryExpression): Use write_exp_symbol_reference.
	* c-exp.y (variable): Use write_exp_symbol_reference.
2021-02-05 07:11:01 -07:00

1730 lines
45 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* YACC parser for Pascal expressions, for GDB.
Copyright (C) 2000-2021 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
/* This file is derived from c-exp.y */
/* Parse a Pascal expression from text in a string,
and return the result as a struct expression pointer.
That structure contains arithmetic operations in reverse polish,
with constants represented by operations that are followed by special data.
See expression.h for the details of the format.
What is important here is that it can be built up sequentially
during the process of parsing; the lower levels of the tree always
come first in the result.
Note that malloc's and realloc's in this file are transformed to
xmalloc and xrealloc respectively by the same sed command in the
makefile that remaps any other malloc/realloc inserted by the parser
generator. Doing this with #defines and trying to control the interaction
with include files (<malloc.h> and <stdlib.h> for example) just became
too messy, particularly when such includes can be inserted at random
times by the parser generator. */
/* Known bugs or limitations:
- pascal string operations are not supported at all.
- there are some problems with boolean types.
- Pascal type hexadecimal constants are not supported
because they conflict with the internal variables format.
Probably also lots of other problems, less well defined PM. */
%{
#include "defs.h"
#include <ctype.h>
#include "expression.h"
#include "value.h"
#include "parser-defs.h"
#include "language.h"
#include "p-lang.h"
#include "bfd.h" /* Required by objfiles.h. */
#include "symfile.h" /* Required by objfiles.h. */
#include "objfiles.h" /* For have_full_symbols and have_partial_symbols. */
#include "block.h"
#include "completer.h"
#define parse_type(ps) builtin_type (ps->gdbarch ())
/* Remap normal yacc parser interface names (yyparse, yylex, yyerror,
etc). */
#define GDB_YY_REMAP_PREFIX pascal_
#include "yy-remap.h"
/* The state of the parser, used internally when we are parsing the
expression. */
static struct parser_state *pstate = NULL;
/* Depth of parentheses. */
static int paren_depth;
int yyparse (void);
static int yylex (void);
static void yyerror (const char *);
static char *uptok (const char *, int);
%}
/* Although the yacc "value" of an expression is not used,
since the result is stored in the structure being created,
other node types do have values. */
%union
{
LONGEST lval;
struct {
LONGEST val;
struct type *type;
} typed_val_int;
struct {
gdb_byte val[16];
struct type *type;
} typed_val_float;
struct symbol *sym;
struct type *tval;
struct stoken sval;
struct ttype tsym;
struct symtoken ssym;
int voidval;
const struct block *bval;
enum exp_opcode opcode;
struct internalvar *ivar;
struct type **tvec;
int *ivec;
}
%{
/* YYSTYPE gets defined by %union */
static int parse_number (struct parser_state *,
const char *, int, int, YYSTYPE *);
static struct type *current_type;
static int leftdiv_is_integer;
static void push_current_type (void);
static void pop_current_type (void);
static int search_field;
%}
%type <voidval> exp exp1 type_exp start normal_start variable qualified_name
%type <tval> type typebase
/* %type <bval> block */
/* Fancy type parsing. */
%type <tval> ptype
%token <typed_val_int> INT
%token <typed_val_float> FLOAT
/* Both NAME and TYPENAME tokens represent symbols in the input,
and both convey their data as strings.
But a TYPENAME is a string that happens to be defined as a typedef
or builtin type name (such as int or char)
and a NAME is any other symbol.
Contexts where this distinction is not important can use the
nonterminal "name", which matches either NAME or TYPENAME. */
%token <sval> STRING
%token <sval> FIELDNAME
%token <voidval> COMPLETE
%token <ssym> NAME /* BLOCKNAME defined below to give it higher precedence. */
%token <tsym> TYPENAME
%type <sval> name
%type <ssym> name_not_typename
/* A NAME_OR_INT is a symbol which is not known in the symbol table,
but which would parse as a valid number in the current input radix.
E.g. "c" when input_radix==16. Depending on the parse, it will be
turned into a name or into a number. */
%token <ssym> NAME_OR_INT
%token STRUCT CLASS SIZEOF COLONCOLON
%token ERROR
/* Special type cases, put in to allow the parser to distinguish different
legal basetypes. */
%token <sval> DOLLAR_VARIABLE
/* Object pascal */
%token THIS
%token <lval> TRUEKEYWORD FALSEKEYWORD
%left ','
%left ABOVE_COMMA
%right ASSIGN
%left NOT
%left OR
%left XOR
%left ANDAND
%left '=' NOTEQUAL
%left '<' '>' LEQ GEQ
%left LSH RSH DIV MOD
%left '@'
%left '+' '-'
%left '*' '/'
%right UNARY INCREMENT DECREMENT
%right ARROW '.' '[' '('
%left '^'
%token <ssym> BLOCKNAME
%type <bval> block
%left COLONCOLON
%%
start : { current_type = NULL;
search_field = 0;
leftdiv_is_integer = 0;
}
normal_start {}
;
