mirror of
https://sourceware.org/git/binutils-gdb.git
synced 2024-11-27 03:54:41 +08:00
db728ff7cd
* gdbserver/low-hppabsd.c, gdbserver/low-lynx.c, gdbserver/low-nbsd.c, gdbserver/low-sim.c, gdbserver/low-sparc.c, gdbserver/low-sun3.c, gdbserver/low-linux.c, gdbserver/server.c: Correct copyright notices.
600 lines
17 KiB
C
600 lines
17 KiB
C
/* Low level interface to ptrace, for the remote server for GDB.
|
||
Copyright 1986, 1987, 1993, 2000, 2001, 2002 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include "server.h"
|
||
#include <sys/types.h>
|
||
#include <sys/wait.h>
|
||
#include "frame.h"
|
||
#include "inferior.h"
|
||
|
||
#include <stdio.h>
|
||
#include <errno.h>
|
||
|
||
/***************Begin MY defs*********************/
|
||
static char my_registers[REGISTER_BYTES];
|
||
char *registers = my_registers;
|
||
/***************End MY defs*********************/
|
||
|
||
#include <sys/ptrace.h>
|
||
#include <machine/reg.h>
|
||
|
||
#define RF(dst, src) \
|
||
memcpy(®isters[REGISTER_BYTE(dst)], &src, sizeof(src))
|
||
|
||
#define RS(src, dst) \
|
||
memcpy(&dst, ®isters[REGISTER_BYTE(src)], sizeof(dst))
|
||
|
||
#ifdef __i386__
|
||
struct env387
|
||
{
|
||
unsigned short control;
|
||
unsigned short r0;
|
||
unsigned short status;
|
||
unsigned short r1;
|
||
unsigned short tag;
|
||
unsigned short r2;
|
||
unsigned long eip;
|
||
unsigned short code_seg;
|
||
unsigned short opcode;
|
||
unsigned long operand;
|
||
unsigned short operand_seg;
|
||
unsigned short r3;
|
||
unsigned char regs[8][10];
|
||
};
|
||
|
||
/* i386_register_raw_size[i] is the number of bytes of storage in the
|
||
actual machine representation for register i. */
|
||
int i386_register_raw_size[MAX_NUM_REGS] = {
|
||
4, 4, 4, 4,
|
||
4, 4, 4, 4,
|
||
4, 4, 4, 4,
|
||
4, 4, 4, 4,
|
||
10, 10, 10, 10,
|
||
10, 10, 10, 10,
|
||
4, 4, 4, 4,
|
||
4, 4, 4, 4,
|
||
16, 16, 16, 16,
|
||
16, 16, 16, 16,
|
||
4
|
||
};
|
||
|
||
int i386_register_byte[MAX_NUM_REGS];
|
||
|
||
static void
|
||
initialize_arch (void)
|
||
{
|
||
/* Initialize the table saying where each register starts in the
|
||
register file. */
|
||
{
|
||
int i, offset;
|
||
|
||
offset = 0;
|
||
for (i = 0; i < MAX_NUM_REGS; i++)
|
||
{
|
||
i386_register_byte[i] = offset;
|
||
offset += i386_register_raw_size[i];
|
||
}
|
||
}
|
||
}
|
||
#endif /* !__i386__ */
|
||
|
||
#ifdef __m68k__
|
||
static void
|
||
initialize_arch (void)
|
||
{
|
||
}
|
||
#endif /* !__m68k__ */
|
||
|
||
#ifdef __ns32k__
|
||
static void
|
||
initialize_arch (void)
|
||
{
|
||
}
|
||
#endif /* !__ns32k__ */
|
||
|
||
#ifdef __powerpc__
|
||
#include "ppc-tdep.h"
|
||
|
||
static void
|
||
initialize_arch (void)
|
||
{
|
||
}
|
||
#endif /* !__powerpc__ */
|
||
|
||
|
||
/* Start an inferior process and returns its pid.
