binutils-gdb/gdb/arm-linux-tdep.c

380 lines
13 KiB
C

/* GNU/Linux on ARM target support.
Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA. */
#include "defs.h"
#include "target.h"
#include "value.h"
#include "gdbtypes.h"
#include "floatformat.h"
#include "gdbcore.h"
#include "frame.h"
#include "regcache.h"
#include "doublest.h"
#include "solib-svr4.h"
#include "osabi.h"
#include "trad-frame.h"
#include "tramp-frame.h"
#include "arm-tdep.h"
#include "glibc-tdep.h"
#include "gdb_string.h"
/* Under ARM GNU/Linux the traditional way of performing a breakpoint
is to execute a particular software interrupt, rather than use a
particular undefined instruction to provoke a trap. Upon exection
of the software interrupt the kernel stops the inferior with a
SIGTRAP, and wakes the debugger. */
static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
/* However, the EABI syscall interface (new in Nov. 2005) does not look at
the operand of the swi if old-ABI compatibility is disabled. Therefore,
use an undefined instruction instead. This is supported as of kernel
version 2.5.70 (May 2003), so should be a safe assumption for EABI
binaries. */
static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
/* All the kernels which support Thumb support using a specific undefined
instruction for the Thumb breakpoint. */
static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
/* Description of the longjmp buffer. */
#define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
#define ARM_LINUX_JB_PC 21
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
into VALBUF. */
/* FIXME rearnsha/2002-02-23: This function shouldn't be necessary.
The ARM generic one should be able to handle the model used by
linux and the low-level formatting of the registers should be
hidden behind the regcache abstraction. */
static void
arm_linux_extract_return_value (struct type *type,
gdb_byte regbuf[],
gdb_byte *valbuf)
{
/* ScottB: This needs to be looked at to handle the different
floating point emulators on ARM GNU/Linux. Right now the code
assumes that fetch inferior registers does the right thing for
GDB. I suspect this won't handle NWFPE registers correctly, nor
will the default ARM version (arm_extract_return_value()). */
int regnum = ((TYPE_CODE_FLT == TYPE_CODE (type))
? ARM_F0_REGNUM : ARM_A1_REGNUM);
memcpy (valbuf, &regbuf[DEPRECATED_REGISTER_BYTE (regnum)], TYPE_LENGTH (type));
}
/*
Dynamic Linking on ARM GNU/Linux
--------------------------------
Note: PLT = procedure linkage table
GOT = global offset table
As much as possible, ELF dynamic linking defers the resolution of
jump/call addresses until the last minute. The technique used is
inspired by the i386 ELF design, and is based on the following
constraints.
1) The calling technique should not force a change in the assembly
code produced for apps; it MAY cause changes in the way assembly
code is produced for position independent code (i.e. shared
libraries).
2) The technique must be such that all executable areas must not be
modified; and any modified areas must not be executed.
To do this, there are three steps involved in a typical jump:
1) in the code
2) through the PLT
3) using a pointer from the GOT
When the executable or library is first loaded, each GOT entry is
initialized to point to the code which implements dynamic name
resolution and code finding. This is normally a function in the
program interpreter (on ARM GNU/Linux this is usually
ld-linux.so.2, but it does not have to be). On the first
invocation, the function is located and the GOT entry is replaced
with the real function address. Subsequent calls go through steps
1, 2 and 3 and end up calling the real code.
1) In the code:
b function_call
bl function_call
This is typical ARM code using the 26 bit relative branch or branch
and link instructions. The target of the instruction
(function_call is usually the address of the function to be called.
In position independent code, the target of the instruction is
actually an entry in the PLT when calling functions in a shared
library. Note that this call is identical to a normal function
call, only the target differs.
2) In the PLT:
The PLT is a synthetic area, created by the linker. It exists in
both executables and libraries. It is an array of stubs, one per
imported function call. It looks like this:
PLT[0]:
str lr, [sp, #-4]! @push the return address (lr)
ldr lr, [pc, #16] @load from 6 words ahead
add lr, pc, lr @form an address for GOT[0]
ldr pc, [lr, #8]! @jump to the contents of that addr
The return address (lr) is pushed on the stack and used for
calculations. The load on the second line loads the lr with
&GOT[3] - . - 20. The addition on the third leaves:
lr = (&GOT[3] - . - 20) + (. + 8)
lr = (&GOT[3] - 12)
lr = &GOT[0]
On the fourth line, the pc and lr are both updated, so that:
pc = GOT[2]
lr = &GOT[0] + 8
= &GOT[2]
NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
"tight", but allows us to keep all the PLT entries the same size.
PLT[n+1]:
ldr ip, [pc, #4] @load offset from gotoff
add ip, pc, ip @add the offset to the pc
ldr pc, [ip] @jump to that address
gotoff: .word GOT[n+3] - .
The load on the first line, gets an offset from the fourth word of
the PLT entry. The add on the second line makes ip = &GOT[n+3],
which contains either a pointer to PLT[0] (the fixup trampoline) or
a pointer to the actual code.
