binutils-gdb/gdb/ft32-tdep.c
Joel Brobecker 3666a04883 Update copyright year range in all GDB files
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...

gdb/ChangeLog

        Update copyright year range in copyright header of all GDB files.
2021-01-01 12:12:21 +04:00

627 lines
18 KiB
C

/* Target-dependent code for FT32.
Copyright (C) 2009-2021 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>. */
#include "defs.h"
#include "frame.h"
#include "frame-unwind.h"
#include "frame-base.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcmd.h"
#include "gdbcore.h"
#include "value.h"
#include "inferior.h"
#include "symfile.h"
#include "objfiles.h"
#include "osabi.h"
#include "language.h"
#include "arch-utils.h"
#include "regcache.h"
#include "trad-frame.h"
#include "dis-asm.h"
#include "record.h"
#include "opcode/ft32.h"
#include "ft32-tdep.h"
#include "gdb/sim-ft32.h"
#include <algorithm>
#define RAM_BIAS 0x800000 /* Bias added to RAM addresses. */
/* Use an invalid address -1 as 'not available' marker. */
enum { REG_UNAVAIL = (CORE_ADDR) (-1) };
struct ft32_frame_cache
{
/* Base address of the frame */
CORE_ADDR base;
/* Function this frame belongs to */
CORE_ADDR pc;
/* Total size of this frame */
LONGEST framesize;
/* Saved registers in this frame */
CORE_ADDR saved_regs[FT32_NUM_REGS];
/* Saved SP in this frame */
CORE_ADDR saved_sp;
/* Has the new frame been LINKed. */
bfd_boolean established;
};
/* Implement the "frame_align" gdbarch method. */
static CORE_ADDR
ft32_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
{
/* Align to the size of an instruction (so that they can safely be
pushed onto the stack. */
return sp & ~1;
}
constexpr gdb_byte ft32_break_insn[] = { 0x02, 0x00, 0x34, 0x00 };
typedef BP_MANIPULATION (ft32_break_insn) ft32_breakpoint;
/* FT32 register names. */
static const char *const ft32_register_names[] =
{
"fp", "sp",
"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
"r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
"r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
"r24", "r25", "r26", "r27", "r28", "cc",
"pc"
};
/* Implement the "register_name" gdbarch method. */
static const char *
ft32_register_name (struct gdbarch *gdbarch, int reg_nr)
{
if (reg_nr < 0)
return NULL;
if (reg_nr >= FT32_NUM_REGS)
return NULL;
return ft32_register_names[reg_nr];
}
/* Implement the "register_type" gdbarch method. */
static struct type *
ft32_register_type (struct gdbarch *gdbarch, int reg_nr)
{
if (reg_nr == FT32_PC_REGNUM)
return gdbarch_tdep (gdbarch)->pc_type;
else if (reg_nr == FT32_SP_REGNUM || reg_nr == FT32_FP_REGNUM)
return builtin_type (gdbarch)->builtin_data_ptr;
else
return builtin_type (gdbarch)->builtin_int32;
}
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format. */
static void
ft32_store_return_value (struct type *type, struct regcache *regcache,
const gdb_byte *valbuf)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR regval;
int len = TYPE_LENGTH (type);
/* Things always get returned in RET1_REGNUM, RET2_REGNUM. */
regval = extract_unsigned_integer (valbuf, len > 4 ? 4 : len, byte_order);
regcache_cooked_write_unsigned (regcache, FT32_R0_REGNUM, regval);
if (len > 4)
{
regval = extract_unsigned_integer (valbuf + 4,
len - 4, byte_order);
regcache_cooked_write_unsigned (regcache, FT32_R1_REGNUM, regval);
}
}
/* Fetch a single 32-bit instruction from address a. If memory contains
a compressed instruction pair, return the expanded instruction. */
static ULONGEST
ft32_fetch_instruction (CORE_ADDR a, int *isize,
enum bfd_endian byte_order)
{
unsigned int sc[2];
ULONGEST inst;
CORE_ADDR a4 = a & ~3;
inst = read_code_unsigned_integer (a4, 4, byte_order);
*isize = ft32_decode_shortcode (a4, inst, sc) ? 2 : 4;
if (*isize == 2)
return sc[1 & (a >> 1)];
else
return inst;
}
/* Decode the instructions within the given address range. Decide
when we must have reached the end of the function prologue. If a
frame_info pointer is provided, fill in its saved_regs etc.