|
||
ALLARGS is a vector of program-name and args. */
|
||
|
||
int
|
||
create_inferior (char *program, char **allargs)
|
||
{
|
||
int pid;
|
||
|
||
pid = fork ();
|
||
if (pid < 0)
|
||
perror_with_name ("fork");
|
||
|
||
if (pid == 0)
|
||
{
|
||
ptrace (PT_TRACE_ME, 0, 0, 0);
|
||
|
||
execv (program, allargs);
|
||
|
||
fprintf (stderr, "Cannot exec %s: %s.\n", program,
|
||
errno < sys_nerr ? sys_errlist[errno] : "unknown error");
|
||
fflush (stderr);
|
||
_exit (0177);
|
||
}
|
||
|
||
return pid;
|
||
}
|
||
|
||
/* Attaching is not supported. */
|
||
int
|
||
myattach (int pid)
|
||
{
|
||
return -1;
|
||
}
|
||
|
||
/* Kill the inferior process. Make us have no inferior. */
|
||
|
||
void
|
||
kill_inferior (void)
|
||
{
|
||
if (inferior_pid == 0)
|
||
return;
|
||
ptrace (PT_KILL, inferior_pid, 0, 0);
|
||
wait (0);
|
||
/*************inferior_died ();****VK**************/
|
||
}
|
||
|
||
/* Return nonzero if the given thread is still alive. */
|
||
int
|
||
mythread_alive (int pid)
|
||
{
|
||
return 1;
|
||
}
|
||
|
||
/* Wait for process, returns status */
|
||
|
||
unsigned char
|
||
mywait (char *status)
|
||
{
|
||
int pid;
|
||
int w;
|
||
|
||
enable_async_io ();
|
||
pid = waitpid (inferior_pid, &w, 0);
|
||
disable_async_io ();
|
||
if (pid != inferior_pid)
|
||
perror_with_name ("wait");
|
||
|
||
if (WIFEXITED (w))
|
||
{
|
||
fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
|
||
*status = 'W';
|
||
return ((unsigned char) WEXITSTATUS (w));
|
||
}
|
||
else if (!WIFSTOPPED (w))
|
||
{
|
||
fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
|
||
*status = 'X';
|
||
return ((unsigned char) WTERMSIG (w));
|
||
}
|
||
|
||
fetch_inferior_registers (0);
|
||
|
||
*status = 'T';
|
||
return ((unsigned char) WSTOPSIG (w));
|
||
}
|
||
|
||
/* Resume execution of the inferior process.
|
||
If STEP is nonzero, single-step it.
|
||
If SIGNAL is nonzero, give it that signal. */
|
||
|
||
void
|
||
myresume (int step, int signal)
|
||
{
|
||
errno = 0;
|
||
ptrace (step ? PT_STEP : PT_CONTINUE, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) 1, signal);
|
||
if (errno)
|
||
perror_with_name ("ptrace");
|
||
}
|
||
|
||
|
||
#ifdef __i386__
|
||
/* Fetch one or more registers from the inferior. REGNO == -1 to get
|
||
them all. We actually fetch more than requested, when convenient,
|
||
marking them as valid so we won't fetch them again. */
|
||
|
||
void
|
||
fetch_inferior_registers (int ignored)
|
||
{
|
||
struct reg inferior_registers;
|
||
struct env387 inferior_fp_registers;
|
||
|
||
ptrace (PT_GETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_registers, 0);
|
||
ptrace (PT_GETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
|
||
|
||
RF ( 0, inferior_registers.r_eax);
|
||
RF ( 1, inferior_registers.r_ecx);
|
||
RF ( 2, inferior_registers.r_edx);
|
||
RF ( 3, inferior_registers.r_ebx);
|
||
RF ( 4, inferior_registers.r_esp);
|
||
RF ( 5, inferior_registers.r_ebp);
|
||
RF ( 6, inferior_registers.r_esi);
|
||
RF ( 7, inferior_registers.r_edi);
|
||
RF ( 8, inferior_registers.r_eip);
|
||
RF ( 9, inferior_registers.r_eflags);
|
||
RF (10, inferior_registers.r_cs);
|
||
RF (11, inferior_registers.r_ss);
|
||
RF (12, inferior_registers.r_ds);
|
||
RF (13, inferior_registers.r_es);
|
||
RF (14, inferior_registers.r_fs);
|
||
RF (15, inferior_registers.r_gs);
|
||
|
||
RF (FP0_REGNUM, inferior_fp_registers.regs[0]);
|
||
RF (FP0_REGNUM + 1, inferior_fp_registers.regs[1]);
|
||
RF (FP0_REGNUM + 2, inferior_fp_registers.regs[2]);
|
||
RF (FP0_REGNUM + 3, inferior_fp_registers.regs[3]);
|
||
RF (FP0_REGNUM + 4, inferior_fp_registers.regs[4]);
|
||
RF (FP0_REGNUM + 5, inferior_fp_registers.regs[5]);
|
||
RF (FP0_REGNUM + 6, inferior_fp_registers.regs[6]);
|
||
RF (FP0_REGNUM + 7, inferior_fp_registers.regs[7]);
|
||
|
||