normal_start :
exp1
| type_exp
;
type_exp: type
{ write_exp_elt_opcode (pstate, OP_TYPE);
write_exp_elt_type (pstate, $1);
write_exp_elt_opcode (pstate, OP_TYPE);
current_type = $1; } ;
/* Expressions, including the comma operator. */
exp1 : exp
| exp1 ',' exp
{ write_exp_elt_opcode (pstate, BINOP_COMMA); }
;
/* Expressions, not including the comma operator. */
exp : exp '^' %prec UNARY
{ write_exp_elt_opcode (pstate, UNOP_IND);
if (current_type)
current_type = TYPE_TARGET_TYPE (current_type); }
;
exp : '@' exp %prec UNARY
{ write_exp_elt_opcode (pstate, UNOP_ADDR);
if (current_type)
current_type = TYPE_POINTER_TYPE (current_type); }
;
exp : '-' exp %prec UNARY
{ write_exp_elt_opcode (pstate, UNOP_NEG); }
;
exp : NOT exp %prec UNARY
{ write_exp_elt_opcode (pstate, UNOP_LOGICAL_NOT); }
;
exp : INCREMENT '(' exp ')' %prec UNARY
{ write_exp_elt_opcode (pstate, UNOP_PREINCREMENT); }
;
exp : DECREMENT '(' exp ')' %prec UNARY
{ write_exp_elt_opcode (pstate, UNOP_PREDECREMENT); }
;
field_exp : exp '.' %prec UNARY
{ search_field = 1; }
;
exp : field_exp FIELDNAME
{ write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
write_exp_string (pstate, $2);
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
search_field = 0;
if (current_type)
{
while (current_type->code ()
== TYPE_CODE_PTR)
current_type =
TYPE_TARGET_TYPE (current_type);
current_type = lookup_struct_elt_type (
current_type, $2.ptr, 0);
}
}
;
exp : field_exp name
{ write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
write_exp_string (pstate, $2);
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
search_field = 0;
if (current_type)
{
while (current_type->code ()
== TYPE_CODE_PTR)
current_type =
TYPE_TARGET_TYPE (current_type);
current_type = lookup_struct_elt_type (
current_type, $2.ptr, 0);
}
}
;
exp : field_exp name COMPLETE
{ pstate->mark_struct_expression ();
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
write_exp_string (pstate, $2);
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
;
exp : field_exp COMPLETE
{ struct stoken s;
pstate->mark_struct_expression ();
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
s.ptr = "";
s.length = 0;
write_exp_string (pstate, s);
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT); }
;
exp : exp '['
/* We need to save the current_type value. */
{ const char *arrayname;
int arrayfieldindex
= pascal_is_string_type (current_type, NULL, NULL,
NULL, NULL, &arrayname);
if (arrayfieldindex)
{
struct stoken stringsval;
char *buf;
buf = (char *) alloca (strlen (arrayname) + 1);
stringsval.ptr = buf;
stringsval.length = strlen (arrayname);
strcpy (buf, arrayname);
current_type
= (current_type
->field (arrayfieldindex - 1).type ());
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
write_exp_string (pstate, stringsval);
write_exp_elt_opcode (pstate, STRUCTOP_STRUCT);
}
push_current_type (); }
exp1 ']'
{ pop_current_type ();
write_exp_elt_opcode (pstate, BINOP_SUBSCRIPT);
if (current_type)
current_type = TYPE_TARGET_TYPE (current_type); }
;
exp : exp '('
/* This is to save the value of arglist_len
being accumulated by an outer function call. */
{ push_current_type ();
pstate->start_arglist (); }
arglist ')' %prec ARROW
{ write_exp_elt_opcode (pstate, OP_FUNCALL);
write_exp_elt_longcst (pstate,
pstate->end_arglist ());
write_exp_elt_opcode (pstate, OP_FUNCALL);
pop_current_type ();
if (current_type)
current_type = TYPE_TARGET_TYPE (current_type);
}
;
arglist :
| exp
{ pstate->arglist_len = 1; }
| arglist ',' exp %prec ABOVE_COMMA
{ pstate->arglist_len++; }
;
exp : type '(' exp ')' %prec UNARY
{ if (current_type)
{
/* Allow automatic dereference of classes. */
if ((current_type->code () == TYPE_CODE_PTR)
&& (TYPE_TARGET_TYPE (current_type)->code () == TYPE_CODE_STRUCT)
&& (($1)->code () == TYPE_CODE_STRUCT))
write_exp_elt_opcode (pstate, UNOP_IND);
}
write_exp_elt_opcode (pstate, UNOP_CAST);
write_exp_elt_type (pstate, $1);
write_exp_elt_opcode (pstate, UNOP_CAST);
current_type = $1; }
;
exp : '(' exp1 ')'
{ }
;
/* Binary operators in order of decreasing precedence. */
exp : exp '*' exp
{ write_exp_elt_opcode (pstate, BINOP_MUL); }
;
exp : exp '/' {
if (current_type && is_integral_type (current_type))
leftdiv_is_integer = 1;
}
exp
{
if (leftdiv_is_integer && current_type
&& is_integral_type (current_type))
{
write_exp_elt_opcode (pstate, UNOP_CAST);
write_exp_elt_type (pstate,
parse_type (pstate)
->builtin_long_double);
current_type
= parse_type (pstate)->builtin_long_double;
write_exp_elt_opcode (pstate, UNOP_CAST);
leftdiv_is_integer = 0;
}
write_exp_elt_opcode (pstate, BINOP_DIV);
}
;
exp : exp DIV exp
{ write_exp_elt_opcode (pstate, BINOP_INTDIV); }
;
exp : exp MOD exp
{ write_exp_elt_opcode (pstate, BINOP_REM); }
;
exp : exp '+' exp
{ write_exp_elt_opcode (pstate, BINOP_ADD); }
;
exp : exp '-' exp
{ write_exp_elt_opcode (pstate, BINOP_SUB); }
;
exp : exp LSH exp
{ write_exp_elt_opcode (pstate, BINOP_LSH); }
;
exp : exp RSH exp
{ write_exp_elt_opcode (pstate, BINOP_RSH); }
;