Returns the address of the first instruction after the prologue. */
static CORE_ADDR
ft32_analyze_prologue (CORE_ADDR start_addr, CORE_ADDR end_addr,
struct ft32_frame_cache *cache,
struct gdbarch *gdbarch)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR next_addr;
ULONGEST inst;
int isize = 0;
int regnum, pushreg;
struct bound_minimal_symbol msymbol;
const int first_saved_reg = 13; /* The first saved register. */
/* PROLOGS are addresses of the subroutine prologs, PROLOGS[n]
is the address of __prolog_$rN.
__prolog_$rN pushes registers from 13 through n inclusive.
So for example CALL __prolog_$r15 is equivalent to:
PUSH $r13
PUSH $r14
PUSH $r15
Note that PROLOGS[0] through PROLOGS[12] are unused. */
CORE_ADDR prologs[32];
cache->saved_regs[FT32_PC_REGNUM] = 0;
cache->framesize = 0;
for (regnum = first_saved_reg; regnum < 32; regnum++)
{
char prolog_symbol[32];
snprintf (prolog_symbol, sizeof (prolog_symbol), "__prolog_$r%02d",
regnum);
msymbol = lookup_minimal_symbol (prolog_symbol, NULL, NULL);
if (msymbol.minsym)
prologs[regnum] = BMSYMBOL_VALUE_ADDRESS (msymbol);
else
prologs[regnum] = 0;
}
if (start_addr >= end_addr)
return end_addr;
cache->established = 0;
for (next_addr = start_addr; next_addr < end_addr; next_addr += isize)
{
inst = ft32_fetch_instruction (next_addr, &isize, byte_order);
if (FT32_IS_PUSH (inst))
{
pushreg = FT32_PUSH_REG (inst);
cache->framesize += 4;
cache->saved_regs[FT32_R0_REGNUM + pushreg] = cache->framesize;
}
else if (FT32_IS_CALL (inst))
{
for (regnum = first_saved_reg; regnum < 32; regnum++)
{
if ((4 * (inst & 0x3ffff)) == prologs[regnum])
{
for (pushreg = first_saved_reg; pushreg <= regnum;
pushreg++)
{
cache->framesize += 4;
cache->saved_regs[FT32_R0_REGNUM + pushreg] =
cache->framesize;
}
}
}
break;
}
else
break;
}
for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++)
{
if (cache->saved_regs[regnum] != REG_UNAVAIL)
cache->saved_regs[regnum] =
cache->framesize - cache->saved_regs[regnum];
}
cache->saved_regs[FT32_PC_REGNUM] = cache->framesize;
/* It is a LINK? */
if (next_addr < end_addr)
{
inst = ft32_fetch_instruction (next_addr, &isize, byte_order);
if (FT32_IS_LINK (inst))
{
cache->established = 1;
for (regnum = FT32_R0_REGNUM; regnum < FT32_PC_REGNUM; regnum++)
{
if (cache->saved_regs[regnum] != REG_UNAVAIL)
cache->saved_regs[regnum] += 4;
}
cache->saved_regs[FT32_PC_REGNUM] = cache->framesize + 4;
cache->saved_regs[FT32_FP_REGNUM] = 0;
cache->framesize += FT32_LINK_SIZE (inst);
next_addr += isize;
}
}
return next_addr;
}
/* Find the end of function prologue. */
static CORE_ADDR
ft32_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
{
CORE_ADDR func_addr = 0, func_end = 0;
const char *func_name;
/* See if we can determine the end of the prologue via the symbol table.
If so, then return either PC, or the PC after the prologue, whichever
is greater. */
if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
{
CORE_ADDR post_prologue_pc
= skip_prologue_using_sal (gdbarch, func_addr);
if (post_prologue_pc != 0)
return std::max (pc, post_prologue_pc);
else
{
/* Can't determine prologue from the symbol table, need to examine
instructions. */
struct symtab_and_line sal;
struct symbol *sym;
struct ft32_frame_cache cache;
CORE_ADDR plg_end;
memset (&cache, 0, sizeof cache);
plg_end = ft32_analyze_prologue (func_addr,
func_end, &cache, gdbarch);
/* Found a function. */
sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL).symbol;
/* Don't use line number debug info for assembly source files. */
if ((sym != NULL) && sym->language () != language_asm)
{
sal = find_pc_line (func_addr, 0);
if (sal.end && sal.end < func_end)
{
/* Found a line number, use it as end of prologue. */
return sal.end;
}
}
/* No useable line symbol. Use result of prologue parsing method. */
return plg_end;
}
}
/* No function symbol -- just return the PC. */
return pc;
}
/* Implementation of `pointer_to_address' gdbarch method.
On FT32 address space zero is RAM, address space 1 is flash.