RF (FCTRL_REGNUM, inferior_fp_registers.control);
|
||
RF (FSTAT_REGNUM, inferior_fp_registers.status);
|
||
RF (FTAG_REGNUM, inferior_fp_registers.tag);
|
||
RF (FCS_REGNUM, inferior_fp_registers.code_seg);
|
||
RF (FCOFF_REGNUM, inferior_fp_registers.eip);
|
||
RF (FDS_REGNUM, inferior_fp_registers.operand_seg);
|
||
RF (FDOFF_REGNUM, inferior_fp_registers.operand);
|
||
RF (FOP_REGNUM, inferior_fp_registers.opcode);
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (int ignored)
|
||
{
|
||
struct reg inferior_registers;
|
||
struct env387 inferior_fp_registers;
|
||
|
||
RS ( 0, inferior_registers.r_eax);
|
||
RS ( 1, inferior_registers.r_ecx);
|
||
RS ( 2, inferior_registers.r_edx);
|
||
RS ( 3, inferior_registers.r_ebx);
|
||
RS ( 4, inferior_registers.r_esp);
|
||
RS ( 5, inferior_registers.r_ebp);
|
||
RS ( 6, inferior_registers.r_esi);
|
||
RS ( 7, inferior_registers.r_edi);
|
||
RS ( 8, inferior_registers.r_eip);
|
||
RS ( 9, inferior_registers.r_eflags);
|
||
RS (10, inferior_registers.r_cs);
|
||
RS (11, inferior_registers.r_ss);
|
||
RS (12, inferior_registers.r_ds);
|
||
RS (13, inferior_registers.r_es);
|
||
RS (14, inferior_registers.r_fs);
|
||
RS (15, inferior_registers.r_gs);
|
||
|
||
RS (FP0_REGNUM, inferior_fp_registers.regs[0]);
|
||
RS (FP0_REGNUM + 1, inferior_fp_registers.regs[1]);
|
||
RS (FP0_REGNUM + 2, inferior_fp_registers.regs[2]);
|
||
RS (FP0_REGNUM + 3, inferior_fp_registers.regs[3]);
|
||
RS (FP0_REGNUM + 4, inferior_fp_registers.regs[4]);
|
||
RS (FP0_REGNUM + 5, inferior_fp_registers.regs[5]);
|
||
RS (FP0_REGNUM + 6, inferior_fp_registers.regs[6]);
|
||
RS (FP0_REGNUM + 7, inferior_fp_registers.regs[7]);
|
||
|
||
RS (FCTRL_REGNUM, inferior_fp_registers.control);
|
||
RS (FSTAT_REGNUM, inferior_fp_registers.status);
|
||
RS (FTAG_REGNUM, inferior_fp_registers.tag);
|
||
RS (FCS_REGNUM, inferior_fp_registers.code_seg);
|
||
RS (FCOFF_REGNUM, inferior_fp_registers.eip);
|
||
RS (FDS_REGNUM, inferior_fp_registers.operand_seg);
|
||
RS (FDOFF_REGNUM, inferior_fp_registers.operand);
|
||
RS (FOP_REGNUM, inferior_fp_registers.opcode);
|
||
|
||
ptrace (PT_SETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_registers, 0);
|
||
ptrace (PT_SETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_fp_registers, 0);
|
||
}
|
||
#endif /* !__i386__ */
|
||
|
||
#ifdef __m68k__
|
||
/* Fetch one or more registers from the inferior. REGNO == -1 to get
|
||
them all. We actually fetch more than requested, when convenient,
|
||
marking them as valid so we won't fetch them again. */
|
||
|
||
void
|
||
fetch_inferior_registers (int regno)
|
||
{
|
||
struct reg inferior_registers;
|
||
struct fpreg inferior_fp_registers;
|
||
|
||
ptrace (PT_GETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & inferior_registers, 0);
|
||
memcpy (®isters[REGISTER_BYTE (0)], &inferior_registers,
|
||
sizeof (inferior_registers));
|
||
|
||
ptrace (PT_GETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
|
||
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
|
||
sizeof (inferior_fp_registers));
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (int regno)
|
||
{
|
||
struct reg inferior_registers;
|
||
struct fpreg inferior_fp_registers;
|
||
|
||
memcpy (&inferior_registers, ®isters[REGISTER_BYTE (0)],
|
||
sizeof (inferior_registers));
|
||
ptrace (PT_SETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & inferior_registers, 0);
|
||
|
||
memcpy (&inferior_fp_registers, ®isters[REGISTER_BYTE (FP0_REGNUM)],
|
||
sizeof (inferior_fp_registers));
|
||
ptrace (PT_SETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
|
||
}
|
||
#endif /* !__m68k__ */
|
||
|
||
|
||
#ifdef __ns32k__
|
||
/* Fetch one or more registers from the inferior. REGNO == -1 to get
|
||
them all. We actually fetch more than requested, when convenient,
|
||