exp : exp '=' exp
{ write_exp_elt_opcode (pstate, BINOP_EQUAL);
current_type = parse_type (pstate)->builtin_bool;
}
;
exp : exp NOTEQUAL exp
{ write_exp_elt_opcode (pstate, BINOP_NOTEQUAL);
current_type = parse_type (pstate)->builtin_bool;
}
;
exp : exp LEQ exp
{ write_exp_elt_opcode (pstate, BINOP_LEQ);
current_type = parse_type (pstate)->builtin_bool;
}
;
exp : exp GEQ exp
{ write_exp_elt_opcode (pstate, BINOP_GEQ);
current_type = parse_type (pstate)->builtin_bool;
}
;
exp : exp '<' exp
{ write_exp_elt_opcode (pstate, BINOP_LESS);
current_type = parse_type (pstate)->builtin_bool;
}
;
exp : exp '>' exp
{ write_exp_elt_opcode (pstate, BINOP_GTR);
current_type = parse_type (pstate)->builtin_bool;
}
;
exp : exp ANDAND exp
{ write_exp_elt_opcode (pstate, BINOP_BITWISE_AND); }
;
exp : exp XOR exp
{ write_exp_elt_opcode (pstate, BINOP_BITWISE_XOR); }
;
exp : exp OR exp
{ write_exp_elt_opcode (pstate, BINOP_BITWISE_IOR); }
;
exp : exp ASSIGN exp
{ write_exp_elt_opcode (pstate, BINOP_ASSIGN); }
;
exp : TRUEKEYWORD
{ write_exp_elt_opcode (pstate, OP_BOOL);
write_exp_elt_longcst (pstate, (LONGEST) $1);
current_type = parse_type (pstate)->builtin_bool;
write_exp_elt_opcode (pstate, OP_BOOL); }
;
exp : FALSEKEYWORD
{ write_exp_elt_opcode (pstate, OP_BOOL);
write_exp_elt_longcst (pstate, (LONGEST) $1);
current_type = parse_type (pstate)->builtin_bool;
write_exp_elt_opcode (pstate, OP_BOOL); }
;
exp : INT
{ write_exp_elt_opcode (pstate, OP_LONG);
write_exp_elt_type (pstate, $1.type);
current_type = $1.type;
write_exp_elt_longcst (pstate, (LONGEST)($1.val));
write_exp_elt_opcode (pstate, OP_LONG); }
;
exp : NAME_OR_INT
{ YYSTYPE val;
parse_number (pstate, $1.stoken.ptr,
$1.stoken.length, 0, &val);
write_exp_elt_opcode (pstate, OP_LONG);
write_exp_elt_type (pstate, val.typed_val_int.type);
current_type = val.typed_val_int.type;
write_exp_elt_longcst (pstate, (LONGEST)
val.typed_val_int.val);
write_exp_elt_opcode (pstate, OP_LONG);
}
;
exp : FLOAT
{ write_exp_elt_opcode (pstate, OP_FLOAT);
write_exp_elt_type (pstate, $1.type);
current_type = $1.type;
write_exp_elt_floatcst (pstate, $1.val);
write_exp_elt_opcode (pstate, OP_FLOAT); }
;
exp : variable
;
exp : DOLLAR_VARIABLE
{
write_dollar_variable (pstate, $1);
/* $ is the normal prefix for pascal
hexadecimal values but this conflicts
with the GDB use for debugger variables
so in expression to enter hexadecimal
values we still need to use C syntax with
0xff */
std::string tmp ($1.ptr, $1.length);
/* Handle current_type. */
struct internalvar *intvar
= lookup_only_internalvar (tmp.c_str () + 1);
if (intvar != nullptr)
{
scoped_value_mark mark;
value *val
= value_of_internalvar (pstate->gdbarch (),
intvar);
current_type = value_type (val);
}
}
;
exp : SIZEOF '(' type ')' %prec UNARY
{ write_exp_elt_opcode (pstate, OP_LONG);
write_exp_elt_type (pstate,
parse_type (pstate)->builtin_int);
current_type = parse_type (pstate)->builtin_int;
$3 = check_typedef ($3);
write_exp_elt_longcst (pstate,
(LONGEST) TYPE_LENGTH ($3));
write_exp_elt_opcode (pstate, OP_LONG); }
;
exp : SIZEOF '(' exp ')' %prec UNARY
{ write_exp_elt_opcode (pstate, UNOP_SIZEOF);
current_type = parse_type (pstate)->builtin_int; }
exp : STRING
{ /* C strings are converted into array constants with
an explicit null byte added at the end. Thus
the array upper bound is the string length.
There is no such thing in C as a completely empty
string. */
const char *sp = $1.ptr; int count = $1.length;
while (count-- > 0)
{
write_exp_elt_opcode (pstate, OP_LONG);
write_exp_elt_type (pstate,
parse_type (pstate)
->builtin_char);
write_exp_elt_longcst (pstate,
(LONGEST) (*sp++));
write_exp_elt_opcode (pstate, OP_LONG);
}
write_exp_elt_opcode (pstate, OP_LONG);
write_exp_elt_type (pstate,
parse_type (pstate)
->builtin_char);
write_exp_elt_longcst (pstate, (LONGEST)'\0');
write_exp_elt_opcode (pstate, OP_LONG);
write_exp_elt_opcode (pstate, OP_ARRAY);
write_exp_elt_longcst (pstate, (LONGEST) 0);
write_exp_elt_longcst (pstate,
(LONGEST) ($1.length));
write_exp_elt_opcode (pstate, OP_ARRAY); }
;
/* Object pascal */
exp : THIS
{
struct value * this_val;
struct type * this_type;
write_exp_elt_opcode (pstate, OP_THIS);
write_exp_elt_opcode (pstate, OP_THIS);
/* We need type of this. */
this_val
= value_of_this_silent (pstate->language ());
if (this_val)
this_type = value_type (this_val);
else
this_type = NULL;
if (this_type)
{
if (this_type->code () == TYPE_CODE_PTR)
{
this_type = TYPE_TARGET_TYPE (this_type);
write_exp_elt_opcode (pstate, UNOP_IND);
}
}
current_type = this_type;
}
;
/* end of object pascal. */
block : BLOCKNAME
{
if ($1.sym.symbol != 0)
$$ = SYMBOL_BLOCK_VALUE ($1.sym.symbol);
else
{
std::string copy = copy_name ($1.stoken);
struct symtab *tem =
lookup_symtab (copy.c_str ());
if (tem)
$$ = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (tem),
STATIC_BLOCK);
else
error (_("No file or function \"%s\"."),
copy.c_str ());
}
}
;
block : block COLONCOLON name
{
std::string copy = copy_name ($3);