RAM appears at address RAM_BIAS, flash at address 0. */
static CORE_ADDR
ft32_pointer_to_address (struct gdbarch *gdbarch,
struct type *type, const gdb_byte *buf)
{
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
CORE_ADDR addr
= extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
if (TYPE_ADDRESS_CLASS_1 (type))
return addr;
else
return addr | RAM_BIAS;
}
/* Implementation of `address_class_type_flags' gdbarch method.
This method maps DW_AT_address_class attributes to a
type_instance_flag_value. */
static type_instance_flags
ft32_address_class_type_flags (int byte_size, int dwarf2_addr_class)
{
/* The value 1 of the DW_AT_address_class attribute corresponds to the
__flash__ qualifier, meaning pointer to data in FT32 program memory.
*/
if (dwarf2_addr_class == 1)
return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
return 0;
}
/* Implementation of `address_class_type_flags_to_name' gdbarch method.
Convert a type_instance_flag_value to an address space qualifier. */
static const char*
ft32_address_class_type_flags_to_name (struct gdbarch *gdbarch,
type_instance_flags type_flags)
{
if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
return "flash";
else
return NULL;
}
/* Implementation of `address_class_name_to_type_flags' gdbarch method.
Convert an address space qualifier to a type_instance_flag_value. */
static bool
ft32_address_class_name_to_type_flags (struct gdbarch *gdbarch,
const char* name,
type_instance_flags *type_flags_ptr)
{
if (strcmp (name, "flash") == 0)
{
*type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
return true;
}
else
return false;
}
/* Given a return value in `regbuf' with a type `valtype',
extract and copy its value into `valbuf'. */
static void
ft32_extract_return_value (struct type *type, struct regcache *regcache,
gdb_byte *dst)
{
struct gdbarch *gdbarch = regcache->arch ();
enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
bfd_byte *valbuf = dst;
int len = TYPE_LENGTH (type);
ULONGEST tmp;
/* By using store_unsigned_integer we avoid having to do
anything special for small big-endian values. */
regcache_cooked_read_unsigned (regcache, FT32_R0_REGNUM, &tmp);
store_unsigned_integer (valbuf, (len > 4 ? len - 4 : len), byte_order, tmp);
/* Ignore return values more than 8 bytes in size because the ft32
returns anything more than 8 bytes in the stack. */
if (len > 4)
{
regcache_cooked_read_unsigned (regcache, FT32_R1_REGNUM, &tmp);
store_unsigned_integer (valbuf + len - 4, 4, byte_order, tmp);
}
}
/* Implement the "return_value" gdbarch method. */
static enum return_value_convention
ft32_return_value (struct gdbarch *gdbarch, struct value *function,
struct type *valtype, struct regcache *regcache,
gdb_byte *readbuf, const gdb_byte *writebuf)
{
if (TYPE_LENGTH (valtype) > 8)
return RETURN_VALUE_STRUCT_CONVENTION;
else
{
if (readbuf != NULL)
ft32_extract_return_value (valtype, regcache, readbuf);
if (writebuf != NULL)
ft32_store_return_value (valtype, regcache, writebuf);
return RETURN_VALUE_REGISTER_CONVENTION;
}
}
/* Allocate and initialize a ft32_frame_cache object. */
static struct ft32_frame_cache *
ft32_alloc_frame_cache (void)
{
struct ft32_frame_cache *cache;
int i;
cache = FRAME_OBSTACK_ZALLOC (struct ft32_frame_cache);
for (i = 0; i < FT32_NUM_REGS; ++i)
cache->saved_regs[i] = REG_UNAVAIL;
return cache;
}
/* Populate a ft32_frame_cache object for this_frame. */
static struct ft32_frame_cache *
ft32_frame_cache (struct frame_info *this_frame, void **this_cache)
{
struct ft32_frame_cache *cache;
CORE_ADDR current_pc;
int i;
if (*this_cache)
return (struct ft32_frame_cache *) *this_cache;
cache = ft32_alloc_frame_cache ();
*this_cache = cache;
cache->base = get_frame_register_unsigned (this_frame, FT32_FP_REGNUM);
if (cache->base == 0)
return cache;
cache->pc = get_frame_func (this_frame);
current_pc = get_frame_pc (this_frame);
if (cache->pc)
{
struct gdbarch *gdbarch = get_frame_arch (this_frame);
ft32_analyze_prologue (cache->pc, current_pc, cache, gdbarch);
if (!cache->established)
cache->base = get_frame_register_unsigned (this_frame, FT32_SP_REGNUM);
}
cache->saved_sp = cache->base - 4;
for (i = 0; i < FT32_NUM_REGS; ++i)
if (cache->saved_regs[i] != REG_UNAVAIL)