marking them as valid so we won't fetch them again. */
|
||
|
||
void
|
||
fetch_inferior_registers (int regno)
|
||
{
|
||
struct reg inferior_registers;
|
||
struct fpreg inferior_fpregisters;
|
||
|
||
ptrace (PT_GETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & inferior_registers, 0);
|
||
ptrace (PT_GETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & inferior_fpregisters, 0);
|
||
|
||
RF (R0_REGNUM + 0, inferior_registers.r_r0);
|
||
RF (R0_REGNUM + 1, inferior_registers.r_r1);
|
||
RF (R0_REGNUM + 2, inferior_registers.r_r2);
|
||
RF (R0_REGNUM + 3, inferior_registers.r_r3);
|
||
RF (R0_REGNUM + 4, inferior_registers.r_r4);
|
||
RF (R0_REGNUM + 5, inferior_registers.r_r5);
|
||
RF (R0_REGNUM + 6, inferior_registers.r_r6);
|
||
RF (R0_REGNUM + 7, inferior_registers.r_r7);
|
||
|
||
RF (SP_REGNUM, inferior_registers.r_sp);
|
||
RF (FP_REGNUM, inferior_registers.r_fp);
|
||
RF (PC_REGNUM, inferior_registers.r_pc);
|
||
RF (PS_REGNUM, inferior_registers.r_psr);
|
||
|
||
RF (FPS_REGNUM, inferior_fpregisters.r_fsr);
|
||
RF (FP0_REGNUM + 0, inferior_fpregisters.r_freg[0]);
|
||
RF (FP0_REGNUM + 2, inferior_fpregisters.r_freg[2]);
|
||
RF (FP0_REGNUM + 4, inferior_fpregisters.r_freg[4]);
|
||
RF (FP0_REGNUM + 6, inferior_fpregisters.r_freg[6]);
|
||
RF (LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
|
||
RF (LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
|
||
RF (LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
|
||
RF (LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (int regno)
|
||
{
|
||
struct reg inferior_registers;
|
||
struct fpreg inferior_fpregisters;
|
||
|
||
RS (R0_REGNUM + 0, inferior_registers.r_r0);
|
||
RS (R0_REGNUM + 1, inferior_registers.r_r1);
|
||
RS (R0_REGNUM + 2, inferior_registers.r_r2);
|
||
RS (R0_REGNUM + 3, inferior_registers.r_r3);
|
||
RS (R0_REGNUM + 4, inferior_registers.r_r4);
|
||
RS (R0_REGNUM + 5, inferior_registers.r_r5);
|
||
RS (R0_REGNUM + 6, inferior_registers.r_r6);
|
||
RS (R0_REGNUM + 7, inferior_registers.r_r7);
|
||
|
||
RS (SP_REGNUM, inferior_registers.r_sp);
|
||
RS (FP_REGNUM, inferior_registers.r_fp);
|
||
RS (PC_REGNUM, inferior_registers.r_pc);
|
||
RS (PS_REGNUM, inferior_registers.r_psr);
|
||
|
||
RS (FPS_REGNUM, inferior_fpregisters.r_fsr);
|
||
RS (FP0_REGNUM + 0, inferior_fpregisters.r_freg[0]);
|
||
RS (FP0_REGNUM + 2, inferior_fpregisters.r_freg[2]);
|
||
RS (FP0_REGNUM + 4, inferior_fpregisters.r_freg[4]);
|
||
RS (FP0_REGNUM + 6, inferior_fpregisters.r_freg[6]);
|
||
RS (LP0_REGNUM + 1, inferior_fpregisters.r_freg[1]);
|
||
RS (LP0_REGNUM + 3, inferior_fpregisters.r_freg[3]);
|
||
RS (LP0_REGNUM + 5, inferior_fpregisters.r_freg[5]);
|
||
RS (LP0_REGNUM + 7, inferior_fpregisters.r_freg[7]);
|
||
|
||
ptrace (PT_SETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & inferior_registers, 0);
|
||
ptrace (PT_SETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & inferior_fpregisters, 0);
|
||
|
||
}
|
||
#endif /* !__ns32k__ */
|
||
|
||
#ifdef __powerpc__
|
||
/* Fetch one or more registers from the inferior. REGNO == -1 to get
|
||
them all. We actually fetch more than requested, when convenient,
|
||
marking them as valid so we won't fetch them again. */
|
||
|
||
void
|
||
fetch_inferior_registers (int regno)
|
||
{
|
||
struct reg inferior_registers;
|
||
#ifdef PT_GETFPREGS
|
||
struct fpreg inferior_fp_registers;
|
||
#endif
|
||
int i;
|
||
|
||
ptrace (PT_GETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & inferior_registers, 0);
|
||
for (i = 0; i < 32; i++)
|
||
RF (i, inferior_registers.fixreg[i]);
|
||
RF (PPC_LR_REGNUM, inferior_registers.lr);
|
||
RF (PPC_CR_REGNUM, inferior_registers.cr);
|
||
RF (PPC_XER_REGNUM, inferior_registers.xer);
|
||
RF (PPC_CTR_REGNUM, inferior_registers.ctr);
|
||
RF (PC_REGNUM, inferior_registers.pc);
|
||
|
||
#ifdef PT_GETFPREGS
|
||