struct symbol *tem
= lookup_symbol (copy.c_str (), $1,
VAR_DOMAIN, NULL).symbol;
if (!tem || SYMBOL_CLASS (tem) != LOC_BLOCK)
error (_("No function \"%s\" in specified context."),
copy.c_str ());
$$ = SYMBOL_BLOCK_VALUE (tem); }
;
variable: block COLONCOLON name
{ struct block_symbol sym;
std::string copy = copy_name ($3);
sym = lookup_symbol (copy.c_str (), $1,
VAR_DOMAIN, NULL);
if (sym.symbol == 0)
error (_("No symbol \"%s\" in specified context."),
copy.c_str ());
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
write_exp_elt_block (pstate, sym.block);
write_exp_elt_sym (pstate, sym.symbol);
write_exp_elt_opcode (pstate, OP_VAR_VALUE); }
;
qualified_name: typebase COLONCOLON name
{
struct type *type = $1;
if (type->code () != TYPE_CODE_STRUCT
&& type->code () != TYPE_CODE_UNION)
error (_("`%s' is not defined as an aggregate type."),
type->name ());
write_exp_elt_opcode (pstate, OP_SCOPE);
write_exp_elt_type (pstate, type);
write_exp_string (pstate, $3);
write_exp_elt_opcode (pstate, OP_SCOPE);
}
;
variable: qualified_name
| COLONCOLON name
{
std::string name = copy_name ($2);
struct block_symbol sym
= lookup_symbol (name.c_str (), nullptr,
VAR_DOMAIN, nullptr);
write_exp_symbol_reference (pstate, name.c_str (),
sym);
}
;
variable: name_not_typename
{ struct block_symbol sym = $1.sym;
if (sym.symbol)
{
if (symbol_read_needs_frame (sym.symbol))
pstate->block_tracker->update (sym);
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
write_exp_elt_block (pstate, sym.block);
write_exp_elt_sym (pstate, sym.symbol);
write_exp_elt_opcode (pstate, OP_VAR_VALUE);
current_type = sym.symbol->type; }
else if ($1.is_a_field_of_this)
{
struct value * this_val;
struct type * this_type;
/* Object pascal: it hangs off of `this'. Must
not inadvertently convert from a method call
to data ref. */
pstate->block_tracker->update (sym);
write_exp_elt_opcode (pstate, OP_THIS);
write_exp_elt_opcode (pstate, OP_THIS);
write_exp_elt_opcode (pstate, STRUCTOP_PTR);
write_exp_string (pstate, $1.stoken);
write_exp_elt_opcode (pstate, STRUCTOP_PTR);
/* We need type of this. */
this_val
= value_of_this_silent (pstate->language ());
if (this_val)
this_type = value_type (this_val);
else
this_type = NULL;
if (this_type)
current_type = lookup_struct_elt_type (
this_type,
copy_name ($1.stoken).c_str (), 0);
else
current_type = NULL;
}
else
{
struct bound_minimal_symbol msymbol;
std::string arg = copy_name ($1.stoken);
msymbol =
lookup_bound_minimal_symbol (arg.c_str ());
if (msymbol.minsym != NULL)
write_exp_msymbol (pstate, msymbol);
else if (!have_full_symbols ()
&& !have_partial_symbols ())
error (_("No symbol table is loaded. "
"Use the \"file\" command."));
else
error (_("No symbol \"%s\" in current context."),
arg.c_str ());
}
}
;
ptype : typebase
;
/* We used to try to recognize more pointer to member types here, but
that didn't work (shift/reduce conflicts meant that these rules never
got executed). The problem is that
int (foo::bar::baz::bizzle)
is a function type but
int (foo::bar::baz::bizzle::*)
is a pointer to member type. Stroustrup loses again! */
type : ptype
;
typebase /* Implements (approximately): (type-qualifier)* type-specifier */
: '^' typebase
{ $$ = lookup_pointer_type ($2); }
| TYPENAME
{ $$ = $1.type; }
| STRUCT name
{ $$
= lookup_struct (copy_name ($2).c_str (),
pstate->expression_context_block);
}
| CLASS name
{ $$
= lookup_struct (copy_name ($2).c_str (),
pstate->expression_context_block);
}
/* "const" and "volatile" are curently ignored. A type qualifier
after the type is handled in the ptype rule. I think these could
be too. */
;
name : NAME { $$ = $1.stoken; }
| BLOCKNAME { $$ = $1.stoken; }
| TYPENAME { $$ = $1.stoken; }
| NAME_OR_INT { $$ = $1.stoken; }
;
name_not_typename : NAME
| BLOCKNAME
/* These would be useful if name_not_typename was useful, but it is just
a fake for "variable", so these cause reduce/reduce conflicts because
the parser can't tell whether NAME_OR_INT is a name_not_typename (=variable,
=exp) or just an exp. If name_not_typename was ever used in an lvalue
context where only a name could occur, this might be useful.
| NAME_OR_INT
*/
;
%%
/* Take care of parsing a number (anything that starts with a digit).
Set yylval and return the token type; update lexptr.
LEN is the number of characters in it. */
/*** Needs some error checking for the float case ***/
static int
parse_number (struct parser_state *par_state,
const char *p, int len, int parsed_float, YYSTYPE *putithere)
{
/* FIXME: Shouldn't these be unsigned? We don't deal with negative values
here, and we do kind of silly things like cast to unsigned. */
LONGEST n = 0;
LONGEST prevn = 0;
ULONGEST un;
int i = 0;
int c;
int base = input_radix;
int unsigned_p = 0;
/* Number of "L" suffixes encountered. */
int long_p = 0;
/* We have found a "L" or "U" suffix. */
int found_suffix = 0;
ULONGEST high_bit;
struct type *signed_type;
struct type *unsigned_type;
if (parsed_float)
{
/* Handle suffixes: 'f' for float, 'l' for long double.