cache->saved_regs[i] = cache->base + cache->saved_regs[i];
return cache;
}
/* Given a GDB frame, determine the address of the calling function's
frame. This will be used to create a new GDB frame struct. */
static void
ft32_frame_this_id (struct frame_info *this_frame,
void **this_prologue_cache, struct frame_id *this_id)
{
struct ft32_frame_cache *cache = ft32_frame_cache (this_frame,
this_prologue_cache);
/* This marks the outermost frame. */
if (cache->base == 0)
return;
*this_id = frame_id_build (cache->saved_sp, cache->pc);
}
/* Get the value of register regnum in the previous stack frame. */
static struct value *
ft32_frame_prev_register (struct frame_info *this_frame,
void **this_prologue_cache, int regnum)
{
struct ft32_frame_cache *cache = ft32_frame_cache (this_frame,
this_prologue_cache);
gdb_assert (regnum >= 0);
if (regnum == FT32_SP_REGNUM && cache->saved_sp)
return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
if (regnum < FT32_NUM_REGS && cache->saved_regs[regnum] != REG_UNAVAIL)
return frame_unwind_got_memory (this_frame, regnum,
RAM_BIAS | cache->saved_regs[regnum]);
return frame_unwind_got_register (this_frame, regnum, regnum);
}
static const struct frame_unwind ft32_frame_unwind =
{
NORMAL_FRAME,
default_frame_unwind_stop_reason,
ft32_frame_this_id,
ft32_frame_prev_register,
NULL,
default_frame_sniffer
};
/* Return the base address of this_frame. */
static CORE_ADDR
ft32_frame_base_address (struct frame_info *this_frame, void **this_cache)
{
struct ft32_frame_cache *cache = ft32_frame_cache (this_frame,
this_cache);
return cache->base;
}
static const struct frame_base ft32_frame_base =
{
&ft32_frame_unwind,
ft32_frame_base_address,
ft32_frame_base_address,
ft32_frame_base_address
};
/* Allocate and initialize the ft32 gdbarch object. */
static struct gdbarch *
ft32_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
struct gdbarch *gdbarch;
struct gdbarch_tdep *tdep;
struct type *void_type;
struct type *func_void_type;
/* If there is already a candidate, use it. */
arches = gdbarch_list_lookup_by_info (arches, &info);
if (arches != NULL)
return arches->gdbarch;
/* Allocate space for the new architecture. */
tdep = XCNEW (struct gdbarch_tdep);
gdbarch = gdbarch_alloc (&info, tdep);
/* Create a type for PC. We can't use builtin types here, as they may not
be defined. */
void_type = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
func_void_type = make_function_type (void_type, NULL);
tdep->pc_type = arch_pointer_type (gdbarch, 4 * TARGET_CHAR_BIT, NULL,
func_void_type);
tdep->pc_type->set_instance_flags (tdep->pc_type->instance_flags ()
| TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1);
set_gdbarch_num_regs (gdbarch, FT32_NUM_REGS);
set_gdbarch_sp_regnum (gdbarch, FT32_SP_REGNUM);
set_gdbarch_pc_regnum (gdbarch, FT32_PC_REGNUM);
set_gdbarch_register_name (gdbarch, ft32_register_name);
set_gdbarch_register_type (gdbarch, ft32_register_type);
set_gdbarch_return_value (gdbarch, ft32_return_value);
set_gdbarch_pointer_to_address (gdbarch, ft32_pointer_to_address);
set_gdbarch_skip_prologue (gdbarch, ft32_skip_prologue);
set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
set_gdbarch_breakpoint_kind_from_pc (gdbarch, ft32_breakpoint::kind_from_pc);
set_gdbarch_sw_breakpoint_from_kind (gdbarch, ft32_breakpoint::bp_from_kind);
set_gdbarch_frame_align (gdbarch, ft32_frame_align);
frame_base_set_default (gdbarch, &ft32_frame_base);
/* Hook in ABI-specific overrides, if they have been registered. */
gdbarch_init_osabi (info, gdbarch);
/* Hook in the default unwinders. */
frame_unwind_append_unwinder (gdbarch, &ft32_frame_unwind);
/* Support simple overlay manager. */
set_gdbarch_overlay_update (gdbarch, simple_overlay_update);
set_gdbarch_address_class_type_flags (gdbarch, ft32_address_class_type_flags);
set_gdbarch_address_class_name_to_type_flags
(gdbarch, ft32_address_class_name_to_type_flags);
set_gdbarch_address_class_type_flags_to_name
(gdbarch, ft32_address_class_type_flags_to_name);
return gdbarch;
}
/* Register this machine's init routine. */
void _initialize_ft32_tdep ();
void
_initialize_ft32_tdep ()
{
register_gdbarch_init (bfd_arch_ft32, ft32_gdbarch_init);
}