ptrace (PT_GETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
|
||
for (i = 0; i < 32; i++)
|
||
RF (FP0_REGNUM + i, inferior_fp_registers.r_regs[i]);
|
||
#endif
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (int regno)
|
||
{
|
||
struct reg inferior_registers;
|
||
#ifdef PT_SETFPREGS
|
||
struct fpreg inferior_fp_registers;
|
||
#endif
|
||
int i;
|
||
|
||
for (i = 0; i < 32; i++)
|
||
RS (i, inferior_registers.fixreg[i]);
|
||
RS (PPC_LR_REGNUM, inferior_registers.lr);
|
||
RS (PPC_CR_REGNUM, inferior_registers.cr);
|
||
RS (PPC_XER_REGNUM, inferior_registers.xer);
|
||
RS (PPC_CTR_REGNUM, inferior_registers.ctr);
|
||
RS (PC_REGNUM, inferior_registers.pc);
|
||
ptrace (PT_SETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & inferior_registers, 0);
|
||
|
||
#ifdef PT_SETFPREGS
|
||
for (i = 0; i < 32; i++)
|
||
RS (FP0_REGNUM + i, inferior_fp_registers.r_regs[i]);
|
||
ptrace (PT_SETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) & inferior_fp_registers, 0);
|
||
#endif
|
||
}
|
||
#endif /* !__powerpc__ */
|
||
|
||
/* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
|
||
in the NEW_SUN_PTRACE case.
|
||
It ought to be straightforward. But it appears that writing did
|
||
not write the data that I specified. I cannot understand where
|
||
it got the data that it actually did write. */
|
||
|
||
/* Copy LEN bytes from inferior's memory starting at MEMADDR
|
||
to debugger memory starting at MYADDR. */
|
||
|
||
void
|
||
read_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
|
||
{
|
||
register int i;
|
||
/* Round starting address down to longword boundary. */
|
||
register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (int);
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
register int count
|
||
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
|
||
/* Allocate buffer of that many longwords. */
|
||
register int *buffer = (int *) alloca (count * sizeof (int));
|
||
|
||
/* Read all the longwords */
|
||
for (i = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
buffer[i] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
|
||
}
|
||
|
||
/* Copy appropriate bytes out of the buffer. */
|
||
memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
|
||
}
|
||
|
||
/* Copy LEN bytes of data from debugger memory at MYADDR
|
||
to inferior's memory at MEMADDR.
|
||
On failure (cannot write the inferior)
|
||
returns the value of errno. */
|
||
|
||
int
|
||
write_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
|
||
{
|
||
register int i;
|
||
/* Round starting address down to longword boundary. */
|
||
register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (int);
|
||
/* Round ending address up; get number of longwords that makes. */
|
||
register int count
|
||
= (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
|
||
/* Allocate buffer of that many longwords. */
|
||
register int *buffer = (int *) alloca (count * sizeof (int));
|
||
extern int errno;
|
||
|
||
/* Fill start and end extra bytes of buffer with existing memory data. */
|
||
|
||
buffer[0] = ptrace (PT_READ_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
|
||
|
||
if (count > 1)
|
||
{
|
||
buffer[count - 1]
|
||
= ptrace (PT_READ_D, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) addr + (count - 1) * sizeof (int), 0);
|
||
}
|
||
|
||
/* Copy data to be written over corresponding part of buffer */
|
||
|
||
memcpy ((char *) buffer + (memaddr & (sizeof (int) - 1)), myaddr, len);
|
||
|
||
/* Write the entire buffer. */
|
||
|
||
for (i = 0; i < count; i++, addr += sizeof (int))
|
||
{
|
||
errno = 0;
|
||
ptrace (PT_WRITE_D, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
|
||
if (errno)
|
||
return errno;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
void
|
||
initialize_low (void)
|
||
{
|
||
initialize_arch ();
|
||
}
|