FIXME: This appears to be an extension -- do we want this? */
if (len >= 1 && tolower (p[len - 1]) == 'f')
{
putithere->typed_val_float.type
= parse_type (par_state)->builtin_float;
len--;
}
else if (len >= 1 && tolower (p[len - 1]) == 'l')
{
putithere->typed_val_float.type
= parse_type (par_state)->builtin_long_double;
len--;
}
/* Default type for floating-point literals is double. */
else
{
putithere->typed_val_float.type
= parse_type (par_state)->builtin_double;
}
if (!parse_float (p, len,
putithere->typed_val_float.type,
putithere->typed_val_float.val))
return ERROR;
return FLOAT;
}
/* Handle base-switching prefixes 0x, 0t, 0d, 0. */
if (p[0] == '0')
switch (p[1])
{
case 'x':
case 'X':
if (len >= 3)
{
p += 2;
base = 16;
len -= 2;
}
break;
case 't':
case 'T':
case 'd':
case 'D':
if (len >= 3)
{
p += 2;
base = 10;
len -= 2;
}
break;
default:
base = 8;
break;
}
while (len-- > 0)
{
c = *p++;
if (c >= 'A' && c <= 'Z')
c += 'a' - 'A';
if (c != 'l' && c != 'u')
n *= base;
if (c >= '0' && c <= '9')
{
if (found_suffix)
return ERROR;
n += i = c - '0';
}
else
{
if (base > 10 && c >= 'a' && c <= 'f')
{
if (found_suffix)
return ERROR;
n += i = c - 'a' + 10;
}
else if (c == 'l')
{
++long_p;
found_suffix = 1;
}
else if (c == 'u')
{
unsigned_p = 1;
found_suffix = 1;
}
else
return ERROR; /* Char not a digit */
}
if (i >= base)
return ERROR; /* Invalid digit in this base. */
/* Portably test for overflow (only works for nonzero values, so make
a second check for zero). FIXME: Can't we just make n and prevn
unsigned and avoid this? */
if (c != 'l' && c != 'u' && (prevn >= n) && n != 0)
unsigned_p = 1; /* Try something unsigned. */
/* Portably test for unsigned overflow.
FIXME: This check is wrong; for example it doesn't find overflow
on 0x123456789 when LONGEST is 32 bits. */
if (c != 'l' && c != 'u' && n != 0)
{
if ((unsigned_p && (ULONGEST) prevn >= (ULONGEST) n))
error (_("Numeric constant too large."));
}
prevn = n;
}
/* An integer constant is an int, a long, or a long long. An L
suffix forces it to be long; an LL suffix forces it to be long
long. If not forced to a larger size, it gets the first type of
the above that it fits in. To figure out whether it fits, we
shift it right and see whether anything remains. Note that we
can't shift sizeof (LONGEST) * HOST_CHAR_BIT bits or more in one
operation, because many compilers will warn about such a shift
(which always produces a zero result). Sometimes gdbarch_int_bit
or gdbarch_long_bit will be that big, sometimes not. To deal with
the case where it is we just always shift the value more than
once, with fewer bits each time. */
un = (ULONGEST)n >> 2;
if (long_p == 0
&& (un >> (gdbarch_int_bit (par_state->gdbarch ()) - 2)) == 0)
{
high_bit
= ((ULONGEST)1) << (gdbarch_int_bit (par_state->gdbarch ()) - 1);
/* A large decimal (not hex or octal) constant (between INT_MAX
and UINT_MAX) is a long or unsigned long, according to ANSI,
never an unsigned int, but this code treats it as unsigned
int. This probably should be fixed. GCC gives a warning on
such constants. */
unsigned_type = parse_type (par_state)->builtin_unsigned_int;
signed_type = parse_type (par_state)->builtin_int;
}
else if (long_p <= 1
&& (un >> (gdbarch_long_bit (par_state->gdbarch ()) - 2)) == 0)
{
high_bit
= ((ULONGEST)1) << (gdbarch_long_bit (par_state->gdbarch ()) - 1);
unsigned_type = parse_type (par_state)->builtin_unsigned_long;
signed_type = parse_type (par_state)->builtin_long;
}
else
{
int shift;
if (sizeof (ULONGEST) * HOST_CHAR_BIT
< gdbarch_long_long_bit (par_state->gdbarch ()))
/* A long long does not fit in a LONGEST. */
shift = (sizeof (ULONGEST) * HOST_CHAR_BIT - 1);
else
shift = (gdbarch_long_long_bit (par_state->gdbarch ()) - 1);
high_bit = (ULONGEST) 1 << shift;
unsigned_type = parse_type (par_state)->builtin_unsigned_long_long;
signed_type = parse_type (par_state)->builtin_long_long;
}
putithere->typed_val_int.val = n;
/* If the high bit of the worked out type is set then this number
has to be unsigned. */
if (unsigned_p || (n & high_bit))
{
putithere->typed_val_int.type = unsigned_type;
}
else
{
putithere->typed_val_int.type = signed_type;
}
return INT;
}
struct type_push
{
struct type *stored;
struct type_push *next;
};
static struct type_push *tp_top = NULL;
static void
push_current_type (void)
{
struct type_push *tpnew;
tpnew = (struct type_push *) malloc (sizeof (struct type_push));