3) In the GOT:
The GOT contains helper pointers for both code (PLT) fixups and
data fixups. The first 3 entries of the GOT are special. The next
M entries (where M is the number of entries in the PLT) belong to
the PLT fixups. The next D (all remaining) entries belong to
various data fixups. The actual size of the GOT is 3 + M + D.
The GOT is also a synthetic area, created by the linker. It exists
in both executables and libraries. When the GOT is first
initialized , all the GOT entries relating to PLT fixups are
pointing to code back at PLT[0].
The special entries in the GOT are:
GOT[0] = linked list pointer used by the dynamic loader
GOT[1] = pointer to the reloc table for this module
GOT[2] = pointer to the fixup/resolver code
The first invocation of function call comes through and uses the
fixup/resolver code. On the entry to the fixup/resolver code:
ip = &GOT[n+3]
lr = &GOT[2]
stack[0] = return address (lr) of the function call
[r0, r1, r2, r3] are still the arguments to the function call
This is enough information for the fixup/resolver code to work
with. Before the fixup/resolver code returns, it actually calls
the requested function and repairs &GOT[n+3]. */
/* The constants below were determined by examining the following files
in the linux kernel sources:
arch/arm/kernel/signal.c
- see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
include/asm-arm/unistd.h
- see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
#define ARM_LINUX_SIGRETURN_INSTR 0xef900077
#define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
/* For ARM EABI, recognize the pattern that glibc uses... alternatively,
we could arrange to do this by function name, but they are not always
exported. */
#define ARM_SET_R7_SIGRETURN 0xe3a07077
#define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
#define ARM_EABI_SYSCALL 0xef000000
static void
arm_linux_sigtramp_cache (struct frame_info *next_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func, int regs_offset)
{
CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, ARM_SP_REGNUM);
CORE_ADDR base = sp + regs_offset;
int i;
for (i = 0; i < 16; i++)
trad_frame_set_reg_addr (this_cache, i, base + i * 4);
trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
/* The VFP or iWMMXt registers may be saved on the stack, but there's
no reliable way to restore them (yet). */
/* Save a frame ID. */
trad_frame_set_id (this_cache, frame_id_build (sp, func));
}
static void
arm_linux_sigreturn_init (const struct tramp_frame *self,
struct frame_info *next_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func)
{
arm_linux_sigtramp_cache (next_frame, this_cache, func,
0x0c /* Offset to registers. */);
}
static void
arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
struct frame_info *next_frame,
struct trad_frame_cache *this_cache,
CORE_ADDR func)
{
arm_linux_sigtramp_cache (next_frame, this_cache, func,
0x88 /* Offset to ucontext_t. */
+ 0x14 /* Offset to sigcontext. */
+ 0x0c /* Offset to registers. */);
}
static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
SIGTRAMP_FRAME,
4,
{
{ ARM_LINUX_SIGRETURN_INSTR, -1 },
{ TRAMP_SENTINEL_INSN }
},
arm_linux_sigreturn_init
};
static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
SIGTRAMP_FRAME,
4,
{
{ ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
{ TRAMP_SENTINEL_INSN }
},
arm_linux_rt_sigreturn_init
};
static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
SIGTRAMP_FRAME,
4,
{
{ ARM_SET_R7_SIGRETURN, -1 },
{ ARM_EABI_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN }
},
arm_linux_sigreturn_init
};
static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
SIGTRAMP_FRAME,
4,
{
{ ARM_SET_R7_RT_SIGRETURN, -1 },
{ ARM_EABI_SYSCALL, -1 },
{ TRAMP_SENTINEL_INSN }
},
arm_linux_rt_sigreturn_init
};
static void
arm_linux_init_abi (struct gdbarch_info info,
struct gdbarch *gdbarch)
{
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
tdep->lowest_pc = 0x8000;
if (info.byte_order == BFD_ENDIAN_BIG)
{
if (tdep->arm_abi == ARM_ABI_AAPCS)
tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
else
tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
}
else
{
if (tdep->arm_abi == ARM_ABI_AAPCS)
tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
else
tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
}
tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
if (tdep->fp_model == ARM_FLOAT_AUTO)
tdep->fp_model = ARM_FLOAT_FPA;
tdep->jb_pc = ARM_LINUX_JB_PC;
tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
set_solib_svr4_fetch_link_map_offsets
(gdbarch, svr4_ilp32_fetch_link_map_offsets);
/* The following override shouldn't be needed. */
set_gdbarch_deprecated_extract_return_value (gdbarch, arm_linux_extract_return_value);
/* Shared library handling. */
set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
/* Enable TLS support. */
set_gdbarch_fetch_tls_load_module_address (gdbarch,
svr4_fetch_objfile_link_map);
tramp_frame_prepend_unwinder (gdbarch,
&arm_linux_sigreturn_tramp_frame);
tramp_frame_prepend_unwinder (gdbarch,
&arm_linux_rt_sigreturn_tramp_frame);
tramp_frame_prepend_unwinder (gdbarch,
&arm_eabi_linux_sigreturn_tramp_frame);
tramp_frame_prepend_unwinder (gdbarch,
&arm_eabi_linux_rt_sigreturn_tramp_frame);
}
void
_initialize_arm_linux_tdep (void)
{
gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
arm_linux_init_abi);
}