binutils-gdb/sim/or1k
Mike Frysinger 109a0a7e90 sim: modules.c: fix generation after recent refactors
Add explicit arch-specific modules.c rules to keep the build from
generating an incorrect common/modules.c.  Otherwise the pattern
rules would cascade such that it'd look for $arch/modules.o which
turned into common/modules.c which triggered the gen rule.

My local testing of this code didn't catch this bug because of how
Automake manages .Po (dependency files) in incremental builds -- it
was adding extra rules that override the pattern rules which caused
the build to generate correct modules.c files.  But when building
from a cold cache, the pattern rules would force common/modules.c to
be used leading to crashes at runtime.
2023-01-15 20:55:48 -05:00
..
arch.c Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
arch.h Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
ChangeLog-2021 sim: rename ChangeLog files to ChangeLog-2021 2021-08-17 20:27:36 -04:00
cpu.c Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
cpu.h Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
cpuall.h Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
decode.c Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
decode.h Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
local.mk sim: modules.c: fix generation after recent refactors 2023-01-15 20:55:48 -05:00
mloop.in Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
model.c Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
or1k-sim.h Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
or1k.c Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
README
sem-switch.c Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
sem.c Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
sim-if.c Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00
sim-main.h sim: replace -I$srcroot/opcodes include with -I$srcroot 2023-01-01 23:14:19 -05:00
traps.c Update copyright year range in header of all files managed by GDB 2023-01-01 17:01:16 +04:00

SIM port for the OpenRISC architecture

Authors: Stafford Horne <shorne@gmail.com>
	 Peter Gavin

# Guide to Code #

We have tried to comment on the functions in the simulator implementation as
best as we can.  Here we provide some general architecture comments for
reference.  Please let me know if there is a better place for these kind of
docs.

The or1k sim uses the CGEN system to generate most of the simulator code.  There
is some documentation for CGEN on sourceware.org here:

  https://sourceware.org/cgen/docs/cgen.html

In the binutils-gdb project there are several files which get combined to make
up the CGEN simulator.  The process for how those are built can be seen in
`or1k/Makefile.in`.  But the main files are:

MAIN
 sim/common/nrun.c - the main() calls sim_open(), sim_resume() and others
 sim/or1k/sim-if.c - implements sim_open() and others used by nrun
                     when envoking sim in gdb, gdb uses sim_open() directly

CGEN input and generated files
 cpu/or1k*.cpu - these define the hardware, model and semantics
 sim/or1k/arch.c - generated defines sim_machs array
 sim/or1k/cpu.c - *generated defines register setters and getters
 sim/or1k/decode.c - generated defines instruction decoder
 sim/or1k/model.c - generated defines instruction cycles
 sim/or1k/sem.c - *generated defines instruction operation semantics
 sim/or1k/sem-switch.c - *generated ditto but as a switch

ENGINE runs decode execute loop
 sim/common/cgen-* - cgen implementation helpers
 sim/common/cgen-run.c - implements sim_resume() which runs the engine
 sim/common/genmloop.sh - helper script to generate mloop.c engine the
                          decode, execute loop
 sim/or1k/mloop.in - openRISC implementation of mloop parts

EXTRAS callbacks from sem* to c code
 sim/or1k/or1k.c - implements some instructions in c (not cgen schema)
 sim/or1k/traps.c - exception handler

For each sim architecture we have choices for how the mloop is implemented.  The
OpenRISC engine uses scache pbb (pseudo-basic-block) instruction extraction with
both fast (sem-switch.c based) and full (sem.c based) implementations.  The fast
and full modes are switch via the command line options to the `run` command,
i.e. --trace-insn will run in full mode.

                            # Building #

Below are some details on how we build and test the openrisc sim.

                            ## TOOLCHAIN ##

This may not be needed as binutils contains most/all of the utilities required.
But if needed, get this toolchain (this is the newlib binary, others also
available)

  https://github.com/openrisc/or1k-gcc/releases/download/or1k-5.4.0-20170218/or1k-elf-5.4.0-20170218.tar.xz

If you want to build that from scratch look to:

  https://github.com/openrisc/newlib/blob/scripts/build.sh

                              ## GDB ##

In a directory along side binutils-gdb source

  mkdir build-or1k-elf-gdb
  cd build-or1k-elf-gdb

  ../binutils-gdb/configure --target=or1k-elf \
    --prefix=/opt/shorne/software/or1k \
    --disable-itcl \
    --disable-tk \
    --disable-tcl \
    --disable-winsup \
    --disable-gdbtk \
    --disable-libgui \
    --disable-rda \
    --disable-sid \
    --with-sysroot \
    --disable-newlib \
    --disable-libgloss \
    --disable-gas \
    --disable-ld \
    --disable-binutils \
    --disable-gprof \
    --with-system-zlib

  # make gdb, sim
  make

  # test sim
  cd sim
  make check

The sim creates a binary simulator too, you can run binaries such as hello
world with:

  or1k-elf-gcc hello.c
  ./or1k/run --trace-insn ./a.out