tpnew->next = tp_top;
tpnew->stored = current_type;
current_type = NULL;
tp_top = tpnew;
}
static void
pop_current_type (void)
{
struct type_push *tp = tp_top;
if (tp)
{
current_type = tp->stored;
tp_top = tp->next;
free (tp);
}
}
struct token
{
const char *oper;
int token;
enum exp_opcode opcode;
};
static const struct token tokentab3[] =
{
{"shr", RSH, BINOP_END},
{"shl", LSH, BINOP_END},
{"and", ANDAND, BINOP_END},
{"div", DIV, BINOP_END},
{"not", NOT, BINOP_END},
{"mod", MOD, BINOP_END},
{"inc", INCREMENT, BINOP_END},
{"dec", DECREMENT, BINOP_END},
{"xor", XOR, BINOP_END}
};
static const struct token tokentab2[] =
{
{"or", OR, BINOP_END},
{"<>", NOTEQUAL, BINOP_END},
{"<=", LEQ, BINOP_END},
{">=", GEQ, BINOP_END},
{":=", ASSIGN, BINOP_END},
{"::", COLONCOLON, BINOP_END} };
/* Allocate uppercased var: */
/* make an uppercased copy of tokstart. */
static char *
uptok (const char *tokstart, int namelen)
{
int i;
char *uptokstart = (char *)malloc(namelen+1);
for (i = 0;i <= namelen;i++)
{
if ((tokstart[i]>='a' && tokstart[i]<='z'))
uptokstart[i] = tokstart[i]-('a'-'A');
else
uptokstart[i] = tokstart[i];
}
uptokstart[namelen]='\0';
return uptokstart;
}
/* Read one token, getting characters through lexptr. */
static int
yylex (void)
{
int c;
int namelen;
const char *tokstart;
char *uptokstart;
const char *tokptr;
int explen, tempbufindex;
static char *tempbuf;
static int tempbufsize;
retry:
pstate->prev_lexptr = pstate->lexptr;
tokstart = pstate->lexptr;
explen = strlen (pstate->lexptr);
/* See if it is a special token of length 3. */
if (explen > 2)
for (int i = 0; i < sizeof (tokentab3) / sizeof (tokentab3[0]); i++)
if (strncasecmp (tokstart, tokentab3[i].oper, 3) == 0
&& (!isalpha (tokentab3[i].oper[0]) || explen == 3
|| (!isalpha (tokstart[3])
&& !isdigit (tokstart[3]) && tokstart[3] != '_')))
{
pstate->lexptr += 3;
yylval.opcode = tokentab3[i].opcode;
return tokentab3[i].token;
}
/* See if it is a special token of length 2. */
if (explen > 1)
for (int i = 0; i < sizeof (tokentab2) / sizeof (tokentab2[0]); i++)
if (strncasecmp (tokstart, tokentab2[i].oper, 2) == 0
&& (!isalpha (tokentab2[i].oper[0]) || explen == 2
|| (!isalpha (tokstart[2])
&& !isdigit (tokstart[2]) && tokstart[2] != '_')))
{
pstate->lexptr += 2;
yylval.opcode = tokentab2[i].opcode;
return tokentab2[i].token;
}
switch (c = *tokstart)
{
case 0:
if (search_field && pstate->parse_completion)
return COMPLETE;
else
return 0;
case ' ':
case '\t':
case '\n':
pstate->lexptr++;
goto retry;
case '\'':
/* We either have a character constant ('0' or '\177' for example)
or we have a quoted symbol reference ('foo(int,int)' in object pascal
for example). */
pstate->lexptr++;
c = *pstate->lexptr++;
if (c == '\\')
c = parse_escape (pstate->gdbarch (), &pstate->lexptr);
else if (c == '\'')
error (_("Empty character constant."));
yylval.typed_val_int.val = c;
yylval.typed_val_int.type = parse_type (pstate)->builtin_char;
c = *pstate->lexptr++;
if (c != '\'')
{
namelen = skip_quoted (tokstart) - tokstart;
if (namelen > 2)
{
pstate->lexptr = tokstart + namelen;
if (pstate->lexptr[-1] != '\'')
error (_("Unmatched single quote."));
namelen -= 2;
tokstart++;
uptokstart = uptok(tokstart,namelen);
goto tryname;
}
error (_("Invalid character constant."));
}
return INT;
case '(':
paren_depth++;
pstate->lexptr++;
return c;
case ')':
if (paren_depth == 0)
return 0;
paren_depth--;
pstate->lexptr++;
return c;
case ',':
if (pstate->comma_terminates && paren_depth == 0)
return 0;
pstate->lexptr++;
return c;
case '.':
/* Might be a floating point number. */
if (pstate->lexptr[1] < '0' || pstate->lexptr[1] > '9')
{
goto symbol; /* Nope, must be a symbol. */
}
/* FALL THRU. */
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
/* It's a number. */
int got_dot = 0, got_e = 0, toktype;
const char *p = tokstart;
int hex = input_radix > 10;
if (c == '0' && (p[1] == 'x' || p[1] == 'X'))
{
p += 2;
hex = 1;
}
else if (c == '0' && (p[1]=='t' || p[1]=='T'
|| p[1]=='d' || p[1]=='D'))
{
p += 2;
hex = 0;
}
for (;; ++p)
{
/* This test includes !hex because 'e' is a valid hex digit
and thus does not indicate a floating point number when
the radix is hex. */
if (!hex && !got_e && (*p == 'e' || *p == 'E'))
got_dot = got_e = 1;
/* This test does not include !hex, because a '.' always indicates
a decimal floating point number regardless of the radix. */
else if (!got_dot && *p == '.')
got_dot = 1;
else if (got_e && (p[-1] == 'e' || p[-1] == 'E')
&& (*p == '-' || *p == '+'))
/* This is the sign of the exponent, not the end of the
number. */
continue;
/* We will take any letters or digits. parse_number will
complain if past the radix, or if L or U are not final. */
else if ((*p < '0' || *p > '9')
&& ((*p < 'a' || *p > 'z')
&& (*p < 'A' || *p > 'Z')))
break;
}
toktype = parse_number (pstate, tokstart,
p - tokstart, got_dot | got_e, &yylval);
if (toktype == ERROR)
{
char *err_copy = (char *) alloca (p - tokstart + 1);
memcpy (err_copy, tokstart, p - tokstart);
err_copy[p - tokstart] = 0;
error (_("Invalid number \"%s\"."), err_copy);
}
pstate->lexptr = p;
return toktype;
}
case '+':
case '-':
case '*':
case '/':
case '|':
case '&':
case '^':
case '~':
case '!':
case '@':
case '<':
case '>':
case '[':
case ']':
case '?':
case ':':
case '=':
case '{':
case '}':
symbol:
pstate->lexptr++;
return c;
case '"':
/* Build the gdb internal form of the input string in tempbuf,
translating any standard C escape forms seen. Note that the
buffer is null byte terminated *only* for the convenience of
debugging gdb itself and printing the buffer contents when
the buffer contains no embedded nulls. Gdb does not depend
upon the buffer being null byte terminated, it uses the length
string instead. This allows gdb to handle C strings (as well
as strings in other languages) with embedded null bytes. */
tokptr = ++tokstart;
tempbufindex = 0;
do {
/* Grow the static temp buffer if necessary, including allocating
the first one on demand. */
if (tempbufindex + 1 >= tempbufsize)
{
tempbuf = (char *) realloc (tempbuf, tempbufsize += 64);
}
switch (*tokptr)
{
case '\0':
case '"':
/* Do nothing, loop will terminate. */
break;
case '\\':
++tokptr;
c = parse_escape (pstate->gdbarch (), &tokptr);
if (c == -1)
{
continue;
}
tempbuf[tempbufindex++] = c;
break;
default:
tempbuf[tempbufindex++] = *tokptr++;
break;
}
} while ((*tokptr != '"') && (*tokptr != '\0'));
if (*tokptr++ != '"')
{
error (_("Unterminated string in expression."));
}
tempbuf[tempbufindex] = '\0'; /* See note above. */
yylval.sval.ptr = tempbuf;
yylval.sval.length = tempbufindex;
pstate->lexptr = tokptr;
return (STRING);
}
if (!(c == '_' || c == '$'
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z')))
/* We must have come across a bad character (e.g. ';'). */
error (_("Invalid character '%c' in expression."), c);
/* It's a name. See how long it is. */
namelen = 0;
for (c = tokstart[namelen];
(c == '_' || c == '$' || (c >= '0' && c <= '9')
|| (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '<');)
{
/* Template parameter lists are part of the name.
FIXME: This mishandles `print $a<4&&$a>3'. */
if (c == '<')
{
int i = namelen;
int nesting_level = 1;
while (tokstart[++i])
{
if (tokstart[i] == '<')
nesting_level++;
else if (tokstart[i] == '>')
{
if (--nesting_level == 0)
break;
}
}
if (tokstart[i] == '>')
namelen = i;
else
break;
}
/* do NOT uppercase internals because of registers !!! */
c = tokstart[++namelen];
}
uptokstart = uptok(tokstart,namelen);
/* The token "if" terminates the expression and is NOT
removed from the input stream. */
if (namelen == 2 && uptokstart[0] == 'I' && uptokstart[1] == 'F')
{
free (uptokstart);
return 0;
}
pstate->lexptr += namelen;
tryname:
/* Catch specific keywords. Should be done with a data structure. */
switch (namelen)
{
case 6:
if (strcmp (uptokstart, "OBJECT") == 0)
{
free (uptokstart);
return CLASS;
}
if (strcmp (uptokstart, "RECORD") == 0)
{
free (uptokstart);
return STRUCT;
}
if (strcmp (uptokstart, "SIZEOF") == 0)
{
free (uptokstart);
return SIZEOF;
}
break;
case 5:
if (strcmp (uptokstart, "CLASS") == 0)
{
free (uptokstart);
return CLASS;
}
if (strcmp (uptokstart, "FALSE") == 0)
{
yylval.lval = 0;
free (uptokstart);
return FALSEKEYWORD;
}
break;
case 4:
if (strcmp (uptokstart, "TRUE") == 0)
{
yylval.lval = 1;
free (uptokstart);
return TRUEKEYWORD;
}
if (strcmp (uptokstart, "SELF") == 0)
{
/* Here we search for 'this' like
inserted in FPC stabs debug info. */
static const char this_name[] = "this";
if (lookup_symbol (this_name, pstate->expression_context_block,
VAR_DOMAIN, NULL).symbol)
{
free (uptokstart);
return THIS;
}
}
break;
default:
break;
}
yylval.sval.ptr = tokstart;
yylval.sval.length = namelen;
if (*tokstart == '$')
{
free (uptokstart);
return DOLLAR_VARIABLE;
}
/* Use token-type BLOCKNAME for symbols that happen to be defined as
functions or symtabs. If this is not so, then ...
Use token-type TYPENAME for symbols that happen to be defined
currently as names of types; NAME for other symbols.
The caller is not constrained to care about the distinction. */
{
std::string tmp = copy_name (yylval.sval);
struct symbol *sym;
struct field_of_this_result is_a_field_of_this;
int is_a_field = 0;
int hextype;
is_a_field_of_this.type = NULL;
if (search_field && current_type)
is_a_field = (lookup_struct_elt_type (current_type,
tmp.c_str (), 1) != NULL);
if (is_a_field)
sym = NULL;
else
sym = lookup_symbol (tmp.c_str (), pstate->expression_context_block,
VAR_DOMAIN, &is_a_field_of_this).symbol;
/* second chance uppercased (as Free Pascal does). */
if (!sym && is_a_field_of_this.type == NULL && !is_a_field)
{
for (int i = 0; i <= namelen; i++)
{
if ((tmp[i] >= 'a' && tmp[i] <= 'z'))
tmp[i] -= ('a'-'A');
}
if (search_field && current_type)
is_a_field = (lookup_struct_elt_type (current_type,
tmp.c_str (), 1) != NULL);
if (is_a_field)
sym = NULL;
else
sym = lookup_symbol (tmp.c_str (), pstate->expression_context_block,
VAR_DOMAIN, &is_a_field_of_this).symbol;
}
/* Third chance Capitalized (as GPC does). */
if (!sym && is_a_field_of_this.type == NULL && !is_a_field)
{
for (int i = 0; i <= namelen; i++)
{
if (i == 0)
{
if ((tmp[i] >= 'a' && tmp[i] <= 'z'))
tmp[i] -= ('a'-'A');
}
else
if ((tmp[i] >= 'A' && tmp[i] <= 'Z'))
tmp[i] -= ('A'-'a');
}
if (search_field && current_type)
is_a_field = (lookup_struct_elt_type (current_type,
tmp.c_str (), 1) != NULL);
if (is_a_field)
sym = NULL;
else
sym = lookup_symbol (tmp.c_str (), pstate->expression_context_block,
VAR_DOMAIN, &is_a_field_of_this).symbol;
}
if (is_a_field || (is_a_field_of_this.type != NULL))
{
tempbuf = (char *) realloc (tempbuf, namelen + 1);
strncpy (tempbuf, tmp.c_str (), namelen);
tempbuf [namelen] = 0;
yylval.sval.ptr = tempbuf;
yylval.sval.length = namelen;
yylval.ssym.sym.symbol = NULL;
yylval.ssym.sym.block = NULL;
free (uptokstart);
yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
if (is_a_field)
return FIELDNAME;
else
return NAME;
}
/* Call lookup_symtab, not lookup_partial_symtab, in case there are
no psymtabs (coff, xcoff, or some future change to blow away the
psymtabs once once symbols are read). */
if ((sym && SYMBOL_CLASS (sym) == LOC_BLOCK)
|| lookup_symtab (tmp.c_str ()))
{
yylval.ssym.sym.symbol = sym;
yylval.ssym.sym.block = NULL;
yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
free (uptokstart);
return BLOCKNAME;
}
if (sym && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
{
#if 1
/* Despite the following flaw, we need to keep this code enabled.
Because we can get called from check_stub_method, if we don't
handle nested types then it screws many operations in any
program which uses nested types. */
/* In "A::x", if x is a member function of A and there happens
to be a type (nested or not, since the stabs don't make that
distinction) named x, then this code incorrectly thinks we
are dealing with nested types rather than a member function. */
const char *p;
const char *namestart;
struct symbol *best_sym;
/* Look ahead to detect nested types. This probably should be
done in the grammar, but trying seemed to introduce a lot
of shift/reduce and reduce/reduce conflicts. It's possible
that it could be done, though. Or perhaps a non-grammar, but
less ad hoc, approach would work well. */
/* Since we do not currently have any way of distinguishing
a nested type from a non-nested one (the stabs don't tell
us whether a type is nested), we just ignore the
containing type. */
p = pstate->lexptr;
best_sym = sym;
while (1)
{
/* Skip whitespace. */
while (*p == ' ' || *p == '\t' || *p == '\n')
++p;
if (*p == ':' && p[1] == ':')
{
/* Skip the `::'. */
p += 2;
/* Skip whitespace. */
while (*p == ' ' || *p == '\t' || *p == '\n')
++p;
namestart = p;
while (*p == '_' || *p == '$' || (*p >= '0' && *p <= '9')
|| (*p >= 'a' && *p <= 'z')
|| (*p >= 'A' && *p <= 'Z'))
++p;
if (p != namestart)
{
struct symbol *cur_sym;
/* As big as the whole rest of the expression, which is
at least big enough. */
char *ncopy
= (char *) alloca (tmp.size () + strlen (namestart)
+ 3);
char *tmp1;
tmp1 = ncopy;
memcpy (tmp1, tmp.c_str (), tmp.size ());
tmp1 += tmp.size ();
memcpy (tmp1, "::", 2);
tmp1 += 2;
memcpy (tmp1, namestart, p - namestart);
tmp1[p - namestart] = '\0';
cur_sym
= lookup_symbol (ncopy,
pstate->expression_context_block,
VAR_DOMAIN, NULL).symbol;
if (cur_sym)
{
if (SYMBOL_CLASS (cur_sym) == LOC_TYPEDEF)
{
best_sym = cur_sym;
pstate->lexptr = p;
}
else
break;
}
else
break;
}
else
break;
}
else
break;
}
yylval.tsym.type = SYMBOL_TYPE (best_sym);
#else /* not 0 */
yylval.tsym.type = SYMBOL_TYPE (sym);
#endif /* not 0 */
free (uptokstart);
return TYPENAME;
}
yylval.tsym.type
= language_lookup_primitive_type (pstate->language (),
pstate->gdbarch (), tmp.c_str ());
if (yylval.tsym.type != NULL)
{
free (uptokstart);
return TYPENAME;
}
/* Input names that aren't symbols but ARE valid hex numbers,
when the input radix permits them, can be names or numbers
depending on the parse. Note we support radixes > 16 here. */
if (!sym
&& ((tokstart[0] >= 'a' && tokstart[0] < 'a' + input_radix - 10)
|| (tokstart[0] >= 'A' && tokstart[0] < 'A' + input_radix - 10)))
{
YYSTYPE newlval; /* Its value is ignored. */
hextype = parse_number (pstate, tokstart, namelen, 0, &newlval);
if (hextype == INT)
{
yylval.ssym.sym.symbol = sym;
yylval.ssym.sym.block = NULL;
yylval.ssym.is_a_field_of_this = is_a_field_of_this.type != NULL;
free (uptokstart);
return NAME_OR_INT;
}
}
free(uptokstart);
/* Any other kind of symbol. */
yylval.ssym.sym.symbol = sym;
yylval.ssym.sym.block = NULL;
return NAME;
}
}
/* See language.h. */
int
pascal_language::parser (struct parser_state *par_state) const
{
/* Setting up the parser state. */
scoped_restore pstate_restore = make_scoped_restore (&pstate);
gdb_assert (par_state != NULL);
pstate = par_state;
paren_depth = 0;
return yyparse ();
}
static void
yyerror (const char *msg)
{
if (pstate->prev_lexptr)
pstate->lexptr = pstate->prev_lexptr;
error (_("A %s in expression, near `%s'."), msg, pstate->lexptr);
}